
Tight Time-Space Lower Bounds for Finding
Multiple Collision Pairs and Their Applications

Itai Dinur

Department of Computer Science, Ben-Gurion University, Israel

Abstract. We consider a collision search problem (CSP), where given
a parameter C, the goal is to find C collision pairs in a random function
f : [N] → [N] (where [N] = {0, 1, . . . , N − 1}) using S bits of memory.
Algorithms for CSP have numerous cryptanalytic applications such as
space-efficient attacks on double and triple encryption. The best known
algorithm for CSP is parallel collision search (PCS) published by van
Oorschot and Wiener, which achieves the time-space tradeoff T 2 · S =
Õ(C2 ·N) for S = Õ(C).
In this paper, we prove that any algorithm for CSP satisfies T 2 · S =
Ω̃(C2 ·N) for S = Õ(C), hence the best known time-space tradeoff is op-
timal (up to poly-logarithmic factors in N). On the other hand, we give
strong evidence that proving similar unconditional time-space tradeoff
lower bounds on CSP applications (such as breaking double and triple
encryption) may be very difficult, and would imply a breakthrough in
complexity theory. Hence, we propose a new restricted model of com-
putation and prove that under this model, the best known time-space
tradeoff attack on double encryption is optimal.
Keywords: Collision search problem, time-space tradeoff,R-way branch-
ing program, provable security, cryptanalysis, parallel collision search,
double encryption.

1 Introduction

A time-space tradeoff for a problem is a curve that quantifies the difficulty of
solving it in terms of the required time complexity T and space complexity
S (and perhaps additional problem-specific parameters). Such tradeoffs play a
significant role in algorithmic research, as they provide a more realistic estimate
of how difficult it is to solve a problem by considering the available space, as
opposed to analysis that only considers the available computation power.

In this work we consider time-space tradeoffs for the collision search problem
(CSP), where given a parameter C and oracle access to a random function f :
[N] → [N], the goal is to find C distinct unordered colliding pairs (i1, i2) ∈
[N]2 in f (i.e., i1 6= i2, but f(i1) = f(i2)) using S bits of memory. We also
consider another variant of CSP, where given oracle access to two random and
independent functions f1, f2 : [N] → [N] the goal is to find C distinct ordered
colliding pairs between f1 and f2 (i.e., (i1, i2) ∈ [N]2 such that f1(i1) = f2(i2))
using S bits of memory.

The best known algorithm for the collision search problem is parallel collision
search (PCS) which was published by van Oorschot and Wiener [32] and has
found numerous applications in cryptanalysis (such as space-efficient attacks on
double and triple encryption and various dedicated meet-in-the-middle attacks).
PCS obtains the time-space tradeoff T 2 · S = Õ(C2 ·N) (where S = Õ(C)) for
both variants of CSP (where Õ hides a poly-logarithmic factor in N).

Given the importance of PCS, it is natural to ask whether its time-space
tradeoff is optimal. First, for S ≈ C, the answer is clearly positive (ignoring poly-
logarithmic factors). This follows by simple probabilistic analysis, as evaluating a
random function on T inputs is unlikely to yield more than about T 2/N collisions
(i.e., C = Õ(T 2/N), or T 2 · S = Ω̃(C2 · N)). Therefore, the optimality of the
tradeoff is not straightforward only when S � C, as in this range the limited
amount of space comes into play.

1.1 Applications of the Collision Search Problem for S � C

The parameter regime S � C for CSP may not seem very interesting at first
sight, as it implies that the algorithm has to produce more collisions than it is
able store in memory. However, in many CSP applications, we are only interested
in a particular collision (referred to as the “golden collision” in [32]) and therefore
do not need to store the collisions produced. Thus, the range of parameters where
S � C is, in fact, very important. Below, we demonstrate the relevance of CSP
in case S � C for the classical problem of breaking double encryption.

In the double encryption setting, the adversary obtains plaintext-ciphertext
pairs (pi, ci) for i ∈ {1, 2, . . .}, where ci = E2k2(E1k1(pi)) for block ciphers1

E1, E2 : [N] → [N] and key (k1, k2) ∈ [N]2. The adversary focuses on (p1, c1)
and defines the functions f1, f2 : [N]→ [N] as

f1(k) = E1k(p1), and f2(k) = E2−1k (c1).

Then, the adversary applies a collision search algorithm in order to obtain colli-
sions between f1 and f2. Each output collision gives a candidate for the key pair
(k1, k2), which is then verified against the remaining plaintext-ciphertext pairs.
Note that there is no need to store a wrong key pair. Since f1 and f2 are expected
to have N different colliding pairs, after obtaining about N collisions between
them, the adversary recovers the correct key pair (or the “golden collision”) with
high probability.

Consequently, we can use an algorithm for the collision search problem with
C ≈ N in order to break double encryption given an arbitrary value of S. Plug-
ging C = N into the PCS time-space tradeoff curve gives T 2 ·S = Õ(N3), which
is the currently best known time-space tradeoff for breaking double encryption
for any value of S.

Besides breaking double encryption, there are numerous additional applica-
tions that are also based on finding a “golden collision” which gives a solution to

1 We assume for the sake of simplicity that the key and block sizes are equal.

2

the problem for appropriately defined functions f1, f2. A partial list of these ap-
plications includes breaking triple encryption [32], and more generally, breaking
multiple encryption [17], solving the subset sum problem [16, 17] and solving the
generalized birthday problem [33]. Furthermore, in various (more specialized)
settings one can reduce the task of breaking a concrete symmetric-key primitive
to a meet-in-the-middle procedure which can then be reduced to an instance of
the collision search problem with S � C.

1.2 Optimality of the Known Time-Space Tradeoff for the Collision
Search Problem

The importance of CSP (in case S � C) motivates the question of whether the
best known time-space tradeoff for it T 2 · S = Õ(C2 · N) can be improved. In
this paper, we give a strong negative answer to this question. More specifically,
we prove that any algorithm that outputs C distinct collisions in a random
function f : [N] → [N] (or between two independent random functions) with
probability at least N−2, satisfies the time-space tradeoff T 2 · S = Ω̃(C2 · N)
(where Ω̃ hides poly-logarithmic factors in N). As an example, given space of
S = 10 logN bits, our lower bound implies that finding C = N/4 collisions in f
requires time complexity T = Ω̃(N3/2). On the other hand, prior to this work,
even an algorithm with time complexity T = N for the problem could not be
ruled out.

An immediate consequence of this result is that the time-space tradeoffs for
the cryptanalytic applications mentioned in Section 1.1 cannot be improved by
a more efficient collision search procedure (as long as the underlying functions
to which collision search is applied are modeled as random functions).

In order to obtain our bound, we use the R-way branching program model of
computation, which is a standard non-uniform model for analyzing time-space
tradeoffs [11]. In this model, a general approach for proving time-space tradeoff
lower bounds was introduced by Borodin and Cook [11]. Since its introduc-
tion, this technique has been used to prove time-space tradeoff lower bounds for
several problems such as sorting [7, 11], matrix multiplication and fast Fourier
transform [36], and universal hashing [25].

We adapt the approach of [11] to the collision search problem, which seems
to be its first application in the domain of cryptography. More specifically, we
divide a branching program for CSP with running time T into L short time
intervals of length T/L, and prove that in each such interval, the program cannot
make a lot of progress towards outputting the desired number of C collisions.
In particular, the probability that the program (starting its computation from
any specific memory state) outputs C/L collisions in an interval is minuscule.
Finally, a union bound over all possible memory states establishes the result.
Our adaptation requires deeper insight about the collision search problem and
a careful choice of parameters.

3

1.3 Time-Space Tradeoffs in Various Models of Computation

Given the optimality of best known time-space tradeoff for CSP, one may wonder
whether we can prove the optimality of the best known tradeoffs for its applica-
tions (such as the ones mentioned in Section 1.1). Unfortunately, we give strong
evidence that proving such a result may be very difficult and would overcome a
variant of a long-standing barrier in complexity theory.

The property of the collision search problem that enables proving tight time-
space tradeoff lower bounds for it, is that its output length is (about) C words.
Since it is possible to find C collisions in f for a small value of C with negligi-
ble space and nearly-optimal time complexity (e.g., by Floyd’s algorithm [24]),
time-space tradeoffs for such parameters are already known to be tight. Hence,
we may assume that the output length C is large (namely C = Nα for some
α > 0). In contrast, the output length in the above applications is very short
(e.g., in breaking double encryption, the output is a short key). The challenge
of proving strong time-space tradeoff lower bounds for such short-output prob-
lems with polynomial-time algorithms2 is open since the study of such tradeoffs
was introduced in 1966 by Cobham [15] (and it has been subject of extensive
research [10]).3 In particular, the technique for proving time-space lower bounds
of [11] (that we adapt here to CSP) is inapplicable to short-output problems
since it is not clear how to measure the progress of an algorithm towards solving
such a problem.

While the barrier of proving time-space lower bounds for short-output prob-
lems seems very difficult to overcome, it only applies to general (unrestricted)
models of computation. On the other hand, under more restricted computational
models, very strong time-space lower bounds are known for various problems.
One such restricted model is the streaming model. Here, the input is a stream of
elements that can be read sequentially, but a (single-pass) streaming algorithm
cannot access a previous element of the stream, unless it is stored in memory.
The streaming model is subject to active research in general (see [2], and [30] for
a recent result), and specifically in the area of cryptography (cf., [13, 22, 27]).

The pebbling model is another well-studied restricted model of computation
in which strong time-space tradeoff lower bounds are known [29]. In this model,
a pebbling game is played on a specific circuit realizing the function considered.
The circuit is viewed as a directed acyclic graph (DAG) and the goal is to pebble
each of the output nodes given a limited number of pebbles (which model words
of memory). The main rule of the pebbling game is that a non-input node can be
pebbled only if all its processors are pebbled. In the context of cryptography, the

2 The input length of a problem with access to some function f : [M] → [N] is
the number of bits required to represent the function, namely, N logM . With this
encoding, it is clear, for example, that breaking double encryption can be done in
polynomial time in the input length.

3 For general problems in NP, stronger time-space tradeoff lower bounds are known in
the uniform setting for problems such as SAT (cf. [20]). However, as far as we know,
these lower bounds are very loose and do not seem to be relevant to cryptography.

4

pebbling model has played a significant role in the design and analysis memory-
hard functions [3, 4, 19].

We also mention comparison-based models where the algorithm does not have
direct access to the internal representation of the elements of the input, but can
only compare them in pairs. A well-known time-space lower bound in such mod-
els was obtained by Yao for the element distinctness problem [35], where the
goal is to determine whether there exist two identical elements in an array of
length N . While Yao’s bound T · S = Ω(N2−o(1)) for element distinctness is al-
most tight in comparison-based models, the algorithm of Beame et al. [8] showed
how to beat this bound and obtained T 2 · S = O(N3) by working outside the
restricted model (i.e., exploiting the internal representations of the elements).
Recently, Tessaro and Thiruvengadam showed bi-directional space-tight reduc-
tions between breaking double encryption and solving the element distinctness
problem [31]. In fact, the algorithm of [8] is a variant of PCS which obtains a
similar tradeoff for breaking double encryption.

Finally, a different restricted model of computation for proving time-space
tradeoff lower bounds in the domain of cryptography was proposed in [6] by
Barkan, Biham and Shamir. This work analyzed the problem of inverting a ran-
dom function f : [N] → [N] with preprocessing, and proposed a model that
generalizes the algorithms of Hellman [21] and Oechslin [28] for the problem.
The main result of [6] was a proof that any algorithm in their model cannot
substantially improve upon the known time-space tradeoffs for the function in-
version problem.

1.4 The Post-Filtering Model of Computation

Even though restricted computational models are natural choices for analyzing a
variety of problems, none of the existing ones seems relevant to obtaining time-
space lower bounds for the cryptanalytic problems described in Section 1.1.
For example, the streaming model is inapplicable to cryptanalysis of double
encryption, since the best known key-recovery attack requires only two plaintext-
ciphertext pairs (and it does not make sense to restrict access to the block cipher
itself). The pebbling model is irrelevant since it is not clear which circuit should
be pebbled. Considering comparison-based models, one can apply Yao’s bound
for element distinctness to the problem of breaking double encryption (as implied
by the result of Tessaro and Thiruvengadam [31]). However, PCS beats Yao’s
bound, which implies that the model is too restrictive for this specific problem.
Finally, the precomputation setting analyzed in [6, 21, 28] is quite different from
ours and the tools used in its analysis seem inapplicable in our context.

Nevertheless, we would still like to obtain some meaningful time-space lower
bounds that apply to basic cryptanalytic problems. Hence, we put forward a new
restricted model of computation, which we call the post-filtering model, where
the algorithm obtains full access to a part of the input, while access to the
remaining part is replaced with access to a post-filtering oracle.

The post-filtering model may seem to have little to do with space complexity,
yet it allows proving time-space lower bounds. The reason for this is that in

5

some problems the input can be partitioned such that given the first part, there
are many equally-likely potential solutions. Consequently, an algorithm with
full access to (only) the first part of the input has to produce many potential
outputs to be post-filtered by the oracle. Thus, the model forces a reduction
from a problem with a short output to a related problem with a long output, for
which time-space tradeoff lower bounds are provable with existing techniques.

In the post-filtering model, we focus on double encryption, as it seems to be
the most fundamental problem listed in Section 1.1. Indeed, it is the basis for
many other more involved meet-in-the-middle type of attacks (such as breaking
triple encryption and specialized attacks on concrete symmetric-key construc-
tions). In our analysis, we give the adversary full access to (p1, c1) and the block
ciphers E1, E2, while access to the remaining plaintext-ciphertext pairs is re-
placed with access to a post-filtering oracle that filters out wrong key guesses.
We exploit the fact that there are many possible (k1, k2) pairs that are consis-
tent with (p1, c1), and prove that any post-filtering attack on double encryption
that succeeds with constant probability satisfies the time-space tradeoff curve
T 2 · S = Ω̃(N3). This matches the performance of the best known attack that
uses PCS.

Technically, we obtain this result based on the optimality of the tradeoff for
CSP, but it is a conceptually stronger result, as the post-filtering model ab-
stracts away the (lower-level) collision search problem. The optimality of the
tradeoff for double encryption in the post-filtering model implies that if an im-
proved algorithm exists, then it must deviate from the post-filtering model by
simultaneously combining information from several plaintext-ciphertext pairs in
a meaningful way. This can be viewed both as a barrier, but also as an oppor-
tunity for improvement.

We also mention that a different approach to obtaining meaningful results
for short-output problems (despite the aforementioned barrier) is to use space-
efficient reductions in order to prove relations among tradeoffs for these prob-
lems [5]. The recent work by Tessaro and Thiruvengadam [31] (that showed
reductions between attacking double encryption and solving the element dis-
tinctness problem) is a relevant example of this approach. We note that it is
possible to adapt the post-filtering model to the element distinctness problem,
and obtain a similar bound to the one we obtain for double encryption.

1.5 Paper Organization

The rest of the paper is structured as follows. We describe preliminaries in Sec-
tion 2. Then, we prove time-space tradeoff lower bounds for collision search in
a single function and between two functions in Section 3 and Section 4, respec-
tively. We discuss relevant barriers in complexity theory in Section 5 and prove a
time-space tradeoff lower bound for double encryption in the post-filtering model
in Section 6. Finally, we conclude the paper in Section 7.

6

2 Preliminaries

Let N be a natural number and denote [N] = {0, 1, . . . , N − 1}. We use the
standard Õ and Ω̃ notations that suppress poly-logarithmic factors in N .

Let X be a finite set. We write x
$←− X to indicate that x is a random variable

sampled uniformly from X. We denote by x← D a random variable x sampled
according to the distribution D.

We use a weak version of Stirling’s approximation, which asserts that n! >
(n/e)n for every positive integer n.

In this paper, we are interested in counting distinct collision pairs. A colliding
pair in a function f : [N] → [N] is an unordered pair of indices (i1, i2) ∈ [N]2

such that i1 6= i2 and f(i1) = f(i2). When considering two functions f1, f2 :
[N] → [N], a colliding pair between f1 and f2 is an ordered pair (i1, i2) ∈ [N]2

such that f1(i1) = f2(i2). Two pairs (i1, i2) and (j1, j2) and disjoint if they do
not share any index.

Let f : [N] → [N] be a function. For an integer t ≥ 2, a t-way collision in f
is an (unordered) set of t distinct indices {i1, . . . , it} such that f(i1) = f(i2) =
. . . = f(it). Note that a t-way collision in f contains t(t− 1)/2 distinct colliding
pairs, but can only be partitioned into bt/2c disjoint colliding pairs.

We may refer to a function f : [N] → [N] as a vector (or a string) in the
space [N]N , and visa-versa. More specifically a string x ∈ [N]N represents a
function fx : [N] → [N] defined as fx(i) = x[i]. In this paper, we will switch
between these representations. For example, we define a collision in x ∈ [N]N as
an unordered pair of indices (i1, i2) ∈ [N]2 such that i1 6= i2 and x[i1] = x[i2].

2.1 The Collision Search Problem

Let N , C be positive integer parameters. Given random access to a function
f : [N] → [N], the goal in the collision search problem CSP(C) is to output a

multi-set of pairs (i
(j)
1 , i

(j)
2) ∈ [N]2 for j ∈ {1, 2, . . .} (at any order) such that

each pair is colliding (i.e., f(i
(j)
1) = f(i

(j)
2) but i

(j)
1 6= i

(j)
2) and the multi-set

contains at least C distinct (unordered) colliding pairs.
CSP can be extended to two functions f1, f2 : [N] → [N]. Here, the goal is

to output at least C distinct ordered colliding pairs between the functions.
We define CSP such that all distinct colliding pairs are accounted for, as

most CSP applications (such as breaking double encryption) are interested in
each such pair. Of course, if we under-count pairs induced by t-way collisions
(e.g., by considering only disjoint pairs), we can obtain a (slightly) better lower
bound.

In Appendix A we summarize the PCS algorithm that solves CSP(C) and
obtains the time-space tradeoff T 2 · S = Õ(C2 ·N).

2.2 R-Way Branching Programs

The model of R-way branching programs is a very general and powerful non-
uniform model of computation, introduced in [11]. An R-way branching pro-

7

gram is a directed acyclic graph in which each node represents a memory state
of the program. At each node, a single input variable is queried and the pro-
gram branches to the next state according to the value of this variable (possibly
printing an output value along the way). Thus, a path in the graph of length T
represents T time steps (input variable queries) of the program.

Let R ≥ 2 be an integer. Formally, an R-way branching program P on an in-
put vector consisting of N input variables x = x[1], . . . , x[N] ∈ [R]N is a directed
acyclic graph with a single source node, such that every non-sink node has out-
degree R and is labeled with an index i ∈ [N] corresponding to an input variable
to be queried. Every edge is labeled with an element of [R] (corresponding to the
value of the queried variable) such that no edge (u, v) and (u,w) where v 6= w
share a label. Furthermore, every vertex v is associated with an instruction to
print a (possibly empty) value p(v).

The computation path of P on input x is the (unique) path
π = (v0, v1), (v1, v2), . . . , (v`−1, v`) such that v0 is the source node, v` is a sink
node, and for all i ∈ {0, . . . , `− 1}, if vi is labeled j, then the label of (vi, vi+1)
is equal to x[j]. We denote by P(x) the output of P on input x. It is defined as
the concatenation of the values printed by the vertices along the computation
path of P on input x, namely, p(v0)p(v1) . . . p(v`).

The height of an R-way branching program P is the length of the longest
path in its graph, and its size is its number of vertices. The time complexity of a
branching program is defined as its length, while the space used by a branching
program is defined as the log of its size. Note that the input and output are not
counted towards the space used by the branching program, and time complexity
is measured only in terms of the number of queries to the input variables.

An R-way branching program is called levelled if its nodes are assigned levels
such that the source is in level 0 and the out-edges of each node at level k go
only to nodes at level k + 1. It is shown in [12] that any branching program of
size 2S can be converted into an equivalent levelled branching program with the
same length and size of at most 22S .

2.3 Our Model of Computation

We use the R-way branching program model in order to prove the time-space
lower bound for collision search in Section 3. However, in sections 4 and 6 it
will be more natural to consider algorithms rather than branching programs.
Nevertheless, the model of computation that we use in these sections is equivalent
to the branching program model. More specifically, we consider an algorithm
A with access to input variables in [R] (for a value of R depending on the
problem). The algorithm has space of S bits, where the input and output do
not count towards the space complexity. Each query of A to one of its input
variables costs one time unit, but other operations (such as reading or writing
to memory) are for free. This makes our computational model (and our lower
bounds) very strong. Note that an algorithm A in our model is equivalent to an
R-way branching program P with the same time and space complexities.

8

R-Way Branching Programs for Collision Search We model the algorithm
for CSP(C) as an N -way branching program P of height T and size 2S . We
assume that P is deterministic, but our lower bounds extend to randomized
branching programs as well by Yao’s minimax principle [34].

For convenience, we denote by |P(x)| the number of distinct colliding pairs
(ignoring duplicates) output by P on input x ∈ [N]N , which represents a function
fx : [N] → [N] defined as fx(i) = x[i]. We define |P(x)| = −1 if P(x) is
erroneous, i.e., it outputs a pair which does not collide on x.

Input Representation In the domain of complexity theory, if an algorithm A
(or branching program P) has random access to x ∈ [N]N , then x is typically
treated as an input, using the notation A(x) (or P(x)). We use such notation in
sections 3, 4 and 5. On the other hand, in cryptography, similar random access
of an algorithm A to a function fx : [N]→ [N] is typically modeled by viewing
f = fx as an oracle and using the notation Af . We use this notation in Section 6.

3 A Time-Space Tradeoff Lower Bound for Collision
Search in a Function

In this section, we prove the following theorem.

Theorem 1. Let N,C, T, S be positive integer parameters such that N > 8,
S ≥ 5(log2N + logN) and C ≤ N/4. If an N -way branching program P for
CSP(C) of height T and size 2S satisfies

Pr
x

[|P(x)| ≥ C] ≥ N−2, where x
$←− [N]N , then

T 2 · S ≥ 1

(6e · logN)2
· C2 ·N.

Remark 1. If S < 5(log2N + logN), we can apply the theorem with S′ =
5(log2N + logN). If C > N/4, we can apply the theorem with C ′ = N/4 (note
that with high probability a random function only contains O(N) collisions). In
both cases the loss in the bound is small.

Remark 2. The theorem is formulated for deterministic algorithms (or branching
programs). However, by Yao’s minimax principle it also applies to randomized
algorithms, which are viewed as distributions over deterministic algorithms. In
this case, the probability is also taken over the randomness of the algorithm.

3.1 Overview of the Proof

The proof is an adaptation of the general approach of [11]. This adaptation
requires additional insight which we summarize below.

We first prove that every shallow branching program of a small height T ′

outputs C ′ (distinct) collisions in a random input x with negligible probability,

9

denoted here by ε = ε(T ′, C ′) (for appropriate values of T ′ and C ′). Note that
this proof has nothing to do with space complexity.

Then, given a branching program P of size 2S and height T , we level it to
obtain a levelled branching program P ′, losing a factor of 2 in its space S. We
then split P ′ into L layers (for a carefully chosen value of L), each of height at
most T ′ = T/L. In order to produce C collisions, at least one such layer has to
produce C ′ = C/L collisions, namely, there exists a subprogram of P ′ (defined
by its source node) of length T ′ in some layer that outputs C ′ collisions. Since
P ′ contains 22S such subprograms, we take a union bound over all of them and
conclude that the probability in which P ′ outputs C (distinct) collisions is upper
bounded by 22S · ε.

With T ′ queries to the input x, the expected number of encountered collisions
is about (T ′)2/N , and we would like to prove a strong concentration inequality
which shows that it is extremely unlikely to encounter C ′ = c ·(T ′)2/N collisions
for sufficiently small c > 1, thus obtaining a strong upper bound on ε. Indeed,
in order to obtain a meaningful upper bound on the success probability of P ′,
we need ε� 2−2S .

The above calculation justifies the relation between C ′ and T ′. It remains to
choose L such that we can indeed prove that ε � 2−2S and obtain the desired
bound T 2 ·S = Ω̃(C2 ·N). Some calculation shows that for the sake of obtaining
a tight bound, we need to choose L such that C ′ is a bit larger than the space
2S. Intuitively, a choice of L such that C ′ is much larger than 2S will artificially
allow the program to output too many collisions (much more than its space) in
limited time and result in a loose bound. On the other hand, if we choose L for
which C ′ is smaller than 2S, P ′ will actually be able to output C ′ collisions with
sufficiently high probability and we will not be able to obtain the required upper
bound on ε such that ε� 2−2S .

Hence, the constraint ε� 2−2S translates into ε = 2−Ω̃(C′). In other words,
we need to prove a concentration inequality that decays exponentially with the
number of collisions per layer C ′. Unfortunately, obtaining such a strong bound
on ε is impossible in general. For example, suppose that T ′ = N3/4, hence
C ′ ≈ N1/2. Note that C ′ ≈ N1/2 distinct colliding pairs can be obtained via a
t-way collision for t ≈ N1/4. The probability of obtaining such a t-way collision
is at least

N−N
1/4

= 2− logN ·N1/4

� 2−N
1/2

≈ 2−C
′
.

Fortunately, most functions do not contain such a large t-way collision (as proved
in Lemma 1), and for these functions, we can prove the required bound on ε.
Restricting our attention to such functions allows the proof to go through.

We note that the poly-logarithmic factors in Theorem 1 can be improved. In
particular, a refined version of Lemma 1 (which would consider t-way collisions
for various values of t, rather than merely t = 3 logN) would yield such an
improvement. However, in this paper we opt for simplicity at the expense of
low-level optimizations.

Finally, we also mention the related work by Chakrabarti and Chen [14]
which analyzed time-space tradeoffs for the memory game with cards. This game

10

is played with N distinct pairs of cards laid face-down, and the goal is to output
all “colliding” pairs. Although the memory game resembles CSP (and the lower
bound obtained in [14] is similar to ours), its analysis in [14] does not seem to
apply to CSP. This is mainly due to t-way collisions for t > 2 which are possible
in the collision search problem, but not in the memory game where the cards
are composed of distinct pairs.

3.2 Bounding the Number of Collisions Output by Shallow
Branching Programs

Lemma 1. Let t > 0 be an integer. Then,

Pr
x

[x contains a t-way collision] ≤ N

t!
,

where x
$←− [N]N . In particular, for N > 8,

Pr
x

[x contains a 3 logN -way collision] ≤ N

(3 logN)!
≤ N ·

(
e

3 logN

)3 logN

≤ N−3.

Proof. Fix a set of t distinct indices in [N], {i1, . . . , it}. We have

Pr[x[i1] = x[i2] = . . . = x[it]] = N−t+1.

The number of such sets of indices is
(
N
t

)
≤ Nt

t! . Taking a union bound over all
sets,

Pr[x contains a t-way collision] ≤ N t

t!
·N−t+1 =

N

t!
.

�

Lemma 2. For all T ′, C ′ and N > 8, any N -way branching program P of height
at most T ′ satisfies

Pr
x

[|P(x)| ≥ C ′ | x does not have a 3 logN -way collision] ≤

2 ·N3 logN ·
(

3e · logN · (T ′)2

C ′ ·N

)C′/6 logN

, where x
$←− [N]N .

Proof. Denote by E the event that x does not have a 3 logN -way collision. Sup-
pose that x satisfies this condition and assume that C ′ distinct colliding index
pairs are output by P(x). Assume that these pairs form k disjoint sets, where set
i is of size ti for 2 ≤ ti < 3 logN , and gives a ti-way collision. Since a t-way colli-
sion results in t(t− 1)/2 distinct colliding pairs, we have

∑k
i=1 ti(ti− 1)/2 ≥ C ′.

On the other hand, each set of size ti can be partitioned into bti/2c disjoint col-
liding pairs. Altogether, the C ′ distinct colliding index pairs can be partitioned
into

k∑
i=1

bti/2c ≥
k∑
i=1

(ti − 1)/2 ≥ 1

3 logN
·
k∑
i=1

ti(ti − 1)/2 ≥ C ′

3 logN

11

disjoint colliding pairs.
Using the fact that Prx[E] ≥ N−3 logN , we obtain

Pr
x

[|P(x)| ≥ C ′ | E] ≤

Pr
x

[
P(x) is correct and outputs

C ′

3 logN
disjoint colliding pairs | E

]
≤

Pr
x

[
P(x) is correct and outputs

C ′

3 logN
disjoint colliding pairs

]
/Pr
x

[E] ≤

N3 logN · Pr
x

[
P(x) is correct and outputs

C ′

3 logN
disjoint colliding pairs

]
.

It remains to prove that

Pr
x

[P(x) is correct and outputs
C ′

3 logN
disjoint colliding pairs] ≤

2

(
3e · logN · (T ′)2

C ′ ·N

)C′/6 logN

.

For K = C′

6 logN , denote by E1 the event that P(x) queries K disjoint colliding

index pairs and by E2 the event that P(x) is correct and outputs K disjoint
colliding index pairs such that in each one, at least one index is not queried.
Note that if P(x) is correct and outputs C′

3 logN disjoint colliding pairs, then
either E1 or E2 occurs.

For a fixed set of disjoint K pairs of query indices, the probability that they
all collide on a uniform input x is N−K . The number of ways to select such K
query index pairs from a set of T ′ index queries is(

T ′

2K

)
· (2K)!

2K ·K!
≤ (T ′)2K

2K · (K/e)K
=

(
(T ′)2

2/e ·K

)K
.

Taking a union bound over all sets of K query index pairs, we conclude

Pr[E1] ≤
(

(T ′)2

2/e ·K

)K
·N−K .

In addition,
Pr[E2] = N−K .

Finally,

Pr
x

[P(x) is correct and outputs
C ′

3 logN
disjoint colliding pairs] ≤

Pr[E1] + Pr[E2] ≤
(

(T ′)2

2/e ·K

)K
·N−K +N−K ≤ 2

(
3e · logN · (T ′)2

C ′ ·N

)C′/6 logN

,

as claimed. �

12

3.3 Proof of Theorem 1

Proof (of Theorem 1). Let P be a branching program of height T and size 2S .
We prove the contrapositive statement of the theorem by assuming

T 2 · S < 1

(6e · logN)2
· C2 ·N, (1)

and showing that
Pr
x

[|P(x)| < C] ≥ 1−N−2.

Denote by E the event that x does not have a 3 logN -way collision. We lower
bound the failure probability of P by

Pr
x

[|P(x)| < C] ≥ Pr[E] · Pr[|P(x)| < C | E] = (1− Pr[¬E]) · Pr[|P(x)| < C | E] ≥

Pr[|P(x)| < C | E]− Pr[¬E].

In the following, we prove based on Lemma 2 that

Pr
x

[|P(x)| ≥ C | E] ≤ N−3. (2)

Therefore, combining (2) with Lemma 1,

Pr
x

[|P(x)| < C] ≥ Pr[|P(x)| < C | E]− Pr[¬E] ≥ 1−N−3 −N−3 ≥ 1−N−2,

as required.
It remains to prove (2). We first level the branching program to obtain a

levelled branching problem P ′ of length T and size at most 22S . Partition P ′ into
L = T√

S·N layers, each of height at most T ′ = T/L. By an averaging argument,

if P ′ outputs C distinct colliding pairs, then there exists a layer that outputs at
least C ′ = C/L distinct colliding pairs.4 Hence, the probability that P ′ outputs
at least C distinct colliding pairs is upper bounded by the probability that some
layer outputs C ′ pairs. Since there are at most 22S subprograms (each defined
by its source node) in P ′, by Lemma 2 and a union bound over all subprograms
we obtain

Pr
x

[|P ′(x)| ≥ C | E] ≤

22S · 2 ·N3 logN ·
(

3e · logN · (T ′)2

C ′ ·N

)C′/6 logN

=

22S · 2 ·N3 logN ·
(

3e · logN · (T/L)2

C/L ·N

)C′/6 logN

=

22S · 2 ·N3 logN ·
(

3e · logN · T 2

C · L ·N

)C′/6 logN

=

22S · 2 ·N3 logN ·

(
3e · logN · T ·

√
S

C ·
√
N

)C′/6 logN

.

4 Note that C′ = C/L = C·
√
S·N
T

≈ S, as suggested in the overview at the beginning
of Section 3.

13

If 3e·logN ·T ·
√
S

C·
√
N

> 1/2, then T 2 · S > 1
(6e·logN)2 · C

2 ·N , in contradiction to (1).

Therefore,

22S · 2 ·N3 logN ·

(
3e · logN · T ·

√
S

C ·
√
N

)C′/6 logN

≤

22S · 2 ·N3 logN · 2−C
′/6 logN = 22S+1+3 log2N− 1

6 log N ·C·
√
S·N/T .

According to (1),

1

6 logN
· C ·

√
N

T
≥ e ·

√
S.

Hence,

22S+1+3 log2N− 1
6 log N ·C·

√
S·N/T ≤ 22S+1+3 log2N−e·S = 2S(2−e)+1+3 log2N ≤ N−3

(since S ≥ 5(log2N + logN)), concluding the proof.
�

4 A Time-Space Tradeoff Lower Bound for Collision
Search between Two Functions

In this section, we analyze the problem of collision search between two inde-
pendent and random functions. For convenience, we consider algorithms rather
than branching programs, even though they are equivalent in the computational
model we consider.

Theorem 2. Let N,C, T, S be positive integer parameters such that S ≥ 5(log2N+
logN), C ≤ N and N > 4. Let A be an algorithm that outputs C colliding pairs
between two independent random functions f1, f2 : [N]→ [N] with probability at
least N−2, using T queries to f1 and f2 and space of S bits. Then, A satisfies
the time-space tradeoff lower bound

T 2 · S ≥ 1

(24e · logN)2
· C2 ·N.

We note that as Theorem 1, Theorem 2 also applies to randomized algorithms.
It is possible to prove Theorem 2 by using the same technique that was used

to prove Theorem 1 (in fact, this results in slightly better parameters). Instead,
we give a simpler proof by a reduction from the problem of collision search in a
single function, under the mild assumption that the output length of A (i.e., the
total number of elements of [N] that it outputs) is not larger than its number
of queries T . This assumption is not needed in general.
Proof. We reduce the problem of outputting C collisions between two inde-
pendent random functions f1, f2 : [N] → [N] from the problem of outputting
C ′ = C/2 collisions in a single random function f : [2N]→ [2N].

14

Let A be an algorithm for finding colliding pairs between two functions with
domain and range [N]. Let f : [2N] → [2N] be a random function. We devise
an algorithm A′ that outputs C ′ = C/2 collisions in f as follows. Define f1, f2 :
[N]→ [N] as

f1(i) = f(i) mod N , and

f2(i) = f(i+N) mod N.

It is easy to verify that f1, f2 are two independent random functions.
The algorithm A′ runs A with parameter C, giving it access to f1, f2. For

every pair (i1, i2) such that f1(i1) = f2(i2) output by A, algorithm A′ checks
whether f(i1) = f(i2 + N), and if so, outputs the pair (i1, i2 + N). Since we
assume that the output length of A is not larger than its number of queries T ,
we have T ′ ≤ 2T . Moreover, the space used by A′ is essentially the same as that
of A (in particular , S′ ≤ 2S).

We call a function f : [2N]→ [2N] bad if A outputs at least C collisions on
f1, f2 derived from f , but A′ outputs less than C/2 collision on f . We call f good,
if A outputs at least C collisions on f1, f2 derived from f , and A′ outputs at
least C/2 collision on f . We claim that the number of good functions is at least
the number of bad functions. Indeed, let M be a mapping between functions
f : [2N]→ [2N] which maps f to f̂ = M(f), defined as follows:

f̂(i) =


f(i), for i < N

f(i)−N, for i ≥ N and f(i) ≥ N
f(i) +N, for i ≥ N and f(i) < N.

Note that A is run with the same input on f and M(f), hence it produces the
same output. Moreover, for every (i1, i2) ∈ [N]2, if f1(i1) = f2(i2) and f(i1) 6=
f(i2 +N) then f̂1(i1) = f̂2(i2) and f̂(i1) = f̂(i2 +N) (where f̂ = M(f)). Hence,
every bad function is mapped by M to a good function. Finally, M(M(f)) = f ,
implying that M is a permutation on the space of functions, proving that the
number of good functions is at least the number of bad functions.

Let X,X ′ be random variables for the number of distinct number of colliding
pairs output by A,A′, respectively. We have shown that

Pr[X ′ ≥ C/2] ≥ 1/2 · Pr[X ≥ C], or Pr[X ≥ C] ≤ 2 · Pr[X ′ ≥ C/2].

Applying Theorem 1 with N ′ = 2N,C ′ = C/2, S′ = 2S, T ′ = 2T concludes the
proof. �

5 Time-Space Complexity Barriers and their
Cryptanalytic Variants

In this section, we argue that it may be very difficult to prove tight time-space
lower bounds (i.e., analogs of Theorem 1 and Theorem 2) for cryptanalytic prob-
lems with short outputs, whose most efficient algorithms seem to require sub-
stantial space. The results of this section motivate the restricted post-filtering

15

model of computation used in Section 6 to prove a time-space tradeoff lower
bound for double encryption.

The smallest fundamental complexity barrier (as named in [10], and formu-
lated as a challenge) is to find an explicit Boolean decision problem h : {0, 1}n →
{0, 1} in P for which T · S = O(n log n) is not possible. Since its formulation,
the original barrier has been overcome in [9] by Beame et al. which gave explicit
examples of problems for which any algorithm for computing them with space
of S = n1−ε bits (where ε > 0 is an arbitrarily small constant), requires time
complexity of at least T = Ω(n

√
log n/ log log n). This time-space tradeoff lower

bound was proved for R-way branching programs.
Despite this breakthrough, its does not give any non-trivial lower bound on

the space of an algorithm running in time (say) T = n log n. Therefore, the
complexity barrier was reformulated in [9] to proving a non-trivial time-space
tradeoff lower bound when T = n(log n)ω(1).

In order to generalize this barrier to cryptanalytic problems, we consider
problems with longer input variables and longer outputs (but still poly-logarithmic
in the input length). Consequently, we require that T · S = Ω(n1+ε) for some
ε > 0.

As a simple example, we consider the problem of finding a 3-way collision
in a function, represented by an input x ∈ [N]N . The goal in this problem is
to find 3 distinct indices i1, i2, i3 such that x[i1] = x[i2] = x[i3]. Note that the
output length is 3 logN and is short (poly-logarithmic in the length of x which
is n = N · logN). We can formulate the generalized barrier for this problem as
proving that any algorithm requires T ·S = Ω(N1+ε). However, in cryptography,
we are typically interested in average-case, rather than worst-case problems. In
particular, one is typically interested in finding collisions in random functions.

Consider the uniform distribution over x ∈ [N]N and a trivial algorithm
that evaluates T = O(N2/3) arbitrary input variables and looks for a 3-way
collision among them. Simple probabilistic analysis shows that the algorithm
succeeds with high probability. Such sub-linear algorithms demonstrate that we
need to further generalize the challenge above to average-case problems. Below
we formulate a challenge for finding a 3-way collision.

Challenge 1 Prove that there exist ε > 0 and δ > 0 such that any algorithm
that succeeds in finding a 3-way collision in a uniformly chosen x ∈ [N]N for
all sufficiently large N with probability at least 3/4 and T = N2/3+ε, satisfies
S ≥ Nδ.

The difficulty in overcoming Challenge 1 stems from the fact that currently
known techniques are not able to prove space lower bounds (of the form S ≥ nδ
for δ > 0) for short-output problems with input size n that are solvable in time
T̂ whenever we allow T = T̂ · nε for some ε > 0. In contrast, for problems
where the output size is nΩ(1), such lower bounds are known. Thus, overcoming
Challenge 1 would be a breakthrough and perhaps lead towards overcoming a
similar barrier for decision problems.

We note that the best known time-space tradeoff algorithm for finding a 3-
way collision was published by Joux and Lucks [23] and obtains T · S = Õ(N)

16

for T ≥ N2/3. While we would like to prove that it is optimal, we cannot even
overcome Challenge 1 which is generally much weaker (e.g., for the values δ =
ε = 0.01).

Challenge 1 deals with the specific problem of finding a 3-way collision. Sim-
ilar challenges can be formulated for other short-output cryptanalytic problems
whose most time-efficient algorithm seems to require a large amount of space.
The adaptation is performed by adjusting the distribution on inputs and the
exponent 2/3 according to the specific problem. For example, for the problem
of breaking double encryption we would consider an exponent of 1. In the next
section, we propose a restricted model of computation which allows to bypass
the challenge for the specific case of breaking double encryption.

6 A Time-Space Tradeoff Lower Bound for Post-Filtering
Attacks on Double Encryption

Double encryption is one of the most fundamental constructions in symmetric-
key cryptography. The classical meet-in-the-middle attack on the scheme (due
to Merkle and Hellman [26]) gives the time-space tradeoff T ·S = Õ(K2) (where
(k1, k2) ∈ [K]2 is the key). This tradeoff was improved by van Oorschot and
Wiener to T 2 · S = Õ(K3) using the PCS algorithm [32]. In terms of lower
bounds, the scheme is known to be secure up to T = O(K) queries [1]. On
the other hand, there are no known unconditional lower bounds that take into
consideration space complexity for S � T . Indeed, in Section 5 we argued that
proving such bounds may be very difficult.

In this section, we analyze the security of double encryption assuming that
the space of the adversary is bounded. Our setting is similar to the one con-
sidered by Tessaro and Thiruvengadam in [31]. However, [31] reduced problem
of breaking double encryption (i.e., distinguishing the scheme from a random
permutation) to solving the element distinctness problem, and thus obtained a
conditional result based on the current state-of-the-art for element distinctness
algorithms. On the other hand, we obtain an unconditional security proof for
a class of algorithms which is restricted, yet broad enough to capture the best
known space-efficient attack algorithm (and its potential generalizations).

Let E : [K]× [N]→ [N] be a block cipher, which is a permutation on [N] for
each k ∈ [K]. The inverse block cipher is denoted by E−1. Given block ciphers
E1, E2, double encryption DE : [K]× [K]× [N]→ [N] is defined as

DEk1,k2(p) = E2k2(E1k1(p)),

for keys (k1, k2) ∈ [K]2.
Let BCK,N be the set of all block ciphers with key space [K] and block space

[N]. Throughout this section, we assume for the sake of simplicity that K = N
and that E1 is independent of E2. It is not difficult to extend our results (with
negligible loss in the bound) to the case of K 6= N (as long as K = O(N))
and\or E1 = E2.

17

Recall from Section 1.1 that in the attack based on collision search, except
for the main (p1, c1) plaintext-ciphertext pair, all other pairs are accessed only
for post-filtering purposes. We now define a model which captures this attack
and potentially additional post-filtering attacks on double-encryption (the model
also captures the classical meet-in-the-middle attack [26]). Using this model, we
prove that the time-space tradeoff obtained by the best know attack (which is
based on PCS) is optimal for post-filtering algorithms.

We consider a post-filtering adversaryA that attempts to distinguish between
the real world (where ciphertexts are generated by a double encryption scheme)
and an ideal world (where ciphertexts are generated at random). The adversary
has access to the following functionalities:

1. Block ciphers E1, E2 ∈ BCN,N (chosen uniformly at random from the space
of block ciphers), along with their inverses E1−1, E2−1.

2. In the real world, an arbitrary plaintext p ∈ [N], along with c = DEk1,k2(p)
for uniformly and independently chosen (k1, k2) ∈ [N]2. In the ideal world,
the adversary receives p and a uniformly chosen c ∈ [N].

3. A post-filtering oracle O : [N]2 → {0, 1}. In the real world, O(k1,k2)(k
′
1, k
′
2) =

1 if (k′1, k
′
2) = (k1, k2) and O(k1,k2)(k

′
1, k
′
2) = 0 otherwise. In the ideal world,

O = O⊥ returns 0 on any input.

The access to the post-filtering oracle O is restricted, as it is only invoked on can-
didates (k′1, k

′
2) that satisfy c = E2k′2(E1k′1(p)). We thus assume that if A calls

O with input (k′1, k
′
2) such that c 6= E2k′2(E1k′1(p)), the algorithm is terminated

with failure.
The adversary issues T queries to E1, E2 and their inverses and has space

of S bits. Finally, the adversary outputs a bit which represents a guess as to
whether the interaction occurred in the real world, or in the ideal world.

Formally, we define the advantage of the adversary in the post-filtering double
encryption (PFDE) game as

Adv(A)PFDE
DE[E1,E2] =

|Pr[E1, E2
$←− BCN,N , (k1, k2)

$←− [N]2 :

AE1,E1−1,E2,E2−1,O(k1,k2)(p, c = DEk1,k2(p)) = 1]−

Pr[E1, E2
$←− BCN,N , c

$←− [N] : AE1,E1−1,E2,E2−1,O⊥(p, c) = 1]|.

The main result of this section is given by the theorem below.

Theorem 3. Let N,S, T be parameters such that N ≥ 3000, S ≥ 5(log2N +
logN). Any adversary A with space of S bits that makes at most T queries to
E1, E2 and E1−1, E2−1 satisfies

Adv(A)PFDE
DE[E1,E2] ≤ min

(
T 2

N2
, 288e · logN · T

√
S

N3/2
+N−1/2

)
.

Hence, the advantage is o(1) unless T = Ω̃
(
N3/2

S1/2

)
, matching the best known

attack.

18

6.1 Proof Overview

In order to prove Theorem 3, we first define the restricted post-filtering double-
encryption game (RPFDE). The difference between this game and its unre-
stricted version above is that the adversary can only query E1k(p) and E2−1k (c)
for any choice of k, but cannot issue any other query. In Lemma 4, we show that
despite the restriction on the adversary’s queries in RPFSE, the distinguishing
advantage remains the same as in PFSE. Hence it is sufficient to analyze RPFSE.

Next, we denote f1(k) = E1k(p) and f2(k) = E2−1k (c), which syntactically
transforms RPFSE to the notation used in Section 4 and allows to define the
equivalent post-filtering collision search (PFCS) game. The goal is to show that
in order to distinguish between the real and ideal worlds in PFCS (and RPFSE)
with high probability, the adversary has to find Ω(N) collisions between f1 and
f2 in the real world. Indeed, there are about N possible collisions between f1
and f2, but only one of them suggests the correct key and is accepted by the
post-filtering oracle. Since the adversary is forced to find Ω(N) collisions, we
can apply Theorem 2 to bound the success probability based on the adversary’s
time and space.

Applying Theorem 2 is not immediate since the assumption in this theorem
is that f1 and f2 are independent, but in PFCS (and RPFSE) the functions
are not independent, as they are known to collide for the correct choice of key.
Hence, the application of Theorem 2 is made possible after an additional (hybrid
argument) step that bounds the statistical distance between the dependent and
independent distributions on (f1, f2).

Overall, the proof is somewhat more involved than one may expect. One
reason for this is that we aim to prove security for parameter ranges of T = ω(N)
(assuming S = o(N)), whereas standard security analysis of double encryption
is only valid up to T = N . Consequently, some simple proof strategies that work
up to T = N are not good enough for our purposes.

Throughout the rest of this section, we denote α = α(N) = 24e logN (this
expression appears in the time-space tradeoff formula of Theorem 2).

6.2 Restricted Post-Filtering Double Encryption

As noted above, the difference between PFDE and its restricted version is that
in RPFDE the adversary can only query E1k(p) and E2−1k (c) for any choice of
k, but cannot issue any other query. We denote the advantage of the adversary
in the restricted game as Adv(A)RPFDE

DE[E1,E2].

Theorem 3 follows from the two lemmas below. The first lemma shows that
the restricted game does not hurt the distinguishing advantage of the adversary.
The second lemma upper bounds the distinguishing advantage in RPFDE and
its proof is given in Section 6.3.

Lemma 3. Let N,S, T be parameters. If there exists an adversary A with space
of S bits that makes at most T queries to E1, E2 and E1−1, E2−1 in the PFDE

19

game, then there exists an adversary A′ in the RPFDE game with space S and
time T such that

Adv(A′)RPFDE
DE[E1,E2] = Adv(A)PFDE

DE[E1,E2].

Lemma 4. Let N,S, T be parameters such that N ≥ 3000, S ≥ 5(log2N +
logN). Then, any adversary A with space of S bits that makes at most T (re-
stricted) queries to E1 and E2−1 in the RPFDE game satisfies

Adv(A)RPFDE
DE[E1,E2] ≤

12α · T
√
S

N
√
N

+N−1/2.

Proof (of Theorem 3). First, Adv(A)PFDE
DE[E1,E2] ≤

T 2

N2 by [1], which provides
a general distinguishing advantage bound for double encryption that obviously
holds here as well.

Moreover, by lemmas 3 and 4,

Adv(A)PFDE
DE[E1,E2] = Adv(A′)RPFDE

DE[E1,E2] ≤
12α · T

√
S

N
√
N

+N−1/2.

�
Proof (of Lemma 3). Given black-box access to adversary A, we describe ad-
versary A′ that can only issue queries of the form E1k(p) and E2−1k (c) for
an arbitrary choice of k. In order to simulate answers to additional queries
to E1, E2, E1−1 and E2−1, A′ will utilize randomness that is independent of
E1, E2 and used in order to construct block ciphers E1′, E2′ : [N]× [N]→ [N]
that are chosen uniformly at random from BCN,N , subject to the constraint that
for each k ∈ [N], E1′k(p) = E1k(p) and (E2′k)−1(c) = E2−1k (c).

The adversary A′ runs A and answers every query to E1 or E2 (or their
inverses) by issuing an identical query to E1′ or E2′ (or their inverses) and
feeding the answer back to A. Access to O remains identical. Finally, A′ outputs
the same value as A.

We now describe how E1′, E2′ are constructed. For each k ∈ [N], the ran-
domness of A′ simply complements the constraint E1′k(p) = E1k(p) to a random
permutation (under this constraint), and similarly, complements the constraint
(E2′k)−1(c) = E2−1k (c) to a random permutation (under this constraint). Such
randomness is independent of E1, E2, while a query to E1′, E2′, (E1′)−1, (E2′)−1

can be answered by querying E1k(p) (or E2−1k (c)) and the randomness.
It remains to analyze the complexity and advantage of A′. We start by ana-

lyzing its advantage. First, note that for any k′1, k
′
2 such that c = E2k′2(E1k′1(p)),

we have c = E2′k′2
(E1′k′1

(p)), hence the behaviour of O remains unchanged by

the simulation (it is only invoked on legal inputs). Second, A′ perfectly simulates
the distribution of answers of E1, E2, E1−1, E2−1 in both the real and the ideal
worlds. In other words, for every choice of E1, E2 in the real world, there is an
equally likely choice of E1′ = E1, E2′ = E2 in the real world for which A′ with
access to E1′, E2′ answers the same as A (and a similar statement holds in the
ideal world). We conclude that Adv(A′)RPFDE

DE[E1,E2] = Adv(A)PFDE
DE[E1,E2].

20

In terms of complexity, the block ciphers E1′, E2′ are constructed such that
every query to E1′, E2′ (or their inverses) can be answered with at most one
query to E1k(p) or E2−1k (c) (for the same value of k). Since A makes at most
T queries to E1, E2, E1−1, E2−1, then A′ makes at most T such (restricted)
queries. Furthermore, A′ uses essentially the same space as A (in our model, the
use of randomness is not counted towards the space nor the time complexity).
�

Remark 3. In the proof of Lemma 3, it may be tempting to implement E1′, E2′ :
[N]2 → [N] as independent block ciphers, and to query them for each query of
A which is not to E1k(p) or E2−1k (c). The problem with this implementation is
that the answers that A receives for queries to E1, E2 (and their inverses) may
no longer form a permutation for each k ∈ [N], as they may contain a collision
in the plaintext-ciphertext space for each k (due to the inconsistency between
E1 and E1′ and between E2 and E2′). A single collision per k ∈ [N] may not
be a concern when A issues only T � N queries, but in our case T = ω(N) (for
S = o(N)) is possible.

6.3 Post-Filtering Collision Search

Towards proving Lemma 4, we first translate the cryptographic setting of double
encryption to the more generic setting of Section 4 and relate these settings in
Lemma 5 below. Lemma 4 then follows from Lemma 5 and Lemma 6 below
(whose proof is given in Section 6.4) that bounds the adversary’s advantage in
the setting of Section 4.

Let F = {f : [N] → [N]}. We now define the post-filtering collision search
(PFCS) game, where an algorithm A has access to functions f1, f2 : [N] → [N]
and a post-filtering oracle O : [N]2 → {0, 1}, initialized as follows:

1. In the real world, (i1, i2) ∈ [N]2 is chosen uniformly at random. Then f1, f2 :
[N] → [N] are chosen uniformly at random, subject to the constraint that
f1(i1) = f2(i2). We denote this distribution on (f1, f2, i1, i2) byD2. We define
O(i1,i2)(i

′
1, i
′
2) = 1 if (i′1, i

′
2) = (i1, i2) and O(i1,i2)(i

′
1, i
′
2) = 0 otherwise.

2. In the ideal world, f1, f2 : [N] → [N] are chosen uniformly at random and
O⊥ returns 0 on any input.

As previously, access to the post-filtering oracle O is restricted, and it is only
invoked on candidates (i′1, i

′
2) that satisfy f1(i′1) = f2(i′2) (otherwise A is termi-

nated). We define the advantage of the algorithm in the post-filtering collision
search game as

Adv(A)PFCS
f1,f2 =

|Pr[(f1, f2, i1, i2)← D2 : Af1,f2,O(i1,i2) = 1]− Pr[f1, f2
$←− F : Af1,f2,O⊥ = 1|.

The PFCS game is merely a syntactical transformation of the RPFDE game,
hence the following lemma is straightforward.

21

Lemma 5. Let N,S, T be parameters. If there exists an adversary A with space
of S bits that makes at most T queries to g1(k) = E1k(p) and g2(k) = E2−1k (c)
in the RPFCS game, then there exists an algorithm A′ in the PFCS game with
space S that makes at most T queries to f1 and f2 such that

Adv(A′)PFCS
f1,f2 = Adv(A)RPFDE

DE[E1,E2].

Proof. Denoting g1(k) = E1k(p) and g2(k) = E2−1k (c) as in the theorem,
(g1, g2, k1, k2) in the real world is distributed according to D2, while g1, g2 in
the ideal world are uniform and independent functions. Hence, given black-box
access to an adversary A for RPFCS, an algorithm A′ in PFCS with the desired
properties can be constructed in a straightforward manner. �

In the following, we will prove:

Lemma 6. Let N,T, S be parameters such that N ≥ 3000, S ≥ 5(log2N +
logN). Then, any algorithm A for PFCS that queries f1 and f2 on T inputs
and has space complexity of S bits satisfies

Adv(A)PFCS
f1,f2 ≤

12α · T
√
S

N
√
N

+N−1/2.

Based on this lemma, we can prove Lemma 4.
Proof (of Lemma 4). By lemmas 5 and 6,

Adv(A)RPFDE
DE[E1,E2] = Adv(A′)PFCS

f1,f2 ≤
12α · T

√
S

N
√
N

+N−1/2.

�

6.4 Bounding the Advantage in Post-Filtering Collision Search

It remains to prove Lemma 6. The proof is by a hybrid argument. We define
world 1 as an intermediate between the real and ideal worlds in PFCS. In world
1, algorithm A has access to f1, f2 and an oracle O, initialized as follows:

1. The functions f1, f2 : [N]→ [N] are chosen uniformly at random. Then, an
index pair (i1, i2) ∈ [N]2 is chosen uniformly at random from the collision
set {(i′1, i′2) | f1(i′1) = f2(i′2)} (if the collision set is empty, define (i1, i2) =
(0, 0)). We denote this distribution on (f1, f2, i1, i2) by D1.

2. If the set {(i′1, i′2) | f1(i′1) = f2(i′2)} is empty, then O = O⊥ returns 0 on any
input. If the collision set is non-empty, O(i1,i2)(i

′
1, i
′
2) = 1 if (i′1, i

′
2) = (i1, i2)

and O(i1,i2)(i
′
1, i
′
2) = 0 otherwise.

We define Game 1 as the problem of distinguishing the real world in PFCS
from world 1, and Game 2 as the problem of distinguishing world 1 from the
ideal world in PFCS. Correspondingly, we define

Adv(A)G1
f1,f2 =

|Pr[(f1, f2, i1, i2)← D2 : Af1,f2,O(i1,i2) = 1]−
Pr[(f1, f2, i1, i2)← D1 : Af1,f2,O(i1,i2) = 1]|,

22

and

Adv(A)G2
f1,f2 =

|Pr[(f1, f2, i1, i2)← D1 : Af1,f2,O(i1,i2) = 1]− Pr[f1, f2
$←− F : Af1,f2,O⊥ = 1|.

We will prove the following two lemmas.

Lemma 7. Any algorithm A in Game 1 satisfies

Adv(A)G1
f1,f2 ≤ N

−1/2 + 2e−N/120.

Lemma 8. Let N,T, S be parameters such that N ≥ 3000, S ≥ 5(log2N +
logN). Then, any algorithm A in Game 2 that makes T queries to f1 and f2
and has space of S bits satisfies

Adv(A)G2
f1,f2 ≤

10α · T
√
S

N
√
N

.

Proof (of Lemma 6). By a hybrid argument,

Adv(A)PFCS
f1,f2 ≤ Adv(A)G1

f1,f2 + Adv(A)G2
f1,f2 ≤

10α · T
√
S

N
√
N

+N−1/2 + 2e−N/120 ≤ 12α · T
√
S

N
√
N

+N−1/2,

where the penultimate inequality is due to lemmas 7 and 8, and the final in-
equality follows since α = 24e logN and N ≥ 3000. �

It remains to prove lemmas 7 and 8. The proof of these lemmas requires an
auxiliary lemma whose proof is given in Appendix B. We denote Col(f1, f2) =
|{(i1, i2) | f1(i1) = f2(i2)}|, i.e., the size of the collision set. Lemma 9 provides
concentration inequalities for Col(f1, f2), when f1, f2 are independent random
functions (which is the case when they are chosen according to D1).

Lemma 9. Let c > 0 be any constant and suppose that f1, f2 are selected inde-
pendently and uniformly at random from F . Then,

Pr
f1,f2

[|Col(f1, f2)−N | ≥ c ·N1/2] ≤ c−2.

Moreover,
Pr
f1,f2

[Col(f1, f2) < N/8] ≤ 4e−N/120.

Remark 4. It is possible to prove concentration inequalities for Col(f1, f2) which
are sharper than the ones of Lemma 9. However, Lemma 9 is sufficient for our
purposes and is relatively easy to prove.

Proof (of Lemma 7). We have

Adv(A)G1
f1,f2 ≤ SD(D1,D2),

23

where SD(D1,D2) is the statistical distance between D1 and D2. Hence, it suf-
fices to prove that

SD(D1,D2) ≤ N−1/2 + 2e−N/120.

We denote by Λ the space

{(f1, f2, i1, i2) ∈ F × F × [N]× [N] | f1(i1) = f2(i2)},

where |Λ| = N2N+1. Recall that in order to sample according to D2, we first
sample a uniform index pair (i1, i2) and then uniformly sample (f1, f2) under
the restriction f1(i1) = f2(i2). Hence, D2 is the uniform distribution over Λ,
namely, for each (f ′1, f

′
2, i
′
1, i
′
2) ∈ Λ,

Pr
(f1,f2,i1,i2)←D2

[(f1, f2, i1, i2) = (f ′1, f
′
2, i
′
1, i
′
2)] = 1/|Λ| = N−2N−1.

On the other hand, in order to sample according to D1, we first sample
(f1, f2) uniformly and then sample (i1, i2) from the collision set. Therefore, for
each (f ′1, f

′
2, i
′
1, i
′
2) ∈ Λ,

Pr
(f1,f2,i1,i2)←D1

[(f1, f2, i1, i2) = (f ′1, f
′
2, i
′
1, i
′
2)] =

Pr[(f1, f2) = (f ′1, f
′
2)] · Pr[(i1, i2) = (i′1, i

′
2) | (f1, f2) = (f ′1, f

′
2)] =

N−2N · 1

Col(f ′1, f
′
2)

=
N

Col(f ′1, f
′
2) · |Λ|

,

whereas

Pr
(f1,f2,i1,i2)←D1

[(f1, f2, i1, i2) /∈ Λ] = Pr[Col(f1, f2) = 0] ≤ 4e−N/120,

by the second part of Lemma 9. Hence, treating the distributions D1,D2 as
vectors over F × F × [N]× [N],

SD(D1,D2) =

1/2 ·
∑

(f1,f2,i1,i2)∈Λ

|D1(f1, f2, i1, i2)−D2(f1, f2, i1, i2)|+

1/2 ·
∑

(f1,f2,i1,i2)/∈Λ

|D1(f1, f2, i1, i2)−D2(f1, f2, i1, i2)| ≤

1/2 ·
∑

(f1,f2,i1,i2)∈Λ

|D1(f1, f2, i1, i2)−D2(f1, f2, i1, i2)|+ 2e−N/120.

It remains to upper bound the first term above by N−1/2. We have

1/2 ·
∑

(f1,f2,i1,i2)∈Λ

|D1(f1, f2, i1, i2)−D2(f1, f2, i1, i2)| ≤

1/2 · 1

|Λ|
·

∑
(f1,f2,i1,i2)∈Λ

∣∣∣∣ N

Col(f1, f2)
− 1

∣∣∣∣ =

24

1/2 · 1

|Λ|
·
∑

(f1,f2)

 ∑
{(i1,i2)|f1(i1)=f2(i2)}

∣∣∣∣ N

Col(f1, f2)
− 1

∣∣∣∣
 =

1/2 · 1

|Λ|
·
∑

(f1,f2)

Col(f1, f2) ·
∣∣∣∣ N

Col(f1, f2)
− 1

∣∣∣∣ =

1/2 · 1

|Λ|
·
∑

(f1,f2)

|N − Col(f1, f2)| =

1/2 ·N−1 · Ef1,f2 [|Col(f1, f2)−N |] =

1/2 ·N−1 ·
∞∑
i=0

Pr
f1,f2

[|Col(f1, f2)−N | ≥ i] =

1/2 ·N−1 ·

N1/2−1∑
i=0

Pr
f1,f2

[|Col(f1, f2)−N | ≥ i] +

∞∑
i=N1/2

Pr
f1,f2

[|Col(f1, f2)−N | ≥ i]

 ≤
1/2 ·N−1 ·

(
N1/2 +

∞∑
i=N1/2

Pr
f1,f2

[
|Col(f1, f2)−N | ≥ (i ·N−1/2) ·N1/2

])
≤

1/2 ·N−1
(
N1/2 +

∞∑
i=N1/2

(i ·N−1/2)−2

)
= 1/2 ·

(
N−1/2 +

∞∑
i=N1/2

i−2

)
≤ N−1/2,

where the penultimate inequality is by the first part of Lemma 9. This completes
the proof. �

Remark 5. In D2, the dependency of f1 and f2 is only due to the index pair
(i1, i2). Such a dependency is unnoticeable to an algorithm A as long as it does

not query both i1 and i2, which occurs with probability of at most T 2

N2 . Hence, if
we were interested in bounding the advantage of A only up to T = N , we could
easily replace the proof of Lemma 7 by a simpler proof. However, it is not clear
how to obtain such a simple proof that gives a meaningful bound for T = ω(N)
(when S = o(N)).

Proof (of Lemma 8). Denote by E the event that O is invoked with (i1, i2) (and
answers 1) in world 1. Note that Adv(A)G2

f1,f2
≤ Pr[E], as conditioned on ¬E in

world 1, both worlds are identical and the advantage is 0.

We focus on world 1. For C ≥ 0, denote by EC the event that Af1,f2,O calls
the oracle O with at most C distinct pairs (i′1, i

′
2) such that f1(i′1) = f2(i′2).

According to the distribution D1, the probability that any pair (i′1, i
′
2) satisfies

(i′1, i
′
2) = (i1, i2) is 1/Col(f1, f2). Hence, for any positive value of Col(f1, f2) and

0 ≤ C ≤ Col(f1, f2),

Pr[E | EC] ≤ C

Col(f1, f2)
.

25

By the above inequality and the second part of Lemma 9,

Pr[E | EC] ≤

Pr[E | EC ∧ Col(f1, f2) ≥ N/8] + Pr[Col(f1, f2) < N/8] ≤ 8

N
· C + 4e−N/120.

(3)

Define Ĉ = α·T
√
S√

N
. We have

Adv(A)G2
f1,f2 ≤ Pr

(f1,f2,i1,i2)←D1

[E] ≤ Pr
[
E | EĈ

]
+ Pr

[
¬EĈ

]
≤

8

N
· α · T

√
S√

N
+ 4e−N/120 +N−2 ≤ 10α · T

√
S

N
√
N

,

where the penultimate inequality is by (3) and Theorem 2, and the final inequal-
ity follows since α = 24e logN and N ≥ 3000. �

7 Conclusions and Future Work

In this paper we proved that the well-known time-space tradeoff T 2 ·S = Õ(C2 ·
N) for the collision search problem is optimal using the framework of Borodin
and Cook. We further proved that the best known time-space tradeoff attack on
double encryption is optimal among post-filtering algorithms.

In the future it would be interesting to find more problems in cryptography
for which time-space tradeoff lower bounds can be proved by the method of
Borodin and Cook. Another research direction is to extend the post-filtering
model and prove time-space tradeoff lower bounds for additional (short-output)
cryptanalytic problems under reasonable restrictions.

Acknowledgements: The author was supported by the Israeli Science Foun-
dation through grant No. 573/16 and by the European Research Council under
the ERC starting grant agreement No. 757731 (LightCrypt).

References

1. W. Aiello, M. Bellare, G. D. Crescenzo, and R. Venkatesan. Security Amplifica-
tion by Composition: The Case of Doubly-Iterated, Ideal Ciphers. In H. Krawczyk,
editor, Advances in Cryptology - CRYPTO ’98, 18th Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 23-27, 1998, Proceedings,
volume 1462 of Lecture Notes in Computer Science, pages 390–407. Springer, 1998.

2. N. Alon, Y. Matias, and M. Szegedy. The Space Complexity of Approximating the
Frequency Moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.

3. J. Alwen, B. Chen, K. Pietrzak, L. Reyzin, and S. Tessaro. Scrypt Is Maximally
Memory-Hard. In J. Coron and J. B. Nielsen, editors, Advances in Cryptology -
EUROCRYPT 2017 - 36th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017,
Proceedings, Part III, volume 10212 of Lecture Notes in Computer Science, pages
33–62, 2017.

26

4. J. Alwen and V. Serbinenko. High Parallel Complexity Graphs and Memory-
Hard Functions. In R. A. Servedio and R. Rubinfeld, editors, Proceedings of the
Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015,
Portland, OR, USA, June 14-17, 2015, pages 595–603. ACM, 2015.

5. B. Auerbach, D. Cash, M. Fersch, and E. Kiltz. Memory-Tight Reductions. In
J. Katz and H. Shacham, editors, Advances in Cryptology - CRYPTO 2017 - 37th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20-
24, 2017, Proceedings, Part I, volume 10401 of Lecture Notes in Computer Science,
pages 101–132. Springer, 2017.

6. E. Barkan, E. Biham, and A. Shamir. Rigorous Bounds on Cryptanalytic
Time/Memory Tradeoffs. In C. Dwork, editor, CRYPTO, volume 4117 of Lec-
ture Notes in Computer Science, pages 1–21. Springer, 2006.

7. P. Beame. A general sequential time-space tradeoff for finding unique elements.
SIAM J. Comput., 20(2):270–277, 1991.

8. P. Beame, R. Clifford, and W. Machmouchi. Element Distinctness, Frequency
Moments, and Sliding Windows. In 54th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages
290–299. IEEE Computer Society, 2013.

9. P. Beame, M. E. Saks, X. Sun, and E. Vee. Time-space trade-off lower bounds for
randomized computation of decision problems. J. ACM, 50(2):154–195, 2003.

10. A. Borodin. Time Space Tradeoffs (Getting Closer to the Barrier?). In K. Ng,
P. Raghavan, N. V. Balasubramanian, and F. Y. L. Chin, editors, Algorithms and
Computation, 4th International Symposium, ISAAC ’93, Hong Kong, December
15-17, 1993, Proceedings, volume 762 of Lecture Notes in Computer Science, pages
209–220. Springer, 1993.

11. A. Borodin and S. A. Cook. A Time-Space Tradeoff for Sorting on a General
Sequential Model of Computation. SIAM J. Comput., 11(2):287–297, 1982.

12. A. Borodin, M. J. Fischer, D. G. Kirkpatrick, N. A. Lynch, and M. Tompa. A
Time-Space Tradeoff for Sorting on Non-Oblivious Machines. J. Comput. Syst.
Sci., 22(3):351–364, 1981.

13. C. Cachin and U. M. Maurer. Unconditional Security Against Memory-Bounded
Adversaries. In B. S. K. Jr., editor, Advances in Cryptology - CRYPTO ’97, 17th
Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 17-21, 1997, Proceedings, volume 1294 of Lecture Notes in Computer Science,
pages 292–306. Springer, 1997.

14. A. Chakrabarti and Y. Chen. Time-Space Tradeoffs for the Memory Game. CoRR,
abs/1712.01330, 2017.

15. A. Cobham. The Recognition Problem for the Set of Perfect Squares. In 7th An-
nual Symposium on Switching and Automata Theory, Berkeley, California, USA,
October 23-25, 1966, pages 78–87. IEEE Computer Society, 1966.

16. C. Delaplace, A. Esser, and A. May. Improved low-memory subset sum and LPN
algorithms via multiple collisions. IACR Cryptology ePrint Archive, 2019:804, 2019.

17. I. Dinur, O. Dunkelman, N. Keller, and A. Shamir. Efficient Dissection of Compos-
ite Problems, with Applications to Cryptanalysis, Knapsacks, and Combinatorial
Search Problems. In R. Safavi-Naini and R. Canetti, editors, Advances in Cryptol-
ogy - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA,
USA, August 19-23, 2012. Proceedings, volume 7417 of Lecture Notes in Computer
Science, pages 719–740. Springer, 2012.

18. D. P. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of
Randomized Algorithms. Cambridge University Press, 2009.

27

19. C. Dwork, M. Naor, and H. Wee. Pebbling and Proofs of Work. In V. Shoup, editor,
Advances in Cryptology - CRYPTO 2005: 25th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 14-18, 2005, Proceedings,
volume 3621 of Lecture Notes in Computer Science, pages 37–54. Springer, 2005.

20. L. Fortnow, R. J. Lipton, D. van Melkebeek, and A. Viglas. Time-space lower
bounds for satisfiability. J. ACM, 52(6):835–865, 2005.

21. M. E. Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions on
Information Theory, 26(4):401–406, 1980.

22. J. Jaeger and S. Tessaro. Tight Time-Memory Trade-Offs for Symmetric Encryp-
tion. In Y. Ishai and V. Rijmen, editors, Advances in Cryptology - EUROCRYPT
2019 - 38th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceed-
ings, Part I, volume 11476 of Lecture Notes in Computer Science, pages 467–497.
Springer, 2019.

23. A. Joux and S. Lucks. Improved Generic Algorithms for 3-Collisions. In M. Mat-
sui, editor, Advances in Cryptology - ASIACRYPT 2009, 15th International Con-
ference on the Theory and Application of Cryptology and Information Security,
Tokyo, Japan, December 6-10, 2009. Proceedings, volume 5912 of Lecture Notes in
Computer Science, pages 347–363. Springer, 2009.

24. D. E. Knuth. The Art of Computer Programming, Volume II: Seminumerical
Algorithms. Addison-Wesley, 1969.

25. Y. Mansour, N. Nisan, and P. Tiwari. The Computational Complexity of Universal
Hashing. Theor. Comput. Sci., 107(1):121–133, 1993.

26. R. C. Merkle and M. E. Hellman. On the Security of Multiple Encryption. Com-
mun. ACM, 24(7):465–467, 1981.

27. N. Nisan. Pseudorandom generators for space-bounded computation. Combina-
torica, 12(4):449–461, 1992.

28. P. Oechslin. Making a Faster Cryptanalytic Time-Memory Trade-Off. In D. Boneh,
editor, Advances in Cryptology - CRYPTO 2003, 23rd Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 17-21, 2003, Proceed-
ings, volume 2729 of Lecture Notes in Computer Science, pages 617–630. Springer,
2003.

29. W. J. Paul, R. E. Tarjan, and J. R. Celoni. Space Bounds for a Game on Graphs.
Mathematical Systems Theory, 10:239–251, 1977.

30. R. Raz. Fast Learning Requires Good Memory: A Time-Space Lower Bound for
Parity Learning. J. ACM, 66(1):3:1–3:18, 2019.

31. S. Tessaro and A. Thiruvengadam. Provable Time-Memory Trade-Offs: Symmetric
Cryptography Against Memory-Bounded Adversaries. In A. Beimel and S. Dziem-
bowski, editors, Theory of Cryptography - 16th International Conference, TCC
2018, Panaji, India, November 11-14, 2018, Proceedings, Part I, volume 11239 of
Lecture Notes in Computer Science, pages 3–32. Springer, 2018.

32. P. C. van Oorschot and M. J. Wiener. Parallel Collision Search with Cryptanalytic
Applications. J. Cryptology, 12(1):1–28, 1999.

33. D. A. Wagner. A Generalized Birthday Problem. In M. Yung, editor, Advances in
Cryptology - CRYPTO 2002, 22nd Annual International Cryptology Conference,
Santa Barbara, California, USA, August 18-22, 2002, Proceedings, volume 2442 of
Lecture Notes in Computer Science, pages 288–303. Springer, 2002.

34. A. C. Yao. Probabilistic Computations: Toward a Unified Measure of Complexity
(Extended Abstract). In 18th Annual Symposium on Foundations of Computer
Science, Providence, Rhode Island, USA, 31 October - 1 November 1977, pages
222–227. IEEE Computer Society, 1977.

28

35. A. C. Yao. Near-Optimal Time-Space Tradeoff for Element Distinctness. SIAM J.
Comput., 23(5):966–975, 1994.

36. Y. Yesha. Time-Space Tradeoffs for Matrix Multiplication and the Discrete Fourier
Transform on any General Sequential Random-Access Computer. J. Comput. Syst.
Sci., 29(2):183–197, 1984.

A The Parallel Collision Search Algorithm [32]

In this section, we briefly summarize the PCS algorithm for computing C col-
liding pairs in a random function f : [N]→ [N]. For more details, refer to [32].
Given Õ(S) bits of memory, PCS builds a chain structure containing S chains,
where a chain starts at an arbitrary point x0 ∈ [N] and computed iteratively as
xi+1 = f(xi). Each chain is terminated after about

√
N/S evaluations, hence

the structure contains a total of about S ·
√
N/S =

√
N · S distinct points. As

the chains are of length
√
N/S, each chain collides with a different chain in

the structure with constant probability according to the birthday paradox, since
the number of relevant pairs of points is

√
N/S ·

√
N · S = N . Therefore, the

structure contains an expected number of about S colliding pairs.
The collisions can be recovered efficiently by defining a set of

√
N · S distin-

guished points according to an easily verifiable condition on the points xi ∈ [N].
Each chain in the structure is terminated at a distinguished point (and hence its
expected length is N/

√
N · S =

√
N/S as required). The PCS algorithm stores

the distinguished points sorted in memory and collisions between chains are de-
tected at their distinguished points. The actual collisions in f are recovered by
recomputing the colliding chains.

In total, PCS finds C = Θ(S) distinct colliding pairs in f using space of Õ(S)
bits and time complexity T = Õ(

√
N · S).

When C > S collisions are required, the algorithm is repeated O(C/S) times.
In order to (heuristically) eliminate the dependency between the different execu-
tions, in repetition i we run PCS on the function fi = πi◦f , where πi : [N]→ [N]
is some simple permutation. Note that a collision in fi gives a collision in f . Al-
together, PCS finds C distinct colliding pairs in f using space of Õ(S) bits
and time complexity T = Õ(C/S ·

√
N · S) = Õ(C ·

√
N/S), which gives the

time-space tradeoff curve T 2 · S = Õ(C2 ·N).

B Proof of Lemma 9

Proof (of Lemma 9). We begin by proving the first part of the lemma. For every
(i1, i2) ∈ [N]2 define an indicator random variable Ci1i2 that is equal to 1 if
f1(i1) = f2(i2). We have

E[Ci1i2] = Pr[Ci1i2 = 1] = N−1, and

Var[Ci1i2] = E[(Ci1i2)2]− (E[Ci1i2])2 = N−1 −N−2 < N−1.

29

Hence,

E[Col(f1, f2)] = E

 ∑
(i1,i2)∈[N]2

Ci1i2

 =
∑

(i1,i2)∈[N]2

E[Ci1i2] = N2 ·N−1 = N.

Since the random variables {Ci1i2} are pairwise independent,

Var[Col(f1, f2)] = Var

 ∑
(i1,i2)∈[N]2

Ci1i2

 =
∑

(i1,i2)∈[N]2

Var[Ci1i2] < N2 ·N−1 = N.

For a parameter c > 0, Chebyshev’s inequality gives

Pr
[
|Col(f1, f2)− E[Col(f1, f2)]| ≥ c ·

√
Var[Col(f1, f2)]

]
≤ c−2.

Therefore, we obtain

Pr[|Col(f1, f2)−N | ≥ c ·N1/2] ≤ c−2,

as required.
For the second part of the lemma, we view the process of sampling f1 (and

f2) as a classical Balls-and-Bins problem, where we throw N balls into N bins
uniformly at random, and ball i falls into bin f1(i). Denote by Z1 the number of
empty bins induced by f1 (i.e., the number of points x ∈ [N] with no preimage
under f1) and by Z2 the number of empty bins induced by f2. Hence, the number
of non-empty bins (image points) induced by f1 and f2 are N −Z1 and N −Z2,
respectively. The number of colliding pairs between f1, f2 is at least the size of
the intersection of the non-empty bins, which is at least (N−Z1)+(N−Z2)−N =
N − Z1 − Z2.

Hence, if Col(f1, f2) < N/8, then N − Z1 − Z2 < N/8, which implies that
Z1 + Z2 > 7N/8. Therefore, either Z1 > 7N/16, or Z2 > 7N/16. By [18, p.75],
we have

Pr[|Z1 − E[Z1]| > t] ≤ 2e−2t
2/N ,

and the same holds for Z2.
The probability that any particular bin is empty is (1−N−1)N ≤ 1/e, hence

E[Z1] ≤ N/e. Therefore,

Pr[Z1 > 7N/16] = Pr[Z1 −N/e > 7N/16−N/e] ≤ Pr[Z1 − E[Z1] > N/15] ≤
Pr[|Z1 − E[Z1]| > N/15] ≤ 2e−N/120.

Finally,

Pr[Col(f1, f2) < N/8] ≤ Pr[Z1 > 7N/16] + Pr[Z2 > 7N/16] ≤ 4e−N/120.

�

30

