
PRIVACY-PRESERVING COLLABORATIVE MACHINE
LEARNING ON GENOMIC DATA USING TENSORFLOW

Cheng Hong, Zhicong Huang, Wen-jie Lu, Hunter Qu
Gemini Lab, Alibaba Group
{vince.hc,zhicong.hzc,juhou.lwj,fuping.qfp}@alibaba-inc.com

Li Ma
Alibaba Health
ml96386@alibaba-inc.com

Morten Dahl, Jason Mancuso
Dropout Labs
mortendahlcs@gmail.com,jason@manc.us

ABSTRACT

Machine learning (ML) methods have been widely used in genomic studies. How-
ever, genomic data are often held by different stakeholders (e.g. hospitals, univer-
sities, and healthcare companies) who consider the data as sensitive information,
even though they desire to collaborate. To address this issue, recent works have
proposed solutions using Secure Multi-party Computation (MPC), which train on
the decentralized data in a way that the participants could learn nothing from each
other beyond the final trained model.
We design and implement several MPC-friendly ML primitives, including class
weight adjustment and parallelizable approximation of activation function. In ad-
dition, we develop the solution as an extension to TF Encrypted (Dahl et al., 2018),
enabling us to quickly experiment with enhancements of both machine learning
techniques and cryptographic protocols while leveraging the advantages of Ten-
sorFlow’s optimizations. Our implementation compares favorably with state-of-
the-art methods, winning first place in Track IV of the iDASH2019 secure genome
analysis competition. 1

1 INTRODUCTION

Machine learning methods have been applied to a huge variety of problems in genomics and genetics
(Libbrecht & Noble, 2015). A typical example is to train a model to classify healthy and (poten-
tially) diseased people according to their genomic information. Generally speaking, larger amount
of training data is required to make more successful ML models. Unfortunately, genomic data are
considered to be highly sensitive information for individuals, and thus are usually held by different
data owners in a strictly access-controlled way (Cho et al., 2018). Therefore, it becomes highly
important to allow two or more genomic data owners to jointly train a model without compromising
each other’s data privacy.

iDASH (integrating Data for Analysis, Anonymization, Sharing), a National Center for biomedical
computing funded by National Institutes of Health (NIH), has hosted a secure genome analysis com-
petition for the past 5 years. This contest has encouraged cryptography experts all over the world
to develop secure and practical solutions for privacy-preserving genomic data analysis. Specifically,
the iDASH competition announced four tracks this year, with Track IV calling for solutions on se-
cure collaborative training of ML model using MPC. The organizers provided two genomic datasets:
GSE2034, containing 142 positive and 83 negative tumor samples with 12,634 features each, and
BC-TCGA, containing 422 positive and 48 negative tumor samples with 17,814 features each.

The challenge of Track IV is threefold: 1) A protocol in the 3-party semi-honest (with honest ma-
jority) model is required, but implementations of recent state-of-the-art MPC protocols for solving
such machine learning tasks were not available2. 2) It is hard to avoid overfitting due to the small

1http://www.humangenomeprivacy.org/2019/
2The code of Rindal (2019) came out in 2019.7, two months after the competition began.

1

ar
X

iv
:2

00
2.

04
34

4v
1

 [
cs

.C
R

]
 1

1
Fe

b
20

20

sample size and large number of features. 3) The dataset is heavily imbalanced but common coun-
termeasures such as resampling are difficult in MPC.

We summarize our contributions as follows:

• We implemented the state-of-the-art ABY3 (Mohassel & Rindal, 2018) protocol using the
TF Encrypted framework (Dahl et al., 2018). With the advantages of TF Encrypted, our
implementation is 1.1−1.8× faster than the original ABY3 implementation for large-scale
ML training. The code has been open-sourced to the TF Encrypted repository.

• We developed a secure collaborative ML solution on top of our TF Encrypted-ABY3 frame-
work, together with several MPC-friendly ML primitives, including class weight adjust-
ment for the imbalanced dataset and more accurate and parallelized sigmoid approxima-
tion. The solution tied for first place in Track IV of iDASH2019 competition.

2 BACKGROUND AND RELATED WORK

2.1 LOGISTIC REGRESSION

The datasets have many more features than samples and are prone to overfitting, so we decided to
use a simple logistic regression (LR) instead of more complex modeling approaches after initial
experimentation. Let x ∈ Rf denote the f -dimensional feature vector, w ∈ Rf the corresponding
weight vector, and y ∈ {0, 1} the corresponding label of x, the goal of LR training is to solve the
following empirical risk minimization problem:

argmin
w∈Rf

L(w) = argmin
w∈Rf

E
x,y

[
y log

(
σ(w>x)

)
+ (1− y) log

(
1− σ(w>x)

)]
While second-order Newtonian optimization is more commonly used in cleartext LR training,
such methods are costly in MPC. We can instead use stochastic gradient descent: given a dataset
{(xi, yi)}i≤N , the gradient of L(w) at each (xi, yi) could be defined as:

∇|xi,yi
L(w) = −(yi − σ(w>xi))xi,

where σ(z) = 1
1+e−z is the sigmoid function.

2.2 SECURE MULTI-PARTY COMPUTATION (MPC) AND ABY3

MPC is a set of cryptographic techniques allowing parties to jointly compute a public function over
their private inputs. Many different MPC protocols specialized for ML have been introduced under
various security models, examples include EzPC (Chandran et al., 2017) and SecureML (Mohassel
& Zhang, 2017). iDASH seeks a solution in the 3-party semi-honest (with honest majority) model,
and so far the best protocol satisfying that model is ABY3 proposed by Mohassel & Rindal (2018),
so we chose ABY3 as the underlying protocol of our solution. Due to space limitations, we briefly
describe ABY3 in Appendix A.3 and refer the reader to their paper for further details.

3 SOLUTION DESCRIPTION

3.1 OPTIMIZED LOGISTIC REGRESSION IN MPC

Class weight adjustment for imbalanced training set. The numbers of positive and negative
samples in the given dataset are imbalanced, which inflates false positives for the majority class. A
common countermeasure is resampling, which either remove samples from the majority class or add
more duplicated examples from the minority class. But in MPC, the labels are private so resampling
is difficult. Differential privacy is another possible solution, but it will lead to a non-negligible
accuracy loss for such a small dataset. So we adopt the simpler yet well-motivated approach of
weighting samples in the loss function to place more emphasis on minority classes:

2

C0 = N
2
∑N

i=1(1−yi)
, C1 = N

2
∑N

i=1 yi

and the gradient becomes: ∇L(w) = −(yi − σ(w>xi))xi · Cyi . Note that we cannot lookup Cyi

directly since yi is a private input, so instead we compute it via Cyi = (C1 − C0) · yi + C0.

Parallel piecewise approximation of the sigmoid function. The sigmoid function in LR has
to calculate exponents, which is not practical in MPC. The original ABY3 paper uses piecewise
polynomials (described in Algorithm 1) to approximately compute sigmoid. In particular, they use
a 3-piece approximation, which unfortunately achieves subpar accuracy relative to the non-secure
model (See Table 2). Instead, we use a 5-piece approximation as shown in Figure 1.

Algorithm 1 Piecewise polynomial function
Input:

Private input: x;
Segmentation points: {si}0≤i≤n, where s0 =
−∞ and sn =∞;
Expressions for n polynomials {fi}0≤i<n;

Output: fi(x) if si < x ≤ si+1

1: for i := 0 to n do
2: pi ← (x < si)

3: for i := 0 to n− 1 do
4: bi ← ¬pi ∧ pi+1

5: r ←
∑n−1

i=0 bi · fi(x)
Figure 1: Different approximate sigmoid
functions. Function bodies are deferred to
Appendix A.2 for space limit.

3.2 MPC PROGRAMMING IN TF ENCRYPTED

TensorFlow (Abadi et al., 2016) is a high-performance ML framework with built-in support for ex-
ecuting distributed dataflow graphs across a cluster of servers, and TF Encrypted (TFE) is an open-
sourced layer on top of TensorFlow for privacy-preserving computations. TFE has a TensorFlow-like
interface and allows ML engineers who are non-experts in cryptography to easily develop encrypted
machine learning solutions. For instance, with an existing TFE MPC protocol, implementing secure
LR training is just 20 lines of code. An example could be found in Appendix A.4.

Advantages of TF Encrypted & TensorFlow in MPC programming. In TensorFlow, code exe-
cution is broken into two phases: graph building and graph execution. The former is typically done
through a high-level Python API, while the latter is performed by a C++ runtime that eventually
partitions the distributed graph into a set of local operations to be executed by the MPC servers.
This separation allows the engine to optimize the computation at several levels.

One concrete benefit of this declarative approach is that parallel execution is determined at the
discretion of the runtime and not the programmer. Take Algorithm 1 for example, n comparisons in
Step 2 will be run in parallel automatically. Although this parallelization could be manually achieved
in other frameworks such as Rindal (2019), it is made conveniently automatic in TensorFlow.

Another benefit of the distributed graph representation is that it hides the low-level networking
operations. Tensors held by one server may seamlessly be used by another, and it is the responsibility
of the runtime to insert the required send/recv operations during graph partitioning, and may even
choose a communication technology optimized for the runtime environment. In other words, the
programmers do not have to deal with complicated socket programming, which is an important
component of MPC protocols and easy to get wrong. An example could be found in Appendix A.3.

3

Table 1: Comparison of LR training speed, measured in iterations per second (larger = better). Both
frameworks use the 3-piece sigmoid approximation.

Batchsize Framework 64 features 1024 features 4096 features 16384 features

64 Rindal (2019) 1408 704 257 52
TFE ABY3 824 564 225 58

128 Rindal (2019) 1265 421 114 25
TFE ABY3 754 380 124 30

256 Rindal (2019) 1068 209 34 8.5
TFE ABY3 720 211 60 11

Finally, as a framework for large-scale machine learning, TensorFlow ships with several useful func-
tionalities, including high-performance data pipelines, a high-level language for building machine
learning models, and abstractions for clusters of potentially heterogeneous compute devices.

ABY3 as a TFE module. Considering all the advantages above, we chose TF Encrypted as the
underlying framework, and implemented the ABY3 protocol on top of it. The code has been con-
tributed to TFE as one of its protocol modules.

4 RESULTS

We test our implementation using three ecs.g6.2xlarge instances of Alibaba Cloud, each with an
8–core 2.50 GHZ CPU and 32GB of RAM.

4.1 PERFORMANCE OF THE TFE ABY3 FRAMEWORK

To evaluate our TFE ABY3 implementation, we compare with Rindal (2019), a C++ framework
written by the authors of ABY3. The results in Table 1 indicate that we are 1.5 − 1.8× slower
for small-scale data , while 1.1 − 1.8× faster for large-scale data because of TensorFlow’s graph
optimizations3. The reason is that for small-scale data, the higher amount of iterations per second
leads to more frequent API calls, so the overhead introduced by the TensorFlow C++ wrappers is
non-negligable. On the other hand, for large-scale data, TensorFlow’s graph optimizations begin
to show advantages from many aspects, such as automatic parallel processing and faster matrix
multiplication.

4.2 PERFORMANCE OF THE IDASH SOLUTION

We preprocess the dataset with a feature selection step (see Appendix A.1) and test our model
with 10-fold cross-validation. To make the training algorithm generalizable, we use the “optimal”
adaptive learning rate (See Appendix A.5) proposed by Bottou (2012), and set L2 penalty = 1. All
the evaluations in this subsection are written using TFE ABY3.

Accuracy. We test the balanced accuracy (TP
TP+FN + TN

FP+TN)/2 using the three Sigmoid functions
described in Figure 14. The result in Table 2 shows that the 3-piece one is unsatisfactory for this
case, while our 5-piece one are nearly as accurate as the cleartext version (about 70%).

Training time. We test on two cases: a LAN network with 1Gbps bandwidth and sub-milisecond
latency, and a WAN network with 100Mbps bandwidth and 25 miliseconds latency (i.e., 50 milisec-
onds round trip time). The result is shown in Table 2. We can see that the 5-piece Sigmoid is
1.5 − 1.7× slower in LAN because of more computational cost, but there’s no observable differ-
ence in WAN because the pieces are evaluated in parallel, thus they trigger the same number of
send/recv operations, and the latency dominates the total training time. We emphasize again that
this parallelism is automatically achieved by TensorFlow, rather than manually multithread coding.

3We make these comparisons in localhost because their code lack a WAN test case. The relative difference
is expected to disappear in WAN, because latency will dominate any extra computational time.

4Only GSE2034 is described here because BC-TCGA is easily separable (accuracy 100%) thus omitted.

4

Table 2: Comparison of Sigmoid approximations. Training speed measured in iterations per second.

Methods Batchsize Training speed Accuracy
LAN WAN 100 iterations 200 iterations

ABY3’s 3-piece Sigmoid 32 834 2.09 63.13% 64.19%
Our 5-piece Sigmoid 496 2.09 66.42% 67.54%
ABY3’s 3-piece Sigmoid 64 800 2.08 58.45% 65.22%
Our 5-piece Sigmoid 475 2.08 67.47% 69.48%

The final submission was tested in a LAN network with slightly higher latency. We achieved the
highest accuracy (68 − 70%) and the second fastest training speed (560 iterations in about 20 sec-
onds) among the nine participating teams, and were named first place in a tie of three.

A APPENDIX

A.1 DOMAIN-SPECIFIC KNOWLEDGE FROM BIOINFORMATICS

We noticed that the datasets are about breast cancer, and there are already several works that have
picked out the most significant genomes (signatures) to predict the clinical outcome of breast cancer
(Ross et al., 2008). A few examples are Oncotype DX (Paik et al., 2004), MammaPrint(Van De Vi-
jver et al., 2002), the Rotterdam Signature (Wang et al., 2005), and the Invasiveness Gene Signature
(IGS) (Liu et al., 2007). After testing multiple signatures on both datasets with cross validation, we
found that the Rotterdam Signature of 76 genes (but only 67 of them exist in both datasets) turns out
to be the best performing one, boosting the balanced accuracy (with our Sigmoid approximation)
from 62–66% to 68–71%. It is worth mentioning that it’s almost impossible to pick those signatures
using feature selection methods, because they are picked based on lots of extra information that is
not listed in the dataset, such as genome functions, medical diagnosis and relapse time.

Separating breast cancer subtypes. The accuracy could be further improved by exploiting deeper
domain-specific knowledge: Breast cancer could be divided into several subtypes, and different
subtypes are correlated with different genes. As Carey et al. describes, breast cancers could be
divided into ER+ and ER- subtypes based on ER status, which is correlated with the gene “ESR1”.
Specifically, 16 genes of the Rotterdam Signature are related with ER-, and the other 60 are related
with ER+.

Based on the above fact, a two-model solution could be developed: Two LR models are trained on
the dataset, the first one uses the full Rotterdam Signature as training features, while the second one
uses only the 16 ER- genes as training features. When we want to predict on a patient X, we first
observe X’s gene expression of “ESR1”. If it’s significantly lower than average, it indicates a high
chance that X belongs to the ER- subgroup, and the second model will be used to predict. Otherwise
the first one will be used.

We did experiments and found that this new method could increase the accuracy significantly (some-
times above 76%), and submitted it to the competition. But due to some misunderstandings, this
two-model solution was not tested by the organizers, and only the one using the full signature (with
accuracy 68–70%) was tested.

A.2 PIECEWISE FUNCTIONS USED

ABY3 : σ(x) =

0, x<− 0.5

x+ 0.5, −0.5 ≤ x<0.5
1, x ≥ 0.5

5

Ours : σ(x) =

10−4, x ≤ −5
0.02776 · x+ 0.145, −5 < x ≤ −2.5
0.17 · x+ 0.5, −2.5 < x ≤ 2.5

0.02776 · x+ 0.85498, 2.5 < x ≤ 5

1− 10−4, x > 5

A.3 A LITTLE MORE DETAILS OF ABY3 IN TENSORFLOW

Replicated secret sharing. In ABY3, each private data x ∈ Z2k (k is the length of bits we used
to represent a number, e.g. k = 64) is secret-shared to three parties P0, P1, P2, using one of the
following three kinds of techniques:

• Arithmetic sharing: Sample three random values x0, x1, x2 ∈ Z2k , such that x = x0 +
x1 + x2. Each party Pi holds xi and xi+1 mod 3. We call these shares as “A-shares” of x,
denoted as [[x]].
• Boolean sharing: Sample three random values x0, x1, x2 ∈ Z2k , such that x = x0 ⊕
x1 ⊕ x2. Each party Pi holds xi and xi+1 mod 3. We call these shares as “B-shares” of x,
denoted as << x >>.
• Yao sharing: Yao sharing is used for Garbled Circuit (GC). Unfortunately we found that

GC is inefficient in TensorFlow, so we decided to use only A/B shares here. Y shares are
not discussed in this paper and left for our future work.

Addition and substraction. Given two A-shared data [[x]] and [[y]], it’s easy to see that addition
(and substraction) could be done locally: [[x+ y]] = [[x]] + [[y]]

Multiplication. To multiply two shared values [[x]] and [[y]], Party Pi locally computes zi = xiyi +
xiyi+1 mod 3+xi+1 mod 3yi

5, and send zi to party Pi−1 mod 3. We can see that [[z]]=[[xy]] . Similar
method works for matrix multiplication, and an example code of multiplication could be found in
Appendix A.3.

Other operations that we have implemented include:

• Sharing conversion between A-shares and B-shares.
• Bit extraction, MSB extraction, and Comparison.
• Piecewise polynomial evaluation, Sigmoid approximation.

Due to space limitations, we refer the reader to the original paper (Mohassel & Zhang, 2017) for
further details of these operations.

ABY3 in TensorFlow. The Tensor data structure, which is the output of some computation prim-
itive, will stay only on the server that executes the primitive, unless it is explicitly instructed to be
used in another server. This gives an intuition about the natural integration between ABY3 and
TensorFlow: each pair of shares (xi;xi+1%3) will be held by its corresponding party i, and most
computation primitives are defined purely on each servers local shares; when a server uses a share
held by another server, it is equivalent to a network send/recv operation between the two servers.

Take the following code for example, the script z[1][1] = z2 in the re-sharing step triggers z2 to be
send from servers[2] to servers[1], and no network programming is needed.

def _matmul_private_private(prot, x, y):
assert isinstance(x, ABY3PrivateTensor), type(x)
assert isinstance(y, ABY3PrivateTensor), type(y)

x_shares = x.unwrapped
y_shares = y.unwrapped

Tensorflow supports matmul for more than 2 dimensions,

5The zero sharings are omitted in this section for clearer understanding

6

with the inner-most 2 dimensions specifying the 2-D matrix
multiplication

result_shape = tf.TensorShape((*x.shape[:-1], y.shape[-1]))

z = [[None, None], [None, None], [None, None]]
with tf.name_scope("matmul"):
a0, a1, a2 = prot._gen_zero_sharing(result_shape)

with tf.device(prot.servers[0].device_name):
z0 = x_shares[0][0].matmul(y_shares[0][0]) \

+ x_shares[0][0].matmul(y_shares[0][1]) \
+ x_shares[0][1].matmul(y_shares[0][0]) \
+ a0

with tf.device(prot.servers[1].device_name):
z1 = x_shares[1][0].matmul(y_shares[1][0]) \

+ x_shares[1][0].matmul(y_shares[1][1]) \
+ x_shares[1][1].matmul(y_shares[1][0]) \
+ a1

with tf.device(prot.servers[2].device_name):
z2 = x_shares[2][0].matmul(y_shares[2][0]) \

+ x_shares[2][0].matmul(y_shares[2][1]) \
+ x_shares[2][1].matmul(y_shares[2][0]) \
+ a2

Re-sharing
with tf.device(prot.servers[0].device_name):
z[0][0] = z0
z[0][1] = z1

with tf.device(prot.servers[1].device_name):
z[1][0] = z1
z[1][1] = z2

with tf.device(prot.servers[2].device_name):
z[2][0] = z2
z[2][1] = z0

z = ABY3PrivateTensor(prot, z, x.is_scaled or y.is_scaled,
x.share_type)

z = prot.truncate(z) if x.is_scaled and y.is_scaled else z
return z

A.4 20 LINES OF CODE FOR LR IN TFE

Once the underlying primitives (namely addition, substraction, multiplication, sigmoid, matrix
multiplication) were done, an ML engineer with little background in cryptography could develop
privacy-preserving ML programs easily. As is shown in the example, logistic regression training
in MPC could be done in 20 lines of code, with few differences compared to common TensorFlow
code.

def logistic_regression():
prot = ABY3()
tfe.set_protocol(prot)

define inputs
x = tfe.define_private_variable(x_raw, name="x")
y = tfe.define_private_variable(y_raw, name="y")
define initial weights
w = tfe.define_private_variable(tf.random_uniform([10, 1], -0.01,

0.01),name="w")
learning_rate = 0.01

with tf.name_scope("forward"):
out = tfe.matmul(x, w) + b

7

y_hat = tfe.sigmoid(out)

with tf.name_scope("loss-grad"):
dy = y_hat - y

batch_size = x.shape.as_list()[0]
with tf.name_scope("backward"):
dw = tfe.matmul(tfe.transpose(x), dy) / batch_size
assign_ops = [tfe.assign(w, w - dw * learning_rate)]

with tfe.Session() as sess:
initialize variables
sess.run(tfe.global_variables_initializer())
for i in range(1):
sess.run(assign_ops)

A.5 THE “OPTIMAL” LEARNING RATE

In Section 5.2 of Bottou (2012), they proposed the following adaptive learning rate:
η = η0/(1 + λη0t) (1)

, where η0 is a heuristic initial value, λ is the decreasing factor, and t means it’s the tth iteration.

This formula has been proved to be effective in practise, and is used in the SGDClassifier of Scikit-
learn when we set learning rate =′ optimal′.

For our implementation, we set η = 1/(1.2 + t).

REFERENCES

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg,
Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system for large-
scale machine learning. In 12th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 16), pp. 265–283, Savannah, GA, November 2016. USENIX Association.
ISBN 978-1-931971-33-1. URL https://www.usenix.org/conference/osdi16/
technical-sessions/presentation/abadi.

Léon Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the trade, pp. 421–
436. Springer, 2012.

L. A. Carey, E. C. Dees, L. Sawyer, L. Gatti, D. T. Moore, F. Collichio, D. W. Ollila, C. I. Sartor,
M. L. Graham, and C. M. Perou. The triple negative paradox: Primary tumor chemosensitivity of
breast cancer subtypes. Clinical Cancer Research, 13(8):2329–2334.

Nishanth Chandran, Divya Gupta, Aseem Rastogi, Rahul Sharma, and Shardul Tripathi. Ezpc:
Programmable, efficient, and scalable secure two-party computation for machine learning. ePrint
Report, 1109, 2017.

Hyunghoon Cho, David J Wu, and Bonnie Berger. Secure genome-wide association analysis using
multiparty computation. Nature biotechnology, 36(6):547, 2018.

Morten Dahl, Jason Mancuso, Yann Dupis, Ben Decoste, Morgan Giraud, Ian Livingstone, Justin
Patriquin, and Gavin Uhma. Private machine learning in tensorflow using secure computation.
arXiv preprint arXiv:1810.08130, 2018.

Maxwell W Libbrecht and William Stafford Noble. Machine learning applications in genetics and
genomics. Nature Reviews Genetics, 16(6):321–332, 2015.

Rui Liu, Xinhao Wang, Grace Y Chen, Piero Dalerba, Austin Gurney, Timothy Hoey, Gavin Sher-
lock, John Lewicki, Kerby Shedden, and Michael F Clarke. The prognostic role of a gene signa-
ture from tumorigenic breast-cancer cells. New England Journal of Medicine, 356(3):217–226,
2007.

8

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi

Payman Mohassel and Peter Rindal. Aby 3: a mixed protocol framework for machine learning. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
pp. 35–52. ACM, 2018.

Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-preserving machine
learning. In 2017 IEEE Symposium on Security and Privacy (SP), pp. 19–38. IEEE, 2017.

Soonmyung Paik, Steven Shak, Gong Tang, Chungyeul Kim, Joffre Baker, Maureen Cronin, Fred-
erick L Baehner, Michael G Walker, Drew Watson, Taesung Park, et al. A multigene assay to
predict recurrence of tamoxifen-treated, node-negative breast cancer. New England Journal of
Medicine, 351(27):2817–2826, 2004.

Peter Rindal. The ABY3 Framework for Machine Learning and Database Operations. https:
//github.com/ladnir/aby3, 2019.

Jeffrey S Ross, Christos Hatzis, W Fraser Symmans, Lajos Pusztai, and Gabriel N Hortobágyi.
Commercialized multigene predictors of clinical outcome for breast cancer. The Oncologist, 13
(5):477–493, 2008.

Marc J Van De Vijver, Yudong D He, Laura J Van’t Veer, Hongyue Dai, Augustinus AM Hart,
Dorien W Voskuil, George J Schreiber, Johannes L Peterse, Chris Roberts, Matthew J Marton,
et al. A gene-expression signature as a predictor of survival in breast cancer. New England
Journal of Medicine, 347(25):1999–2009, 2002.

Yixin Wang, Jan GM Klijn, Yi Zhang, Anieta M Sieuwerts, Maxime P Look, Fei Yang, Dmitri
Talantov, Mieke Timmermans, Marion E Meijer-van Gelder, Jack Yu, et al. Gene-expression
profiles to predict distant metastasis of lymph-node-negative primary breast cancer. The Lancet,
365(9460):671–679, 2005.

9

https://github.com/ladnir/aby3
https://github.com/ladnir/aby3

	1 Introduction
	2 Background And Related Work
	2.1 Logistic Regression
	2.2 Secure Multi-party Computation (MPC) and ABY3

	3 Solution description
	3.1 Optimized logistic regression in MPC
	3.2 MPC programming in TF Encrypted

	4 Results
	4.1 Performance of the TFE ABY3 framework
	4.2 Performance of the iDASH solution

	A Appendix
	A.1 Domain-specific knowledge from bioinformatics
	A.2 Piecewise functions used
	A.3 A little more details of ABY3 in TensorFlow
	A.4 20 lines of code for LR in TFE
	A.5 The ``optimal'' learning rate

