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Jump Index in T-functions for designing a new
basic structure of stream ciphers

Ali Hadipour, Seyed Mahdi Sajadieh and Raheleh Afifi

Abstract—The stream ciphers are a set of symmetric algo-
rithms that receive a secret message as a sequence of bits and
perform an encryption operation using a complex function based
on key and IV, and combine xor with bit sequences. One of
the goals in designing stream ciphers is to obtain a minimum
period, which is one of the primary functions of using T-functions.
On the other hand, the use of jump index in the design of
LFSRs has made the analysis of LFSR-based stream ciphers
more complicated. In this paper, we have tried to introduce a
new method for designing the initial functions of stream ciphers
with the use of T-functions concepts and the use of jump indexes,
that has the maximum period. This method is resist side-channel
attacks and can be efficiently implemented in hardware for a
wide range of target processes and platforms.

Index Terms—T-Function, Jump Index, Stream cipher, Maxi-
mum Period.

I. INTRODUCTION

STREAM ciphers have many utilities in hardware and
software platforms, and there are a lot of ways to design

stream ciphers in general. A common approach is to use a
block encription in recursive modes such as the OFB style of
operation. Many stream ciphers are based on transfer registers,
which are made in two ways, with nonlinear feedback shift
register (NLFSR) and linear feedback shift register (LFSR).
However, LFSR-based generators have good statistical prop-
erties and easy hardware implementation. The LFSR-based
stream ciphers have different design principles that can be used
to obtain more complex and secure encryption combinations,
for example, using nonlinear functions on transfer registers,
the linear complexity is much higher. On the other hand, by
applying the clock on the LFSRs of a stream cipher, the
key sequence can be nonlinear and further complicate the
sequence. The advantage of using irregular clocks, as well
as having a higher linear complexity, is resistant to correlation
attacks but is not resistant to side-channel attacks. For that,
in addition to have the advantage an irregular clock, Jansen
has tried to fix this problem since 2004. He solved that via
introducing of Jump whereby It caused a resistant stream
cipher against side channel attack. An important property in
stream ciphers is their high period, which is best achieved
2L − 1 for a L-bit sequence. Therefore, in order to produce
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sequences with more periodic, we consider the T-functions
that have the maximum period. One of the other advantages
of the T-functions is that its inverse operation is very difficult
and this superiority is the most important superiority of the T-
functions to the LFSRs. In this paper, we try to maintain a high
period, transition with a polynomial between the jump and
the T-function that has a good complexity. Therefore, Section
II, after explanation the initial discussions in cryptography,
explains in more detail, the T-functions and its definitions. And
is mentioned in Section III jump discussions. In Section IV, by
presenting a mapping of a T-function, the relation between it
and the jump is proposed, and the lower bound for the period
is presented. In Section V, a conclusion is presented from the
paper.

II. T-FUNCTION

The pyramid cryptographic tools can be considered to be
the lowest level of the components of the cryptographic algo-
rithms, which is referred to as Primitive. The higher levels are
encryption algorithms, such as RSA and AES encryption algo-
rithms. The highest level of the pyramid consists of encryption
protocols, such as the protocol of sending a private message
from one person to another through the desired communication
channel. In other words, with a combination of primary
components, cryptographic algorithms are designed and by
encryption algorithms used, generate encryption protocols. It
can be said that there are two main approaches to the design
of cryptographic algorithms, in the first approach, we tried to
understand only simple basic components (such as LFSRs in
stream ciphers, S-Boxs and P-Boxs in block ciphers and hash
functions) with a good understanding, as well as mathematical
theorems fixed regarding their cryptographic properties, and
in the other approach, a combination of operations is used,
in which a variety of non-algebraic and nonlinear methods
are combined. Hoping that neither designers nor attackers
are able to analysis math behavior the design. In addition
to there is evidences for its security. It should be noted that
the design of cryptography algorithms with the secret key is
often used in the second approach. In this section, a set of
T-functions is defined that includes arbitrary combinations of
addition, subtraction, multiplication, or and logical and, and
binary addition over n-bit words. The T-functions were first
introduced by Aleksandr Kalimov under the supervision of
Eddy Shamir in 2002, centering on ”a new class of invertible
mappings”[1]. Given the definition of these functions, they can
be used in the design of the initial components of symmetric
algorithms. One of the schemes based on T-functions can
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be ABC (in 2005 by Waldimier Anashin and et al.) [2] and
TSC (2005 by Han and et al.) in versions TSC-1, TSC-2 and
TSC-3 [3], which is a family of T-functions based on SBox.
Mir-1 (T-function-based structure and SBox) [4] and Vest (a
structure based on NLFSR, SPN and T-function) [5] are also
other schemes based on T-functions. For more information, in
Section 2.A a summary of the above algorithms is described.

Suppose Bn = {(x(n−1), . . . ,x0) | xi ∈ B} a set of
n-tuple are elements B = {0, 1}. In this case, an element
of B, a single bit and an element of Bn, a n-bit word
is called. So that an x element in Bn, is represented as
([x]n−1, [x]n−2, . . . , [x]0) and each bit [x]i−1 the bit number
i-th, in x words called. Therefore [x]0 is the least signif-
icant bit x and [x]n−1 is the most significant bit x. As
stated, the word x is expressed to represent the n-bit vector
([x]n−1, . . . , [x]0) ∈ Bn , which can be achieved by using the
conversion function x↔

∑n−1
i=0 2i[x]i to the modulus 2n.

Definition 1. The function f : Bm×n → Bl×n is called a T-
function, if the trusted i-th column of the output [f(x)]i−1 de-
pends only on the first i columns of the inputs [x]0, . . . , [x]i−1.
In other words:

[x]0
[x]1
[x]2

...
[x]n−1


T

→


f0([x]0)

f1([x]0, [x]1)
f2([x]0, [x]1, [x]2)

...
fn−1([x]0, . . . , [x]n−2, [x]n−1)


T

(1)

In other words, each bit i of outputs for 0 ≤ i < n can
only depend on bits 0, . . . , i of inputs. In fact, it is a m-word
to l-word mapping each of which are n-bit and each output
bit depends on itself and the preceding bits [6]. In the above
definition, the mapping of a n-bit word into a n-bit word is
included.

Example 1. x + 1 is a T-function, because (x2, x1, x0) +
(0, 0, 1) = (x2 ⊕ x1x0, x1 ⊕ x0, x0 ⊕ 1). As it is known, the
first bit is x0 + 1 that is the least significant bit. The second
bit depends on the sum of the first bits, therefore x1 only with
x0 that unknown, is summed up, and also for the third bit, x2
with combination of x0 and x1 has been binary addition. The
display of definition 1 for this example can be seen below.


[x]0
[x]1
[x]2

...


T

→


[x0]0 ⊕ 1⊕ [x1]0

[x0]1 ⊕ [x0]0 ⊕ [x1]1
[x0]2 ⊕ [x0]0[x0]1 ⊕ [x1]2

...


T

Example 2. x ⊕ x2 is a T-function. This example is for
x = (x2, x1, x0) and n = 3 is reviewed.
x⊕x2 = (x2, x1, x0)⊕(x2, x1, x0)

2 = (x2, x1, x0)⊕(x1⊕
x1x0, 0, x0).

That (x2, x1, x0)
2 is calculated as follows and as it is

known, each of the resulting bits depends on the previous bits
by calculating the carry bits.

(x2, x1, x0)(x2, x1, x0) mod 23 = (x0x2, x0x1, x0) ⊕
(x1x2, x1, x1x0) ⊕ (x2, x2x1, x2x0) = (x1 ⊕ x0x1, 0, x0)
mod 23.

Example 3. With reference to the two examples above, one
can refer to mappings x→ x ∧ x2 and x→ (x⊕ x2) + (x∧
(3x � 5) ∨ (x − 1)) as a T-function. It should be noted that
the symbols ∧, ∨ and � (�) respectively represents bitwise
and or logical, and transitive to the left of the bit. It should be
noted that the transfer of the bit to the right � (�) does not
have the properties of the T-functions.

Definition 2. A mapping φ : Bk → Bk is inverse if we have
φ(x) = φ(y) if and only if x = y. Therefore, it should be
checked that a given T-function is the inverse. In the following,
cases are considered for invertible mappings.

Example 4. One-variable mappings x → x + 2x2, x →
x + (x2 ∨ 1), x → x ⊕ (x2 ∨ 1) for each word size, are
invertible, but mappings x → x + x2 ,x → x + (x2 ∧ 1),
x → x + (x3 ∨ 1) are not invertible. For example, checked
on invertible of the mapping x → x + (x2 ∨ 1) and non-
invertible of the mapping x → x + (x2 ∧ 1). The invertible
and non-invertible of the rest of the mappings are fixed in the
same way. For mapping x → x + (x2 ∨ 1) in one-bit mode,
is trusted the follow result:
∀x ∈ {0, 1} : x2 ∨ 1 = 1,∀y ∈ {0, 1} : y2 ∨ 1 = 1 ⇒

x+ (x2 ∨ 1) = y + (y2 ∨ 1)⇒ x+ 1 = y + 1⇒ x = y

According to Definition 2, above mapping is clearly invert-
ible. For mapping x→ x+(x2 ∧ 1) in one-bit mode, one can
also check that:
∀x ∈ {0, 1} : x2 ∧ 1 ∈ {0, 1},∀y ∈ {0, 1} : y2 ∧ 1 ∈

{0, 1} ⇒ x+ (x2 ∧ 1) = y + (y2 ∧ 1)⇒ 2x = 2y.
Now because 2 × 1 = 2 mod 2 = 0 and then 2 × 0 = 0

mod 2 = 0, and so on 0 6= 1. Therefore, with respect to
Definition 2, this mapping is clearly non-invertible.

Definition 3. The mapping whose its associated graph is
isomorphic with a single cycle x → φ(x), is called a
single cycle mapping [6] if the sequence is repeated by x0,
x1 = φ(x0), x2 = φ(x1) = φ(φ(x0)) and . . .. So that has a
periodicity of magnitude 2n, which is the maximum possible
period for the n-bit words.

It can be shown that mapping x→ x+(x2∨5) mod 2n is
a single-cycle mapping for each word size n, while mapping
x → x + (x2 ∨ 1) mod 2n is not. It is also possible to
m-variables map with n-bits, which has a single-cycle with
maximal size of the size 2mn.

Example 5. One-variable mapping x → x + (x2 ∨ 5)
mod 2n is defined a single-cycle mapping. Because, with the
assumption of choice x = 1 and n = 3 (arbitrarily) can be
seen after 8 repetitions, the mappings returned to x = 1. The
trend x is as follows:
x = 1→ 6→ 3→ 0→ 5→ 2→ 7→ 4→ 1.
As it is known, the periodicity of the above mapping is

equal to 23 that is its maximum period.
Example 6. The below three-variables mapping is a single-

cycle mapping so that we have: s = ((x0 ∧ x1 ∧ x2) − 1) ⊕

(x0∧x1∧x2). Because by selecting

x0

x1

x2

 =

10
1

 and n = 3
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(arbitrarily) after the repeat load 29 the mapping returns to the
original. x0

x1

x2

→
 x0 ⊕ 2x1x2

x1 ⊕ (s ∧ x0)⊕ 2x2x0

x2 ⊕ (s ∧ x0 ∧ x1)⊕ 2x0x1


It can be said that any invertible T-function does not have

a single-cycle, that is, could find an invertible T-function that
does not form a single-cycle, such as the T-function x+(x2∨1)
mod 2n.

Theorem 1. Mapping x→ (x+C) mod 2n is a single-cycle
mapping if and only if C is an odd [7].

Theorem 2. Suppose NO that mapping x → x ⊕ r(x) is a
single-cycle module 2NO . This single-cycle mapping is defined
for all n’s in module 2n if and only if for all n > NO, r(x)
is an odd parameter [7].

Theorem 3. T-function f(x) = x + (x2 ∨ C) mod 2n is
assumed. It can be proved for this function if [C]0 = 1, in this
case f is invertible. It is also a single-cycle mapping if and
only if [C]0 = [C]2 = 1.

Theorem 4. Suppose S is a single-cycle Sbox and α an odd
parameter. If So the odd power of S and Se even power
of S are, then the mapping T(X) = (α(X).So(X)) ⊕
(∼ α(X).Se(X)) of a single-cycle T-function is defined. For
better understanding, the mapping T can be shown as follows.

[T (X)]i =

{
Se([X]i) if [α(X)]i = 0

So([X]i) if [α(X)]i = 1
(2)

Lemma 1. Suppose S is a single-cycle Sbox and α an odd
parameter. The mapping X → X ⊕ (α(X).S(X)) defines a
single-cycle T-function.

A. A summary of algorithms based on T-functions

As discussed in section II, some stream cipher algorithms
based on T-functions are presented, which are briefly cited
below.

1) TSC Algorithm: In this section, an algorithm is described
based on Theorem 4 in the previous section. A new family of
stream cipher algorithms based on T-functions were introduced
in 2005 by Han and et al.

The TSC-1 algorithm is composed of four 32-bit words x0,
x1, x2 and x3. In this algorithm, an odd parameter α1(X) =
(p + C) ⊕ p ⊕ 2s has been used, that C = 0x12488421,
p = x0 ∧ x1 ∧ x2 ∧ x3 and s = x0 + x1 + x2 + x3. It should
be noted that all the additions are done in a modulus 232. With
the definition of a single-cycle 4× 4 Sbox S can be checked
So = S and Se = S2 established. This is defined as follows.
S1[16] = {3, 5, 9, 13, 1, 6, 11, 15, 4, 0, 8, 14, 10, 7, 2, 12}
Therefore, we can define a single-cycle T-function using

theorem 4. It should be noted that the filtering algorithm TSC-
1 is defined f(x) = (x0≪9 + x1)≪15+(x2≪7+x3), which
results in the output of 32 bits.

The TSC-2 algorithm is quite similar to the TSC-1 algorithm
and uses a single-cycle 4× 4 Sbox as follows.
S2[16] = {5, 2, 11, 12, 13, 4, 3, 14, 15, 8, 1, 6, 7, 10, 9, 0}
The odd parameter used in this algorithm is used in the

form α2(X) = (p+1)⊕p⊕ 2s and filter defined as follows.
f2(x) = (x0≪11+x1)≪14+(x0≪13+x2)≪22+(x0≪12+

x3)

In 2005, Hun and his et.al presented the TSC-3 algorithm
in ECRYPT competition [3]. This algorithm uses 4 words and
each with 40-bits size. The design changes the architecture of
its previous 32-bits algorithms and is designed to be hardware
platform. In addition, the size of the layout has increased to
160 bits. So the security level is 280 anticipated to deal with
attacks such as the TMTO. Each layer is updated by Sbox,
which is more complicated than the previous two algorithms
of its family. The parameter is made up of two words p0 and
p1, so that the following is calculated from the i-th layer:
tmp = 2× [p1]i + [p0]i ∈ {0, 3}
Based on the value of tmp, [x]i updated using S, S2, S5 or

S6, so that S is the same as the Sbox of the TSC-1 algorithm.
The TSC-3 filter function is updated so that 4 32-bits variables
yi are created in the same way, with 8 least significant bits
from each of the 40-bit words xi being deleted. Then, yi are
permuted depending on the least significant layer of the mode
[x]0. Therefore, there are 16 possible permutations and the
output function is obtained as follows.
f(y) = (y0≪9 + y1≫2)≪8 + (y2≪7 + y3)≫9

2) ABC Algorithm: ABC is an optimized simultaneous
stream cipher for software applications. This algorithm is pro-
vided with a 128-bits key and 32-bits internal variables. That’s
why its security level 2128 to expect. The ABC algorithm uses
three main generators A, B and C. The generator A is an
LFSR of length 128 whose its states are represented by z. The
generator B is a single-cycle mapping based on the arithmetic
summation in the field Z/232Z and the bitwise summation
modulus 2 (xor) and is represented by the x variable. The
generator C is also a filter function based on search tables,
an arithmetic summation in the field Z/232Z, and a bitwise
rotation to the right (≫).

As stated above, A is an LFSR of length 128 and its
characteristic polynomial equal to φ(θ) = ψ(θ)θ that ψ(θ) =
θ127 + θ63 + 1 is a primitive polynomial. The next 32 bits of
at the one time clock are as follows.

ς ← z2 ⊕ (z1 = 31)⊕ (z0 = 1) mod 232

z0 ← z1

z1 ← z2

z2 ← z3

z3 ← zς

The single-cycle function B used in ABC algorithm, and its
type is a T-function, is represented by the following equation.
B(x) = ((x⊕ d0) + d1)⊕ d2 mod 232.
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So that d0, d1, d2 ∈ Z/232Z and d0 = 0 mod 4, d1 = 1
mod 4 and d2 = 0 mod 4. In other words, the following
equations must exist at a time:
d0,0 = d0,1 = 0, d1,0 = 1, d1,1 = 0, d2,0 = d2,1 = 0.
To display the filter C of the ABC algorithm, suppose

that the mapping S : Z/232Z → Z/232Z is defined by the
means S(x) = e+

∑31
i=0 eiδi(x) mod 232 so that e31 = 216

mod 217. The filter function C produces the output y as
follows.
ζ = S(x); y = ζ≫ 16
The generator of the key stream of the ABC algorithm is

as follows.

Fig. 1: Representation ABC Algorithm

As shown in the figure, the input and output of the algorithm
are as follows:

Algorithm 1 ABC Algorithm [4]

procedure RUNNING ABC ENCRYPTION ALGORITHM
Input: z ∈ Z/264Z, x ∈ Z/232Z
Output: z ∈ Z/264Z, x ∈ Z/232Z, y ∈ Z/232Z

z ← A(z)
x← z1 +B(x) mod 232

y ← z0 + C(x) mod 232

Refer to resources [4] and [5] to describe other proposed
algorithms.

III. JUMP

As discussed in Section I, the use of an irregular clock
method in stream ciphers will cause side channel attacks.
One of the methods close to the irregular clock method is
the use of the jump concept, in which case the current status
is accumulated with the updated state. To describe this state,
assume that A transition matrix of a linear finite state machine
is independent and f(x) its recursive polynomial is meant
f(x) = det(xI + A). In this case, if there is power J that
AJ = A + I , it can be said that by changing the LFSM
transition matrix from A to A+I , effectively J steps made up
from the space of the original LFSM, regardless of the initial
state.

Jansen first proposed the jump idea. He used this idea
to resist the stream cipher algorithms against side channel

attacks. The algorithms used to this idea are Pomaranch [8]
and Mickey [9]. In the generating sequence of LFSRs with
irregular clocks, the following linear recursive relation is
important.

Sj+n =

n∑
i=1

ciSj+n−i ⇔
n∑

i=0

ciSj+n−i = 0; (c0 = −1) (3)

So that the recursive coefficients ci are usually expressed,
and these coefficients cause the resulting polynomials to be
called recursive polynomials. The descriptive polynomial F (x)
of degree is equal to the recursive length n, which is evident
in relation F (x) =

∑n
i=0 cix

i. The n-th order of linear
recursive is usually represented by its recursive polynomials
C(x), which is expressed by the relation C(x) =

∑n
i=0 cix

n−i

of degree n.
LFSR can be considered as a linear finite state machine. In

this case, a state of the LFSM is displayed with a vector, σt =
(σt

n−1, σ
t
n−2, . . . , σ

t
0), which σt

i specifies the content of the
memory cell Mi after the t transitions. Transitions from one
state to another are described by a state vector multiplication
with a transition matrix T , that is, for t > 0, the relation
σt+1 = σtT is true. The transition matrix for an LFSR is

specified as T =


0 0 . . . 0 cn
1 0 . . . 0 cn−1
0 1 . . . 0 cn−2
...

...
. . .

...
...

0 0 . . . 1 c1

 by the following

representation.

Fig. 2: Representation LFSR as LFSM

The above matrix is called an polynomial companion matrix
C(x) = xn−c1xn−1−. . .−cn−1x−cn. The recursive polyno-
mial T in the concept of linear algebra C(x) = det(xI − T )
is exactly the same as the polynomial and then C(T ) = 0.
Therefore the companion matrix plays the role of a C root,
and can be used sequentially to formulate the solution of the
recursive equations.

Definition 4. Assume f(x) an irreducible polynomial on
GF (2). If xJ = x + 1 mod f(x) there is for the correct
values J , then J the jump index f is called [10].

So, according to Definition 4 and its before content, if a
power J exists and the state vector σt is multiplied by AJ

or A + I multiplied, the result will be the same. In addition,
changing A to A + I is generally simpler than converting
A to AJ for an arbitrary transfer matrix A. Therefore, if
f(x) is irreducible, then A can be written as an companion
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matrix f(x) with the proper matrix multiplication, so that
A′ = MAM−1 exists. The matrices A and A′ are called
similar matrices. The powers of the companion matrix can be
considered as the representation of all the finite field elements.

It should be noted that there is not jump index for any
irreducible polynomial, since this matter depends on the
establishment of the relation xJ = x + 1 mod f(x), or
equivalently, the relation f(x) | (xJ+x+1) exists for some Js.
In other words, αJ = α+1, that α is rooted f(x) and therefore
an element of the field GF (2n). Therefore, the equivalent of
expressions can be said to be the problem of finding an element
αJ in finite field GF (2n), so that f is a polynomial definition
and n = deg (f). The term αJ = α + 1 implies that α is an
element of GF (2n) and by changing the transmission matrix
of the LFSM from A to A + I , effectively constructs the J
steps from the LFSM master state space, regardless of the
initial state.

The following figure represents a stream cipher generator
with two LFSRs and uses an irregular clock.

Fig. 3: LFSR Generator by Irregular Clock

The first LFSR produces a binary sequence S1 with a period
p1, which with some partial divisors of the order 2L1 − 1,
will make an irreducible recursive polynomial, such that L1

is the length of the LFSR. This sequence has N0 zero and N1

one that is used for clocking the second LFSR, that is, the
second LFSR moves through its state space, which depends
on the bits of the result of the sequence, by its stepping, c0
times or c1 times, if The output bit is one zero or one one,
respectively. The total number (Ns) of the steps is made by
the second LFSR with a polynomial in a period of the first
LFSR that relation Ns = N0c0 + N1c1 holds true. Suppose
that the second LFSR has irreducible recursive polynomial.
Therefore, a necessary condition in the output sequence S2 of
the second LFSR should be for a maximal period p1p2, which
gcd(Ns, p2) = 1 is also a sufficient condition.

The LFSRs of length L have a period 2L − 1. In this
case, the number of zeros and ones is N0 = (p − 1)/2 and
N1 = (p+1)/2. Given that the zero-state mode does not occur,
the minimum difference between zeros and ones is the size of a
unit. Therefore, the total number of steps is expressed by rela-
tionship Ns = c0p+(c1−c0)2L−1. Consequently, if the second
LFSR has a period p2 equal to p (or one of its diversions),
then the necessary condition for the maximum period S2 is
obtained by the relation gcd(Ns, p2) = gcd(c1 − c0, p) = 1.
In a special case that used to jump LFSRs, a step or a jump
equivalent to J steps is constructed from the space of the
state, which can be expressed gcd(J − 1, p) = 1 or expressed
gcd(J∗, p) = 1 in the previous condition in which J∗ = 1−J
mod (period(f)), is the opposite polynomial jump coefficient
f(x) meant f∗(x). In other words, the recursive polynomial

jump coefficient of the jump LFSR should be the prime in
relation to its period.

In the following section. Mickey’s algorithm uses a jump
index.

A. Mickey algorithm

The Mickey algorithm is designed for use in hardware
applications and is used for generators of a key stream with a
mutual irregular clocking.

Mickey takes two input parameters key and IV. The key used
in Mickey’s algorithm is 80 bits as shown by k0, . . . , k79. The
value of IV also has a length between 0 to 80 bits as shown
by iv0, . . . , iv(IV LENGTH−1). The output of the key stream is
shown by z0, z1, . . . and consequently the cipher text will be
obtained with the binary addition of the resulting key stream
bits and the plain text. But the key stream generator is made
up of two registers R and S, so that each register contains 80
single-bit cells. The registers R by r0, . . . , r79 and registers S
by s0, . . . , s79 are labeled. Here, the register R is assumed as
linear register and register S, nonlinear register.

In order to clocking the register R, the RTAPS set is defined
as:
{0, 2, 4, 6, 7, 8, 9, 13, 14, 16, 17, 20, 22, 24, 26, 27, 28, 34, 35,

37, 39, 41, 43, 49, 51, 52, 54, 56, 62, 67, 69, 71, 73, 76, 78, 79}

Now a clock operation
CLOCK R(R, INPUT BIT R,CONTROL BIT R)
is defined as follows:

Assuming that r0, . . . , r79 the register R state is before
of the clock and r′0, . . . , r

′
79 after the clock operation, the

following relationships hold true:
FEEDBACK BIT = r79 ⊕ INPUT BIT R

FOR : 1 ≤ i ≤ 79, r′i = ri−1; r
′
0 = 0

FOR : 0 ≤ i ≤ 79, if : i ∈ RTAPS, r′i = r′i ⊕
FEEDBACK BIT
if : CONTROL BIT R = 1 : FOR : 0 ≤ i ≤ 79, r′i =
r′i ⊕ ri

Also, in order to have a register clock S, four se-
quences COP01, . . . , COP078 , COP11, . . . , COP178 ,
FB00, . . . , FB079 and FB10, . . . , FB179 in tabular form are
defined in [9].

Now a clock action CLOCK S(S, INPUT BIT S
,CONTROL BIT S) is defined as follows.

Assuming that s0, . . . , s79 the register state S, before the
clock operation and s′0, . . . , s

′
79 after the clock operation, and

also used ŝ0, . . . , ŝ79 as the middle variables for descriptive
simplicity, the following relationships hold true:
FEEDBACK BIT = s79 ⊕ INPUT BIT S

FOR : 1 ≤ i ≤ 78, ŝi = si−1 ⊕ ((si ⊕ COP0i)(si+1 ⊕
COP1i)); ŝ0 = 0, ŝ79 = s78
if : CONTROL BIT S = 0 :
FOR : 0 ≤ i ≤ 79, s′i = ŝi ⊕ FB0iFEEDBACK BIT
if : CONTROL BIT S = 1 :
FOR : 0 ≤ i ≤ 79, s′i = ŝi ⊕ FB1iFEEDBACK BIT

After expressing the registers functions, a generator clock
as named CLOCK KG(R,S,MIXING, INPUT BIT )
is defined as:
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CONTROL BIT R = s27 ⊕ r53
CONTROL BIT S = s53 ⊕ r26
if :MIXING = TRUE :
INPUT BIT R = INPUT BIT ⊕ s40
if :MIXING = FALSE :
INPUT BIT R = INPUT BIT
CLOCK R(R, INPUT BIT R,CONTROL BIT R)
CLOCK S(S, INPUT BIT S,CONTROL BIT S)

To further describe the algorithm, refer to [9]. Also, the Po-
maranch algorithm is mentioned as the T-function algorithms,
which can be referred to [8].

IV. RELATIONSHIP BETWEEN T-FUNCTIONS AND JUMP

Theorem 5. Assume that a function f : Z2n → Z2n is a
mutual T-function. In this case, the function f i : Z2n → Z2n

with the criterion

f i(x) =

{
x if i = 0

f(f i−1(x)) if i > 1
(4)

for each i is a mutual T-function.

The main purpose of this article is the jump in T-functions.
One of the functions of one variable with a maximum period
is the function x→ x+ (x2 ∨ 5) mod 2n.

One of the interesting features in the function x → x +
(x2 ∨ 5) mod 2n is differences 2n−1 in two functions x →
x+(x2∨5) mod 2n and x→ x+(x2∨(5 + 2n−1)) mod 2n.

Proof of this observation is very convenient because if the
msb x2 is zero, the proof of the above is clear. But if the msb
x2 is equal to 1, the sum of the bits is written to the n-th bit
and according to the modulus 2n, this bit is deleted and the
difference is the same 2n−1.

Another important point that can be expressed for all T-
functions with periodicity 2n and modulus 2n, such as in the
function f(x) = x + (x2 ∨ (5 + 2n−1)) mod 2n is that the
equality of the relationship f2

n−1

(x) = (x+2n−1) mod 2n is
established. The reason for this is that we know f2

n

(x) = x.
Now if we suppose f2

n−1

(x) = (x + 2n−1) mod 2n, then
the relation x = f2

n−1

(f2
n−1

(x)) = f2
n−1

(x) + 2n−1

mod 2n = x + 2n−1 + 2n−1 mod 2n = x, is established.
Of course, with inductance, it must be confirmed for an
initial point, and finally, for each function f , this should be
investigated. Based on the two points above, the following
lemma is easily proved.

Lemma 2. If f(x) = x + (x2 ∨ 5) mod 2n is established,
this is the case we have f2

n−1+1(x) = x+(x2 ∨ (5 + 2n−1))
mod 2n.

Theorem 6. Suppose the mapping x → x + (x2 ∨ (5 + a))
mod 2n is defined that a random bit determines that a is zero
or 2n−1. In this case, the period of the above function is at
least equal to 2n−1.

Proof. Given that if the function f(x) = x + (x2 ∨ 5)
mod 2n is selected, the jump is equal to 1, and if the function
f(x) = x + (x2 ∨ (5 + 2n−1)) mod 2n is selected, the
jump is equal to c = 2n−1 + 1 in comparing by mapping

x→ x+ (x2 ∨ 5) mod 2n. The reason for setting the value
c is specified in lemma 1.

In this case, in order to find the period of this function,
assume that is t times jump to one and the s times jump to
2n−1 + 1. In this case, you must find the smallest value t+ s
such that t+ s(2n−1 + 1) = k × 2n.

Also values s, t and t+ s should be positive. In this case,
the following result will be obtained:
t+ s = k × 2n − s× 2n−1 = k′ × 2n−1.
In this way, it can be shown that t + s is equal to

the minimum positive value that can be obtained 2n−1.

Although the above proof is presented for one variable T-
functions, this argument can be proved for the n variables
T-function.

Assume that the relation (x1, . . . ,xn) = f2
n

(x1, . . . ,xn)
is true, since after the 2n repeats f(x1, . . . ,xn), we will arrive
at n-tuple (x1, . . . ,xn), and the following relationships will
be obtained:
(x1, . . . ,xn) = f2

n

(x1, . . . ,xn) =
f2

n−1

(f2
n−1

(x1, . . . ,xn)) = f2
n−1

(x1, . . . ,xn) + 2n−1 =
(x1, . . . ,xn) + 2n−1 + 2n−1 mod 2n = (x1, . . . ,xn) ⇒
f2

n−1

(x1, . . . ,xn) = (x1, . . . ,xn) + 2n ⇒ (x1, . . . ,xn) +
((x1, . . . ,xn)

2 ∨ (a1, . . . , an) + 2n−1) mod 2n.

V. CONCLUSION

In this paper, after a brief description of the T-functions, an
explanation of several algorithms based on T-functions, jump
concepts and the description of a jump-based algorithm, a
jump structure was presented using T-functions. This structure
has a lower limit for the minimum period, and also in terms
of implementation, there is no additional operation and can
be used as a proper primitive structure for designing future
stream ciphers. This structure is very suitable for designing a
random generator. Having the maximum period in an L-bits
sequence and resistance to side channel attacks due to the use
of jump is the reason for this structure to be more appropriate
than conventional structures.
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