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Abstract
Blockchain-based payment systems utilize an append-only
log of transactions whose correctness can be verified by any
observer. In almost all of today’s implementations, verifica-
tion costs grow linearly in either the number of transactions
or blocks in the blockchain (often both). We propose a new
distributed payment system which uses Incrementally Verifi-
able Computation (IVC) to enable constant-time verification.
Since generating the succinct proofs needed to verify correct-
ness is more expensive, we introduce the notion of Proof of
Necessary Work (PoNW), in which proof generation is an in-
tegral part of the proof-of-work used in Nakamoto consensus,
effectively producing proofs using energy that would other-
wise be wasted. We implement and benchmark a prototype
of our system using recent recursive SNARK-based construc-
tions, enabling stateless “light” clients to efficiently verify the
entire blockchain history in about 40 milliseconds.

1 Introduction

Balancing throughput with decentralization is a major chal-
lenge in modern cryptocurrencies. In this work, our goal is to
design a payment system supporting efficient verification of
the system’s entire history by any participant without trusting
any third parties. Participants can join the system at any time
and need only to obtain some fixed public parameters of mod-
est size from a trusted source (e.g. the genesis block and the
system’s rules).

Current systems such as Bitcoin require participants to
process the entire system history to verify that the current
state (the most recent block in the chain) is correct. This
requirement makes joining the system prohibitive for many
clients, as downloading and verifying over 300 GB of system
history takes days on an ordinary laptop. In practice, most
clients don’t perform independent verification and rely on a
trusted third party to assert the current state of the system.

We address this problem using succinct proofs of state
validity. These enable clients to verify any snapshot of the

system using minimal bandwidth and time, even if they have
no other information except the genesis state and transac-
tion validity rules. For any block in the system, these proofs
demonstrate both that there exists a sequence of valid transac-
tions from the genesis state S0 to the current block, and that
the block’s branch (the sequence of predecessor blocks) is of
a claimed quality q according to the consensus protocol. In
this work we focus on aggregate proof-of-work difficulty as
the measure of branch quality, which is the same as in Bitcoin.

Currently, systems such as Bitcoin or Ethereum require
O(t + h) work to completely verify a branch containing t
transactions and h blocks. We are able to achieve optimal
asymptotic performance of O(1) verification costs even for
a client joining the system at an arbitrary point in its his-
tory. Our techniques cannot help a client that is separated (or
eclipsed) from the genuine system by a network partition.
We assume a client can reach at least one node which will
provide the most recent block and a proof. The client may
also communicate with arbitrarily many attacker-controlled
nodes; efficient verification means the client can quickly tell
which block is canonical in the system.

Another major issue facing Bitcoin and related cryptocur-
rencies is their energy consumption. These systems employ
proof-of-work-based Nakamoto consensus, which provides
system security by publicly verifying energy consumption.
This energy consumption, while necessary for the consensus
protocol, is not used for anything else and hence is often de-
scribed as wasted. We design a proof-of-work puzzle which
produces correctness proofs for each block as a useful byprod-
uct, thus recycling the expended energy to enable efficient
verification. Achieving this requires carefully designing the
proof-of-work to replicate the properties of Bitcoin’s non-
useful puzzle. Our main technical contribution is a method
to deeply embed a nonce into the proof computation process,
making it suitable as a progress-free proof-of-work puzzle.
We formalize this intuition by introducing the notion of ε-
amortization resistance, and propose a PoNW design based on
this. Our formalization of efficient proof-tagging techniques
may be of independent interest.
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1.1 Our Contributions
(1) We design and prove the correctness and security of a
protocol satisfying succinct state verification. This ensures
negligible computational requirements for any observer to
verify the current system state. Our construction rests on
recent advances in Incrementally Verifiable Computation
(IVC) [7] [6] using Succinct Non-Interactive ARguments of
Knowledge (SNARKs) [29] [5].

(2) We propose a variant of Nakamoto consensus, which we
call Proof of Necessary Work. This allows us to compute
proofs of block/transaction validity as part of the consensus
process, making the work performed useful.

(3) We implement the proof system in (1) with the consensus
protocol variant in (2) at an 80-bit security level, benchmark
its performance and establish feasibility. Our system:

• produces block headers of size < 500 bytes for any num-
ber of transactions per block.

• allows stateless clients to verify a block in < 40ms.

• achieves throughput of 50 tx/block.

Current limitations. In terms of throughput and block
header size, our prototype is about an order of magnitude
worse than Bitcoin. Bitcoin block headers are 80 bytes and
throughput is about 1,000 transactions per block. However,
our system allows a stateless client to rapidly verify a block
(and thus its complete history) in 40 ms with 500 bytes of
data downloaded. In Bitcoin, a comparable full verification of
a block requires many hours of computation time and down-
loading hundreds of gigabytes of data.

Our approach also does not reduce the burden on
full/mining nodes. As with Bitcoin, these nodes must down-
load and track the full state of the system and process all
transactions. The efficient block verification provided by our
system does assist miners in quickly validating new blocks
broadcast on the network, which may reduce the risk of block
collisions and enable faster block frequencies.

Our payment system is also slightly simpler than Bitcoin,
supporting only signature-based payments by individual pub-
lic keys. It does not replicate Bitcoin’s rudimentary script
system nor support features such as multisig transactions.
However, we do provide a commitment to state in each block
(like Ethereum but unlike Bitcoin) enabling efficient proofs
of a user’s current balance.

2 Prior Work

2.1 Light Client Verification
The idea of providing portions of the blockchain to light
clients for verification began with Bitcoin [28], where Sim-
ple Payment Verification (SPV) clients download only block

headers and Merkle inclusion proofs for specific transactions
to be convinced of their validity. While this approach for-
goes downloading the whole blockchain, clients must trust
that the downloaded blocks contain only valid transactions
due to incentives provided to miners which discourage min-
ing invalid blocks. This approach also still requires a linear
amount of memory with respect to chain length. For Bitcoin
downloading only block headers requires about 10 kB per day
in bandwidth, which is reasonable for up-to-date clients but
non-trivial for new clients which must download the entire
chain of headers (currently about 40 MB and growing).

Sublinear memory complexity in SPV clients through skip-
lists was first formally analyzed in [22] [23] [21] by Kiayias
et al., where the authors propose keeping pointers to multiple
previous blocks at every step to allow for fast verification.
This allows the protocol to check for high-difficulty previous
blocks (or ‘superblocks’), of which verifying a logarithmic
number suffices to ensure security for the whole chain. This
approach, however, is only feasible in the regime of fixed
difficulty and thus cannot be implemented as is in current
decentralized networks.

Flyclient [14] also guarantees logarithmic complexity for
transaction and proof-of-work verification, and is secure with
high probability under variable difficulty even if fractions of
the network are adversarially controlled. This is achieved by
using Merkle Mountain Range Commitments to achieve mem-
ory improvements, and a random block sampling protocol to
ensure security. However, Flyclient still requires resources
linear with respect to each new transaction, and storage re-
quirements still grow with blockchain size.

Neither the work of Kiayias et al. or Flyclient enable ef-
ficient verification of transaction validity, both rely on the
same argument from Bitcoin that economic incentives dis-
courage mining a long chain of blocks containing incorrect
transactions.

By contrast, while Mimblewimble [30] does not provide
sublinear verification guarantees with respect to block header
size h, it contributes an innovative framework for transaction
verification. By compressing state in a ‘UTXO set’ of u≤ t
transactions that adaptively updates with each block, it pro-
vides asymptotically better transaction verification. In Mim-
blewimble, history verification is linear only in the number
of currently unspent coins, not the total number of transac-
tions. While we could theoretically adapt these techniques in
our work to decrease proving costs, we choose not to given
practical observations that the number of unspent coins is not
much smaller than the total number of transactions. The more
complex predicate to verify state in MimbleWimble would
likely negate any gains in proving time from compressing
some transaction history.

In Table 1, we provide a comparison of the asymptotic time
and memory requirements of existing SPV protocols imple-
menting transaction and/or proof-of-work verification. Given
that transaction volume and chain length both grow linearly
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Technique Transaction Verification PoW Verification Memory Requirements

Bitcoin [28]/Ethereum [12] Θ(t) Θ(h) Θ(h+ t)

Mimblewimble [30] Θ(u) = O(t) Θ(h) O(log4(h))

NIPoPoW [23] Θ(t) polylog(h) logh · (log t + log logh)

FlyClient [14] Θ(t) O(log2 h) O(log2 h)

This work O(1) O(1) O(1)

Table 1: Previous Work on Light-Client Verification: Asymptotic state and proof-of-work verification times for clients verifying t
transactions in h Blocks alongside client memory requirements.

over time, ideally we can enable verification that is constant
with respect to both. The only other work we are aware of
with this goal is the Coda Protocol framework [1]. Coda takes
a similar high-level approach as our work, encoding state tran-
sitions in a recursive proof system to asymptotically optimal
verification time. Our approaches are independent and vary in
a number of technical details around predicate structure, with
Coda choosing a different design for transaction proof ag-
gregation. Most importantly, the main conceptual differences
lie in our choice of consensus protocol. Coda implements a
proof-of-stake [25] system, which must be carefully adapted
for the succinct proof setting. By contrast, we implement a
proof-of-work system, which requires tackling an orthogonal
set of design challenges to adapt to the succinct proof setting.

2.2 Useful Proof of Work

The proof-of-work process in Bitcoin and most modern cryp-
tocurrencies is based on HashCash [2] and involves solving a
hard puzzle for which the difficulty can be adaptively set ac-
cording to the number of participants. Hardness here is taken
to mean that no adversary can compute solutions to the puzzle
faster than randomly guessing. An important property of such
systems is that they are memoryless, or that the probability of
winning does not depend on time spent computing a solution.
It is important to ensure that the proof-of-work process is
fair, meaning that a miner’s hashrate is directly proportional
to their computational power and hence that large miners do
not enjoy algorithmic efficiency gains with growth. This is
necessary to ensure that the network remains decentralized;
without this property there would be a mathematical incentive
for miners to consolidate. Of course, there may be economic
and logistic incentives for miner consolidation (e.g. reduced
administrative overhead) but we consider these out-of-scope.

It has long been an open challenge to design a proof-of-
work puzzle that is both suitable for Nakamoto consensus and
also useful for some independent purpose [8]. In addition to
being memoryless, the puzzle must satisfy several other prop-

erties such as being generated from public parameters and
allowing fine-tuned adjustment of difficulty. To date, the only
candidates for useful proof-of-work puzzles are highly struc-
tured problems of questionable public utility, such as finding
long Cunningham chains of related prime numbers [24] or
tables of relations for solving discrete log computations [20].

In this work, we identify a new approach to useful proof
work in proposing that the work not solve an external problem,
but for aiding in verification of the system itself. We denote
this as Proof of Necessary Work and show how it can be
used concurrently with the succinct blockchain architecture
proposed above as a suitable proof-of-work puzzle.

3 Preliminaries

We first define a distributed payment system in general form
and then discuss required security properties. We model the
processing of a payment between Alice and Bob as a transition
of some state Si to a new state Si+1 that represents this change
of funds in a state machine. A state machine is comprised of a
set of states, their transitions, and the current system state. We
can assign to each state machine a state transition function,
which allows the transition from one state to another given
some information as input. Moreover, we work under the
assumption that this is a replicated state machine, requiring
local copies of the state machine in each client in order to
achieve fault tolerance.

Definition 1. A replicated state machine Σn with n state tran-
sitions is a tuple Σn = (Si, ti,zi)

n
i=1 of states Si ∈ S, sets of

transactions ti ∈ 2T (where T is the set of valid transactions),
and witnesses zi ∈ {0,1}∗. We denote Sn as the current state
of Σn and S0 as its genesis state.

3.1 Model Setup
We define our payment system state machine as follows: we
have a set of participants who share a broadcast communica-
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tion channel, and who may join or leave the system at will.
There are two types of nodes we concern ourselves with here:
miners and light clients.

Miners: A mining (or full) node has access to the current
state Si ∈ S at timestep i, and is responsible for performing
proof-of-work and verifying state transitions.

Light Clients: Light clients (or end-users) can issue
transactions t ∈ T and verify their inclusion, but do not need
to keep mutable state.

We investigate how the system transitions from Si to Si+1
while retaining consensus over state. Transitions between
states happen through the processing of transactions by a
model-specific transition function NewState. We also require
a transition validation function VerifyState that ensures the
state update was done correctly. By defining the notion of
validity between state transitions, we differentiate between
legitimate and illegitimate transactions and only permit pro-
cessing of the former. Moreover, we require that such tuples
are also internally consistent, namely that all new states are
correctly validated. These are specified below.

Definition 2. A tuple of efficiently computable algorithms
(VerifyState,NewState) is considered a transition tuple if the
following conditions hold:

• VerifyState : 2T ×S×S×{0,1}∗→Yes/No

• NewState : 2T ×S×{0,1}∗→ S

and moreover we consider such a tuple consistent if
∀Si,Si+1 ∈ S, t ∈ 2T :

∃zi s.t. VerifyState(t,Si,Si+1,zi) = Yes

⇐⇒ NewState(t,Si) = Si+1.

Definition 3. An RSM Σn = (Si, ti,zi)
n
i=1 is consid-

ered valid with respect to a consistent transition tuple
(VerifyState,NewState) if VerifyState(ti,Si,Si+1,zi+1) = Yes
or equivalently NewState(ti,Si) = Si+1 for all i ∈ [n].

The determination of what is considered an allowed
state transition for a given system is fully specified by the
(VerifyState,NewState) objects. Thus, by specifying these
functions as part of the implementation, we allow our def-
inition to encompass arbitrary types of payment systems—
each based on different transition functions and notions of
transaction validity. For example, the Bitcoin and Ethereum
protocols both define their own transition functions between
blocks (states) and each one is based on its own notion of
transaction validity.

We can also define the property of succinct verification by
requiring that VerifyState runs in restricted time and that zi
needs only constant space. This is formalized below.

Definition 4. A valid RSM Σn = (Si, ti,zi)
n
i=1 with respect to

a consistent transition tuple (VerifyState,NewState) is consid-
ered succinctly verifiable if ∀i ∈ [n]:

1. zi has O(1) size,

2. VerifyState runs in time O(|Si|),

where the asymptotic bounds are over n, |Si| and |zi|.

3.2 Proof Carrying Data
3.2.1 Definitions

We now briefly introduce Proof Carrying Data (PCD), an
efficient IVC primitive instantiated using (pre-processing)
SNARKs. Consider a set of system states S with initial state
S0 ∈ S. We denote the system’s state transition function by
UPDATESTATE and construct a predicate ΠS that evaluates
to 1 on input state Si+1 (or a commitment to it) if and only if
there exists a valid transition from some Si to Si+1. A prover
repeatedly applies state transitions on the initial state to ac-
quire state Sn.

A PCD system allows a verifier that only sees (a commit-
ment to) the last state Sn and a short proof πn to be convinced
that Sn is a valid system state, i.e. a state that can be derived
from S0 by applying valid state transitions for all i in the
chain. More specifically, a PCD system is comprised of the
following three algorithms:

Setup: G(ΠS,1λ)→ (pk,vk). Key generation takes as input
a predicate ΠS and a security parameter λ, outputting proving
and verification keys.

Prover: P (pk,Si+1,T ,Si,πi,w)→ πi+1. The prover takes as
input the proving key pk, state Si, a proof πi that Si is a valid
state and a set of transactions t ∈ 2T , outputting a proof πi+1
that Si→ Si+1 is a valid state transition.

Verifier: V (vk,Bi,πi)→ Yes/No. When given as input the
verification key vk, a proof πi and a commitment Bi to state
Si, the verifier outputs Yes if πi is a valid proof that state Si is
valid, outputting No with very high probability otherwise.
A more complete presentation of PCD systems and their se-
curity properties can be found in Appendix B.

4 Transaction Layer

Given a pair (VerifyState,NewState) characterizing some
RSM Σ, we can define a distributed payments system (DPS)
over Σ as a tuple of algorithms that together ensure the basic
functionality of payment remittance over arbitrary transaction
objects. This can be thought of as the ‘minimal’ client that can
support a full (verifying) node. In the following definitions,
we require the use of a digital signature scheme along with
proof-of-work for consensus.
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4.1 Preliminaries
We begin with the requirement for a digital signature scheme,
which end-users will use to authenticate their corresponding
accounts. Its corresponding security properties are standard
and formally defined in Appendix C.

In order to instantiate a proof-of-work system, we are re-
quired to include (and commit to) qi and ni with every proof,
where qi is the quality of state Si and ni the associated nonce.
This is because these quantities are needed by miners in order
to follow the longest chain and achieve consensus. In addition,
we associate the monetary value c ∈ N of each account with
user address values z ∈ Z, of which there can be multiple in a
given state. This provides us with all the ingredients needed
to define the fundamental system.

4.2 Minimal Payment Semantics
We define a distributed payment system (DPS) as a tuple of
algorithms necessary for minimal payment functionality. In
the definitions below, we denote the supplementary informa-
tion string by ∗, but make no assumptions about the type of
information provided. This is done to ensure that information
required by an (arbitrary) transition function is encompassed
by our definition.

Definition 5. Given a consistent RSM Σ, a Distributed Pay-
ment System (DPS) is a tuple ∆(Σ) consisting of:
Setup : 1λ→ pp

• INPUTS: Security parameter λ

• OUTPUTS: Public parameters pp

NewCoinbase : S× za× c× (pk,sk)a×∗→ t

• INPUTS: Subset of current state S ∈ Si, za address of
sender a, c value transferred, public-private key pair
(pk,sk)a

• OUTPUTS: Transaction t

NewTransaction :

S× z{a,b}× c{a,b}× (pk,sk)a× pkR×∗→ t

• INPUTS: Subset of current state s ∈ Si, za,b addresses of
sender/receiver, c{a,b} value transferred, public-private
key pair (pk,sk)a, public key pkR

• OUTPUTS: Transaction t

VerifyTransaction : t×S×∗→ Yes/No

• INPUTS: Subset of current state s1 ∈ Si, transaction t

• OUTPUTS: Yes/No

NewState : S× t×∗→ Si+1

• INPUTS: Subset of current state S ∈ Si, list of ordered
transactions t ∈ 2T

• OUTPUTS: State Si+1

VerifyState : t×S1×S2×∗→ Yes/No

• INPUTS: Subsets of current and next state S1 ∈ Si,S2 ∈
Si+1, list of ordered transactions t ∈ 2T

• OUTPUTS: Yes/No

CreateAddress : ppS→ (pk,sk)

• INPUTS: Public parameters ppS

• OUTPUTS: New public/private keys pk,sk ∈ {0,1}∗

GetBalance : S× pk×∗→ c

• INPUTS: Subset of current state S∈ Si, pk corresponding
to a CreateAddress output

• OUTPUTS: Balance c corresponding to pk

GetQuality : S→ q

• INPUTS: Subset of current state S ∈ Si

• OUTPUTS: Quality q of state Si

In terms of security, the system needs to provide both com-
pleteness and correctness guarantees. This requires that the
protocol should guarantee that state transitions considered
correct by VerifyState will not be rejected by compliant nodes.
Similarly, satisfying correctness requires that transactions and
state transitions that are invalid should not be accepted by com-
pliant nodes. These definitions are constructed in the usual
way, and we defer their formal specification to Appendix F.

4.3 Compatibility with Existing Protocols
Our model can easily be adapted to describe existing
blockchain-based payment systems. We illustrate this
explicitly for Bitcoin to provide intuition for what the
essential components of a distributed payments system are.

Bitcoin: The Bitcoin protocol is a UTXO-based payment
clearing system, for which a valid block update includes a set
of valid ordered transactions and specific block header infor-
mation. The components of the RSM are illustrated below:

• Transactions: The UTXOs in each block.

• State: The current block.

• Witness: Not required here, since validation happens by
inspection of the ledger.

• NewState: Generation of a new block.
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• VerifyState: Validity of a block transition requires:

– Verifying all UTXO Merkle paths.

– Verifying that the header is well formed.

– Checking the nonce satisfies proof-of-work.

– Ensuring all transactions are valid.

A similar treatment would allow us to characterize
Ethereum using the same basic components. This paradigm
also makes obvious that, in order to verify the state of the
whole system without any external information, we would
need to iteratively validate each state transition. We use the
witness zi to provide ‘hints’ to the validation function, which
we will demonstrate later allows us to construct protocols
tailored for much more efficient state verification.

5 A DPS Designed for Succinct Verification

Here we demonstrate a specific instantiation of a DPS for
which we define a transition function tailored to fast state
verification by stateless clients. To achieve this, we leverage
the capabilities of IVC systems and construct a succinct proof
of state validity to represent each state transition. Since we
will be basing our implementation of the proofs on SNARKs,
we design the transition function so as to minimize SNARK
proof sizes. This is critical for efficiency and establishing
feasibility.

Our system uses Nakamoto consensus, updating the diffi-
culty d of solving a given puzzle according to block times-
tamps. Compliant miners and light clients follow the longest
chain of state transitions, assigning a (monotonically increas-
ing) score qi to each new block. The chain with the highest
score is then considered the valid chain. The system uses
proof-of-work, requiring that the hash of the current block be
less than the mining difficulty d, exactly like in Bitcoin.

Each participant in our system has a public and secret
key that they generate when they first join the network. The
participants use these keys to digitally sign transactions and
verify other participants’ signatures. The state Si contains
the distribution of money between the participants (stored
as a tree), state quality and a nonce corresponding to the
most recent proof-of-work. We also distinguish between
the i-th block, which in our case will be represented by a
proof πi that the i-th state transition is valid along with the
set of transactions ti corresponding to the transition, and
commitments to state, which we denote by Bi and use for
client verification. We require an account-based system
(unlike Bitcoin) and keep track of state with an ‘Account
Tree’ of all account-value pairs. These building blocks are:

Account Tree: We use a Merkle tree construction with
a compressible Collision Resistant (CRT) hash function
H : {0,1}2λ→ {0,1}λ. We assume a fixed size tree T with

height h throughout.

State: We denote Si the state after the i-th update:

1. Account tree T i with leaves the accounts in state. Leaves
are lexicographically ordered based on their address.

2. The block number i.

3. The quality qi.

4. The nonce ni.

State Commitment: Set Bi as the commitment to Si:

1. The root rti of the Account tree T i in Si.

2. The block number i.

3. The quality qi.

4. The nonce ni.

Protocol Initialization: We assume that initially all accounts
in the Account tree are set to null. In every transition, the tree
allows the following modifications:

1. Account Initialization: Set the public key to a non-null
value and initialize the balance and the nonce. An ac-
count with a non-null public key is considered initialized.
An account can be initialized only once. Uninitialized
accounts have null public key.

2. Balance Update: Modify the balance bal of an account,
ensuring that money is conserved.

3. Nonce Update: Modify the nonce n of an account to that
of the current block.

We denote the initial state of the system (or “genesis state”)
by S0; this is agreed to by an out-of-band process. For exam-
ple, a system might start with all addresses having a balance
of zero or it might pre-populate some accounts with non-zero
balance (colloquially known as “pre-mining”). Note that in
the initial state, the Account tree is a full tree and contains
one leaf/account for every address that can exist in the state.
The genesis state can contain initialized and uninitialized
accounts.

5.1 Basic Data Structures
We define the basic data structures of our system below. We
require the standard assumption of a public-key signature
scheme, and take all signatures below as over some common
field F.

Account: An account a is a tuple (addr,PK,bal,n) where:

1. addr is the address of a.

2. PK is the public key of a.

3. bal the balance of the account (non-negative).
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4. n the nonce of the block that contains the transaction
that last modified a.

Address & Public Key: Each PK does not have to have a
unique address. Decoupling user keys from account addresses
is done to represent each account in the tree with minimal
size requirements (and regardless of public key sizes) within
the proof.

Transactions: There are two types of transactions:

1. Coinbase:
tc = (addr,v,PK,σ)

(a) addr: the address of the recipient

(b) v: the value it receives

(c) σ: The digital signature of the transaction

2. Standard

t = (addrs,addrr,v, f ,PK,σ,PKR)

(a) addrs,addrr: the addresses of the sender and the
receiver respectively

(b) v the value to be transferred from the sender to the
receiver (it is a positive integer)

(c) f : Total mining fee provided

(d) σ: The signature of the transaction

(e) PK: the public key that validates σ

(f) PKR: the public key of the recipient

5.2 State Transition Semantics
Below we define our semantics used for transaction and
state transition validity. A full specification of the rest of the
algorithms can be found in A.

Verifying Transactions: VERIFYTX(t,T i)→Yes/No takes
as input a transaction t and an Account tree T i, outputting
Yes/No (1 or 0). A transaction is considered valid if:

1. Sender and receiver are legitimate accounts in T i.

2. Amount transferred is not more than sender’s balance.

3. Signature authenticates over the sender’s public key.

4. Sender and receiver accounts in the Account tree are
updated correctly.

5. Recipient’s public key matches that stored in the Account
tree, or the address is uninitialized.

Updating System State: UPDATESTATE(Si, t,n)→ Si+1 is
a procedure that takes as input a state Si, am ordered set of
transactions t with |t|= N and a nonce n. It outputs the next
state Si+1 and a witness w of objects proving the update was
done correctly. A system transition is considered valid if:

1. All transactions in T are valid.

2. The previous state has performed proof-of-work.

3. Only last transaction tN is of coinbase type.

4. Each transaction builds on top of a previous transaction,
except the first which builds on the previous root.

All of this is registered in Si+1.

5.3 State Transition as an NP statement
In order to instantiate a DPS that is capable of verifying a
given state transition function, we encode the transition func-
tion ValidState as a compliance predicate ΠS. With every
state transition, we include a proof that the transition was ΠS
compliant. This is done by verifying the transition from the
previous state and producing an attesting witness w in the
process. In this context, we are interested in verifying the tran-
sition between two states of the Account tree by processing
transactions between them into the system. This is achieved
by tracking changes to the root rti of the Account tree after
the input of each transaction.

We capture all requirements for transaction, proof-of-work
and state validity in an NP language BLOCK-V that only
accepts commitments of the form Bi = (rt i,qi, i,ni) that build
‘correctly’ on top of a previous state. At a high level, the ele-
ments of this language are state commitments that, given some
previous state’s root, have only processed valid transactions.

5.3.1 Compliance Predicate

Given input Bi+1 = (rti+1, i+ 1,qi+1,ni+1), the compliance
predicate ΠS evaluates to 1 if and only if all of the following
are satisfied:

1. There exists a previous state Si satisfying proof-of-work
with nonce ni and quality qi.

2. There exists a tuple of ordered transactions t with |t|=N.
These transactions need to be sequentially valid with
respect to Si.

3. UPDATESTATE(Si,T ,ni) = Si+1.

We use the compliance predicate ΠS to design a PCD sys-
tem consisting of algorithms (G ,P ,V ), as formally defined
in Appendix B, where each message zi is a state commitment
object Bi.

5.4 DPS Specification
Here we define how the system transitions from Si→ Si+1.
The first method generates a new state and associated proof
of compliance, along with a nonce certifying that the system
performed proof-of-work. When validating, we check that
the new state Si+1 is a valid next state for the system by
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being (a) ΠS compliant and (b) providing proof-of-work. Note
that the validation only requires the root of the Account tree
corresponding to Si, thus making it efficient enough for light
clients.

Algorithm 1 NewState
Input: pp,T ,Si,πi
Output: Si+1,πi+1

1: procedure NEWSTATE(pp,T ,Si,πi)
2: if V (vk,Si,πi) = 0 then return 0
3: while H (πi+1)> d do
4: Pick ni+1 uniformly at random
5: (Si+1,w)← UPDATESTATE(Si,T ,ni+1)
6: πi+1← P (pk,Si+1,T ,Si,πi,w)
7: return (Si+1,πi+1)

When updating the state of the system, each participating
miner receives πi+1 and ti+1. This allows them to update their
own state to Si+1 and begin mining again. We formalize the
security of our DPS scheme in the sense of the definitions
presented in Appendix F.

Theorem 1. The protocol as defined in Section 5.4, is com-
plete (c.f. Definition 8) and correct (c.f. Definition 9).

In formalizing the correctness of our system, we rely on a
random oracle similar to the construction in [31], but extended
to arbitrary transition functions. Proofs for the above are
provided in Appendix G.

6 Proof of Necessary Work

To allow proof generation to serve as a proof-of-work puz-
zle, we require (a) a proof πi whose generation algorithm P
is moderately difficult to compute and (b) a proof-of-work
puzzle PH ,d

V that requires the miner to fully recompute P to
test a potential solution. The second property is necessary
for the puzzle to be progress-free for fairness to miners of
differing size. Indeed, if generating unique proofs πi based
on randomly sampled nonces ni is sufficiently ‘hard’, then
using PH ,d

V instead of a generic puzzle (such as computing the
double SHA256 digest in Bitcoin) would allow us to not only
perform proof-of-work with the same theoretical guarantees,
but also compute a valid proof πi in the process.

We do not formally analyze any consensus properties, since
our goal is not to design a new consensus protocol but to
retain that used by Bitcoin (and similar systems) and inherit its
properties. However, we would like the work done to be useful
by producing proofs of each block’s validity. We introduce the
notion of performing proof-of-work by proving the validity
system state, which we denote as Proof of Necessary Work
(PoNW).

6.1 Definitions
We formalize this definition below, and provide the relevant
security model.

Definition 6 (Verification Puzzle). Given a collision-resistant
pseudorandom function H and a proof πi ∈ Z in some RSM
with transition tuple (NewState,VerifyState), we define the
verification puzzle PH ,d

V : S×S×Z→{0,1} with difficulty
d as the solution to the following function:

PH
V (Si,Si+1,πi) = 1

[
VerifyState(Si,Si+1,πi) = 1

H (πi)< d

]
,

where 1[·] is the indicator function.

By having access to a proof generating algorithm
P (t,Si,Si+1,n)→ πi+1 that generates unique (yet valid) πi for
each ni, we can generate πi+1 for Si+1 = NewState(t,Si,πi)
using a uniformly random sample n until the puzzle condition
is satisfied:

PH
V (Si,Si+1,P (t,Si,Si+1,n)) = 1.

Then πi suffices for public verification that proof-of-work has
been performed. This is because our prover will always fail
with constant probability (when H (πi) ≥ d), so iteratively
sampling new proofs (by sampling new n) until a valid one is
found can be shown, under the assumption that P is the most
efficient way to find such an n, to be a memoryless exponential
process and hence fair. Note that, by construction, we also
guarantee that πi+1 is a valid witness for the RSM.

6.1.1 An Initial Approach

A natural thought would be to require the generation of proofs
until H (π)< d, as is proposed in the previous section. In the
case that the proof is unique to the state and witness input, we
can ensure that by adding a nonce in the input we will always
get a different hash for π. This requires that our prover satisfy
unique simulation extractability, which can be shown to hold
for our design choices.

However, this can lead to unfair outcomes. When comput-
ing π, the adversary can retain the parts of π that don’t change
between nonces and therefore substantially decrease proof
generation time with respect to other provers - violating the
scheme’s amortization resistance. This means the process is
not memoryless, and so the fairness of the system is com-
promised. We thus require a mechanism through which to
prevent this decomposition attack.

6.1.2 Amortization Resistance

Just like in Nakamoto consensus, our puzzle needs to satisfy
the property that solutions are equally hard to test even after
testing an arbitrary number of previous solutions. In other
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words, a miner should not be able to amortize costs while
testing multiple potential solutions. We define this property
more formally below. We model PoNW as a function f O

with limited access to some oracle O that performs a hard
computation in some encoding of a given group G.

Definition 7 (ε-Amortization Resistance). For ` ∈ N with
`= poly(λ) and inputs of length λ, a function f O = { f O

n }n∈S
with S = S(λ) is considered ε-hard if for all adversaries A
performing less than (1−ε)N` queries to the oracle O, where
N number of queries required for one evaluation of f O

n , the
following is negligible in λ:

Pr
n←S`

[
∀i ∈ [`],πi = f O

ni
(ai)

{ni}`i=1← n
{πi,ai}`i=1← A(1λ,n)

]
This definition captures the fact that computing multiple

proofs does not come with marginal gains: indeed, provers
cannot use computational advantage to batch process proofs
and achieve non-negligible performance improvements. By
prohibiting large miners from achieving returns-to-scale, this
property is crucial in ensuring fairness. With the above objec-
tives in mind, we now look at how to adapt our implementation
to realize such a system.

6.1.3 Prover Computational Costs

Before we look at designing an amortization-resistant PoNW
system, we summarize the computationally expensive com-
ponents of proof generation in Quadratic Arithmetic Program
(QAP) SNARK provers such as [29]. For a proof with N vari-
ables a∈ FN and n constraints, the prover P needs to compute
the following (simplified) steps:

1. Update inputs and witnesses to a.

2. Compute exponentiation ai→ gai
i ,∀i ∈ [N], where gi the

corresponding element from the proving key.

Although asymptotically the exponentiations are the bot-
tleneck as the security parameter grows, for lower regimes
and large predicate sizes the polynomial computations domi-
nate, taking time O(n logn) where n the number of constraints.
Since updating variable assignments is orders-of-magnitude
faster than the other two steps, for each new nonce a prover
would need to be forced to recompute (almost) all modular
exponentiations in order to achieve amortization resistance.

We thus want to ensure that all variables in the proof are
sufficiently altered by any change in the nonce or transactions
being verified. This is done to make all variables in the proof
change unpredictably with every new attempt at satisfying
difficulty. Since updating variable assignments is asymptoti-
cally negligible in the other two steps and since all subsequent
proof computations are functions of the variable assignments,
by uniquely altering all input variables in the proof as a func-
tion of the nonce we can hope that amortization resistance is
satisfied.

6.2 A Fair and Efficient Construction

We modify the DPS predicate Π to ensure that most of the
proof variables change unpredictably with modifications of
the nonce or state. This gives us amortization resistance in ex-
change for increasing the number of variables and constraints
in our predicate. The performance overhead originates from
the need to commit to state and ‘mask’ the computation, which
can be expensive for large predicates.

The naive approach would be to isolate each of the different
circuits in the system and show that they can be modified
to change unpredictably based on some seed. The design
challenge here is how to make this happen while conserving
the proof’s correctness guarantees. For this, we ideally want to
leverage a property specific to our predicate in order to ‘mask’
the computations. This would allow us to treat the proving
system as a ‘black box’. We show how we can leverage the
Pedersen hash function to transform our predicate Π to an
amortization-resistant version.

We first outline the requirement for commitment to state.
Given some nonce n, the prover might only change a part of
the input in order to (re)check difficulty. This is an issue if
the same nonce can be used with many inputs (in our case,
transactions), as an adversarial prover would compute a proof
and then only switch out a single transaction (or bit!), recheck-
ing difficulty with no expensive recomputation. This means
that we need to define a seed parameter ρ = PRF(n||state)
that commits to state. For our DPS, we would need to com-
mit to all transactions in the block, ensuring that a change to
one transaction would lead to a different valid ρ. PRF here
denotes a pseudorandom function, meaning that ρ is semanti-
cally secure. This comes with the additional cost of verifying
correct computation for one instance of PRF. However, this
can be large if we exploit no information about the underlying
predicate, since the PRF would (in the worst case) have to
commit to every variable in the original predicate.

Fortunately, for our choice of predicate the input to PRF
need not be too large: indeed, in our DPS one only needs
to commit to the two addresses involved and the amounts
transferred for each transaction, and not to the public keys
or signatures (assuming non-malleability) which can all be
substantially larger. This is because the two addresses along
with the values transferred fully specify the state transition,
and thus changing any other parts of any transaction would
violate what miners have stored for state. Even better, we can
use ρ = PRF(n,rt) where rt the root of the new state. Since
this will be computed anyways as part of our protocol, we
don’t actually suffer any overhead apart from having to verify
the above computation. Note that this is actually constant in
predicate size.

We can force unique changes to the Merkle path updating
the account if we require n to be part of the leaf: since a
change in the block (or nonce) would lead to a new n, all
update paths need to be recomputed if any transaction is
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changed. However, we also need to enforce change to the old
Merkle path checking account existence. This technique is
thus not ideal, since these paths do not depend on the current
nonce (or state) at all, meaning that around half our variables
will remain the same - giving ε≈ 1/2.

To get around this issue, we opt for a different approach.
We ‘mask’ the input variables to our hash function by in-
teraction with ρ and transform the constraints of the hash
function subcircuit CH into a new circuit that retains the orig-
inal Proof of Knowledge (PoK) guarantees by verifying the
same underlying computation. By ensuring that the inputs all
change unpredictably, we hope to achieve upper bounds for
amortization resistance based on the security of our PRF.

6.3 Quantization Effects for Slow Miners
A novel concern with our proposal when implemented with a
proof-of-work consensus protocol is that checking even one
proof-of-work solution can be slow (on the order of tens of
seconds to minutes). When this becomes a significant fraction
of the average block generation time, miners are hit with a
loss of efficiency because they will be forced to discard a
partially-checked puzzle solution when a block is broadcast
in the middle of checking. We prove the scale of this efficiency
loss in a short theorem:

Theorem 2. For a miner in a proof-of-work consensus proto-
col that can check a single puzzle solution in time τ (with the
mean block arrival time normalized to 1), the miner will dis-
card a fraction 1− τ

eτ−1 of their work due to newly broadcast
solutions.

A proof of this theorem is provided in Appendix H. Note
that as τ→ 0 (fast puzzle checking time relative to block
interval), the fraction of wasted work drops to 0. Similarly, as
τ→ ∞ the fraction of wasted work approaches 1. For τ = 1
(solutions take as long to check as the mean block interval),
the fraction of wasted work is e−2

e−1 ≈ 0.42, suggesting that we
should aim to keep the time (even for slow miners) to get a
solution significantly shorter than the mean block time.

7 Implementation

7.1 Choice of Proof System and Parameters
Since we’ll be broadcasting each proof πi to the network,
we would like them to be quite small (ideally < 1kB). We
also require that the size of πi does not increase with i,
ideally staying the same size after every state transition.
With these design choices in mind, we prototype our
system using libsnark [26], a C++ library implementing
the PCD system in [6] using the construction from [29].
This is done using Succinct Non-Interactive Arguments
of Knowledge (SNARKs) [5], non-interactive proofs of
knowledge with the additional property of succinctness:

producing constant-sized proofs that can be instantly verified.
We note that improved proof sizes can be obtained by using
the verifier from [19], which has the fastest performance and
smallest proof size (consisting of 3 group elements) of all
current implementations.

Encoding ΠS: We can equivalently consider ΠS as an arith-
metic circuit CΠ, evaluating to 1 on some input Bi if and
only if Bi ∈ BLOCK-V. In the implementation of [6], CΠ is
expressed in a low-level NP-complete language similar to
arithmetic circuit satisfiability called Rank 1 Constraint Sys-
tem (R1CS) (see [4] for definitions). The circuit is encoded
over elliptic curve elements through vectors in Fp, where the
number of gates increases with the size of πi and the time
required to generate it. By manually designing a circuit CΠ

for our predicate, we minimize the number of gates used and
provide a deployable implementation.

We note that our system need also allow for recursive proof
composition, or the capability of new proofs to check the va-
lidity of previous proofs efficiently. Since this construction de-
pends on SNARKs over pairs of elliptic curves that form PCD-
friendly cycles, we use the same pair of non-supersingular
curves of prime order as [6]. They provide a security level of
80 bits with a field of size |q| ≈ 2298.

7.2 Arithmetic Circuit Requirements

The vast majority of the constraints in our predicate come
from verifying the existence of accounts in the tree. This
requires the serial recomputation of a hash function H , tracing
the path from the given leaf to the root of the tree. To ensure
that this path uniquely identifies the leaf, it is additionally
required that H be collision resistant.

A tree depth of 32 for our implementation allows for 4.2
billion accounts. We compare this to 32 million unique used
wallets on the Bitcoin blockchain after 10 years of operation.
This requires 32 ·4 = 128 hash checks for each transaction.
We use the circuit provided in libsnark to verify such proofs
of inclusion and modification.

7.2.1 Pedersen Hashes

Since it is desirable for H to be efficiently represented with a
low number of gates, we opt for using Pedersen hashes [17].
In verifying a Pedersen hash, we are required to compute
∏

D
i=1 gxi

i where {xi}D
i=1 is the bit representation of the input x

and {gi}D
i=1 is a set of primitive roots for Z∗q. We encode each

root as a field element and, based on the sign of each input xi,
perform multiplication of an intermediate field variable c by
each gi to arrive at the digest if the corresponding xi = 1. We
use the same underlying group Z∗p as for the SNARK with
|p|= 2298, which reduces in security to the discrete-logarithm
problem (DLP).
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7.2.2 Schnorr Signature Scheme

We use Schnorr signatures [32] over an elliptic curve (EC),
based on the hardness of DLP. This choice is motivated by
our desire to minimize the size of the verifying circuit, since
this has to be built inside CΠ. The Schnorr verification circuit
only requires two exponentiations, a hash computation,
and a comparison between scalars. The same curve from
the PCD construction is used, since it satisfies all security
requirements and offers a security of 80bits, just like for the
PCD system.

Key Sizes: Schnorr signatures use elliptic curve elements as
public keys, resulting in key sizes of 596 bits, or 298+1 =
299 bits with point compression. Secret keys are sampled as
random 298-bit strings.

7.3 Randomizing the Pedersen Hash

We now show how to randomize the computation of the Ped-
ersen hash function. In addition to some input x of length n
bits, our evaluation requires a pseudorandom seed ρ∈ {0,1}n.
We propose a modification of Pedersen, which can be thought
of as masking the underlying evaluation by using two sets
of input variables: H (ρ) and xi⊕ρi for i ∈ [n], where H (·)
the evaluation of the unaltered Pedersen function and ⊕ the
bit-wise XOR operation.

The variable h = H (ρ) forms the ‘starting point’ of the
evaluation. In the beginning, the prover will precompute some
generator variables vi for the specific instance of the problem.
At every bit, the new circuit would also evaluate zi = xi⊕ρi.
It would then proceed normally: if zi = 1, multiply the inter-
mediate variable by vi else by 1. By carefully choosing the vi,
we can design the circuit in such a way that unpredictability
based on the seed is retained by all intermediate variables
except the output y, which we ensure is equal to H (x).

Correctness follows from the following observation: at step
0, the variable c0 = w ·H (ρ) = w ·∏n

i=1 gρi
i is initialized as

the hash of the seed. For all intermediate steps j < n, we have
that c j = w ·

(
∏

j
i=1 gxi

i

)
·
(

∏
n
i= j+1 gρi

i

)
. Finally, after the n-th

bit has been processed the final intermediate variable cn is
equal to the Pedersen hash of the original input x multiplied
by (the unpredictable) w. By multiplying with w−1, we get
H (x). This follows easily from the fact that at every step we
are performing the following operation: ci = ci−1 · (gi ·1[ρi =
0]+g−1

i ·1[ρi = 1])ρi⊕xi . It can be quickly checked that this
computation ensures the previous recursive property when
initialized with c0 = w ·H (ρ). By induction, this implies that
after the n-th bit, only the w parameter and the exponentiations
due to the bits of x remain in the output variable i.e. cn =
w ·∏n

i=1 gxi
i .

Algorithm 2 MaskedPedersen
Input: x,ρ ∈ {0,1}n,g0 ∈ Fn

p
Output: y ∈ Fp

1: procedure CACHEGENERATORS(ρ,g0)
2: Parse {ρi}n

i=1← ρ

3: Compute h←H (ρ)
4: Compute w←H (h)
5: for i≤ n do
6: zi = xi⊕ρi
7: if ρi = 0 then
8: vi = g0

i

9: if ρi = 1 then
10: vi = (g0

i )
−1

11: return v,h,z,w
12: procedure MASKEDHASH(z,h,v,w)
13: Parse {zi}n

i=1← z, h,w ∈ Fp
14: Parse {vi}n

i=1← v
15: Define q = {qi}n

i=1 c = {ci}n
i=0

16: Set c0 = h ·w
17: for i≤ n do
18: if zi = 1 then
19: qi = vi

20: if zi = 0 then
21: qi = 1
22: ci = ci−1 ·qi

23: y = cn ·w−1

24: return y

7.3.1 Measuring Amortization Resistance

The hardness of the prover’s computation here reduces to
exponentiating elements in the proving key fi ∈ G by the
variables ai ∈ Fp in the circuit. At the end of the process a
sum of the form ∏

m
i=1 f ai

i = ∏
m
i=1 gai·bi needs to be calculated

for some (randomly sampled) bi ∈ Fp. We observe that in
all cases where we know that the variable ai has very small
support (when, for example, it is boolean ai ∈ {0,1}), the
prover can always precompute once and use the same answers
without performing exponentiations. However, this is not a
problem since all miners would know what the precomputed
answers are from the very beginning and can incorporate them
in the proving key.

Amortization resistance comes from computing the
exponentiations corresponding to the intermediate variables
ci ∈ Fp. Since their values can be any element of Fp,
these can not be precomputed and would always require
exponentiations. Indeed, an evaluation of the above scheme
would require n such computations, assuming that all
potential values for qi,ρi,xi are provided in the proving
key. This is because the prover would need to compute all
values of ci (that they would not have seen before) since, by
definition of the modified Pedersen function used here, they
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are next-bit-unpredictable and thus one computation cannot
provide information on the next.

Constant Hardness: Since amortization resistance depends
on the number of exponentiations of ‘new’ (or unpredictable)
field elements in the system, the number of times we update
the intermediate variable in each Pedersen evaluation needs
to be constant. To this end, we ‘double’ the size of the unpre-
dictable seed ρ by creating a new seed ρ∗ for which the 2i-th
and 2i+1-th bits are set to 01 or 10 depending on the value
of the i-th bit of ρ. This additional transformation ensures that
there is always a fixed number of 1’s in the seed and thus that
a set number of unpredictable field elements exist in every
update of the Pedersen function’s intermediate variables. This
provides constant amortization resistance for each Pedersen
function by ensuring that there is a constant number of ‘hard’
exponentiations to perform at each evaluation.

7.4 Performance
We construct the DPS based on the above specifications and
investigate its running time and memory consumption. Re-
sults are displayed in Table 2. Our benchmark machine was
an Amazon Web Services (AWS) c5.12xlarge instance, with
48 vCPUs and 96GiB of RAM. The security properties of the
DPS are based on the guarantee of Π-compliance provided
by PCD. It is apparent that setup and proving times dominate
both the running time and memory consumption in the proto-
col. Setup takes place once by a trusted third-party and hence
is less critical for day-to-day performance of the system.

The prover in this protocol would be run by the miners, or
full nodes. These would be generating proof-of-work solu-
tions repeatedly and would thus be computing proof instances
for different input nonces. Thus, larger storage requirements
(∼ 5.42GB key sizes) could be easily met by these nodes,
as could the need for more parallelism and better computing
power to bring down the proving rate.

We can normalize the block time to achieve τ = 1/6 in the
sense of Theorem 2 for a proof including 30 transactions. This
gives us that a miner will discard in expectation 8.05% of their
work for an efficiency of ∼ 92% if all miners operated based
on the above benchmarks. Since we are keeping block times
constant at 10 minutes, we note that any improvements in
SNARK proof generation times will correspondingly increase
system efficiency. Moreover, this does not depend on the way
that the proofs are generated: distributed techniques among
many participants (such as [34]) would also benefit efficiency
through the corresponding decrease of average proof time.

8 Future Research Challenges

Trusted setup Using SNARKs as a building block in our
system introduces the issue of the one-time trusted setup. Like
in other cryptocurrency systems built using SNARKs [31], an

adversary with knowledge of the secret parameters would be
allowed to forge proofs and hence arbitrarily print money. One
mitigating approach is to distribute the ceremony over many
participants through a multiparty protocol [10, 11], with the
requirement that only one would have to be honest for security.
This shows great potential for the construction of a system
that can perform the setup procedure with sufficiently many
participants that not only verify proofs, but also continually
contribute randomness they (are supposed to) destroy.

Recent work has sought to construct SNARK systems
which require limited or no trusted setup. SONIC [27] uses
an adaptively changing structured reference string (the prov-
ing/verification keys). More recent advances such as Mar-
lin [15] and Fractal [16] provide structured reference strings
for all predicates trustlessly, in addition to being the first
such systems that can perform efficient recursive composition.
They can thus implement transparent PCDs with proof sizes
small enough to be relevant to our context. We believe our
design can be adapted to work with these systems, though a
careful examination of the amortization resistance properties
will need to be conducted.

Quantum resistance We use SNARKs based on elliptic-
curve hardness assumptions which are not quantum-resistant.
Recent work on practical instantiations of SNARK construc-
tions based on lattice assumptions [18] or point-based PCPS
and IOPs [3], may offer an option for quantum-resistant
SNARKs.

Privacy We did not consider transaction privacy in this
work, focusing instead on a simple distributed payment ledger
closely matching the properties of Bitcoin. However, while we
use SNARKs for their succinctness properties, the construc-
tions here readily extend to provide zero-knowledge succinct
arguments as well (zk-SNARKs). It should be straightforward
to adapt to a zk-SNARK-based privacy-preserving transac-
tion format (such as Zerocash [31]) and provide no additional
overhead for chain verification. The main cost is that users
must compute SNARK proofs to post transactions, imposing
a heavier burden to use the system. It would also require care-
ful thought to achieve amortization resistance when users are
computing proofs of transaction validity.

More complex transactions We implemented a simpler
transaction model than Bitcoin’s, enabling only payments
using a signature from a single public key. Our use of
Schnorr signatures supports multi-stakeholder security mod-
els using standard threshold signing techniques. Bitcoin sup-
ports more complex payment scripts, enabling applications
like atomic cross-chain swaps and off-chain payment chan-
nels that our system does not. Ethereum supports fully pro-
grammable smart contracts to control payment. In principle,
a programmable state machine like Ethereum’s can be sup-
ported on our architecture using “universal” SNARK tech-
niques such as TinyRAM [4]. Recent work on achieving pri-
vacy in smart contract platforms using SNARKs [9, 13] can
potentially be adapted to our setting to enable a more powerful
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# Tx # Constraints
Generator G Prover P Verifier V Size

Avg. (s) σ (%) Avg. (s) σ (%) Avg. (s) σ (%) pk (GB) vk (kB) π (B)

2 1100849 24.29 1.75 12.06 1.31 0.0387 0.21 0.31

1.30 373

10 4611209 75.90 2.01 43.92 0.70 0.0387 0.18 1.16

20 8999159 177.45 1.08 81.10 1.03 0.0386 0.32 2.19

30 13387109 218.22 0.68 99.42 1.59 0.0387 0.35 3.35

40 17775059 300.97 1.65 156.83 1.46 0.0387 0.28 4.30

50 22163009 347.56 0.49 196.91 2.15 0.0387 0.49 5.42

Table 2: Prototype Times and Key Sizes for Predicates verifying different numbers of transactions: Average running times for
setup G , prover P and verifier V over 10 iterations are shown alongside proving/verification key and proof sizes.

programming model with efficient verification.

More complex consensus rules We adapted Bitcoin’s rel-
atively simple linear longest-chain rule. Many more complex
DAG-based proposals exist which improve on Bitcoin’s con-
sensus protocols. All of these involve a different formul for
computing the quality of a specific block in the chain. Our
approach does not preclude the use of more complex pred-
icates for. By setting the quality accordingly and ensuring
that πi also proves that the required stage in the protocol was
executed correctly, we can ensure that any consensus protocol
can be used in this way.

Parallelism Our current construction uses relatively little
parallelism in proof-construction. Recent advances [34] en-
able constructing larger proofs using many parallel workers, a
model that adapts readily to cryptocurrencies which typically
feature large mining pools. Exploring this is an important av-
enue for future work, especially given the order-of-magnitude
improvements in the size of computable predicates.

Hardware acceleration Just like in the context of Bitcoin
mining, there is potential to achieve substantial improvements
in the computation of such proofs by the usage of specialized
hardware. The design of Field Programmable Gate Arrays
(FPGAs) or Application Specific Integrated Circuits (ASICs)
that are especially created to compute the proof correspond-
ing to a given predicate would lead to order-of-magnitude
improvements in proving time and thus substantially mini-
mize quantization effects. Such specialized hardware, how-
ever, would be expensive to construct given the purported
memory-hardness of most current SNARK designs. More-
over, such hardware would also provide a large barrier to
entry for most miners due to the large upfront existing costs
for its design. This would have the potential to impact the
fairness of the distributed system.

9 Concluding Remarks

We present the minimal transaction semantics for a distributed
payment system, alongside correctness and completeness def-
initions. Although our framework can be used modularly with
any system transition function desired, it is fundamentally an
account-based model of keeping state that uses transactions to
update state (or account contents) over discrete time intervals.

We could alternatively have designed a ‘UTXO’-based
model, but we felt that storing state in individual accounts
lends itself more easily to generalization over arbitrary transi-
tion functions simply by validating the individual transactions
that update state. Moreover, even though coin-based mod-
els have been historically favored in the design of privacy-
focused protocols [31, 33], the expressive powers of our sys-
tem are only limited by the need to verify membership of
state in some NP language. Our system could be adapted to
predicates can be designed for any substantially complex task,
such as smart contracts.

However, the design of such a system would require more
efficient proof generation. While a basic money-remittance
system is feasible with today’s proof systems, further work is
needed to deploy substantially more complex predicates. The
superlinear relationship between predicate size and proof gen-
eration time means generating such proofs for more complex
predicates quickly becomes prohibitive. Recent advances in
lowering proof generation times in SNARKs are very promis-
ing in bridging this gap, as is recent work in distributing proof
computations over multiple participants.

Finally, we introduce Proof of Necessary Work, which per-
forms computation necessary for system verification as part
of the proof-of-work computation. We ensure fairness in our
system by forcing the prover to unpredictably alter proof vari-
ables with each nonce, making it secure against ‘churning’
attacks. This process leverages the homomorphic properties
of our hash function, and we believe that more general tech-
niques to do this would be of great interest.
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Appendices
A Transaction Semantics

Setup: This algorithm is run once by a trusted third party
to initialize the parameters of the system. It takes as input
security parameters λ, µ and outputs public parameters
pp = (pk,vk, ppsig) where pk,vk are the proving key and the
verification key of the PCD system respectively and ppsig are
the public parameters for the signature scheme.

Algorithm 3 Setup

Input: 1λ,1µ

Output: pp
1: procedure SETUP(1λ,1µ)
2: (pk,vk)← G(1λ,ΠS)
3: ppsig← SC-SETUP(1µ)
4: return (pk,vk, ppsig)

Creating Transactions: Algorithm 4 creates a send transac-
tion, while the Algorithm 5 a coinbase transaction. Note that
these algorithms do not provide guarantees about the validity
of the transaction created.

Algorithm 4 NewTransaction
Input: pp,addrs,addrr,v, f ,PK,SK,PKR
Output: t

1: procedure NEWTX(pp,addr{s,r},v, f ,PK,SK,PKR)
2: σ← SIGN(SK,addrs‖addrr‖v‖ f‖addrs.n)
3: return (addrs,addrr,v, f ,PK,σ,PKR)

Algorithm 5 NewCoinbase
Input: pp,addrr,v,PK,SK
Output: tx

1: procedure COINBASETX(pp,addrr,v,PK,SK)
2: σ← SIGN(SK,addrr‖v‖addrr.n)
3: return (addrr,v,PK,σ)

CreateAddress: CreateAddress(ppsig)→ (PK,SK)

GetQuality: GetQuality(Si)→ qi

GetBalance: GetBalance(PK,Si)→ a.v where a is the leaf
in Si with a.PK = PK
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B Proof Carrying Data (PCD)

Define an online distributed system with state S and initial
state S0. The system transitions from a state Si to Si+1 through
a function UpdateState. The security goal is to ensure that all
the states that the system transitions to are compliant with a
predicate Π representing a valid state update. Proof Carrying
Data ensures this by attaching short and easy to verify proofs
of Π-compliance to each state the system transitions to.

Specifically, we assume that we have a key generator G
that sets up a proving and verification key. Anyone can use
a prover P , which is given as input the proving key, a prior
state Si with a proof πi and a new state Si+1, to generate a
proof πi+1 attesting that Si+1 is Π-compliant. One can then
use a verifier V , which is given as input the verification key,
a state Si and a proof πi to verify that Si is Π-compliant.

Transcripts Given nS ,nw and field F, an F arithmetic-
transcript is a triple Tr = (k,w,S), where k > 0, w maps each
0 < i≤ k to a value in Fnw and S maps each 0 < i≤ k+1 to
a value FnS . The output of Tr, denoted out(Tr) equals Sk+1.

Intuitively, wi represents the auxiliary data used by the
node that performs the i-th state transition. Si represents
the output state of the i-th state transition. Typically a node
that performs the i-th state transition uses the auxiliary
data wi and an prior state Si to compute the new state
Si+1← UpdateState(Si,wi).

Compliance: Given field F and nS ,nw ∈ N, an F-arithmetic
compliance predicate Π (for state size nS and auxiliary input
size nw) is an F-arithmetic circuit with domain FnS ×Fnw ×
FnS ×F. The compliance predicate Π specifies whether a
given transcript Tr is compliant or not. Consider any transcript
Tr with state size nS and auxiliary input size nw. We say that
Tr =(k,w,S) is Π-compliant, denoted Π(Tr)= 0, if, for every
0 < i≤ k it holds that:

Π
(
Si,wi,Si+1,bbase

)
= 1,

where bbase ∈ {0,1} is the base case flag (i.e., equals 1 if
and only if i = 1). Furthermore, we say that a state s is Π-
compliant if there is Tr such that Π(Tr) = 0 and out(Tr) = s.

We are now ready to describe the syntax, semantics, and
security of a proof-carrying data system:

• G is a procedure that takes as input a compliance pred-
icate Π and some security parameter λ and outputs a
proving key pk and a verification key vk. We assume
without loss of generality that pk contains (a description
of the predicate Π).

• P takes as input a proving key pk, auxiliary input w, a
state Si+1 and a state Si with proof πi and outputs a proof
πi+1 for the statement that Si+1 is Π-compliant.

• V takes as input a verification key vk, a state Si and a
proof πi and outputs b = 1 if Si is Π-compliant.

Completeness:. This is based on an interaction between a
computationally unbounded adversary A and the prover P ,
who are both given the predicate Π and the common string
(pk,vk). We build transcripts through the following:

ProofGen(Π, pk,A ,P )→ (Si,πi,T )

For a full definition, see [7]. The adversary will provide wit-
nesses w ∈ Fnw and output Si ∈ FnS to the transcript for each
transition. P then attaches a proof of compliance πi to every
output Si in the transcript. Using this, we have that for every
predicate Π, the following is negligible in µ:

Pr
[

Π(T ) = 1 (pk,vk)← G(1µ)
V (vk,π,S) 6= 1 (S,π,T )← ProofGen(Π, pk,A ,P )

]
.

Security Properties: If the verifier accepts a proof π for a state S,
the prover “knows" a compliant transcript Tr with output S. Namely,
for any constant c > 0 and every polynomial size adversary A there
is a polynomial-size witness extractor E s.t. for every large enough
security parameter λ, for every F-arithmetic compliance predicate
Π of size λc, the following probability is negligible in λ:

Pr

 V (vk,S,π) = 1 (pk,vk)← G(1λ,Π)
out(Tr) 6= S∨Π(Tr) 6= 1 (S,π)← A(pk,vk)

Tr← E(pk,vk)



B.0.1 Constant-Depth Compliance Predicates

It should be noted that PCDs face trade-offs based on the depth of
any given transcript Tr. In this context, the depth is equivalent to
the length of the path from S0 to the current state. Unfortunately,
in order for the security properties of the PCD system to hold for
a meaningful number of transitions, we need to limit ourselves to
constant-depth compliance predicates. However, in this case we are
interested in verifying all transitions in a path from the genesis block,
which would require a polynomial number of nodes in the transcript.

We solve this problem using the construction of Bitansky et al. [7],
wherein a polynomial depth predicate expressing an NP language
L can be efficiently transformed into a constant-depth predicate
Tree(L). The transformation requires a CRT hash function H and
stores all proofs (of L membership) in a tree to ‘keep track’ of their
position by using only a constant number of operations.

We achieve this in our construction by keeping the state com-
mitments Bi of each transition in an (ordered) Merkle tree, with all
leaves initialized to zero. By requiring a proof of update of each
state to the next at every transition, we ensure the same security
guarantees as for L (i.e. that x ∈ L ⇐⇒ x ∈ Tree(L)). In practice,
this transformation only requires the additional verification of a
single Merkle update path and thus does not meaningfully impact
performance.

C Digital Signature Schemes

We define a digital signature scheme as follows:

• SC-SETUP(1µ)→ ppsig: Setup generating public param-
eters based on security parameter µ.
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• CA(ppsig)→ (PK,SK) takes as input ppsig and outputs
a public key PK and a private key SK.

• SIGN(SK,m)→ σ takes as input a secret key SK and
some message m, outputting a signature σ.

• VS(PK,m,σ) is a procedure that takes as input a public
key PK, some message m and some signature σ and
outputs a bit denoting Yes/No.

The above signing scheme should satisfy the following
security properties:

Completeness:

VS(PK,m,SIGN(SK,m)) = 1

Security: For all non-uniform probabilistic polynomial time
adversaries A :

Pr

 σ /∈ Q ppsig← SC-SETUP(1µ)
VS(PK,m,σ) = 1 (PK,SK)← CA(ppsig)

(m,σ)← ASIGN(SK,·)(PK,1µ)


is negligible in µ. Here ASIGN(SK,·) denotes that A has access
to the oracle, SIGN(SK, ·) Q denotes the set of queries on
SIGN made by A , which knows the public key PK and the
security parameter µ. Note that we require that any adversary
cannot directly query the string, m, on SIGN.

C.1 Schnorr Implementation
Consider inputs s, e∈Fq and pk = (pkx, pky)∈E(Fq)⊂Fq×
Fq to a circuit CSig. Verification of a signature (s,e)∈ Fq×Fq
for some m requires that e = H (Gs ·Qe‖m), where Q the
given public key and G the generator of the underlying group.

We built an exponentiation subcircuit Cexp to verify the
computation of Gs and pke, with G hardcoded at setup.
Cexp(S,x) parses two field elements as an elliptic curve point
S, it also parses a scalar by which to multiply the curve point.
We use the “double-and-add" method, consisting of serial
multiplications and squarings of S to verify that exponentia-
tion was correctly performed. We then compute the hash of
the message concatenated to the bit-representation of Gs · pke.
This is done using an instantiation of a Pedersen hash cir-
cuit. An additional final constraint ensures that d = e for the
signature to verify.

D DPS Transition Functions

We specify VerifyTx in Algorithm 6 and UpdateState in Al-
gorithm 7. Together they define the state transitions in the
model set out by our DPS and are used to construct the PCD.
If the above accepts, then the participant accepts Si+1 (corre-
sponding to commitment Bi+1) as the new state of the system
with associated compliance proof πi+1.

Algorithm 6 VerifyTx
Input: (t, T i)
Output: bit b

1: procedure VERIFYTX(t,T i)
2: Parse t
3: if t = (addrs,addrr,v, f ,PK,σ,PKR) then
4: if v < 0 then
5: return 0
6: Let as the account in T i s.t. as.addr = addrs
7: if as.PK 6= PK then
8: return 0
9: if ar.PK 6= nil and ar.PK 6= PKR then

10: return 0
11: m← addrs‖addrr‖v‖ f‖ar.n
12: if VS(PK,m,σ) = 0 then
13: return 0
14: // Check for sufficient balance
15: if as.bal < v + f then
16: return 0
17:
18: else if tx = (addr,v,PK,σ) then
19: if VS(PK,addr‖v‖addr.n,σ) = 0 then
20: return 0
21: Let a the account in T i s.t. a.addr = addr
22: if a.PK 6= nil and a.PK 6= PK then
23: return 0
24: else
25: return 0
26: return 1

E Predicate Specification

We first define the data structures used in our constructions,
and then look at the NP statement that defines what a block
needs to be valid.

E.1 Proof of Account Modification
Here we define a proof of modification πmod(accA,accB)
of some account accA to accB in Account tree T . We
also provide definitions for each of these proofs and their
corresponding properties.

Paths of Inclusion: We define a path of a certain leaf to the
root, along with the notion of a ‘full’ path that also includes
the other child node. These are important in constructing
proofs of inclusion of nodes in a given tree. The two objects
are defined below:

1. path(acc,q) = (acc,v0,{vk}q
k=1) where q ∈ [h−1]

2. fullpath(acc) = (acc,v0,{ck,vk, ik}h−1
k=1)

Definitions of the parameters above are given here:
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Algorithm 7 UpdateState
Input: (Si, t,n)
Output: (Si+1)

1: procedure UPDATESTATE(Si, t,n)
2: Parse Si← (T i, i,qi,ni), return 0 if this fails
3: N← |T |
4: T i

0 ← T i

5: vT f ee← 0
6: for j← 1, . . . ,N−1 do
7: t j← (addrs,addrr,v, f ,PK,σ,PKR)
8: if VERIFYTX(t j,T i

j−1) = 0 then
9: return 0

10: T i
j ← T i

j−1 // Initialize T i
j

11: Define as as leaf of T i
j−1 s.t. as.addr = addrs

12: Update T i
j :

13: Set as.bal← as.bal− tx j.v− tx j. f
14: Set as.n← n
15: Define ar as leaf of T i

j−1 s.t. ar.addr = addrr

16: Update T i
j :

17: Set ar.bal← ar.bal + tx j.v
18: Set ar.n← n
19: If ar.PK = nil, set ar.PK← PKR
20: vT f ee = vT f ee + tx j. f

21: tN ← (addr,v,PK,σ)
22: if VERIFYTX(tN ,T i

N−1) = 0 then
23: return 0
24: if v 6= vmint + vT f ee then
25: return 0
26: T i

N ← T i
N−1

27: Define am as leaf of T i
N−1 s.t. am.addr = addrm

28: Update T i
N :

29: Set am.bal← am.bal + v
30: Set am.n← n
31: If am.PK = nil, set am.PK← PK
32: qi+1← qi +1
33: Si+1 = (T i

N , i+1,qi+1,n)
34: return Si+1

Algorithm 8 VerifyState
Input: pp,Bi,πi,Bi+1,πi+1
Output: {0,1}

1: procedure VERIFYSTATE(pp,Bi,πi,Bi+1,πi+1)
2: if V (vk,B{i,i+1},π{i,i+1}) = 0 then
3: return 0
4: if H (πi+1)> d then
5: return 0
6: return 1

1. acc is the account in question and v0 = H (acc)

2. q ∈ [h−1] is the length of the desired path

3. vk is the k-th node in the path from the leaf acc to the
root. By construction it holds that H (vk−1,ck) = vk if
ik = 0 and H (ck,vk−1) = vk otherwise.

Leaf Order: By construction the leaves of T follow a
given canonical ordering. We use the unique path from
the root to a given leaf to define this ordering. More
specifically, we consider the address addr ∈ {0,1}h of some
account acc to denote the i-th leaf where i = 2acc. It is im-
mediate that this is a unique total ordering of all accounts in T .

Proof of Modification: We now define a proof of modifica-
tion of a certain leaf accA to accB:

π
mod(accA,accB) = (fullpath(accA),path(accB,h−1))

We say that a proof of modification is consistent if it satisfies
Algorithm 9.
We also define the following two values related to the inclu-
sion proof object πmod = πmod(accA,accB):

πmod = (fullpath(accA),path(accB,h−1))

• firstroot(πmod) = root(fullpath(accA))

• lastroot(πmod) = root(path(accB,h−1))

Inclusion Sequence: We are also interested in lists of inclu-
sion proofs, of which we want valid sequences of proofs,
which are defined for the i-th state based on the tuple below:

Seqj =
(

N,rt j−1,{πmod,i
debit ,π

mod,i
credit}

N
i=1,π

mod
CB ,rt j

)
where we define:

• N the total number of transactions to be processed (ex-
cluding the coinbase)

• rt j−1 and rt j the root of T before and after all updates
have been processed respectively

• acc1,i
debit and acc2,i

debit the debit account before and after
the i-th transaction
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Algorithm 9 Modification Consistency

Input: πmod(accA,accB) = (fullpath(accA),path(accB, j))
Output: b ∈ {0,1}

1: procedure CONSISTENCY(πmod(accA,accB))
2: fullpath(accA)← (accA,vA

0 ,{cA
k ,v

A
k , i

A
k }

h−1
k=1)

3: path(accB, j)← (accB,vB
0 ,{vB

k }
j
k=1)

4: Check the following, return 0 if any fail:
5: j = h−1
6: H (accA) = vA

0
7: H (accB) = vB

0
8: for k ∈ [h−1] do
9: if ik = 0 then

10: if H (vA
k−1,c

A
k ) 6= vA

k then
11: return 0
12: if H (vB

k−1,c
B
k ) 6= vB

k then
13: return 0
14: else
15: if H (cA

k ,v
A
k−1) 6= vA

k then
16: return 0
17: if H (cB

k ,v
B
k−1) 6= vB

k then
18: return 0
19: return 1

• acc1,i
credit and acc2,i

credit the credit account before and after
the i-th transaction

• acc1
CB and acc2

CB coinbase account before and after mod-
ification

• π
mod,i
user = (acc1,i

user,acc2,i
user) the modification proofs for

each transaction

We consider a valid proof sequence to be a tuple that satisfies
the following algorithm.

E.2 Proof of State Validity
We construct the following NP statement, which checks for
the validity of a certain block. Instances are tuples Bi =
(rt i, i,qi,ni) where rt i the root of tree T i corresponding to
Si with nonce ni, while witnesses w are defined by:

(N,{πmod, j
debit ,π

mod, j
credit ,s

j,v j
s ,v

j
m}N

j=1,π
mod
CB ,sCB,πi−1,Bi−1,ni),

where we define:

1. N the number of transactions in the block

2. s j signature for tx j, sCB signature for coinbase

3. v j
s , v j

m amounts sent to credit account and miner respec-
tively in tx j

4. π
mod,i
debit = πmod(acc1, j

debit ,acc2, j
debit) proof of modification of

debit account

5. π
mod,i
credit = πmod(acc1, j

credit ,acc2, j
credit) proof of modification

of credit account

Algorithm 10 Valid Proof Sequence

Input: Seqj =
(

N,rt j−1,{πmod,i
debit ,π

mod,i
credit}N

i=1,π
mod
CB ,rt j

)
Output: b

1: procedure VALSEQ(Seqj)
2: if rt j−1 6= firstroot(πmod,1

debit ) then
3: return 0
4: for i from 1 to [N] do:
5: if lastroot(πmod,i

debit ) 6= firstroot(πmod,i
credit) then

6: return 0
7: if i < N then
8: if lastroot(πmod,i

credit) 6= firstroot(πmod,i+1
debit ) then

9: return 0
10: if lastroot(πmod,N

credit ) 6= firstroot(πmod
CB ) then

11: return 0
12: if lastroot(πmod

CB ) 6= rt j then
13: return 0
14: return 1

6. πmod
CB = πmod(acc1

CB,acc2
CB) proof of modification of

coinbase account

7. Bi−1 = (rt i−1, i− 1,qi−1,ni−1) previous state commit-
ment and πi−1 previous proof

8. Current ni proof-of-work nonce

We define the language BLOCK-V with state commitment
objects Bi = (rt i, i,qi,ni) as candidate elements:

BLOCK-V = {Bi|∃w s.t. VALIDBLOCK(Bi,w) = 1}

where VALIDBLOCK is defined below:

VALIDBLOCK(Bi,w)

1. Check that H (πi−1)≤ d

2. Define v f ees = 0

3. For j ∈ [N], return 0 if any of the following fail:

(a) acc j,1
debit ← (addr j,1

debit ,PK j,1
debit ,v

j,1
debit ,n

j,1
debit)

(b) acc j,2
debit ← (addr j,2

debit ,PK j,2
debit ,v

j,2
debit ,n

j,2
debit)

(c) acc j,1
credit ← (addr j,1

credit ,PK j,1
credit ,v

j,1
credit ,n

j,1
credit)

(d) acc j,2
credit ← (addr j,2

credit ,PK j,2
credit ,v

j,2
credit ,n

j,2
credit)

(e) CONSISTENT(π
mod, j
debit ) = 1

(f) CONSISTENT(π
mod, j
credit ) = 1

(g) VS(PK j,1
debit ,addr j,1

debit‖addr j,1
credit‖v

j
m‖v j

s‖n j,1
debit ,s

j)=
1

(h) ni = n j,2
debit = n j,2

credit

(i) PK j,1
debit = PK j,2

debit

(j) PK j,1
credit = PK j,2

credit or PK j,2
credit =⊥

(k) v j,1
debit = v j

m + v j
s + v j,2

debit

19



(l) v j,2
credit = v j

s + v j,1
credit

(m) Set v f ees = v f ees + v j
m

4. acc1
CB← (addr1

CB,PK1
CB,v

1
CB,n

1
CB)

5. acc2
CB← (addr2

CB,PK2
CB,v

2
CB,n

2
CB)

6. Verify PK1
CB = PK2

CB

7. Verify addr1
CB = addr2

CB

8. Verify v2
CB = v1

CB + v0 + v f ees

9. Verify CONSISTENT(πmod
CB ) = 1

10. Verify that n2
CB = ni

11. Verify that the following equal 1:

VS(PK1
CB,addr1

CB‖v f ees + v0‖n1
CB,sCB)

VALSEQ
(

N,rti−1,{πmod, j
debit ,π

mod, j
credit }

N
j=1,π

mod
CB ,rti

)
F Security Properties

F.1 Completeness
It is important for the protocol to allow transactions formed by
honest parties to be accepted and processed. This requires that
it satisfy the property of completeness. We define complete-
ness in the standard way, by requiring that no polynomial-
sized adversary can win the incompleteness experiment with
non-negligible probability. We formalize this below, where
the experiment is an interaction between an algorithm A and
a challenger C .

Definition 8. We say that a DPS Π is complete if, for all
poly(λ)-size algorithms A and large enough λ, the adversary
wins INCOMP with at most negligible probability:

Pr[INCOMP(A ,Π,λ) = 1]≤ negl(λ)

INCOMP(Π,λ,A):

1. C samples pp← Setup(1λ), sending pp to A
2. A sends C the following:

(a) A state Si

(b) Three addresses za, zb, zCB

(c) Positive integer values cs, c f , cm

(d) A key pair (PK,SK) corresponding to address a
(e) A public key PKB

(f) A key pair (PKCB,SKCB)
(g) Two signatures σ, σCB

(h) Information strings infoS, infoσ, infoσ2

3. C checks that the following hold, outputting 0 if any test
fails:

(a) Check that the key pairs are well formed

(b) Check that all addresses are different

(c) Check that

VS(PK,za‖zb‖cs‖c f ‖infoσ,σ) = 1

(d) Check that

VS(PKCB,zCB‖cm‖infoσ2 ,σCB) = 1

(e) VerifyState(pp,Si, infoS) = 1

(f) Account a with a.addr = za exists in Si and is non-
null with public key PK

(g) If account b with b.addr = zb is initialized, check
that it has public key PKB

(h) GetBalance(pp,Si,PK)≥ cs + c f

(i) c f ≤ cm

4. C constructs a send transaction t with the given parame-
ters:

NewTransaction(pp,za,zb,cs,c f ,(PK,SK),PKB)

5. C constructs a coinbase transaction tCB with the given
parameters:

NewCoinbase(pp,zCB,cm,(PKCB,SKCB))

6. C checks that the following hold, outputting 0 if any test
fails:

(a) VerifyTransaction(pp, t,Si) = 1

(b) VerifyTransaction(pp, tCB,Si) = 1

7. Compute the state transition:

(Si+1, infoS2) = NewState(pp,{t, tCB},Si, infoS)

8. Output 1 if any of the following hold:

(a) t 6= (za,zb,cs,c f ,PK,σ,PKR)

(b) tCB 6= (zCB,cm,PKCB,σCB)

(c) GetBalance(PKB,Si+1) 6= GetBalance(PKB,Si) +
cs

(d) GetBalance(PKCB,Si+1) 6=
GetBalance(PKCB,Si)+ cm

(e) GetBalance(PK,Si) 6= GetBalance(PK,Si+1) +
cs + c f

(f) VerifyState(pp,Si+1, infoS2) = 0
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F.2 Correctness
In order to correctly set up the threat model, we need to
define an oracle O that will initialize the DPS based on some
public parameters pp, keep the state of the system Si along
with an information string infoS, and allow queries from the
adversary. It will also keep counters C,D,E initialized to zero
and an initially empty set ADDR. The possible queries are:

CreateAddress:

1. Generate (PK,SK)← CA(ppsig)

2. Add (PK,SK) to ADDR

3. Return PK

LookupAddress:(za)

1. Find the public key PK for account za

2. If PK is not in ADDR, return zero

3. Return GetBalance(PK,S)

RequestTransactions:

(za,zb,cs,c f ,PK,PKB,zCB,cm,PKCB)

1. Check that PK,PKCB ∈ ADDR

2. Retrieve SK and SKCB and obtain σ,σCB

3. t← (za,zb,cs,c f ,PK,σ,PKB)

4. tCB← (zCB,cm,PKCB,σCB)

5. Check that VerifyTransaction(pp, t,S) = 1

6. Check that VerifyTransaction(pp, tCB,S) = 1

7. E0 = GetBalance(PKB,S)
8. Update the state and information string:

(S2, infoS2)← NewState(pp,{t, tCB},S, infoS)

9. If VerifyState(pp,S2, infoS2) = 1, set

S = S2, infoS = infoS2

10. Check that cs = GetBalance(PKB,S)−E0

11. If PKB 6∈ ADDR, set

E = E + cs

AddTransactions:(t, tCB)

1. (za,zb,cs,c f ,PK,σ,PKB)← t

2. (zCB,cm,PKCB,σCB)← tCB

3. Check that VerifyTransaction(pp, t,S) = 1

4. Check that VerifyTransaction(pp, tCB,S) = 1

5. C0 = LookupAddress(zb)

6. D0 = GetBalance(PKCB,S)
7. Update the state and information string:

(S2, infoS2)← NewState(pp,{t, tCB},S, infoS)

8. Check that cm = GetBalance(PKCB,S)−D0

9. If PKB ∈ ADDR, check that

cs = LookupAddress(zb)−C0

10. If VerifyState(pp,S2, infoS2) = 1, set

S = S2, infoS = infoS2

11. Set C =C+LookupAddress(zb)−C0

12. Set D = D+ cm

We are now ready to define the correctness experiment,
which will prove security for our system.

Definition 9. We say that a DPS Π is correct if, for all
poly(λ)-size adversaries A and large enough λ, the adver-
sary wins INCOR with at most negligible probability:

Pr[INCOR(S ,Π,λ) = 1]≤ negl(λ)

The game below refers to an interaction between an adversary
A and challenger C .

INCOR(Π,λ,A):

1. C samples pp← Setup(1λ), sending pp to A
2. C instantiates an oracle O based on Π

3. A issues queries to O
4. A sends a set of addresses {zi}K

i=1 to C
5. C then adds together in a variable v all the balances of

the addresses PKi corresponding to zi for which PKi 6∈
ADDR

6. C outputs 1 if v+C > D+E

G Proof of Theorem 1

G.1 Completeness
Proof. In step (3), C ensures the transaction and state pro-
vided are valid. Since the transactions involve different ad-
dresses, we do not worry about one referencing the other.

We look at all the ways the adversary can win. Firstly,
(a) and (b) are impossible since NewTransaction signs and
creates the given transactions without changing parameters.
By the completeness property of the signature scheme, the
valid signatures will always verify.
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Since the new state will be built according to UpdateState
by exactly matching the balances of the participants according
to the transaction amounts, we also ensure the equalities in
(c), (d) and (e).

Finally, we know by completeness of the PCD that in the
case of a valid state transition the verifier will reject with
negligible probability. In our case, infoS = πi and infoS2 =
πi+1. Since Setup runs G , NewState runs P and VerifyState
runs V , we know that:

Pr
[

Π(T ) = 1 (pk,vk)← G(1µ)
V (vk,πi+1,Si+1) 6= 1 (Si+1,πi+1,T )← PG(Π, pk,A ,P )

]
We can think of A as providing Si, Si+1 and local information
{t, tCB}, with P providing proof πi+1 through ProofGen (PG).
From (6), we know that this is a valid state transition for our
predicate, so remains to show that the transcript up to Si is
compliant. By the Proof of Knowledge property there exists
an extractor EP (pk,Si)→ Ti with out(Ti) = Si and Π(Ti) = 1
with high probability 1−negl(µ). This means that Π(T ) = 1
as all transitions are valid with high probability and so since
V (vk,Si,πi) = 1 the adversary cannot activate (f) to win the
game non-negligibly.

G.2 Correctness
Proof. The adversary only changes the state when they
call AddTransactions and RequestTransactions. We as-
sume they perform N calls and submit {t i, t i

CB}n
i=1 at each

step to set Si → Si+1. Since NewState calls P to gener-
ate the transition at every step and we know that ∀i ∈ [N],
VerifyState(pp,Si,πi) = 1, the transcript T recording these
updates satisfies Π(T) = 1 with high probability. From here
we presume without loss of generality that every state Si is
consistent with Π.

C measures how much value A has transferred to honest
parties in ADDR, D how many coinbase transactions A has
won, and E how much money they have received from honest
nodes. Since this cannot hold if balance is always conserved,
we look at the possible options:

Option 1: The adversary has been able to use some
PK ∈ ADDR in AddTransactions. However, A only has ora-
cle access to signatures of other messages from PK ∈ ADDR
so recreating one it has not seen non-negligibly would violate
the security of the signature scheme. In order to validate a
transaction, the adversary needs to sign a message including
the nonce n of the last block that modified the account, which
is always different with high probability. Therefore they
would have to generate a signature for a unique message
m = addrs‖addrr‖c1‖c2‖n, which has not been seen before in
a query to RequestTransactions, as n always updates when
a transaction is processed requiring a new m even if all other
parameters remain the same.

Option 2: Balance is not conserved in at least one trans-
action. Since Π(T ) = 1, this is immediately false with

high-probability since all transactions added were valid and
thus conserve balance between accounts by the requirements
of ValidState.

Option 3: There exists a different compliant transcript T2
with the same value for Si for some i. This would mean that
transactions valid for T2 could be verified by T at the i-th
step and thus violate the required expression. However, by
design Si is the root of a Merkle tree based on H , which is
a collision-resistant hash function. Suffices to show that a
different transcript would imply a collision in H .

Since the two transcripts differ, there exists a first node j in
which they have at least one differing transaction. Let the two
resulting Merkle tree roots be root(T ∗( j)) and root(T ( j))
after that update. Since the transactions were different, the
two trees will differ in at least one leaf by l 6= l∗ and have
that root(T ∗( j)) 6= root(T ( j)). Since the predicate recog-
nizes Tree(BLOCK-V), we store the account Merkle tree root
root(T (i)) in the i-th leaf of another Merkle tree whose root
is Si for the i-th step. This means that there exists an au-
thentication path from root(T ∗) and root(T ) to the same Si.
Since l 6= l∗ and root(T ∗( j)) 6= root(T ( j)), this is a contra-
diction.

H Proof of Theorem 2

Proof. Assume that a blocks are found in a Poisson process
with a mean of λ = 1 and an individual miner can check
one puzzle solution in time τ. Consider the expected number
of blocks this individual miner is able to check before the
network broadcasts a solution. A block will be found by the
network in less than time τ with probability:

∫
τ

0
e−xdx = 1− eτ.

In this case, the miner will not even finish checking a single
block. If the network does not broadcast a block within time τ,
the miner will check at least one block. The Poisson process
then repeats, since it is memoryless. So the expected number
of blocks checked is:

Eblocks = (1− eτ) ·0+ e−τ · (1+Eblocks)

eτ ·Eblocks = 1+EblocksEblocks =
1

eτ−1
.

If no partially-checked solutions were wasted, the miner
would always expect to check 1

τ
solutions. Thus, the fraction

of wasted work is:

1−
1

eτ−1
1
τ

= 1− τ

eτ−1
.
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