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Abstract

The right of an individual to request the deletion of their personal data by an entity that might be
storing it – referred to as the right to be forgotten – has been explicitly recognized, legislated, and exer-
cised in several jurisdictions across the world, including the European Union, Argentina, and California.
However, much of the discussion surrounding this right offers only an intuitive notion of what it means
for it to be fulfilled – of what it means for such personal data to be deleted.

In this work, we provide a formal definitional framework for the right to be forgotten using tools and
paradigms from cryptography. In particular, we provide a precise definition of what could be (or should
be) expected from an entity that collects individuals’ data when a request is made of it to delete some of
this data. Our framework captures several, though not all, relevant aspects of typical systems involved
in data processing. While it cannot be viewed as expressing the statements of current laws (especially
since these are rather vague in this respect), our work offers technically precise definitions that represent
possibilities for what the law could reasonably expect, and alternatives for what future versions of the
law could explicitly require.

Finally, with the goal of demonstrating the applicability of our framework and definitions, we consider
various natural and simple scenarios where the right to be forgotten comes up. For each of these scenarios,
we highlight the pitfalls that arise even in genuine attempts at implementing systems offering deletion
guarantees, and also describe technological solutions that provably satisfy our definitions. These solutions
bring together techniques built by various communities.

1 Introduction

Everything we do in our lives leaves (or will soon leave) a digital trace, which can be analyzed. Recent
advances in capturing and analyzing big data help us improve traffic congestion, accurately predict human
behavior and needs in various situations, and much more. However, this mass collection of data can be
used against people as well. Simple examples of this would be to charge individuals higher auto insurance
premiums or decline mortgages and jobs based on an individual’s profile as presented by the collected data. In
the worst case, this wealth of information could be used by totalitarian governments to persecute their citizens
years after the data was collected. In such ways, vast collection of personal data has the potential to present
a serious infringement to personal liberty. Individuals could perpetually or periodically face stigmatization
as a consequence of a specific past action, even one that has already been adequately penalized. This, in
turn, threatens democracy as a whole, as it can force individuals to self-censor personal opinions and actions
for fear of later retaliation.

One alternative for individuals wanting to keep personal information secret is to simply stay offline, or at
least keep such information hidden from entities that are likely to collect it. Yet, this is not always desirable or
possible. These individuals might want to share such information with others over an internet-based platform,
or obtain a service based on their personal information, such as personalized movie recommendations based
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on previous movie watching history, or simply driving directions to their destination based on where they
want to go. In such cases, it is reasonable to expect that an individual might later change their mind about
having this data available to the service provider they sent it to. In order to provide useful functionality
while keeping in mind the aforementioned perils of perennial persistence of data, an individual’s ability to
withdraw previously shared personal information is very important. For example, one might want to request
deletion of all personal data contained in one’s Facebook account.

However, in many cases, an individual’s desire to request deletion of their private data may be in conflict
with a data collector’s1 interests. In particular, the data collector may want to preserve the data because
of financial incentives or simply because fulfilling these requests is expensive. It would seem that, in most
cases, the data collector has nothing to gain from fulfilling such requests.

Thus, it seems imperative to have in place legal or regulatory means to grant individuals control over
what information about them is possessed by different entities, how it is used, and, in particular, provide
individuals the rights to request deletion of any (or all) of their personal data. And indeed, the legitimacy
of this desire to request deletion of personal data is being increasingly widely discussed, codified in law, and
put into practice (in various forms) in, for instance, the European Union (EU) [GDP16], Argentina [Car13],
and California [CCP18]. The following are illustrative examples:

• The General Data Protection Regulation (GDPR) [GDP16], adopted in 2016, is a regulation in the
EU aimed at protecting the data and privacy of individuals in the EU. Article 6 of the GDPR lists
conditions under which an entity may lawfully process personal data. The first of these conditions is
when “the data subject has given consent to the processing of his or her personal data for one or more
specific purposes”. And Article 7 states that, “The data subject shall have the right to withdraw his
or her consent at any time”. Further, Article 17 states that, “The data subject shall have the right
to obtain from the controller the erasure of personal data concerning him or her without undue delay
and the controller shall have the obligation to erase personal data without undue delay” under certain
conditions listed there.

• The California Consumer Privacy Act (CCPA), passed in 2018, is a law with similar purposes protecting
residents of California. Section 1798.105 of the CCPA states, “A consumer shall have the right to
request that a business delete any personal information about the consumer which the business has
collected from the consumer”, and that “A business that receives a verifiable request from a consumer
. . . shall delete the consumer’s personal information from its records.”

Thus, if a data collector (that operates within the jurisdictions of these laws) wishes to process its
consumers’ data based on their consent, and wishes to do so lawfully, it would also need to have in place
a mechanism to stop using any of its consumers’ data. Only then can it guarantee the consumers’ right to
be forgotten as the above laws require. However, it is not straightforward to nail down precisely what this
means and involves.

Defining Deletion: More that Meets the Eye. Our understanding of what it means to forget a
user’s data or honor a user deletion request is rather rudimentary, and consequently, the law does not
precisely define what it means to delete something. Further, this lack of understanding is reflected in certain
inconsistencies between the law and what would naturally seem desirable. For example, Article 7 of the
GDPR, while describing the right of the data subject to withdraw consent for processing of personal data,
also states, “the withdrawal of consent shall not affect the lawfulness of processing based on consent before
its withdrawal.” This seems to suggest that it is reasonable to preserve the result of processing performed
on user data even if the data itself is requested to be deleted. However, processed versions of user data may
encode all or most of the original data, perhaps even inadvertently. For instance, it is known that certain
machine learning models end up memorizing the data they were trained on [SRS17, VBE18].

Thus, capturing the intuitive notion of what it means to truly delete something turns out be quite tricky.
In our quest to do so, we ask the following question:

1Throughout this paper, we refer to any entity collecting individuals’ data as a “data collector”, and often refer such
indivisuals whose data is collected as “users”.
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How does an honest data collector know whether it is in compliance with the right to be forgotten?

Here, by honest we mean a data collector that does in fact intend to guarantee its users’ right to be
forgotten in the intuitive sense – it wishes to truly forget all personal data it has about them. Our question
is about how it can tell whether the algorithms and mechanisms it has in place to handle deletion requests
are in fact working correctly.

Honest data-collectors. In this work, we focus on the simple case where the data-collector is assumed
to be honest. In other words, we are only interested in the data-collectors that aim to faithfully honor
all legitimate deletion requests. Thus, we have no adversaries in our setting. This deviates from many
cryptographic applications where an adversary typically attempts to deviate from honest execution. Note
that even in the case of semi-honest advesaries in multiparty computation, the adversary attempts to learn
more than what it is supposed to learn while following protocol specification. In our case, we expect the
data-collector to itself follow the prescribed procedures, including deleting any stored information that it is
directed to delete.

With the above view, we do not attempt to develop methods by which a data collector could prove to a
user that it did indeed delete the user’s data. As a remark, we note here that this is in fact impossible in
general, as a malicious data collector could always make additional secret copies of user data.2 Finally, we
note that even for this case of law-abiding data-collectors, the problem of defining what it means to delete
data correctly is relevant. The goal of our definitions is to provide such data-collectors guidance in designing
systems that handle data deletion, and a mechanism to check that any existing systems are designed correctly
and are following the law (or some reasonable interpretation of it).

When is it okay to delete? Another challenge a data-collector faces in handling deletion requests is in
establishing whether a particular deletion request should be honored. Indeed, in some cases a data collector
may be legally required to preserve certain information to satisfy legal or archival needs, e.g. a data collector
may be required to preserve some payment information that is evidence in a case in trial. This raises the very
interesting question of how to determine whether a particular deletion request should indeed be honored,
or even what factors should be taken into consideration while making this decision. However, this is not
the focus of this work. Instead, we are only interested in cases where the data-collector does intend (or has
already decided) to honor a received deletion request, after having somehow found it legitimate. In such
cases, we aim to specify the requirements this places on the data-collector.

Our Contributions. In this work, we provide the first precise general notions of what is required of an
honest data-collector trying to faithfully honor deletion requests. We say that a data-collector is deletion-
compliant if it satisfies our requirements. Our notions are intended to capture the intuitive expectations a
user may have when issuing deletion requests. Furthermore, it seems to satisfy the requirements demanded,
at least intuitively, by the GDPR and CCPA. However, we note that our definition should not be seen as
being equivalent to the relevant parts of these laws – for one, the laws themselves are somewhat vague about
what exactly they require in this respect, and also there are certain aspects of data-processing systems that
are not captured by our framework (see Section 2.2 for a discussion). Instead, our work offers technically
precise definitions for data deletion that represent possibilities for interpretations of what the law could
reasonably expect, and alternatives for what future versions of the law could explicitly require.

Next, armed with these notions of deletion-compliance, we consider various natural scenarios where the
right to be forgotten comes up. For each of these scenarios, we highlight the pitfalls that arise even in
genuine attempts at writing laws or honest efforts in implementing systems with these considerations. Our
definitions provide guidance towards avoiding these pitfalls by, for one, making them explicit as violations of
the definitions. In particular, for each of the considered scenarios, we describe technological solutions that
provably satisfy our definitions. These solutions bring together techniques built by various communities.

2Certifying deletion could be possible in specific settings though, such as under assumptions on the amount of storage
available to the data collector [PT10, DKW11, KK14], or in the presence of quantum computers and data [CW19, BI19].
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1.1 Our Notions

In this subsection, we explain our notions of deletion-compliance at a high level, building them up incre-
mentally so as to give deeper insights. The formal definitions are in terms of building blocks from the UC
framework [Can01], and details are provided in Section 2.1.

The starting challenge. We start with the observation that a deletion request almost always involves
much more than the process of just erasing something from memory. In fact, this issue comes up even in the
most seemingly benign deletion requests. For example, consider the very simple case where a user requests
deletion of one of her files stored with a data-collector. In this setting, even if the server was to erase the
file from its memory, it may be the case that not all information about it has been deleted. For example,
if the files are stored contiguously in memory, it might be possible to recover the size of the file that was
deleted. Furthermore, if the files of a user are kept on contiguous parts of the memory, it might be possible
to pin-point the owner of the deleted file as well, or in most cases at least be able to tell that there was a
file that was deleted.

Our approach: leave no trace. In order to account for the aforementioned issues, we take the leave-no-
trace approach to deletion in our definitions. In particular, a central idea of our definition is that execution
of the deletion request should leave the data collector and the rest of the system in a state that is equivalent
(or at least very similar) to one it would have been in if the data that is being deleted was never provided
to the data-collector in the first place.

The requirement of leave-no-trace places several constraints on the data-collector. First, and obviously,
the data that is requested to be deleted should no longer persist in the memory of the data-collector after
the request is processed. Second, as alluded to earlier, the data-collector must also remove the dependencies
that other data could have on the data that is requested for deletion. Or at least, the data-collector should
erase the other stored information which depends on this data. We note that we diverge from the GDPR in
this sense, as it only requires deletion of data rather than what may have been derived from it via processing.
Third, less obvious but clearly necessary demands are placed on the data-collector in terms of what it is
allowed to do with the data it collects. In particular, the data-collector cannot reveal any data it collects to
any external entity. This is because sharing of user data by the data-collector to external entities precludes
it from honoring future deletion requests for the shared data. More specifically, on sharing user data with an
external entity, the data-collector loses its the ability to ensure that the data can be deleted from everywhere
where it is responsible for the data being present or known. That is, if this data were never shared with the
data collector, then it would not have found its way to the external entity, and thus in order for the system
to be returned to such a state after a deletion request, the collector should not reveal this data to the entity.

A more concrete consequence of the third requirement above is that the data-collector cannot share or sell
user data to third parties. Looking ahead, in some settings this sharing or selling of user data is functionally
beneficial and legally permitted as long as the collector takes care to inform the recipients of such data
of any deletion requests. For instance, Article 17 of the GDPR says, “Where the controller has made the
personal data public and is obliged . . . to erase the personal data, the controller . . . shall take reasonable
steps, including technical measures, to inform controllers which are processing the personal data that the
data subject has requested the erasure by such controllers of any links to, or copy or replication of, those
personal data.” We later see (in Section 2.3) how our definition can be modified to handle such cases and
extended to cover data collectors that share data with external entities but make reasonable efforts to honor
and forward deletion requests.

The basic structure of the definition. In light of the above discussion, the basic form of the definition
can be phrased as follows. Consider a user Y that shares certain data with a data-collector and later requests
for the shared data to be deleted. We refer to this execution as a real world execution. In addition to this
user, the data-collector might interact with other third parties. In this case, we are interested in the memory
state of the data-collector post-deletion and the communication between the data-collector and the third
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parties. Next, we define the ideal world execution, which is same as the real world execution except that
the user Y does not share anything with the data-collector and does not issue any deletion requests. Here
again we are interested in the memory state of the data-collector and the communication between the data-
collector and the third parties. More specifically, we require that the joint distribution of memory state of
the data-collector and the communication between the data-collector and the third parties in the two worlds
is identically distributed (or is at least very close). Further, this property needs to hold not just for a specific
user, but hold for every user that might interact with the data-collector as part of its routine operation where
it is interacting with any number of other users and processing their data and deletion requests as well. Note
that the data-collector does not a priori know when and for what data it will receive deletion requests.

A more formal notion. Hereon, we refer to the data-collector as X , and the deletion requester as Y. In
addition to these two entities, we model all other parties in the system using Z, which we also refer to as the
environment. Thus, in the real execution, the data-collector X interacts arbitrarily with the environment Z.
Furthermore, in addition to interactions with Z, X at some point receives some data from Y which Y at a
later point also requests to be deleted. In contrast, in the ideal execution, Y is replaced by a silent Y0 that
does not communicate with X at all. In both of these executions, the environment Z represent both the
rest of the users in the system under consideration, as well as an adversarial entity that possibly instructs Y
on what to do and when. Finally, our definition requires that the state of X and the view of Z in the real
execution and the ideal execution are similar. Thus, our definition requires that the deletion essentially has
the same effect as if the deleted data was never sent to X to begin with. The two executions are illustrated
in Fig. 1

Figure 1: The real and ideal world executions. In the real world, the deletion-requester talks to the data
collector, but not in the ideal world. In the real world, π1 and π2 are interactions that contain data that is
asked to be deleted by the deletion-requester through the interactions πD,1 and πD,2, respectively.

While Y above is represented as a single user sending some data and a corresponding deletion request,
we can use the same framework for a more general modeling. In particular, Y can be used to model just
the part of a user that contains the data to be deleted, or of multiple users, all of whom want some or all of
their data to be deleted.

Dependencies in data. While the above definition makes intuitive sense, certain user behaviors can
introduce dependencies that make it impossible for the data-collector to track and thus delete properly.
Consider a data-collector that assigns a pseudonym to each user, which is computed as the output of a
pseudo-random permutation P (with the seed kept secret by the data-collector) on the user identity. Imagine
a user who registers in the system with his real identity id and is assigned the pseudonym pd. Next, the user
re-registers a fresh account using pd as his identity. Finally, the user requests deletion of the first account
which used his real identity id. In this case, even after the data-collector deletes the requested account
entirely, information about the real identity id is still preserved in its memory, i.e. P−1(pd) = id. Thus, the
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actions of the user can make it impossible to keep track of and properly delete user data. In our definition,
we resolve this problem by limiting the communication between Y and Z. We do not allow Y to send any
messages to the environment Z, and require that Y ask for all (and only) the data it sent to be deleted.
This implicitly means that the data that is requested to be deleted cannot influence other information that
is stored with the data-collector, unless that is also explicitly deleted by the user.

Requirement that the data-collector be diligent. Our definitions of deletion-compliance place explicit
requirements on the data collector only when a deletion request is received. Nonetheless, these explicit
requirements implicitly require the data-collector to organize (or keep track of the collected data) in a way
that ensures that deletion requests can be properly handled. For example, our definitions implicitly require
the data-collector to keep track of how it is using each user’s data. In fact, this book-keeping is essential
for deletion-compliance. After all, how can a data-collector delete a user’s data if it does not even know
where that particular user’s data is stored? Thus, a data-collector that follows these implicit book-keeping
requirements can be viewed as being diligent. Furthermore, it would be hard (if not impossible) for a
data-collector to be deletion-compliant if it is not diligent.

As we discuss later, our definition also implies a requirement on the data-collector to have in place
authentication mechanisms that ensure that it is sharing information only with the legitimate parties, and
that only the user who submitted a piece of data can ask for it to be deleted.

Composition Properties. Finally, we also show, roughly, that under an assumption that different users
operate independently of each other, a data collector that is deletion-compliant under our definition for a
deletion request from a single user is also deletion-compliant for requests from (polynomially) many users
(or polynomially many independent messages from a single user). This makes our definition easier to use in
the analysis of certain data collectors, as demonstrated in our examples in Section 3.

1.2 Lessons from our Definitions

Our formalization of the notion of data deletion enables us to design and analyze mechanisms that handle
data obtained from others and process deletion requests, as demonstrated in Section 3. This process of
designing systems that satisfy our definition has brought to light a number of properties such a mechanism
needs to have in order to be deletion-compliant that may be seen as general principles in this respect.

To start with, satisfying our definition even while providing very simple functionalities requires a non-
trivial authentication mechanism that uses randomness generated by the server. Otherwise many simple
attacks can be staged that lead to observable differences based on whether some specific data was stored and
deleted or never stored. The easier case to observe is when, as part of its functionality, the data collector
provides a way for users to retrieve data stored with it. In this case, clearly if there is no good authentication
mechanism, then one user can look at another user’s data and be able to remember it even after the latter
user has asked the collector to delete it. More broadly, our definition implicitly requires the data collector
to provide certain privacy guarantees – that one user’s data is not revealed to others.

But even if such an interface is not provided by the collector, one user may store data in another user’s
name, and then if the latter user ever asks for its data to be deleted, this stored data will also be deleted,
and looking at the memory of the collector after the fact would indicate that such a request was indeed
received. If whatever authentication mechanism the collector employs does not use any randomness from
the collector’s side, such an attack may be performed by any adversary that knows the initial state (say the
user name and the password) of the user it targets.

Another requirement that our definition places on data collectors is that they handle metadata carefully.
For instance, care has to be taken to use implementations of data structures that do not inadvertently
preserve information about deleted data in their metadata. This follows from our definition as it talks about
the state of the memory, and not just the contents of the data structure. Such requirements may be satisfied,
for instance, by the use of “history-independent” implementations of data structures [Mic97, NT01], which
have these properties.
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Further, this kind of history-independence in other domains can also be used to provide other function-
alities while satisfying our definition. For instance, recent work [CY15, GGVZ19, ECS+19, GAS19, Sch20,
BCC+19, BSZ20] has investigated the question of data deletion in machine learning models, and this can be
used to construct a data collector that learns such a model based on data given to it, and can later delete
some of this data not just from its database, but also from the model itself.

Finally, we observe that privacy concepts, such as differential privacy [DMNS06], can sometimes be used
to satisfy deletion requirements without requiring any additional action from the data collector at all. Very
roughly, a differentially private algorithm guarantees that the distribution of its output does not change by
much if a small part of its input is changed. We show that if a data collector runs a differentially private
algorithm on data that it is given, and is later asked to delete some of the data, it need not worry about
updating the output of the algorithm that it may have stored (as long as not too much data is asked to be
deleted). Following the guarantee of differential privacy, whether the deleted data was used or not in the
input to this algorithm essentially does not matter.

1.3 Related Work

Cryptographic treatment of legal terms and concepts has been undertaken in the past. Prominent examples
are the work of Cohen and Nissim [CN19] that formalizes and studies the notion of singling-out that is spec-
ified in the GDPR as a means to violate privacy in certain settings, and the work of Nissim et al [NBW+17]
that models the privacy requirements of FERPA using a game-based definition.

Recently, the notion of data deletion in machine learning models has been studied by various groups [CY15,
GGVZ19, ECS+19, GAS19, Sch20, BCC+19, BSZ20]. Closest to our work is the paper of Ginart et
al [GGVZ19], which gives a definition for what it means to retract some training data from a learned
model, and shows efficient procedures to do so in certain settings like k-means clustering. We discuss the
crucial differences between our definitions and theirs in terms of scope and modelling in Section 2.2.

There has been considerable past work on notions of privacy like differential privacy [DMNS06] that are
related to our study, but very different in their considerations. Roughly, in differential privacy, the concern
is to protect the privacy of each piece of data in a database – it asks that the output of an algorithm running
on this database is roughly the same whether or not any particular piece of data is present. We, in our notion
of deletion-compliance, ask for something quite different – unless any piece of data is requested to be deleted,
the state of the data collector could depend arbitrarily on it; only after this deletion request is processed by
the collector do the requirements of our definition come in. In this manner, while differential privacy could
serve as a means to satisfy our definition, our setting and considerations in general are quite different from
those there. For similar reasons, our definitions are able to require bounds on statistical distance without
precluding all utility (and in some cases even perfect deletion-compliance is possible), whereas differential
privacy has to work with a different notion of distance between distributions (see [Vad17, Section 1.6] for a
discussion).

While ours is the first formal definition of data deletion in a general setting, there has been considerable
work on studying this question in specific contexts, and in engineering systems that attempt to satisfy
intuitive notions of data deletion, with some of it being specifically intended to support the right to be
forgotten. We refer the reader to the comprehensive review article by Politou et al [PAP18] for relevant
references and discussion of such work.

2 Our Framework and Definitions

In this section we describe our framework for describing and analyzing data collectors, and our definitions
for what it means for a data collector to be deletion-compliance. Our modeling uses building blocks that
were developed for the Universal Composability (UC) framework of Canetti [Can01]. First, we present the
formal description of this framework and our definitions. Explanations of the framework and definitions,
and how we intend for them to be used are given in Section 2.1. In Section 2.2, we discuss the various
choices made in our modelling and the implicit assumptions and restrictions involved. In Section 2.3, we
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present a weakening of our definition that covers data collectors that share data with external entities, and
in Section 2.4 we demonstrate some composition properties that our definition has.

The Model of Execution. Looking ahead, our approach towards defining deletion-compliance of a data
collector will be to execute it and have it interact with certain other parties, and at the end of the execution
ask for certain properties of what it stores and its communication with these parties. Following [GMR89,
Gol01, Can01], both the data collector and these other parties in our framework are modelled as Interactive
Turing Machines (ITMs), which represent the program to be run within each party. Our definition of an
ITM is very similar to the one in [CCL15], but adapted for our purposes.

Definition 2.1 (Interactive Turing Machine). An Interactive Turing Machine (ITM) is a (possibly ran-
domized) Turing Machine M with the following tapes: (i) a read-only identifier tape; (ii) a read-only input
tape; (iii) a write-only output tape; (iv) a read-write work tape; (v) a single-read-only incoming tape; (vi) a
single-write-only outgoing tape; (vii) a read-only randomness tape; and (viii) a read-only control tape.

The state of an ITM M at any given point in its execution, denoted by stateM , consists of the content
of its work tape at that point. Its view, denoted by viewM , consists of the contents of its input, output,
incoming, outgoing, randomness, and control tapes at that point.

The execution of the system consists of several instances of such ITMs running and reading and writing
on their own and each others’ tapes, and sometimes instances of ITMs being created anew, according to
the rules described in this subsection. We distinguish between ITMs (which represent static objects, or
programs) and instances of ITMs, or ITIs, that represent instantiations of that ITM. Specifically, an ITI is
an ITM along with an identifer that distinguishes it from other ITIs in the same system. This identifier is
written on the ITI’s identifier tape at the point when the ITI is created, and its semantics will be described
in more detail later.

In addition to having the above access to its own tapes, each ITI, in certain cases, could also have access
to read from or write on certain tapes of other ITI. The first such case is when an ITI M controls another
ITI M ′. M is said to control the ITIs whose identifiers are written on its control tape, and for each ITI M ′

on this tape, M can read M ′’s output tape and write on its input tape. This list is updated whenever, in
the course of the execution of the system, a new ITI is created under the control of M .

The second case where ITIs have access to each others’ tapes is when they are engaged in a protocol. A
protocol is described by a set of ITMs that are allowed to write on each other’s incoming tapes. Further,
any “message” that any ITM writes on any other ITM’s incoming tape is also written on its own outgoing
tape. As with ITMs, a protocol is just a description of the ITMs involved in it and their prescribed actions
and interactions; and an instance of a protocol, also referred to as a session, consists of ITIs interacting with
each other (where indeed some of the ITIs may deviate from the prescribed behavior). Each such session
has a unique session identifier (sId), and within each session each participating ITI is identified by a unique
party identifier (pId). The identifier corresponding to an ITI participating in a session of a protocol with
session identifier sId and party identifier pId is the unique tuple (sId, pId).

There will be small number of special ITIs in our system, as defined below, whose identifiers are assigned
differently from the above. Unless otherwise specified, all ITMs in our system are probabilistic polynomial
time (PPT) – an ITM M is PPT if there exists a constant c > 0 such that, at any point during its run, the
overall number of steps taken by M is at most nc, where n is the overall number of bits written on the input
tape of M during its execution.

The Data Collector. We require the behavior of the data collector and its interactions with other parties
to be specified by a tuple (X , π, πD), where X specifies the algorithm run by the data collector, and π, πD are
protocols by means of which the data collector interacts with other entities. Here, π could be an arbitrary
protocol (in the simplest case, a single message followed by local processing), and πD is the corresponding
deletion protocol – namely, a protocol to undo/reverse a previous execution of the protocol π.

For simplicity, in this work, we restrict to protocol π, πD to the natural case of the two-party setting.3

3However, our model naturally generalizes to protocols with more parties.
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Specifically, each instance of the protocol π that is executed has specifications for a server-side ITM and a
client-side ITM. The data collector will be represented in our system by a special ITI that we will also refer
to as X . When another ITI in the system, call it W for now, wishes to interact with X , it does by initiating
an instance (or session) of one of the protocols π or πD. This initiation creates a pair of ITIs – the client and
the server of this session – where W controls the client ITI and X the server ITI. W and X then interact by
means of writing to and reading from the input and output tapes of these ITIs that they control. Further
details are to be found below.

The only assumption we will place on the syntax of these protocols is the following interface between π
and πD. We require that at the end of any particular execution of π, a deletion token is defined that is a
function solely of the sId of the execution and its transcript, and that π should specify how this token is
computed. The intended interpretation is that a request to delete this instance of π consists of an instance
of πD where the client-side ITI is given this deletion token as input. As we will see later, this assumption
does not lose much generality in applications.

Recipe for Describing Deletion-Compliance. Analogous to how security is defined in the UC frame-
work, we define deletion-compliance in three steps as follows. First, we define a real execution where certain
other entities interact with the data collector ITI X by means of instances the protocols π and πD. This
is similar to the description of the “real world” in the UC framework. In this setting, we identify certain
deletion requests (that is, executions of πD) that are of special interest for us – namely, the requests that
we will be requiring to be satisfied . Next, we define an ideal execution, where the instances of π that are
asked to be deleted by these identified deletion requests are never executed in the first place. The “ideal
execution” in our setting is different from the “ideal world” in the UC framework in the sense that we do
not have an “ideal functionality”. Finally, we say that (X , π, πD) is deletion-compliant if the two execution
process are essentially the same in certain respects. Below, we explain the model of the real execution, the
ideal execution, and the notion of deletion-compliance.

Real Execution. The real execution involves the data collector ITI X , and two other special ITIs: the
environment Z and the deletion requester Y. By intention, Y represents the part of the system whose
deletion requests we focus on and will eventually ask to be respected by X , and Z corresponds to the the
rest of the world – the (possibly adversarial) environment that interacts with X . Both of these interact with
X via instances of π and πD, with X controlling the server-side of these instances and Z or Y the client-side.

The environment Z, which is taken to be adversarial, is allowed to use arbitrary ITMs (ones that may
deviate from the protocol) as the client-side ITIs of any instances of π or πD it initiates. The deletion-
requester Y, on the other hand, is the party we are notionally providing the guarantees for, and is required
to use honest ITIs of the ITMs prescribed by π and πD in the instances it initiates, though, unless otherwise
specified, it may provide them with any inputs as long as they are of the format required by the protocol.4

In addition, we require that any instance of πD run by Y is for an instance of π already initiated by Y.5

Finally, in our modeling, while Z can send arbitrary messages to Y (thereby influencing its executions), we
do not allow any communication from Y back to Z. This is crucial for ensuring that the X does not get any
“to be deleted” information from other sources.

At any point, there is at most one ITI in the system that is activated, meaning that it is running and
can reading from or writing to any tapes that it has access to. Each ITI, while it is activated, has access
to a number of tapes that it can write to and read from. Over the course of the execution, various ITIs are
activated and deactivated following rules described below. When an ITI is activated, it picks up execution
from the point in its “code” where it was last deactivated.

Now we provide a formal description of the real execution. We assume that all parties have a computa-
tional/statistical security parameter λ ∈ N that is written on their input tape as 1λ the first time they are

4Note that it is essential that Y follow the honest protocol specifications to ensure that the deletion requests are successful.
5This corresponds to providing guarantees only for entities that do not (maliciously or otherwise) ask for others’ data to be

deleted.
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activated.6 The execution consists of a sequence of activations, where in each activation a single participant
(either Z, Y, X or some ITM) is activated, and runs until it writes on the incoming tape of another (at most
one other) machine, or on its own output tape. Once this write happens, the writing participant is deac-
tivated (its execution is paused), and another party is activated next — namely, the one on who incoming
tape the message was written; or alternatively, if the message was written to the output tape then the party
controlling the writing ITI is activated. If no message is written to the incoming tape (and its own output
tape) of any party, then Z is activated. The real execution proceeds in two phases: (i) the alive phase, and
(ii) the termination phase.

Alive Phase: This phase starts with an activation of the environment Z, and Z is again activated if any
other ITI halts without writing on a tape. The various ITIs run according to their code, and are allowed to
act as follows:

• The environment Z when active is allowed to read the tapes it has access to, run, and perform any of
the following actions:

– Write an arbitrary message on the incoming tape of Y.

– Write on the input tape of any ITI that it controls (from protocol instances initiated in the past).

– Initiate a new protocol instance of π or πD with X , whereupon the required ITIs are created and
Z is given control of the client-side ITI of the instance and may write on its input tape. At the
same time, X is given control of the corresponding server-side ITI that is created.

– Pass on activation to X or Y.

– Declare the end of the Alive Phase, upon which the execution moves to the Terminate Phase.
This also happens if Z halts.

• The deletion-requester Y on activation can read the tapes it has access to, run, and perform any of
the following actions:

– Write on the input tape of any ITI that it controls.

– Initiate a new instance of π or πD with X , and write on the input tape of the created client-side
ITI.

• The data collector X on activation can read the tapes it has access to, run, and write on the input
tape of any ITI that it controls.

• Any other ITI that is activated is allowed to read any of the tapes that it has access to, and write to
either the incoming tape of another ITI in the protocol instance it is a part of, or on its own output
tape.

Terminate Phase: In this phase, the various ITIs are allowed the same actions as in the Alive phase.
The activation in this phase proceeds as follows:

1. First, each client-side ITI for π that was initiated by Y in the Alive phase is sequentially activated
enough times until each one of them halts.

2. For any instance of π for which a client-side ITI was initiated by Y and which was executed to
completion, an instance of πD is initiated with input the deletion token for that instance of π (except
if such an instance of πD was already initiated).

3. Each client-side ITI for instances of πD that were initiated by Y in the Alive phase or in the previous
step is sequentially activated enough times until each one of them halts.

We denote by EXECX ,π,πD

Z,Y (λ) the tuple (stateX , viewX , stateZ , viewZ) resulting at the end of above-
described real execution with security parameter λ.

6We remark that this is done merely for convenience and is not essential for the model to make sense. In particular, in the
perfect security case, no security parameter is needed.
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Ideal Execution. Denote by Y0 the special Y that is completely silent – whenever it is activated, it
simply halts. In particular, it does not initiate any ITIs and does not write on the incoming tape of any
other machine. A real execution using such a Y0 as the deletion-requester is called an ideal execution.
We denote by EXECX ,π,πD

Z,Y (λ) the tuple (stateX , viewX , stateZ , viewZ) resulting at the end of an ideal
execution with data collector X and environment Z, and with security parameter λ.

We are now ready to present our definition for the deletion-compliance of data collectors, which is as
follows.

Definition 2.2 (Statistical Deletion-Compliance). Given a data-collector (X , π, πD), an environment Z
and a deletion-requester Y, let (stateR,λX , viewR,λZ ) denote the corresponding parts of the real execution

EXECX ,π,πD

Z,Y (λ), and (stateI,λX , viewI,λZ ) the corresponding parts of the ideal execution EXECX ,π,πD

Z,Y0
(λ).

We say that (X , π, πD) is statistically deletion-compliant if, for any PPT environment Z, any PPT deletion-
requester Y, and for all unbounded distinguishers D, there is a negligible function ε such that for all λ ∈ N:∣∣∣Pr[D(stateR,λX , viewR,λZ ) = 1]− Pr[D(stateI,λX , viewI,λZ ) = 1]

∣∣∣ ≤ ε(λ)

In other words, the statistical distance between these two distributions above is at most ε(λ). If D
above is required to be computationally bounded (allowed to run only in PPT time in λ), then we get the
weaker notion of computational deletion-compliance. Analogously, if ε(λ) is required to be 0, then we get
the stronger notion of perfect deletion-compliance.

2.1 Explanation of the Definition

As indicated earlier, the central idea our definition is built around is that the processing of a deletion request
should leave the data collector and the rest of the system in a state that is similar to one it would have been
in if the data that was deleted was never given to the collector in the first place. This ensures that there is
no trace left of deleted data, even in metadata maintained by some of the entities, etc..

The first question that arises here is which parts of the system to ask this of. It is clear that the deleted
data should no longer persist in the memory of the data collector. A less obvious but clearly necessary
demand is that the data collector also not reveal this data to any user other than the one it belongs to.
Otherwise, unless whomever this data is revealed to provides certain guarantees for its later deletion, the
data collector loses the ability to really delete this data from locations it reached due to actions of the data
collector itself, which is clearly undesirable.7

Once so much is recognized, the basic form of the definition is clear from a cryptographic standpoint.
We fix any user, let the user send the collector some data and then request for it to be deleted, and look
at the state of the collector at this point together with its communication with the rest of the system so
far. We also look at the same in a world where this user did not send this data at all. And we ask that
these are distributed similarly. We then note that this property needs to hold not just when the collector is
interacting solely with this user, but is doing so as part of its routine operation where it is interacting with
any number of other users and processing their data and deletion requests as well.

The UC Framework. In order to make this definition formal, we first need to model all entities in a formal
framework that allows us to clearly talk about the “state” or the essential memory of the entities, while also
being expressive enough to capture all, or at least most, data collectors. We chose the UC framework for this
purpose as it satisfies both of these properties and is also simple enough to describe clearly and succinctly. In
this framework, the programs that run are represented by Interactive Turing Machines, and communication
is modelled as one machine writing on another’s tape. The state of an entity is then captured by the contents

7Of course, if the entity this data is revealed to does provide some guarantees for later deletion, then we may reasonably
expect the data collector to provide deletion guarantees even while revealing data to this entity. In Section 2.3, we present a
weaker definition of deletion-compliance that captures this.
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of the work tape of the machine representing it, and its view by whatever was written on its tapes by other
machines. This framework does impose certain restrictions on the kind of executions that it captures, though,
and this is discussed later, in Section 2.2.

Protocols and Interaction. Another choice of formality motivated by its usefulness in our definition is
to have all communication with the data collector X be represented by instances of a protocol π. It should be
noted that the term “protocol” here might belie the simplicity of π, which could just involve the sending of a
piece of data by a user of the system to the data collector X . This compartmentalisation of communication
into instances of π is to let us (and the users) refer directly to specific instances later and request their
deletion using instances of the deletion protocol πD. As the reference to instances of π, we use a “deletion
token” that is computable from the transcript of that instance – this is precise enough to enable us to refer
to specific pieces of data that are asked to be deleted, and loose enough to capture many natural systems
that might be implemented in reality for this purpose.

The Deletion-Requester Y and the Environment Z. The role of the user in the above rudimentary
description is played by the deletion-requester Y in our framework. In the “real” execution, Y interacts with
the data collector X over some instances of π, and then asks for all information contained in these instances
to be deleted. In the “ideal” execution, Y is replaced by a silent Y0 that does not communicate with X at all.
And both of these happen in the presence of an environment Z that interacts arbitrarily with X (through
instances of π and πD) – this Z is supposed to represent both the rest of the users in the system that X
interacts with, as well as an adversarial entity that, in a sense, attempts to catch X if it is not handling
deletions properly. By asking that the state of X and the view of Z in both these executions be similar, we
are asking that the deletion essentially have the same effect on the world as the data never being sent.

It is to be noted that while Y here is represented as a single entity, it does not necessarily represent just a
single “user” of the system or an entire or single source of data. It could represent just a part of a user that
contains the data to be deleted, or represent multiple users, all of whom want their data to be deleted. In
other words, if a data collector X is deletion-compliant under our definition, and at some point in time has
processed a certain set of deletion requests, then as long as the execution of the entire world at this point
can be separated into Z and Y that follow our rules of execution, the deletion-compliance of X promises
that all data that was sent to X from Y will disappear from the rest of the world.

Using the Definition. Our framework and definition may be used for two purposes: (i) to guide the
design of data collectors X that are originally described within our framework (along with protocols π and
πD) and wish to handle deletion requests well, and (ii) to analyse the guarantees provided by existing systems
that were not designed with our framework in mind and which handle data deletion requests.

In order to use Definition 2.2 to analyze the deletion-compliance of pre-existing systems, the first step
is to rewrite the algorithm of the data collector to fit within our framework. This involves defining the
protocols π and πD representing the communication between “users” in the system and the data collector.
This part of the process involves some subjectivity, and care has to be taken to not lose crucial but non-
obvious parts of the data collector, such as metadata and memory allocation procedures, in this process.
The examples of some simple systems presented in Section 3 illustrate this process )though they do not talk
about modelling lower-level implementation details). Once the data collector and the protocols are described
in our framework, the rest of the work in seeing whether they satisfy our definition of deletion-compliance is
well-defined.

2.2 Discussion

A number of choices were made in the modelling and the definition above, the reasons for some of which are
not immediately apparent. Below, we go through a few of these and discuss their place in our framework
and definition.
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Modelling Interactions. The first such choice is to include in the model the entire communication process
between the data collector and its users rather than look just at what goes on internally in the data collector.
For comparison, a natural and simpler definition of data deletion would be to consider a data collector that
has a database, and maintains the result of some computation on this database. It then receives requests
to delete specific rows in the database, and it is required to modify both the database and the processed
information that it maintains so as to make it look like the deleted row was never present. The definition of
data deletion in machine learning by Ginart et al [GGVZ19], for instance, is of this form.

The first and primary reason for this choice is that the intended scope of our definitions is larger than
just the part of the data collector that maintains the data. We intend to analyze the behavior of the data
collector as a whole, including the memory used to implement the collector’s algorithm and the mechanisms
in place for interpreting and processing its interactions with external agents. For instance, as we discuss in
Section 3, it turns out that any data collector that wishes to provide reasonable guarantees to users deleting
their data needs to have in place a non-trivial authentication mechanism. This requirement follows easily
from the requirements of our definition, but would not be apparent if only the part of the collector that
directly manages the data is considered.

The second reason is that while the simpler kind of definition works well when the intention is to apply
it to collectors that do indeed have such a static database that is given to them, it fails to capture crucial
issues that arise in a more dynamic setting. Our inclusion of the interactions between parties in our definition
enables us to take into account dependencies among the data in the system, which in turn enables us to
keep our demands on the data collector more reasonable. Consider, for example, a user who sends its name
to a data collector that responds with a hash of it under some secret hash function. And then the user asks
the same collector to store a piece of data that is actually the same hash, but there is no indication given
to the collector that this is the case. At some later time, the user asks the collector to delete its name. To
a definition that only looks at the internal data storage of the collector, the natural expectation after this
deletion request is processed would be that the collector’s state should look as though it never learnt the
user’s name. However, this is an unreasonable demand – since the collector has no idea that the hash of the
name was also given to it, it is not reasonable to expect that it also find the hash (which contains information
about the name) and delete it. And indeed, under our definition, the collector is forgiven for not doing so
unless the user explicitly asks for the hash also to be deleted. If our modelling had not kept track of the
interactions between the collector and the user, we would not have been able to make this relaxation.

Restrictions on Y. Another conspicuous choice is not allowing the deletion-requester Y in our framework
to send messages to the environment Z. This is, in fact, how we handle cases like the one just described
where there are dependencies between the messages that the collector receives that are introduced on the
users’ side. By requiring that Y does not send messages to Z and that all interaction between Y and X are
asked to be deleted over the course of the execution, we ensure that any data that depends on X ’s responses
to Y’s messages is also asked to be deleted. This admits the case above where both the name and the hash
are requested to be deleted, and requires X to comply with such a request; but it excludes the case where
only the name is asked to be deleted (as then the hash would have to be sent by Z, which has no way of
learning it), thus excusing X for not deleting it.

Also note that this restriction does not lose any generality outside of excluding the above kind of depen-
dency. Take any world in which a user (or users) asks for some of its messages to be deleted, and where
the above perverse dependency does not exist between these and messages not being asked to be deleted.
Then, there is a pair of environment Z and deletion-requester Y that simulates that world exactly, and the
deletion-compliance guarantees of X have the expected implications for such a deletion request. The same
is true of the restriction that all of the messages sent by Y have to be requested to be deleted rather than
just some of them – it does not actually lose generality. And also of the fact that Y is a single party that is
asking for deletion rather than a collection – a set of users asking for deletion can be simulated by just one
Y that does all their work.
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The Ideal Deletion-Requester. An interesting variant of our definition would be one in which the Y is
not replaced by a silent Y0 in the ideal world, but by another Y ′ that sends essentially the same kinds of
messages to X , but with different contents. Currently, our definition says that, after a deletion request, the
collector does not even remember that it had some data that was deleted. This might be unnecessarily strong
for certain applications, and this modification would relax the requirement to saying that it is fine for the
collector to remember that it had some data that was deleted, just not what the data was. The modification is
not trivial, though, as in general the number and kinds of messages that Y sends could depend on the contents
of its messages and the responses from X , which could change if the contents are changed. Nevertheless,
under the assumption that Y behaves nicely in this sense, such an alternative definition could be stated and
would be useful in simple applications.

Choices That Lose Generality. There are certain assumptions in our modelling that do break from
reality. One of these is that all machines running in the system are sequential. Due to this, our definition
does not address, for instance, the effects of race conditions in the data collector’s implementation. This
assumption, however, makes our definition much simpler and easier to work with, while still keeping it
meaningful. We leave it as an open question to come up with a reasonable generalization of our definition
(or an alternative to it) that accounts for parallel processing.

Another such assumption is that, due to the order of activations and the fact that activation is passed
on in the execution by ITIs writing on tapes, we do not give Z the freedom to interlace its messages freely
with those being sent by Y to X . It could happen, for instance, that X is implemented poorly and simply
fails to function if it does not receive all messages belonging to a particular protocol instance consecutively.
This failure is not captured by our definition as is, but this is easily remedied by changing the activation
rules in the execution to pass activation back to Z after each message from (an ITI controlled by) Y to X
is sent and responded to. We do not do this for the sake of simplicity.

Finally, our modelling of the data collector’s algorithm being the entire ITM corresponds to the implicit
assumption of reality that the process running this algorithm is the only one running on the system. Or,
at least, that the distinguisher between the real and ideal worlds does not get to see how memory for this
process is allocated among all the available memory in the system, does not learn about scheduling in the
system, etc.. Side-channel attacks involving such information and definitions that provide protection against
these would also be interesting for future study, though even more exacting than our definition.

2.3 Conditional Deletion-Compliance

As noted in earlier sections, any data collector that wishes to be deletion-compliant under Definition 2.2
cannot reveal the data that is given to it by a user to any other entity. There are several situations, however,
where such an action is desirable and even safe for the purposes of deletion. And rules for how the collector
should act when it is in fact revealing data in this way is even specified in some laws – Article 17 of the
GDPR, for instance, says, “Where the controller has made the personal data public and is obliged . . . to erase
the personal data, the controller, taking account of available technology and the cost of implementation, shall
take reasonable steps, including technical measures, to inform controllers which are processing the personal
data that the data subject has requested the erasure by such controllers of any links to, or copy or replication
of, those personal data.”

Consider, for instance, a small company X that offers storage services using space it has rented from a
larger company W. X merely stores indexing information on its end and stores all of its consumers’ data
with W, and when a user asks for its data to be deleted, it forwards (an appropriately modified version of)
this request to the W. Now, if W is deletion-compliant and deletes whatever data X asks it to, it could
be possible for X to act in way that ensures that state of the entire system composed of X and W has no
information about the deleted data. In other words, conditioned on some deletion-compliance properties of
the environment (that includes W here), it is reasonable to expect deletion guarantees even from collectors
that reveal some collected data. In this subsection, we present a definition of conditional deletion-compliance
that captures this.
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Specifically, we consider the case where the environment Z itself is deletion-compliant, though in a slightly
different sense than Definition 2.2. In order to define this, we consider the deletion-compliance of a data
collector X running its protocols (π, πD) in the presence of other interaction going on in the system. So
far, in our executions involving (X , π, πD), we essentially required that Y and Z only interact with X by
means of the protocols π and πD. Now we relax this requirement and, in both phases of execution, allow an
additional set of protocols Φ = {φ1, . . .} that can be initiated by X to be run between X and Z (but not Y)

during the execution. We denote an execution involving X , Z and Y under these rules by EXECX ,π,πD

Z,Y,Φ .

Finally, we also consider executions where, additionally, we also let X write on the incoming tape of Y.8

We call such an execution an auxiliary execution, and denote it by AEXECX ,π,πD

Z,Y,Φ . We define the following
notion of auxiliary deletion-compliance that we will be the condition we will place on the environment in
our eventual definition of conditional deletion-compliance.

Definition 2.3 (Auxiliary Deletion-Compliance). Given a data-collector (X , π, πD), an environment Z,

a deletion-requester Y, and a set of protocols Φ, let (stateR,λX , viewR,λZ ) denote the corresponding parts

of the auxiliary execution AEXECX ,π,πD

Z,Y,Φ (λ), and (stateI,λX , viewI,λZ ) the corresponding parts of the ideal

auxiliary execution AEXECX ,π,πD

Z,Y0,Φ
(λ). We say that (X , π, πD) is statistically auxiliary-deletion-compliant

in the presence of Φ if, for any PPT environment Z, any PPT deletion-requester Y, and for all unbounded
distinguishers D, there is a negligible function ε such that for all λ ∈ N:∣∣∣Pr[D(stateR,λX , viewR,λZ ) = 1]− Pr[D(stateI,λX , viewI,λZ ) = 1]

∣∣∣ ≤ ε(λ)

Note that we do not ask X for any guarantees on being able to delete executions of the protocols in Φ. It
may be seen that any data collector (X , π, πD) that is deletion-compliant is also auxiliary deletion-compliant
in the presence of any Φ, since it never runs any of the protocols in Φ.

We say that a data collector X is conditionally deletion-compliant if, whenever it is interacting with an
environment that is auxiliary-deletion-compliant, it provides meaningful deletion guarantees.

Definition 2.4 (Conditional Deletion-Compliance). Given a data-collector (X , π, πD), an environment Z,

a deletion-requester Y, and a pair of protocols Φ = (φ, φD), let (stateR,λX , stateR,λZ ) denote the corresponding

parts of the real execution EXECX ,π,πD

Z,Y,Φ (λ), and (stateI,λX , stateI,λZ ) the corresponding parts of the ideal

execution EXECX ,π,πD

Z,Y0,Φ
(λ). We say that (X , π, πD) is conditionally statistically deletion-compliant in the

presence of Φ if, for any PPT environment Z such that (Z, φ, φD) is statistically auxiliary-deletion-compliant
in the presence of (π, πD), any PPT deletion-requester Y, and for all unbounded distinguishers D, there is
a negligible function ε such that for all λ ∈ N:∣∣∣Pr[D(stateR,λX , stateR,λZ ) = 1]− Pr[D(stateI,λX , stateI,λZ ) = 1]

∣∣∣ ≤ ε(λ)

One implication of X being conditionally deletion-compliant is that if, in some execution, it is found that
data that was requested of X to be deleted is still present in the system in some form, then this is not due
to a failure on the part of X , but was because the environment Z was not auxiliary-deletion-compliant and
hence failed to handle deletions correctly. A setup like the one described at the beginning of this subsection
is studied as an example of a conditionally deletion-compliant data collector in Section 3.1.1.

2.4 Properties of our Definitions

In this section, we demonstrate a few properties of our definition of deletion-compliance that are meaningful
to know on their own and will also make analyses of data collectors we design in later sections simpler. In
order to describe them, we first define certain special classes of deletion-requesters. The first is one where
we limit the number of protocol instances the deletion-requester Y is allowed to initiate.

8This weakens the definition of deletion-compliance, as it allows X to send to Y anything it wants, since the view or state of
Y is not scrutinized by the requirements of deletion-compliance. And though as a definition of deletion-compliance this is not
meaningful on its own, it is a property that, if the environment Z possesses it, seems necessary and sufficient to allow a data
collector X to safely reveal data to Z that it may wish to delete later.
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Definition 2.5. For any k ∈ N, a deletion-requester Y is said to be k-representative if, when interacting
with a data collector X running (π, πD), it initiates at most k instances of π with X .

The other is a class of deletion-requesters intended to represent the collected actions of several 1-
representative deletion-requesters operating independently of each other. In other terms, the following
represents, say, a collection of users that interact with a data collector by sending it a single message each,
and further never interact with each other. This is a natural circumstance that arises in several situations of
interest, such as when people respond to a survey or submit their medical records to a hospital, for example.
Hence, even deletion-compliance guarantees that hold only in the presence of such deletion-requesters are
already meaningful and interesting.

Definition 2.6. A deletion-requester Y is said to be oblivious if, when interacting with a data collector X
running (π, πD), for any instance of π that it initiates, it never accesses the output tape of the corresponding
client-side ITI except when running πD to delete this instance, whereupon it merely computes the deletion
token and provides it as input to πD.

Note that the deletion-requester Y not accessing the output tapes does not necessarily mean that the
entities or users that it notionally represents similarly do not look at the responses they receive from the data
collector – as long as each user in a collection of users does not communicate anything about such responses
to another user, the collection may be faithfully represented by an oblivious Y. Similarly, an oblivious Y
could also represent a single user who sends multiple messages to the data collector, under the condition
that the content of these messages, and whether and when the user sends them, does not depend on any
information it receives from the data collector.

We also quantify the error that is incurred by a data collector in its deletion-compliance as follows. In
our definition of deletion-compliance (Definition 2.2), we required this error to be negligible in the security
parameter.

Definition 2.7 (Deletion-Compliance Error). Let k ∈ N. Given a data-collector (X , π, πD), an environment

Z and a deletion-requester Y, let (stateR,λX , viewR,λZ ) denote the corresponding parts of EXECX ,π,πD

Z,Y (λ), and

(stateI,λX , viewI,λZ ) the corresponding parts of EXECX ,π,πD

Z,Y0
(λ). The (statistical) deletion-compliance error

of (X , π, πD) is a function ε : N→ [0, 1] where for λ ∈ N, the function value ε(λ) is set to be the supremum,
over all PPT environments Z, all PPT deletion-requesters Y, and all unbounded distinguishers D, of the
following quantity when all parties are given λ as the security parameter:∣∣∣Pr[D(stateR,λX , viewR,λZ ) = 1]− Pr[D(stateI,λX , viewI,λZ ) = 1]

∣∣∣
The oblivious deletion-compliance error is defined similarly, but only quantifying over all oblivious PPT
deletion-requesters Y. And the k-representative deletion-compliance error is defined similarly by quantifying
over all k-representative PPT Y’s.

2.4.1 Composition of Deletion-Requesters

We show that, for oblivious deletion-requesters, the error in deletion-compliance of any data collector
(X , π, πD) grows at most linearly with the number of instances of π that are requested to be deleted. In other
words, if k different users of X ask for their information to be deleted, and they all operate independently in
the sense that none of them looks at the responses from X to any of the others, then the error that X incurs
in processing all these requests is at most k times the error it incurs in processing one deletion request.

Apart from being interesting on its own, our reason for proving this theorem is that in the case of some
data collectors that we construct in Section 3, it turns out to be much simpler to analyze the 1-representative
deletion-compliance error than the error for a generic deletion-requester. The following theorem then lets
us go from the 1-representative error to the error for oblivious deletion-requesters that make more deletion
requests.
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Theorem 2.1. For any k ∈ N and any data collector (X , π, πD), the k-representative oblivious deletion-
compliance error is at most k times its 1-representative deletion-compliance error.

Proof. We will show this theorem by induction on k. Fix some security parameter λ and suppose the
1-representative deletion-compliance of a given data collector (X , π, πD) is ε1 ∈ [0, 1], and its (k − 1)-
representative oblivious deletion-compliance error is εk−1.

Consider any k-representative oblivious deletion-requester Y that runs k instances (without loss of gen-
erality, exactly k) of π, and then asks for all of them to be deleted. Denote these instances by π1, . . . , πk,
in the order in which they were initiated by Y, and the corresponding deletion requests by πD,1, . . . , πD,k
(note that it is not necessarily the case that these instances of πD were run in this order). We define a new
environment Z1 and deletion-requester Y1 based on Z and Y as follows:

• Z1 simulates both Z and Y, initiating all protocol instances they would, including π1, . . . , πk−1. When
its simulation of Y is about to initiate πk, it instead sends over the simulated state of Y at that point
to Y ′. After this, whenever the simulation of Y attempts to activate the client-side ITI of “πk”, it
activates Y ′ instead. Otherwise, it proceeds with the rest of its simulation of Z and Y, again excepting
only when Y tries to initiate πD,k, at which point it again activates Y ′ and does so again whenever
the simulation tries to activate the client-side ITI of “πD,k”. It then simulates Z and Y to completion,
and runs the instances πD,i for i for which these have not been run by the simulation of Y yet (also
outsourcing πD,k to Y ′ as earlier if it happens at this stage).

• Y1, when it is first activated, initiates the instance πk just as Y would have, and upon subsequent
activations it in turn activates the client-side ITI of πk as Y would have. After πk is complete, the next
time Y ′ is activated, it initiates πD,k with input the deletion token for πk, and continues to activate
the client-side ITI for the same whenever it is subsequently activated, just at Y would.

Note that it is possible to separate the actions of Z and Y into the above Z1 and Y1 only because of the
obliviousness of Y, which implies that the simulation of Y does not look at the output tapes of any of the
ITIs it controls in order to decide, for instance, when to initiate any protocol instance or activate a client-side
ITI, or even what input to provide to these ITIs unless running a πD,i, and even then it looks only at the
ITI of the corresponding πi.

Denote by YSim the partial simulation of Y that is run by Z1, and by ZSim its simulation of Z. Let
(state1

X , view
1
ZSim

) denote the state of X and the part of the view of Z1 that corresponds to the messages

sent and received by ZSim at the end of EXECX ,π,πD

Z1,Y1
. Since Y is oblivious, the combination of YSim and

Y1 behaves identically to Y, and we have the following claim. As always, (stateRX , view
R
Z) is from the real

execution EXECX ,π,πD

Z,Y .

Claim 2.1. (stateRX , view
R
Z) is distributed identically to (state1

X , view
1
ZSim

).

Note that Y1 is a 1-representative deletion-requester, as it only runs πk. Let (state1,I
X , view1,I

ZSim
) denote

the state of X and the part of the view of Z1 that corresponds to the messages sent to and received by ZSim

at the end of the corresponding ideal execution EXECX ,π,πD

Z1,Y0
. By the 1-representative deletion-compliance

of (X , π, πD), we have the following.

Claim 2.2. The statistical distance between (state1
X , view

1
ZSim

) and (state1,I
X , view1,I

ZSim
) is at most ε1.

Let Y2 denote the combination of YSim and Y0 – note that this is well-defined since YSim was isolated from
the rest of the simulation in Z1, and also note that Y2 is a (k−1)-representative oblivious deletion-requester.

Let (state2
X , view

2
Z) denote the state of X and the view of Z from the execution EXECX ,π,πD

Z,Y2
. And let

(stateIX , view
I
Z) denote the same from the ideal execution EXECX ,π,πD

Z,Y0
. By the (k − 1)-representative

oblivious deletion-compliance of (X , π, πD), we have the following.

Claim 2.3. The statistical distance between (state2
X , view

2
Z) and (stateIX , view

I
Z) is at most εk−1.
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Thus, by the triangle inequality and the above three claims, the statistical distance between (stateRX , view
R
Z)

and (stateIX , state
I
Z) is at most (ε1 + εk−1) which, if εk−1 ≤ (k− 1)ε1, is at most kε1. By induction, applied

to all security parameters λ, this proves the theorem. We finish by proving the above claims.

Proof of Claim 2.1. This claim follows by first observing that the view of X is the same in both the execution
involving (Z,Y) and the one involving (Z1,Y1), since the latter is a perfect simulation of the former. Thus,
the state of X is the same in both as well. Further, since all messages that are received by the simulation
ZSim are exactly those that X would have sent to Z, its viewZSim

is the same as viewZ conditioned on stateX .
This proves the claim.

Proof of Claim 2.2. Y1 is a deletion-requester that initiates just one instance of π, and asks for it to be
deleted, and we treat EXECX ,π,πD

Z1,Y1
as the real execution and EXECX ,π,πD

Z1,Y0
as the ideal execution. 1-

representative deletion-compliance now tells us that the statistical distance between (state1
X , view

1
Z1

) and

(state1,I
X , view1,I

Z1
) is at most ε1, and the claim follows by observing that the view of ZSim is a subset of the

view of Z ′.

Proof of Claim 2.3. Y2 is a deletion-requester that initiates (k − 1) instances of π and asks for them all

to be deleted. Taking EXECX ,π,πD

Z,Y2
to be the real execution and EXECX ,π,πD

Z,Y0
to be the ideal execution

immediately gives us the claim.

2.4.2 Composite Data Collectors

We also show that, given two data collectors that are each deletion-compliant, their combination is also
deletion-compliant, assuming obliviousness of deletion-requesters. To be more precise, given a pair of data
collectors (X1, π1, π1,D) and (X2, π2, π2,D), consider the “composite” data collector ((X1,X2), (π1, π2), (π1,D, π2,D))
that works as follows:

• An instance of (π1, π2) is either an instance of π1 or of π2. Similarly, an instance of (π1,D, π2,D) is
either an instance of π1,D or of π2,D.

• The collector (X1,X2) consists of a simulation of X1 and of X2, each running independently of the
other.

• When processing an instance of π1 or π1,D, it forwards the messages to and from its simulation of X1,
and similarly X2 for π2 or π2,D.

• The state of (X1,X2) consists of the states of its simulations of X1 and X2.

Such an X would represent, for instance, two data collectors that operate separately but deal with the
same set of users. We show that, if the constituting data collectors are deletion-compliant, then under the
condition of the deletion-requester being oblivious, the composite data collector is also deletion-compliant.

Theorem 2.2. If (X1, π1, π1,D) and (X2, π2, π2,D) are both statistically deletion-compliant, then the com-
posite data collector ((X1,X2), (π1, π2), (π1,D, π2,D)) is statistically deletion-compliant for oblivious deletion-
requesters.

The above theorem extends to the composition of any k data collectors in this manner, where there is a
loss of a factor of k in the oblivious deletion-compliance error (this will be evident from the proof below).

Proof of Theorem 2.2. The theorem follows by first showing that the composite collector is deletion-compliant
for 1-representative data collecors, and then applying Theorem 2.1. Any 1-representative deletion-requester
Y interacts either only with (the simulation of) X1 or with X2. And since both of these are deletion-compliant,
the state of (X1,X2) and the view of the environment are similarly distributed in both real and ideal execu-
tions. Thus, ((X1,X2), (π1, π2), (π1,D, π2,D)) is 1-representative deletion-compliant. Applying Theorem 2.1
now gives us the theorem.
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3 Scenarios

In this section, we present examples of data collectors that satisfy our definitions of deletion-compliance with
a view to illustrate both the modelling of collectors in our framework, and the aspects of the design of such
collectors that are necessitated by the requirement of such deletion-compliance.

3.1 Data Storage and History-Independence

Consider the following ostensibly simple version of data storage. A company wishes to provide the following
functionality to its users. A user can ask the company to store a single piece of data, say their date-of-birth
or a password. At a later point, the user can ask the company to retrieve this data, whence the company
sends this stored data back to the user. And finally, the user can ask for this data to be deleted, at which
point the company deletes any data the user has asked to be stored.

While a simple task, it is still not trivial to implement the deletion here correctly. The natural way to
implement these functionalities is to use a dictionary data structure that stores key-value pairs and supports
insertion, deletion and lookup operations. The collector could then store the data a user sends as the value
and use a key that is somehow tied to the user, say the user’s name or some other identifier. Unless care is
taken, however, such data structures could prove insufficient – data that has been deleted could still leave a
trace in the memory implementing the data structure. A pathological example is a dictionary that, to indicate
that a certain key-value pair has been deleted, simply appends the string “deleted” to the value – note that
such a dictionary can still provide valid insertion, deletion and lookup. While actual implementations of
dictionaries do not explicitly maintain “deleted” data in this manner, no special care is usually taken to
ensure that information about such data does not persist, for instance, in the metadata.

The simplest solution to this problem is to use an implementation of such a data structure that explicitly
ensures that the above issue does not occur. History independent data structures, introduced by Miccian-
cio [Mic97], are implementations of data structures that are such that their representation in memory at
any point in time reveals only the “content” of the data structure at that point, and not the history of the
operations (insertion, deletion, etc.) performed that resulted in this content. In particular, this implies that
an insertion of some data into such a data structure followed by a deletion of the same data would essentially
have the same effect on memory as not having done either in the first place.

More formally, these are described as follows by Naor and Teague [NT01]. Any abstract data structure
supports a set of operations, each of which, without loss of generality, returns a result (which may be null).
Two sequences of operations S1 and S2 are said to produce the same content if for any sequence T , the
results returned by T with the prefix S1 is the same as the results with the prefix S2. An implementation of
a data structure takes descriptions of operations and returns the corresponding results, storing what it needs
to in its memory. Naor and Teague then define history independence as a property of how this memory is
managed by the implementation.

Definition 3.1. An implementation of a data structure is history independent if any two sequences of
operations that produce the same content also induce the same distribution on the memory representation
under the implementation.

If data is stored by the data collector in a history independent data structure that supports deletion, then
being deletion-compliant becomes a lot simpler, as the property of history independence helps satisfy much of
the requirements. In our case, we will make us of a history-independent dictionary, a data structure defined
as follows. History-independent dictionaries were studied and constructed by Naor and Teague [NT01].

Definition 3.2. A dictionary is a data structure that stores key-value pairs (key, value), and supports the
following operations:

• Insert(key, value): stores the value value under the key key. If the key is already in use, does nothing.

• Lookup(key): returns the value previously stored under the key key. If there is no such key, returns ⊥.

• Delete(key): deletes the key-value pair stored under the key key. If there is no such key, does nothing.

19



Our current approach, then, is to implement the data storage using a history-independent dictionary as
follows. When a user sends a (key, value) pair to be stored, we insert it into the dictionary. When a user
asks for the value stored under a key key, we look it up in the dictionary and return it. When a user asks
to delete whatever is stored under the key key, we delete this from the dictionary. And the deletion, due to
history-independence, would remove all traces of anything that was deleted.

There is, however, still an issue that arises from the fact that the channels in our model are not au-
thenticated. Without authentication, any entity that knows a user’s key could use it to learn from the data
collector whether this user has any data stored with it. And later if the user asks for deletion, the data might
be deleted from the memory of the collector, but the other entity has already learnt it, which it could not
have done in an ideal execution. In order to deal with this, the data collector has to implement some form of
authentication; and further, this authentication, as seen by the above example, has to use some randomness
(or perhaps pseudorandomness) generated on the data collector’s side. We implement the simplest form of
authentication that suffices for this, and the resulting data collector H is described informally as follows.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The data collector H maintains a history-independent dictionary Dict. Below, any information that is not required
explicitly to be stored is erased as soon as each message is processed. It waits to receive a message from a user that
is parsed as (instruction, auth, key, value), where either of auth or value could be ⊥, and processed as follows:

• If instruction = insert,

– it samples a new random authentication string auth.

– it runs Dict.Insert((key, auth), value) to add value to the dictionary under the key (key, auth).

– it responds to the message with the string auth.

• If instruction = lookup,

– it recovers the value stored under the key (key, auth) by running Dict.Lookup((key, auth)), and responds
with value (if the key is not in use, value will be ⊥).

• If instruction = delete,

– it deletes any entry under the key (key, auth) by running Dict.Delete((key, auth)).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The formal description of the above data collector in our framework, along with the associated protocols
π and πD, is presented in Fig. 2. We show that this collector is indeed statistically deletion-compliant.

Theorem 3.1. The data collector (H, π, πD) in Fig. 2 is statistically deletion-compliant.

We present the proof of Theorem 3.1 in Appendix A.1. The approach is to first observe that, due to the
authentication mechanism, the probability that the environment Z will ever see any data that was stored
by the deletion-requester Y is negligible in the security parameter. If this never happens, then the view of
Z in the real and ideal executions (where Y does not store anything) is identical. And when the view is
identical, the sequence of operations performed by Z in the two executions are also identical. Thus, since
whatever Y asks to store it also asks to delete, the state of X at the end of the execution, due to its use of
a history-independent dictionary, depends only on the operations of Z, which are now the same in the real
and ideal executions.

In summary, the lessons we learn from this process of constructing a deletion-compliant data collector
for data storage are as follow:

1. Attention has to be paid to the implementation of the data structures used, which needs to satisfy
some notion of independence from deleted data.

2. Authentication that involves some form of hardness or randomness from the data collector’s side has
to be employed even to support simple operations.
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We model the collector’s behavior by a tuple (H, π, πD). The ITM H maintains a history-independent dictionary
Dict and, given security parameter λ, acts as follows upon activation. Any information below that is not required
explicitly to be stored is erased as soon as each message is processed (and just before possibly responding to it
and halting or being deactivated).

• It checks whether there is an ITI that it controls whose output tape it has not read so far. If not, it halts.

• Otherwise, let M be the first ITI in some arbitrary order whose output has not been read so far. H reads
this output.

• If this output is of the form (insert, key, value),

– It samples a string auth← {0, 1}λ uniformly at random.

– It runs Dict.Insert((key, auth), value).

– It writes auth onto the input tape of M .

• If this output is of the form (lookup, key, auth),

– It runs Dict.Lookup((key, auth)) to get value and writes value on the input tape of M .

• If this output is of the form (delete, key, auth),

– It runs Dict.Delete((key, auth)).

The protocol π runs between two parties, the server and the client, and proceeds as follows:

• The client takes as input a tuple (instruction, key, auth, value), where either of auth or value may be
empty.

• The client sends its input as a message to the server.

• The server verifies that instruction is either insert or lookup.

• If instruction = insert and value is not empty, or if (instruction = lookup and auth is not empty),

– The server writes the message (insert, key, value) onto its output tape.

– The next time it is activated, the server sends the contents of its input tape as a message to the
client. We refer to the content of this message as auth′.

– The client writes the message it receives onto its output tape.

– The deletion token for this instance is set to be (key, auth′).

• If instruction = lookup and auth is not empty,

– The server writes the message (lookup, key, auth) onto its output tape.

– The next time it is activated, the server sends the contents of its input tape as a message to the
client.

– The client writes the message it receives onto its output tape.

– The deletion token for this instance is set to be ⊥.

The protocol πD runs between two parties, the server and the client, and proceeds as follows:

• The client takes as input a tuple (key, auth).

• The client sends a message (delete, key, auth) to the server.

• The server writes the received message onto its output tape.

Figure 2: Data Storage Using History-Independence
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3.1.1 Outsourcing Data Storage

Next, we present a data collector that outsources its storage to an external system, maintaining only book-
keeping information in its own memory. As it actively reveals users’ data to this external system, such a
data collector cannot be deletion-compliant. However, we show that history-independence can be used to
make it conditionally deletion-compliant. Again, it turns out to be crucial to ensure that an authentica-
tion mechanism is used, for reasons similar to that for the previously constructed data collector. This data
collector H2 is informally described as follows, and is quite similar to H.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The data collector H2 maintains a history-independent dictionary Dict, and interacts with another collector W that
uses the same syntax for messages as the collector H from earlier in this section. It waits to receive a message that
is parsed as (instruction, auth, key, value), where either of auth or value could be ⊥, and processed as follows:

• If instruction = insert,

– It samples a new authentication string auth and a new “external key” exkey at random.

– It sends the message (insert, exkey, value) to W and waits to receive a response exauth.

– It runs Dict.Insert((key, auth), (exkey, exauth)) to add (exkey, exauth) to the dictionary under the key
(key, auth).

– It responds to the initial message with the string auth.

• If instruction = lookup,

– It recovers the (exkey, exauth) stored under the key (key, auth) by running Dict.Lookup((key, auth)). If
the lookup fails, it responds with ⊥.

– It sends the message (lookup, exkey, exauth) to W and waits to receive a response value.

– It responds to the initial message with value.

• If instruction = delete,

– It recovers the (exkey, exauth) stored under the key (key, auth) by running Dict.Lookup((key, auth)). If
the lookup fails, it halts.

– If not, it sends the message (delete, exkey, exauth) to W.

– It deletes any entry under the key (key, auth) by running Dict.Delete((key, auth)).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The formal description of the above data collector in our framework, along with the associated protocols
π and πD, is presented in Fig. 3. We show that this collector is conditionally deletion-compliant.

Theorem 3.2. Following terminology from Fig. 3, the data collector (H2, π, πD) is conditionally statistically
deletion-compliant in the presence of (π, πD).

The proof of this theorem is presented in Appendix A.1. The approach is again to first condition on Z not
being able to guess any of the authentication strings given to Y, an event that happens with overwhelming
probability. After this, we show that the history-independence of the dictionary used by X can be used to
effectively split X into two parts – one that handles protocols with Y, and the other than handles protocols
with Z – without affecting what essentially happens in the execution. At this point, we switch to looking
at the execution as an auxiliary execution with Z as the data collector, the first part of X as the deletion-
requester, and the second part as the environment, and apply the auxiliary deletion-compliance of Z to show
that the states of Z and X are unchanged if Y is replaced with a silent Y0.
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We model the collector’s behavior by a tuple (H2, π, πD), where π and πD are as described in Fig. 2. The
environment is denoted by Z, and supports H2 instantiating instances of protocols π and πD with it, with H2

on the client side. The ITM H maintains a history-independent dictionary Dict and, given security parameter λ,
acts as follows upon activation. Any information below that is not required explicitly to be stored is erased as
soon as each message is processed (and just before possibly responding to it and halting or being deactivated).

• It checks whether there is an ITI that it controls whose output tape it has not read so far. If not, it halts.

• Otherwise, let M be the first ITI in some arbitrary order whose output has not been read so far. H reads
this output.

• If this output is of the form (insert, key, value),

– It samples strings auth, exkey ← {0, 1}λ uniformly at random.

– It starts a new session of π with Z, and on the input tape of the associated client-side ITI M ′, it
writes (insert, exkey,⊥, value).

– The next time it is activated, it reads exauth off the output tape of M ′.

– It runs Dict.Insert((key, auth), (exkey, exauth)).

– It writes auth onto the input tape of M .

• If this output is of the form (lookup, key, auth),

– It runs Dict.Lookup((key, auth)) to get (exkey, exauth). If this lookup fails, it writes ⊥ on the input
tape of M and halts.

– Otherwise, it starts a new session of π with Z, and on the input tape of the associated client-side
ITI M ′, it writes (lookup, exkey, exauth,⊥).

– The next time it is activated, it reads value off the output tape of M ′.

– It writes value on the input tape of M .

• If this output is of the form (delete, key, auth),

– It runs Dict.Lookup((key, auth)) to get (exkey, exauth). If this lookup fails, it halts.

– Otherwise, it starts a new session of π with Z, and on the input tape of the associated client-side
ITI M ′, it writes (delete, exkey, exauth,⊥).

– It runs Dict.Delete((key, auth)).

Figure 3: Data Collector outsourcing its storage while using History-Independent Data Structures

3.2 Data Summarization and Differentially Private Algorithms

Here, we demonstrate another approach to constructing deletion-compliant data collectors that perform
certain tasks. Consider the case of research organization that wishes to compute compile data about a
population and then compute certain statistics on it. It receives such data from a number of volunteers and,
once it has enough data, compiles a “summary” of the data collected. Later, if some volunteer asks for its
data to be deleted, in order to be deletion-compliant, the organization would, in general, also have to modify
the summary in order to exclude this volunteer’s data which, depending on the summarization procedure
used, might not be possible to do without recomputing the summary on the remaining data. We observe,
however, that if the computation of the summary satisfies certain privacy properties to begin with, then in
fact deletion-compliance can be achieved without altering the summary at all, as long as not too much of
the data is requested to be deleted.

The notion of private computation we use in this respect is differential privacy [DMNS06], which is defined
as follows.

Definition 3.3 (Differential Privacy [DMNS06]). Let ε : N→ [0, 1] be a function. An algorithm A that, for
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n ∈ N, takes as input n-tuples x = (x1, . . . , xn) from some domain is said to be ε-differentially private if, for
all n, for any two n-tuples x and x′ that differ in at most one location, and any set S in the output space of
A, we have:

Pr [A(x) ∈ S] ≤ eε(n) · Pr [A(x′) ∈ S]

The idea behind differential privacy is that the output of a private algorithm does not reveal whether
any specific value in the tuple was present in the input or not. While there are crucial reasons for using the
above condition on the ratios of probabilities in the definition of differential privacy rather than a bound on
the statistical distance, for our purposes the following implication is sufficient.

Fact 3.1. If an algorithm A is ε-differentially private, then, for any two n-tuples x and x′ that differ in at
most one location, the statistical distance between the distributions of A(x) and A(x′) is at most ε(n).

We use the above guarantee to design a data collector for the aforementioned task where the summary
computed is more-or-less the same in both the real and ideal executions if the deletion-requester in the real
execution enters and deletes at most one data point. The central idea is to simply compute the summary in a
differentially private manner (rather, the data collector we construct is deletion-compliant if the computation
of the summary is differentially private).

However, this turns out to not be sufficient for a couple of reasons. The first is again the issue of
authentication. While, unlike the data storage example earlier, here the data collector does not provide a
lookup mechanism that could leak one user’s data to another, lack of authentication would enable other
attacks. For instance, if there were no authentication, then Z could send to X some data that it knows Y
will try to delete later, and this deletion would happen only in the real execution. The same authentication
mechanism as before (here represented by the random choice of the key that is sampled by the collector)
handles such issues.

The second reason is that the point at which the summary is computed has to be decided carefully. For
instance, suppose there is some n such that the collector always computes the summary once it receives n
data points. Then, if Z enters exactly (n − 1) data points and Y enter a single point, then the summary
would be computed in the real execution but not in the ideal. For this reason, we need to randomize the
point at which the summary is computed, by picking n at random. However, care is to be taken to always
compute the summary a subset of points of the same size always, as a differentially private mechanism is
allowed to leak the number of points in its input.

Accounting for all this, we design the data collector described informally below and formally within our
framework in Fig. 4.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The data collector D maintains a history-independent dictionary Dict. Given security parameter λ, it first samples
an integer thr (the threshold) uniformly at random from [λ+ 1, 2λ], initiates a counter count to 0, and a boolean flag
summarized to false. It waits to receive a message from a user that is either a data point x or a deletion request,
and processes it as follows:

• If it receives a data point x,

– it samples a new key key uniformly at random from {0, 1}λ.

– it runs Dict.Insert(key, x) to add x to the dictionary under the key key.

– if a new entry was actually inserted by the above operation, it increments count by 1, and if, further,
summarized is true, it also increments thr.

– if count = thr and summarized = false,

∗ pick a random subset S of the values in Dict such that |S| = λ.

∗ compute and store summary as the output of summarize(S).

∗ set summarized to true.

– it responds to the message with the string key.
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• If it receives a deletion request for a key key, it deletes any entry under the key key by running Dict.Delete(key).
If an entry is actually deleted, it decrements count; and if, further, summarized is true, it also decrements thr.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We show that, as long as there is at most one deletion request, the error in deletion-compliance of the
above data collector is not much more than the error in the privacy of the summarization procedure. Note
that, following Theorem 2.1 regarding the composition of deletion requests, it may be inferred that for
oblivious deletion-requesters making k deletion requests (which includes the significant case of k volunteers
asking for their data to be deleted independently of each other), the deletion-compliance error is at most k
times the error in the statement below.

Theorem 3.3. Suppose the mechanism summarize used by the data collector D in Fig. 4 is ε-differentially
private. Then, (D, π, πD) has 1-representative statistical deletion-compliance error at most (ε + 1/λ +
poly(λ)/2λ).

We prove Theorem 3.3 in Appendix A.2. The ideas behind it are: (i) due to the authentication mechanism,
Z cannot interfere with the operations initiated by Y; (ii) since the dictionary is history-independent,
arguments from Section 3.1 may be used to show that it is the same in the real and ideal executions;
(iii) since the point of computation of the summary is chosen at random, the probability that it is computed
in the real execution but not in the ideal one is low; and (iv) since the summary is computed in a differentially
private way, and the contents of the dictionary differ by at most one entry in the real and ideal executions,
the distributions of the summary are similar.

The lessons learnt from our construction here are:

1. Usage of algorithms satisfying certain notions of privacy, such as differential privacy, could enable
deletion-compliance without requiring additional action on the part of the data collector.

2. Certain aspects of the data collector may need to be hidden or have some entropy, such as the exact
point at which the summary is computed by D. In this case, this essentially ensured that the real and
ideal executions were treated similarly by the collector.

3. Authentication is necessary even if there is no lookup mechanism where the collector explicitly reveals
stored data.

3.3 Deletion in Machine Learning

Finally, we note that existing notions and algorithms for data deletion in machine learning can be used
to construct deletion-compliant data collectors that run perform such learning using the data they collect.
Recently, Ginart et al [GGVZ19] defined a notion of data deletion for machine learning algorithms that can
be used together with history-independent data structures to maintain a learned model while respecting data
deletion requests. We first rephrase their definition in our terms as follows for ease of use.

We will be concerned with a learning algorithm learn that takes as input a dataset D = {xi} consisting
of data entries xi indexed by i ∈ [|D|], and outputs a hypothesis h from some hypothesis space H. Suppose
there is an algorithm delete that takes as input a dataset D, a hypothesis h, and an index i, and outputs
another hypothesis from H. For any i ∈ [|D|], let D−i denote the dataset obtained by removing the ith

entry.

Definition 3.4 ([GGVZ19]). The algorithm delete is a data deletion operation for learn if, for any dataset
D and index i ∈ [|D|], the outputs of learn(D−i) and delete(D, learn(D), i) are identically distributed.

Given that delete is also given D in its input, there is always the trivial deletion operation of retraining
the model from scratch using D−i, but the hope is that in many cases it is possible to delete more efficiently
than this. And Ginart et al [GGVZ19] show that this is indeed possible in certain settings such as k-means
clustering.
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We model the collector’s behavior by a tuple (D, π, πD) that uses an algorithm summarize that takes a dictionary
as input and outputs a string. The ITM D, given security parameter λ, is initially set up as follows:

• It initializes a history-independent dictionary Dict.

• It samples thr uniformly at random from [λ+ 1, 2λ].

• It sets count← 0, summarized← false, and summary ← ⊥.

Upon activation, it acts as follows. Any information below that is not required explicitly to be stored is erased
as soon as each message is processed (and just before possibly responding to it and halting or being deactivated).

• It checks whether there is an ITI that it controls whose output tape it has not read so far. If not, it halts.

• Otherwise, let M be the first ITI in some arbitrary order whose output has not been read so far. D reads
this output.

• If this output is of the form (insert, value),

– It samples a string key ← {0, 1}λ uniformly at random.

– It runs Dict.Insert(key, value).

– If the above operation actually results in an insertion, increment count. If, additionally,
summarized = true, increment thr.

– If count = thr and summarized = false,

∗ Sample a random subset S of the values stored in Dict such that |S| = λ.

∗ Set summary ← summarize(S).

∗ Set summarized← true.

– It writes key onto the input tape of M .

• If this output is of the form (delete, key),

– It runs Dict.Delete(key).

– If this operation actually resulted in a deletion,

∗ Decrement count.

∗ If summarized = true, decrement thr.

The protocol π runs between two parties, the server and the client, and proceeds as follows:

• The client takes as input a tuple value.

• The client sends its input as a message to the server.

• The server writes the message (insert, value) onto its output tape.

• The next time it is activated, the server sends the contents of its input tape as a message to the client.
We refer to the content of this message as key.

• The client writes the message it receives onto its output tape.

• The deletion token for this instance is set to be key.

The protocol πD runs between two parties, the server and the client, and proceeds as follows:

• The client takes as input a string key.

• The client sends its input as a message to the server.

• The server writes the message (delete, key) onto its output tape.

Figure 4: Data Collector employing Differentially Private Summarization

We present below (and formally in Fig. 5) an example of a data collector that makes use of any learning
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algorithm with such a deletion operation to maintain a learned model while allowing the data used in its
training to be deleted. For simplicity, we assume that both the learning and deletion algorithms work with
datasets represented implicitly by dictionaries – the data is represented as the set of value’s stored in the
dictionary, and the key’s of the dictionary are used as a proxy for the index i above. Note that this can
be done without loss of generality, as either algorithm could simply start by going through all the key’s in
the dictionary in some fixed order, and writing down the values as rows of the dataset. The data collector
operates very similarly to that from Section 3.2, but this time there are no concerns about the size of the
dataset being revealed, as the deletion operation takes care of this.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The data collector M maintains a dataset as a history-independent dictionary Dict. Given security parameter λ, it
first samples an integer thr uniformly at random from [λ, 2λ], and sets a boolean flag learnt to false. It waits to
receive either a data point or a deletion request from a user, and acts as follows:

• If it receives a data point x,

– it samples a new key key uniformly at random from {0, 1}λ.

– if learnt = false,

∗ it runs Dict.Insert(key, x) to add x to the dictionary under the key key.

∗ if a new entry was actually inserted by the above operation, it increments count by 1, and if, further,
learnt is true, it also increments thr.

∗ if count = thr,

· compute and store model as the output of learn(Dict).

· set learnt to true.

– it responds to the message with the string key.

• If it receives a deletion request for the key key,

– it first runs Dict.Lookup(key). If the lookup succeeds,

∗ it updates model to be the output of delete(Dict,model, key).

∗ it runs Dict.Delete(key).

∗ it decrements count by 1.

∗ if learnt = true, it decrements thr by 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Theorem 3.4. The data collector (M, π, πD) as described in Fig. 5 has 1-representative deletion-compliance
error at most (1/λ+ poly(λ)/2λ).

We prove Theorem 3.4 in Appendix A.3, along the same lines as Theorem 3.3.
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A Proofs for Section 3

Throughout these proofs, we will use ∆ (X;Y ) to denote the statistical distance between distributions X
and Y . We will be using certain properties of statistical distance stated below.

Fact A.1. For any jointly distributed random variables (X,Y ) and (X ′, Y ′) over the same domains,

∆ ((X,Y ); (X ′, Y ′)) ≤ ∆ (X;X ′) + E
x←X

[∆ (Yx;Y ′x)]

where Yx is the distribution of Y conditioned on X = x, and Y ′x is the distribution of Y ′ conditioned on
X ′ = x.
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Proof. By the definition of statistical distance, we have:

∆((X,Y ), (X ′, Y ′)) =
∑
x,y

|Pr [X = x ∧ Y = y]− Pr [X ′ = x ∧ Y ′ = y]|

=
∑
x,y

|Pr [X = x] · Pr [Y = y | X = x]− Pr [X ′ = x] · Pr [Y ′ = y | X ′ = x]|

=
∑
x,y

|Pr [X = x] · Pr [Y = y | X = x]− Pr [X = x] · Pr [Y ′ = y | X ′ = x]

+ Pr [X = x] · Pr [Y ′ = y | X ′ = x]− Pr [X ′ = x] · Pr [Y ′ = y | X ′ = x] |

≤
∑
x

Pr [X = x] ·
∑
y

|Pr [Y = y | X = x]− Pr [Y ′ = y | X ′ = x]|

+
∑
x

|Pr [X = x]− Pr [X ′ = x]| ·
∑
y

Pr [Y ′ = y | X ′ = x]

= E
x←X

[∆ (Yx;Y ′x)] + ∆ (X;X ′)

A.1 Data Storage and History-Independence

In this subsection, we restate and prove the theorems from Section 3.1 about the deletion-compliance of data
collectors using history-independent data structures to store users’ data.

A.1.1 Proof of Theorem 3.1

Theorem 3.1. The data collector (H, π, πD) in Fig. 2 is statistically deletion-compliant.

The state stateH at any point (when it halts or is deactivated) consists only of the memory being used by
the implementation of the dictionary Dict, which we are given is history-independent. Fix any environment
Z and deletion-requester Y, both of which run in time poly(λ) given security parameter λ. For some λ, let

(stateRH, view
R
Z) be the corresponding parts of EXECH,π,πD

Z,Y (λ) and (stateIH, view
I
Z) the corresponding parts

of of EXECH,π,πD

Z,Y (λ).
To start with, note that H does not reveal any information about any data stored unless the appropriate

authentication string auth is sent with a lookup request. As auth is chosen at random each time and Y does
not communicate with Z (directly or indirectly by requesting deletion, etc., on its behalf), the environment
Z cannot tell whether Y even exists or not unless it gets lucky and guesses an auth string that it has not
seen. This leads us to the following claim that we prove later.

Claim A.1. The statistical distance between viewIZ and viewRZ is at most poly(λ)/2λ.

Next, we observe that if the insertions and deletions made by Z are the same, then the state of the
dictionary maintained by X is the same in the real and ideal executions. This is because in the real
execution, whatever Y asks to insert (and only this), it also asks to delete, and the rest follows by the
history-independence of the dictionary.

Claim A.2. For any view ∈ Supp(viewIZ), the statistical distance between the distribution of stateIH condi-
tioned on viewIZ = view and the distribution of stateRH conditioned on viewRZ = view is at most poly(λ)/2λ.

Together, Claims A.1 and A.2 imply that the distributions (stateIH, view
I
Z) and (stateRH, view

R
Z) have

statistical distance at most poly(λ)/2λ, by Fact A.1. We complete our proof by proving the above claims.

Proof of Claim A.1. Denote by RZ the random variable corresponding to the randomness string, if any,
used by Z during its execution. Suppose Z, in the course of the real execution, engages in at most q
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“interactions” Ψ1, . . . ,Ψq. Each Ψi is a random variable that may be an execution of π or πD with H, or a
message sent to Y, an activation of X or Y, or a declaration of the end of the Alive phase. Note that q is at
most poly(λ) since the running time of Z is at most this much. The view of Z is then given by the tuple
(RZ ,Ψ1, . . . ,Ψq). Distinguishing between real and ideal executions, we write viewIZ = (RIZ ,Ψ

I
1, . . . ,Ψ

I
q),

and viewRZ = (RRZ ,Ψ
R
1 , . . . ,Ψ

R
q ).

For any i ∈ [q], we show that conditioned on (RRZ ,Ψ
R
1 , . . . ,Ψ

R
i−1) = (RIZ ,Ψ

I
1, . . . ,Ψ

I
i−1) = (rZ , ψ1, . . . , ψi−1)

for any rZ and ψ1, . . . , ψi−1 in the appropriate domains, the distribution of ΨR
i and ΨI

i have statistical dis-
tance at most p(λ)/2λ for some polynomial p. Then, by repeated application of Fact A.1 (and since RRZ is
identical to RIZ), the distance between viewRZ and viewIZ is at most qp(λ)/2λ = poly(λ)/2λ.

Once we fix (RRZ ,Ψ
R
1 , . . . ,Ψ

R
i−1) and (RIZ ,Ψ

I
1, . . . ,Ψ

I
i−1) as above, all the possibilities for ΨR

i or ΨI
i are

listed below. Note that, as each Ψ is initiated by Z, the variables ΨR
i and ΨI

i are identically constituted
until Z receives a messages during the execution.

1. ΨR
i and ΨI

i are both messages to Y . In this case, as the state of Z at this point is the same in both
real and ideal executions, the message sent is also the same in both cases, and ΨR

i = ΨI
i .

2. ΨR
i and ΨI

i are both activations of X or of Y, or declarations of the end of the Alive phase. For the
same reason as in the last case, ΨR

i = ΨI
i .

3. ΨR
i and ΨI

i are both executions of π of the insert type. Again, the messages sent by Z in both cases are
the same. The responses to the messages is an auth that is sampled by H at random independently of
anything else in the system. Thus, ΨR

i and ΨI
i are identically distributed in this case.

4. ΨR
i and ΨI

i are both executions of πD. Again, the messages sent by Z in both cases are the same, and
there are no responses to it. So ΨR

i = ΨI
i .

5. ΨR
i and ΨI

i are both executions of π of the lookup type. Again, the messages sent by Z in both cases
are the same – say it is (lookup, key, auth). The response to such a message is a value that is retrieved
by H by looking up the key (key, auth) in its dictionary. And unless this key-auth pair corresponds to
one that is used by Y in the real execution of the protocol in an insert execution of π or in an execution
of πD, the response value is the same in the real and ideal executions. Further, by our requirement
of deletion-requesters, the set of key-auth pairs used in any execution of πD by Y is a subset of those
that occur in any insert execution of π initiated by it. So the probability that ΨR

i and ΨI
i disagree is

at most the probability that auth was selected as the authentication string during some insert request
by Y. As Y makes at most poly(λ) such requests and auth is drawn at random by H from the space

{0, 1}λ, the probability that this happens is at most poly(λ)/2λ.

Thus, in all cases, the statistical distance is at most poly(λ)/2λ. This proves the claim.

Proof of Claim A.2. We will prove this by showing that, once the view of Z is fixed to some view in the
support of viewIZ , the contents of Dict at the end of both the real and ideal executions are the same. The
claim then follows by the history-independence of Dict (which implies then that the state of the memory
implementing Dict is also the same), and the fact that stateH whenever H halts or is deactivated is just the
memory used to implement Dict.

In the ideal execution, the sequence of operations performed on Dict are exactly those that follow from
instances of π and πD initiated by Z, as the silent Y0 does not do anything. So in the end, the contents of
Dict are those key-value pairs that were inserted due to an insert instance of π by Z, but never deleted by a
corresponding instance of πD, as specified by view.

In the real world, the sequence of operations on Dict are those that follow from instances of π and πD
initiated by Z and also by Y. However, by design, Y always runs πD for every instance of π that it initiates,
and never runs πD for an instance of π that it did not initiate. Thus, unless there is a collision in the key
and auth in an insert instance of π initiated by Y and an instance of π or πD initiated by Z, the contents of
Dict at the end are again exactly the key-value pairs that were inserted by an insert instance of π initiated
by Z and never deleted by a corresponding instance of πD run by Z.
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The probability that there is such a collision in (key, auth) is at most poly(λ)/2λ, as there are at most

poly(λ) instances of π, and each auth is selected at random from {0, 1}λ during an insert. (Note that since we
are conditioning on a view in the support of viewIZ , any lookup request by Z using a (key, auth) that it did
not insert would fail, and this could only decrease the probability of such a collision given a certain number
of instances.) Thus, conditioning on the view of Z being fixed in this manner, except with probability at
most poly(λ)/2λ over the randomness of H, the contents of the dictionary are distributed identically in the
real and ideal worlds, thus proving the claim.

A.1.2 Proof of Theorem 3.2

Theorem 3.2. Following terminology from Fig. 3, the data collector (H2, π, πD) is conditionally statistically
deletion-compliant in the presence of (π, πD).

Fix any environment Z such that (Z, π, πD) is statistically deletion-compliant in the presence of (π, πD),
and any deletion-requester Y. We prove the conditional deletion-compliance of (H2, π, πD) by showing that
for any such Z and Y, the states of H2 and Z at the end of execution is almost identical to those of a sequence
of different configurations of entities. Fix some security parameter λ. Throughout the real execution, if Z
at some point uses a string auth that was given to Y during an insert execution of π, the data collector’s
guarantees fail. But, as auth is chosen at random from {0, 1}λ, this happens with probability at most
poly(λ)/2λ. We count this probability towards the error and, in the rest of the proof, we condition on this
event not happening. The guarantees would also fail if Y executed πD to ask for deletion of an instance of
π it did not initiate, but by definition of Y this does not happen. Throughout the rest of the proof, we also
refer to H2 as X for ease of notation.

Let (stateRX , state
R
Z) be the corresponding parts of the result of the real execution EXECX ,π,πD

Z,Y,(π,πD)(λ).

We define a new data collector X1 based on X and Y to use as a hybrid in our arguments. X1 essentially
simulates two instance of X – X1,Z , which handles the instances of π initiated by Z, and X1,Y , which acts
independently (using a separate dictionary) and handles instances of π initiated by Y. Note that an X1 is
not really a valid data collector as a data collector has no idea which protocols are initiated by Y and which
by Z, but we only consider X1 in the proof after fixing Z and Y, where it is well-defined. Let state1

X1,Z
represent the part of the state of X1 that corresponds to the memory used by the simulation X1,Z , and

state1
Z the state of Z, both in the execution EXECX1,π,πD

Z,Y,(π,πD). Note that this execution looks identical to Z
to the real execution (due to the conditioning on no collisions with Y). By the history-independence of the
dictionary used, we have the following:

Claim A.3. (stateRX , state
R
Z) and (state1

X1,Z
, state1

Z) are distributed identically.

Next, we reorganize the entities X1 and Y into two new entities X2 and Y2 in order to fit them in an
auxiliary execution that we will set up. X2 is essentially X1,Z , but additionally will play the role of the
environment in the auxiliary execution. In order to do this, whenever it is activated in the course of the
execution by default (that is, not because of a message that was sent to it or an output by one if the ITIs
it controls), it simply activates Z, which will act as the data collector in this auxiliary execution. Y2, on
the other hand, acts as the combination of Y and X1,Y : it simulates Y and X1,Y , and whenever Y initiates a
protocol instance of π or πD, it simulates its interaction with X1,Y , and when X1,Y tries to initiate a protocol
with Z, Y2 runs this protocol with the actual Z in its place. And when Z sends a message intended for Y,
Y2 forwards this to its simulation of Y.

It may be seen that, under the above setup, AEXECZ,π,πD

X2,Y2,(π,πD)(λ) is a valid auxiliary execution. Let

(state2
X2
, state2

Z) be the corresponding parts of this execution. It may be seen that all we have done is
reorganize the various entities and the actual computation and storage going on is the same as in the
previous execution. Thus, we have the following,

Claim A.4. (state1
X1,Z

, state1
Z) and (state2

X2
, state2

Z) are distributed identically.

Let (state3
X2
, state3

Z) be the corresponding parts of the ideal auxiliary execution AEXECZ,π,πD

X2,Y0,(π,πD)(λ).

By the auxiliary-deletion-compliance of (Z, π, πD) in the presence of (π, πD), we have the following.
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Claim A.5. The distributions of (state2
X2
, state2

Z) and (state3
X2
, state3

Z) have negligible statistical distance.

Let (stateIX , state
I
Z) be the corresponding parts of the ideal execution EXECX ,π,πD

Z,Y0,(π,πD)(λ). In a manner

identical to Claims A.3 and A.4, we can show the following.

Claim A.6. The distributions of (stateIX , state
I
Z) and (state3

X2
, state3

Z) are distributed identically.

Together, Claims A.3 to A.6 show that, conditioned on the auth strings of Y not being used by Z, the
states of X and Z in the real and ideal executions have negligible statistical distance. As this event being
conditioned on happens except with negligible probability as well, the theorem follows.

A.2 Data Summarization and Differentially Private Algorithms

Theorem 3.3. Suppose the mechanism summarize used by the data collector D in Fig. 4 is ε-differentially
private. Then, (D, π, πD) has 1-representative statistical deletion-compliance error at most (ε + 1/λ +
poly(λ)/2λ).

The state stateD of the data collector D consists of the memory used to implement and store the history-
independent dictionary Dict, the summary summary (⊥ or otherwise), the threshold thr, and the variables
count and summarized.

Fix any environment Z and a 1-representative deletion-requester Y. To start with, the only messages
that Z receives from D are the key strings, which are chosen at random independently of everything else,
and so we have the claim below from arguments similar to those for Claim A.1.

Claim A.7. viewRZ and viewIZ are distributed identically.

Fix any view of Z (to something from an ideal execution). That is, fix the sequence and content of
all messages sent and received by Z. We next show that, even under this conditioning, the state of D is
distributed almost the same at the end of the real and ideal executions.

Claim A.8. Conditioned on viewRZ = viewIZ = view for some view ∈ Supp(viewIZ), the statistical distance
between the distributions of stateRD and stateID is at most ε+ 1/λ+ poly(λ)/2λ.

Using Fact A.1, the Claims A.7 and A.8 together prove Theorem 3.3. We now finish by proving Claim A.8.

Proof of Claim A.8. stateD consists of the memory used to implement the dictionary Dict, the variables thr,
count and summarized, and the summary that may have been computed during the execution. A bad case
in which D actually performs poorly is when the key given to Y during an insertion is also used at some
point by Z, in an insertion or deletion request. However, as key is chosen uniformly at random from {0, 1}λ,
this happens with probability at most poly(λ)/2λ over the randomness of D. We add this probability of
failure to our error and, in the rest of the proof, condition on this event not happening. (The other bad
event is if Y asks for deletion of an instance of π that it did not execute, but by the requirements on Y this
does not happen.) After the above conditioning, all valid insertion and deletion requests by Z and Y result
in insertions and deletions as expected. Under this conditioning, we fix the view of Y to anything valid, and
show that the conclusion of Claim A.8 holds even for this fixed view of Y.

Next, we observe that conditioning on any fixing of the views of Z and Y, the distributions, at the end of
the executions, of Dict and the tuple (thr, count, summarized, summary) are independent of each other, for
the following reason. Fixing the views of Z and Y fixes the sequence of (key, value) pairs that are inserted
into and deleted from Dict. Since Dict is history-independent, its distribution (that is, the distribution of
the memory used to implement it) is determined completely by the content resulting from this sequence of
insertions and deletions. Due to how it is computed, the distribution of summary is determined completely
by the content of Dict at the point when it contain thr entries for the first time; both this and the values of
thr, count and summarized are determined completely by the sequence of valid insertions and deletions in
the execution. Thus, fixing the views makes these two distributions independent.
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Due to this independence, it is sufficient to argue separately that Dict and the above tuple are distributed
similarly in the two executions. Since we have fixed the view of Z, and hence the sequence of insertions and
deletions made by it, and Y also deletes whatever it inserts, the contents of Dict are indeed the same at the
end of the real and ideal executions. Next we argue about the distributions of thr, count and summary
(and ignore summarized since, without loss of generality, it is completely determined by summary).

Let varsRn and varsIn denote the distributions of (thr, count, summary) in the real and ideal executions,
respectively, when thr is chosen by D to be n. The distribution of this tuple in the real and ideal executions
are equal convex combinations of the varsRn ’s and varsIn’s, respectively, for the various values of n ∈ [λ+1, 2λ].
Below we essentially show that for most values of n, there is an n′ (and vice versa) such that the distribution
varsRn is almost identical to varsIn′ .

Suppose there are a total of m valid insertions in the sequence of operations initiated by Z (which we
have fixed according to the conditioning in the claim being proven). Together with the insertion by Y, there
are a total of (m + 1) insertions that we denote by ins1, . . . , insm+1. Of these, the i corresponding to the
insertion by Y we denote by iY , and the i that corresponds to the insertion that just precedes the deletion
request by Y by iY,D.

We define two functions fR, fI : [λ + 1, 2λ] → ([m + 1] ∪ {⊥}) that are defined as follows. For any
n ∈ [λ + 1, 2λ], fR(n) is set to be the i such that when D sets thr = n in the beginning, summary in the
real execution is computed at insi, or ⊥ if summary is never computed in this case. Similarly, fI(n) is set
to be the i such that summary is computed in the ideal execution at the insertion corresponding to insi
with thr = n in the beginning, and ⊥ if it is never computed. Observe that (i) summary is computed the
first time the number of entries in Dict equals thr, and (ii) the number of entries in Dict just after insi is
the same in the ideal and real executions if i < iY or i > iY,D, and otherwise is exactly one more in the real
execution than in the ideal. These two observations immediately give the following claim.

Claim A.9. The functions fR and fI have the following properties for any n ∈ [λ+ 1, 2λ]:

1. If fR(n) < iY , then fI(n) = fR(n).

2. If fR(n) > iY,D, then fI(n) = fR(n).

3. If fR(n) = ⊥, then fI(n) = ⊥.

4. If n is such that fR(n) ∈ [iY , iY,D] and it is not the least n with this property, then fR(n) = fI(n− 1).

Proof of Claim A.9. The first three statements follow immediately from the observations listed above the
statement of the claim, and we prove the fourth now. Suppose n is such that both fR(n) and fR(n− 1) are
in [iY , iY,D]. This implies that fR(n) is the i such that the number of entries in Dict equals n for the first
time in the real execution. By observation (ii) above, the number of entries in Dict in the ideal execution at
this point is (n− 1), and we claim that this is also the first time this happens (that is, fI(n− 1) = fR(n)).
If not, then either fI(n− 1) < iY , or fI(n− 1) ∈ [iY , fR(n)). In the former case, fR(n− 1) = fI(n− 1), but
we know this cannot happen as fR(n − 1) ≥ iY . In the latter case, there would be n entries in Dict in the
real execution at the point fI(n− 1), implying that fR(n) is less than itself. Thus, we reach a contradiction
in both cases, proving the claim.

Suppose the initial value of thr was set to n. Note that summary is computed using the contents of
Dict in the real execution just after insfR(n), and summary in the ideal execution just after insfI(n) (if these
function values are not ⊥). We look at the following exhaustive list of cases for n:

1. Either fR(n) < iY , or fR(n) > iY,D. In these cases, by Claim A.9, fI(n) = fR(n). And in these cases,
when fR(n) 6= ⊥, the contents of Dict in the real execution after insfR(n) is the same as the contents
in the ideal execution after insfI(n). Thus, in all these cases, the summary computed in the real and
ideal executions are distributed identically. Further, at the end of both the real and ideal executions,
thr and count are set to be the number of entries still remaining in Dict, which is again the same in
both real and ideal executions. Thus, in this case, varsRn and varsIn are distributed identically.
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2. fR(n) = ⊥. By Claim A.9, fI(n) is also ⊥. In both the real and ideal executions, summary is never
computed, and at the end thr is still n and count is the number of entries in Dict, which is the same
in both executions. Thus, in this case too, varsRn and varsIn are distributed identically.

3. fR(n) ∈ [iY , iY,D], and n is not the least with this property. In this case, by Claim A.9, fR(n) =
fI(n − 1) = i, say. The contents of Dict after insi in the real and ideal executions differ by at most
one entry – that inserted by Y. The ε-differential privacy of summarize now guarantees that the
distributions of summary computed in the real and ideal executions have statistical distance at most
ε. Further, at the end of the execution, both thr and count are equal to the number of entries in Dict,
which is the same in both executions. Thus, the statistical distance between varsRn and varsIn−1 is at
most ε.

4. fR(n) ∈ [iY , iY,D], and n is the least with this property. In this case there is no distribution in the
ideal case that we can compare the distribution of summaryRn to, but there is just one such value of n.

Thus, except for one value of n that is chosen with probability at most 1/λ, each varsRn is at most ε-far
from some unique varsIn′ . Thus, the statistical distance between the distributions of (thr, count, summary)
in the real and ideal executions is at most (ε + 1/λ), conditioned on the bad event of a repeated key not
occuring. As this event happens with probability at most poly(λ)/2λ as noted at the beginning of the proof,
the statistical distance between the distribution of (thr, count, summary) is at most (ε+ 1/λ+ poly(λ)/2λ),
proving the claim.

A.3 Deletion in Machine Learning

Theorem 3.4. The data collector (M, π, πD) as described in Fig. 5 has 1-representative deletion-compliance
error at most (1/λ+ poly(λ)/2λ).

Fix any environment Z and a deletion-requester Y that runs at most one execution of π. As the envi-
ronment Z only receives randomly chosen key’s as messages, its view in both the real and ideal executions
are identical.

Claim A.10. viewRZ and viewIZ are distributed identically.

Similar to the proof of Theorem 3.3, we show that, conditioned on the view of Z being fixed to any
specific view in both the real and ideal executions, the distribution of the state of X is similar. That is, we
show the following claim that, together with the above observations about the views and Fact A.1, proves
Theorem 3.4.

Claim A.11. Conditioned on viewRZ = viewIZ = view for some view ∈ Supp(viewIZ), the statistical distance
between the distributions of stateRM and stateIM is at most (1/λ+ poly(λ)/2λ).

Proof Sketch of Claim A.11. The proof of Claim A.11 follows along the same lines as that of Claim A.8,
being identical all the way up to Claim A.9 except using model instead of summary. In the case analysis
following the statement of Claim A.9 there, the first, second and fourth cases hold here as is, and in the third
case, though the model computed initially is different, due to the perfect deletion operation of the algorithm
learn, the distribution of model at the end of the execution is the same in the real and ideal executions.
Thus, the error this time is only from the fourth case, and is 1/λ. Together with the error from the possible
repetition of Y’s key, this proves the claim.
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