An upper bound on the decryption failure rate
of static-key NewHope

John M. Schanck

Institute for Quantum Computing, University of Waterloo, Waterloo, Canada

Abstract. We give a new proof that the decryption failure rate of
NewHope512 is at most 273988 As in previous work, this failure rate is
with respect to random, honestly generated, secret key and ciphertext
pairs. However, our technique can also be applied to a fixed secret key.
We demonstrate our technique on some subsets of the NewHopel024 key
space, and we identify a large subset of NewHopel024 keys with failure
rates of no more than 274395,

1 Introduction

NewHopeﬂ is an instantiation of the Lindner—Peikert encryption scheme [2] that
has been submitted to the second round of NIST’s post-quantum standardization
effort [4]. The NewHope decryption procedure can fail on an honestly generated
ciphertext, though failures are extremely rare for the recommended parameter
sets. NewHope512 and NewHope1024 are claimed to have failure rates of < 27213
and < 27216 respectively [4]. These upper bounds are already low enough to
discourage reaction attacks, and the authors “do not expect [the upper bounds]
to be so tight” [4, Section 4.2.7]. Nevertheless, there is interest in deriving tighter
upper bounds (e.g. [6l3]) as these could lead to parameter sets with smaller
message sizes and higher security.

In the analysis of the original Lindner—Peikert scheme, a successful decryption
is modelled by the event that n inner products between n pairs of random
vectors all take values in some interval about zero. All 2n random vectors have
independent and identically distributed coefficients, and it is typically feasible to
compute the exact probability that one inner product is large. The decryption
failure rate is no more than n times this.

NewHope is a ring variant of the Lindner—Peikert scheme. When one accounts
for the ring structure, the 2n vectors in the model above are derived from just
two vectors by way of signed cyclic permutations. This does not complicate
the calculation of the decryption failure rate. However, NewHope also uses the
additive threshold encoding technique of Poppelmann and Giineysu [5]. With
this technique, each bit of the shared secret is redundantly encoded into m out of
n of the inner products. Because the 2n vectors are related, the m inner products
that influence each bit of the shared secret are not independent.

! Throughout this document we use “NewHope” to refer to NewHope-Simple [1] (ak.a.
NewHope-CPA-PKE [4]).

1.1 Related work

If m is small, and the coefficient distribution has a narrow support, then it is
feasible to calculate the exact probability of a single bit failure. As observed by

Song, Lee, Lee, Shin, Kim, and No [6], if u1,...u, and vq,..., v, are random
variables with the NewHope coefficient distribution, and vs,...,v,, are m x 1
vectors derived from v; = (v1,...,v,,) by signed cyclic permutations, then the

exact probability of a single bit failure can be expressed in terms of the sum of
n/m independent random variables distributed as 2211 U; V.

Song, Lee, Lee, Shin, Kim, and No numerically compute the exact distribution
of > u;v;. They then find that the decryption failure rate of NewHope512 is
no more than 273999 and that the decryption failure rate of NewHopel024 is
no more than 274189 Plantard, Sipasseuth, Susilo, and Zucca have calculated
similar failure rates using a heuristic method [3].

1.2 Contributions

The Song—Lee-Lee—Shin—Kim—No upper bound is tight, but it only measure the
probability that a random honestly generated key fails to decrypt a random
honestly generated ciphertext. An honest user might be more concerned about
the probability that their key fails to decrypt a random honestly generated
ciphertext.

We prove an upper bound on the probability that a fixed NewHope key fails to
decrypt a random honestly generated ciphertext. We find that the average failure
rate over the entire NewHope512 key space is at most 273988, This essentially
matches the Song—Lee-Lee-Shin—-Kim—No result. The situation for NewHopel024
is more interesting, as our technique identifies a useful subset of keys with a lower
than average failure rate.

We propose a fast, constant-time, procedure to sample from this subset of
the NewHopel024 key space. We prove that every key output by our sampling
procedure enjoy a failure rate of at most 27492 (Lemma [2]). Heuristically, the
rate is at most 274379 (Remark [L)).

Finally, we provide software that computes our upper bound and its average
value over certain subsets of the key space. Our software also reproduces the
Song—Lee-Lee—-Shin—Kim—No calculation.

1.3 Discussion

In practice, NewHope512 and NewHopel024 are perfectly correct KEMs. It is
unlikely that there will be more than 264 honest users. Each user fixes a set of
2256 possible ciphertexts as part of the Fujisaki-Okamoto transformation. The
probability that there are any failures among 232° key and ciphertext pairs is at
most 2770 for NewHope512 and at most 2780 for NewHopel024. This follows
from the Song-Lee—Lee—Shin—Kim—No calculation, but was not noted in [6].
Some users might prefer a more compact and/or more secure scheme over a
perfectly correct scheme. We present some alternative parameters in Table

Acknowledgements Thanks to Léo Ducas and Sanketh Menda for comments
on drafts of this paper. This work was supported by the Institute for Quantum
Computing (IQC). IQC is supported in part by the Government of Canada and
the Province of Ontario

2 Preliminaries

2.1 NewHope

A complete description of the NewHope-Simple/NewHope-CPA-PKE can be
found in [4]. We focus only on the parts that are relevant to our analysis. The
system parameters are a ring R, a dimension n (the rank of R as a Z-module),
a modulus q, a centered binomial noise parameter k, a ciphertext compression
parameter r, and a redundancy parameter m. The ring is R = Z[x]/(x™ + 1)
for both of the recommended parameter sets: NewHope512 (n = 512, m = 2,
q=12289, k =8, r = 8) and NewHopel024 (n = 1024, m = 4, ¢ = 12289, k = 8,
r = 8). Either parameter set can be used to exchange a 256(= n/m) bit shared
secret.

2.2 The ring R

Elements of R = Z[x]/(x™ 4+ 1) can be viewed as vectors in R™ by identifying
the the power basis {1,x,x2,...,x" !} of R as an orthonormal basis of R”. The
probability of decryption failure can then be stated in terms of the Euclidean inner
product (-,-). We write T for the image of r under x — —x"~!. The following
fact is immediate if one notes that r corresponds to the transpose of r in the ring
of “negacyclic matrices”, which is isomorphic to R.

Fact 1 The adjoint of R-multiplication by r is R-multiplication by T, i.e., (a,rb) =
(ra,b).

2.3 Distributions on R

For a distribution y on Z, we view x*™ and as a distribution on R and write

f «+ x*™ to say that the coefficients of f are drawn independently from . For
distributions x; and x2 on Z, we write x1 * xo for the distribution of a 4+ b with
a < x1 and b < xo. The centered binomial distribution of parameter k, hereafter
1y, is the distribution of Zi:ol b; — b, where b and b’ are uniformly random
elements of {0, l}k. The compression artifact distribution with parameters r; and
7o is the distribution of y— Lz% when y is drawn uniformly from {0,1,...,r; —1}
and z = Ly:—ﬂ Here |-] is the nearest integer function; we apply it only to positive
rationals and round 1/2 to 1. When a NewHope parameter set is clear from
context, we write p for the compression artifact distribution with parameters
rr =qand ro = 7.

3 Correctness

The NewHope key generation procedure involves ring elements s and e. Key
encapsulation involves ring elements s’, €', and e”. The correctness condition
can be stated in terms of the quantity

d=se +es +e’ (1)
where s,e,8", € « ;" and € « (¢, * p)”". The i-th coefficient of d is
(x',d) = (x's,e') + (x'e,s') + (x',e") (2)

Let y = x"/™. The i-th bit of the session key will be recovered successfully if

3

— Joi mq
y/xd)] < =1 (3)

I
=)

J

(c.f. |1} Line 4 of Algorithm 2]). For fixed s and e we define vy,...,v,, to be
elements of R? with

vi =y "'(58). (4)
With w = (€/,s’), this allows us to re-write Equation [3| as

m

S (vixtw) 4 (7 x ey < T)

j=1

or, after applying a triangle inequality, as

> ltwyoxw)| < B 3 (v ©

Decryption is successful if Equation |§| holds for all 0 < i < n/m; we emphasize
that this is a sufficient but not necessary condition.

3.1 Dependencies between coefficients of d

It is relatively easy to calculate the exact distribution of |<Xi, d>|, or the exact
probability that |(x’,d)| > 100. However, the events |(x’,d)| > 100 and, say,
|(x+2%6 d)| > 100 are not independent. This makes it more difficult to calculate
the exact probability that Equation [3] or [f] is violated.

As before, fix s and e and the corresponding values of vy, ..., v,,. We define
the Gram-Schmidt vectors and coefficients

* ok

i—1
vi=vi— Y pigvy and ;= (vi, Vi) /(V5,v})
j=1

by induction on 4, 1 < i < m. We can then give an upper bound on the left hand
side of Equation [f]in terms of the p; ;:

m m

](vj,x*iw>|gz 1+ Z ek 51 |<vj,x W>’ (7

j=1 k=j+1

We say that (s, e) has the a-correlation property if Zk_ﬁl
1 < j < m. For keys with the a-correlation property, we have

|k, i < a, for all

m m m
Z 1+ Z ek, ‘<V],X w)| < ‘v X" 'w) (8)
j=1 k=j+1 j:l

The right hand side is maximized when x~*w lies along a main diagonal of the
parallelepiped formed by the v7. Suppose that k is such that |(vk,x*iw)| >
}(Vj,x*iw>| for all j. Note that v, = y*(s, @) has the a-correlation property for
the same values of « that vi = (§,€) does, so we obtain the same correctness
condition for this “rotated” key. The right hand side of Equation [8] relative to
this rotated key, is no more than (1 + a)y/m | (v, x~'w)|.

The above argument implies that the i-th bit of the shared secret is decoded
correctly if

m—

—1 //
1r<1§3mm(1+04 Vm (v, x~ w)| < Z()Ky ,x e 9)
While this still depends on the p; ;, it suggests that we can improve correctness
by restricting the key space to keys with small «.

4 NewHopeb512

The case of m = 2, as in NewHope512, is particularly simple. Fact [I] implies that
t2,1 = 0, so all keys have the a-correlation property with o = 0. Taking a union
bound over the m assignments of j and the n/m assignments of i in Equation EL
we see that the probability of failure for a fixed v = (8, €) is no more than

n-Pr \/§|<V,W>|+Z|<yj7e”>‘>% (10)

Jj=0

for s’,e’ « ", e « (Y xp)"", v = (5,€), and w = (€,).

5 NewHopel024

When m = 4, as in NewHopel024, the following lemma shows that (s, e) has the
a-correlation property with o = |ug,1| max{2,1/(1 — |uz2,1|)}. In the subsection
that follows, we describe a procedure that changes the signs of some coeflicients
of (s, e) to reduce |p2,1].

Lemma 1. For allv € R? and p; j, 4 > i > j > 1, as defined above, we have

1 fpaa| + [ps | + |pa] = 2 |p21],
2. |ps2| + a2l = |p21] /(1 = |p2a]), and
3. |pas| = [p2,1]-

Proof. Factimplies (xivi,vi) = —(x""'vy,v1). So pe1 = —pga1 and pz 1 =0,
hence (1).

For (2), note that (v;,v;) = (v,_j+1,v1) for ¢ > j. In particular, (v4,ve) =
<V37V1> = M371<V1,V1> = 0. It follows that

32 = ((vs,va) — p2,1(vs, v1)) /(v3,v3) = ((v2,v1) = 0) /(v3,V3) = c1i21

where ¢1 = (vi,vy1)/(v},v3) = 1/(1—;;%71). Moreover, since (vq, v1) = —(va, v1),

pa2 = ((Va, va) — p21(va, v1)) /(V5,v3) = c1pi3 ;.

Claim (2) follows.
For (3), we have

paz = ((va,v3) — p32(va, v3) — p31(va, vi)) /(V3, V3).

Observe that (vy,vs) = p21(vs, va), that pso(va,v3) = 2143 5(v5,v3), and
that p13,1 = 0. We have

pas = 2 ((vs,vs) — p3 o (vs,v)) /(v3, Vi),
and, since (v3,v3) = (vs, vs) — 13 5(v3,v3), (3) follows. O

Fix some v = (8, €) and some « such that v has the a-correlation property.
Let w = (€/,8') « 1 *" and e” « (¢, * p)*". Taking a union bound over the
m assignments of j and the n/m assignments of i, we find that Equation |§| is
violated with probability no more than

3

n-Pr(2(1+a) [(vow) + 3 [(y7.e")] >] - (11)
§=0

5.1 Ensuring |p2.1| is small

We will now describe a procedure that produces a (§',€’) that is the same length
as (8, €) but has a potentially smaller value of |p2,1]|. Note that (§,yS) = (s, ys)
by Fact [I} so we can work with (s, e) rather than on (s,e). Let 7(s) = (s, ys)
and let ;5 = s — 2s;x° be the vector obtained by flipping the sign of the i-th
coordinate of s. We have

T(8) — 28;(Sign/a — Siysnsa) ifi €0, %
3

T(O’Z'S) = T(S) — 281'(51‘,"/4 + 5i+n/4) ifi e [% Tn), (12)
T(S) - 287;(57;_”/4 - Si—3n/4) ifi € [37,71,)

Observe that if s* is obtained from s by flipping the signs of coefficients in
alternating runs of n/4 coefficients, i.e. by applying o; with i € [0,n/4) U
[n/2,3n/4], then 7(s*) = —7(s*). For s,e < ¢;", a sign flip in either s or e
changes the value of |7(s) + 7(e)| by at most 4k2. It follows that some sign flip
in the Reduce algorithm results in an (s’,e’) with |7(s') + 7(e)| < 2k2.

Reduce(s, e):

1. fori=0,1,...,n—1

2. if |T(o:8) + 1(e)] < |7(s) + 7(e)|
3 S < 0;S.

4 if |7(s) + 7(0:€)| < |7(s) + 7(e)|
5. e + o;e.

6. return v

Lemma 2. Let s,e < ;" and let s' = Reduce(s) and € = Reduce(e). Then,

with overwhelming probability, (s',€’) has the a-correlation property with o =
6k/n.

Proof (sketch). Note that |u2 1| = c1/ca where ¢; = |7(s') + 7(€/)| < 2k* and
co = |(s/,8) + (€', €')|. By approximating ¢, by a Gaussian and applying a stan-
dard tail bound on the chi-squared distribution, we find that cg is at least 2kn/3
with probability at least 1 — 0.94". Hence |ug,1| < 3k/n with high probability,
and the claim follows by Lemma a

Remark 1. We suspect that a much smaller value of «, even o« = 0, can be used
in practice. In experiments with n = 1024, we have found that Reduce generally
produces pairs (s,e) with |7(s) + 7(e)| < 1. One could enforce a = 0 through
rejection sampling. With a = 2/n we find a failure rate of < 274379 and with
a = 0 we find a failure rate of < 2-439-5,

Remark 2. The conditional sign flips in Reduce can be implemented in con-
stant time using standard techniques. The conditionals should be tested using

Equation [12]

6 Software

Our software (file embedded in pdf) is based on the decryption failure script from
the Kyber submissionﬂ It computes distributions x1, X2, and ys numerically,
where: x1 is the distribution of 21221 a; - b; for a;, b; < ¥i; x2 is the distribution
of >0 ¢; + d; for ¢; « vy and d; < pg,; and x3 is the distribution of (1 +
a)y/me| + |f] for e - x1 and f < x2. Note that Equations [10[and [11| are of the

2 https: //github.com/pg-crystals/security-estimates

Calculations for
"An upper bound on the decryption failure
probability of NewHope with a static key"
John M. Schanck 2019
#
Partly based on
https://github.com/pq-crystals/security-estimates/blob/master/proba_util.py

from mpmath import mp
from mpmath import erfc, ceil

mp.prec = 53
ZERO = mp.mpf(0)
APPROX_ZERO = mp.mpf(2**-600)

def log2(x):
 if x == 0:
 return 0
 return mp.log(x, 2)

def binomial(n, i):
 return int(mp.binomial(n, i))

def mod_switch(x, q, rq):
 return int(round(1. * rq * x / q) % rq)

def mod_centered(x, q):
 a = x % q
 if a < q/2:
 return a
 return a - q

def build_artifact_dist(q, rq):
 D = {}
 for x in range(q):
 y = mod_switch(x, q, rq)
 z = mod_switch(y, rq, q)
 d = mod_centered(x - z, q)
 D[d] = D.get(d, ZERO) + 1./q
 return D

def build_centered_binomial_dist(k):
 D = {}
 for i in range(0, k+1):
 D[i] = D[-i] = binomial(2*k, i+k) / 2.**(2*k)
 return D

def tail_probability(D, t):
 s = 0
 for (x,px) in sorted(D.items(), key=lambda t: abs(t[1])):
 if abs(x) > t:
 s += px
 return s

def dist_absolute(A):
 C = {}
 for a in A:
 c = abs(a)
 C[c] = C.get(c, ZERO) + A[a]
 return C

def dist_convolution(A, B, ignore_below=ZERO):
 C = {}
 for a in A:
 for b in B:
 p = A[a] * B[b]
 if (p > ignore_below):
 C[a+b] = C.get(a+b, ZERO) + p
 return C

def dist_iter_convolution(A, i, ignore_below=APPROX_ZERO):
 D = {0: 1.0}
 i_bin = bin(i)[2:] # binary representation of n
 for ch in i_bin:
 D = dist_convolution(D, D, ignore_below=ignore_below)
 if ch == '1':
 D = dist_convolution(D, A, ignore_below=ignore_below)
 return D

def dist_product(A, B):
 C = {}
 for a in A:
 for b in B:
 c = a*b
 C[c] = C.get(c, ZERO) + A[a] * B[b]
 return C

def dist_scale_newhope(A, x):
 B = {}
 for a in A:
 a2 = int(round(a * x + 0.5))
 B[a2] = B.get(a2, ZERO) + A[a]
 return B

def dist_cartesian_product(A, B):
 C = {}
 for a in A:
 for b in B:
 p = A[a] * B[b]
 a1 = a if isinstance(a,tuple) else (a,)
 b2 = b if isinstance(b,tuple) else (b,)
 c = a1+b2
 C[c] = p
 return C

def dist_negacyclic_sum(A):
 B = {}
 for a in A:
 c = [0]*len(a)
 for i in range(len(a)):
 for j in range(len(a)):
 s = -1 if j < i else 1
 c[j] += s * a[j-i]
 c = tuple(c)
 B[c] = B.get(c, ZERO) + A[a]
 return B

def dist_vector_dot(A,B):
 C = {}
 for a in A:
 for b in B:
 c = sum([ai * bi for (ai,bi) in zip(a,b)])
 C[c] = C.get(c,ZERO) + A[a]*B[b]
 return C

class NewHope:
 def __init__(self, n, m, k, q, rc2):
 self.n = n
 self.m = m
 self.k = k
 self.q = q
 self.rc2 = rc2

 def threshold(self):
 return self.m * self.q // 4

 def dfr_alpha(self, alpha):
 c = build_centered_binomial_dist(self.k)
 r = build_artifact_dist(self.q, self.rc2)
 D1 = dist_product(c, c)
 D1 = dist_iter_convolution(D1, 2*self.n)
 D1 = dist_scale_newhope(D1, (1+alpha)*self.m**0.5)
 D1 = dist_absolute(D1)
 D2 = dist_convolution(c, r)
 D2 = dist_iter_convolution(D2, self.m)
 D2 = dist_absolute(D2)
 D = dist_convolution(D1,D2)
 return D

 def dfr_fixed_key(self, key, alpha):
 c = build_centered_binomial_dist(self.k)
 r = build_artifact_dist(self.q, self.rc2)
 T = {t : key.count(t) for t in set(key)}
 D1 = {0:1}
 for t in T:
 tMc = dist_product(c, {t : 1})
 tMc = dist_iter_convolution(tMc, T[t])
 D1 = dist_convolution(D1, tMc)
 D1 = dist_scale_newhope(D1, (1+alpha)*self.m**0.5)
 D1 = dist_absolute(D1)
 D2 = dist_convolution(c, r)
 D2 = dist_iter_convolution(D2, self.m)
 D2 = dist_absolute(D2)
 D = dist_convolution(D1,D2)
 return D

 def dfr_sllskn19(self):
 c = build_centered_binomial_dist(self.k)
 r = build_artifact_dist(self.q, self.rc2)
 cm = dist_cartesian_product(c,c)
 x = self.m//2
 while self.m > 1:
 cm = dist_cartesian_product(cm,cm)
 x //= 2
 cmsum = dist_negacyclic_sum(cm)
 W = dist_vector_dot(cm,cmsum)
 D1 = dist_iter_convolution(W, 2*self.n//self.m)
 D2 = dist_convolution(c, r)
 D2 = dist_iter_convolution(D2, self.m)
 D = dist_convolution(D1,D2)
 return D

def dfr(label, ps):
 m = ps.m
 n = ps.n
 q = ps.q
 k = ps.k
 r = ps.rc2

 if m == 2:
 alpha = 0
 elif m == 4:
 alpha = 6*k/n
 else:
 raise ValueError("Need m=2 or m=4")

 s = (1+alpha)*(2*n*m*k**2/4)**.5
 x = m*q/2 * (1/2 - 1/r)
 approx = erfc(x/(s * 2**.5))
 print(label, "alpha={:.4f}".format(alpha), \
 "approx log2(dfr) {:.1f}".format(float(log2(n * approx))), \
 "pk bytes {:d}".format(int(n*ceil(log2(q))/8 + 32)), \
 "ct bytes {:d}".format(int(ceil(log2(q))*n/8 + ceil(log2(r))*n/8)))

 c = build_centered_binomial_dist(k)
 key = []
 for (t,pt) in c.items():
 key += [t]*(int(pt*2*n))

 D = ps.dfr_fixed_key(key, alpha)
 f = tail_probability(D, ps.threshold())
 print(label, "alpha={:.4f} exact fixed-type dfr {:.1f}".format(alpha, float(log2(n * f))))

 D = ps.dfr_alpha(alpha)
 f = tail_probability(D, ps.threshold())
 print(label, "alpha={:.4f} exact average dfr {:.1f}".format(alpha, float(log2(n * f))))

 D = ps.dfr_sllskn19()
 f = tail_probability(D, ps.threshold())
 print(label, "SLLSKN19 exact average dfr {:.1f}".format(float(log2(m * n * f))))

PSS = [
 ("newhope(n=512, m=4, k=1, q=769, r=4)", NewHope(512,4,1,769,4)), \
 ("newhope(n=512, m=2, k=2, q=3329, r=8)", NewHope(512,2,2,3329,8)), \
 ("newhope(n=512, m=2, k=4, q=3329, r=8)", NewHope(512,2,4,3329,8)), \
 ("newhope(n=512, m=2, k=8, q=7681, r=8)", NewHope(512,2,8,7681,8)), \
 ("newhope(n=512, m=2, k=4, q=7681, r=4)", NewHope(512,2,4,7681,4)), \
 ("newhope(n=512, m=2, k=8, q=12289, r=8)", NewHope(512,2,8,12289,8)), \
 ("newhope(n=1024, m=4, k=2, q=3329, r=8)", NewHope(1024,4,2,3329,8)), \
 ("newhope(n=1024, m=4, k=4, q=3329, r=8)", NewHope(1024,4,4,3329,8)), \
 ("newhope(n=1024, m=4, k=8, q=7681, r=8)", NewHope(1024,4,8,7681,8)), \
 ("newhope(n=1024, m=4, k=4, q=7681, r=4)", NewHope(1024,4,4,7681,4)), \
 ("newhope(n=1024, m=4, k=8, q=12289, r=8)", NewHope(1024,4,8,12289,8)), \
]

if __name__ == "__main__":
 from multiprocessing import Pool, cpu_count

 NCORES=cpu_count()

 def __run(args):
 dfr(*args)

 list(Pool(NCORES).imap_unordered(__run, PSS))

run.py

https://github.com/pq-crystals/security-estimates

form n - Pr[g > mgq/4] for g < x3. Our software calculates the failure rate of a
static key by fixing the a; in the definition of x;. Note that the distribution of
21221 a; - b; is identical to the distribution of 212:1 *+a; - b; for any sequence of
signs, in particular for signs applied by Reduce.

Verification We have not proven that our software is correct, but the results are
plausible. Note that compression artifact noise is no more than ¢/2r in magnitude,
so the value on the right hand side of Equation |§| is no less than = = mq (§ — 5-).
The centered binomial distribution of parameter k has variance k/2, so we may
approximate the term (v, w) in Equations [10]and [L1| by a sum of 2n Gaussian
variables of variance k?/4. We may then approximate the probability of failure
by n - erfc(x/ov/2) where o = (1 + a)+/2nmk2 /4. For m = 2 we take a = 0 and
for m = 4 we take o = 6k/n. For the ¢ = 7681 variants of NewHope512 and
NewHopel024 this gives 271789 and 271699 respectively. Our exact calculations

give 271739 and 271733,

n m k r q pk ct sec one-shot «a=6k/n a=0
512 4 1 4 769 672 768 2124 g-li82 g~ 119.0 g 1217
512 2 4 8 3329 800 960 22 971350 — 21350
512 2 8 8 7681 864 1024 2120 271739 — Q1739
512 2 4 4 7681 864 960 2109 972992 — Q2989
512 2 8 8 12289 928 1088 212 27399.0 — Q3988

1024 4 4 8 3329 1568 1920 2280 g-142.0 9~ 189:5 Q1457
1024 4 8 8 7681 1696 2048 2275 o~183d Q1733 Q1885
1024 4 4 4 7681 1696 1920 225! g—314.3 93138 93271
1024 4 8 8 12289 1824 2176 22%9 g~4180 914052 274895

Table 1: ‘pk’ is the size of the public key in bytes. ‘ct’ is the size of the ciphertext in
bytes. ‘sec’ is the Core-SVP security relative to the 22922 metric and was computed
using the PQsecurity.py script provided with the NewHope submission. The three
rightmost columns were computed using our script. ‘one-shot’ is the decryption
failure probability as calculated in [6]. The two ‘@’ columns give the decryption
failure probability as calculated above.

References

1. Alkim, E., Ducas, L., Péppelmann, T., Schwabe, P.: NewHope without reconciliation.
Cryptology ePrint Archive, Report 2016/1157 (2016), http://eprint.iacr.org/
2016/1157

2. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In:
Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319-339. Springer, Heidelberg
(Feb 2011)

http://eprint.iacr.org/2016/1157
http://eprint.iacr.org/2016/1157

. Plantard, T., Sipasseuth, A., Susilo, W., Zucca, V.: Tight bound on newhope
failure probability. Cryptology ePrint Archive, Report 2019/1451 (2019), |https:
//eprint.iacr.org/2019/1451

. Poppelmann, T., Alkim, E., Avanzi, R., Bos, J., Ducas, L., de la Piedra, A., Schwabe,
P., Stebila, D., Albrecht, M.R., Orsini, E., Osheter, V., Paterson, K.G., Peer, G.,
Smart, N.P.: NewHope. Tech. rep., National Institute of Standards and Technology
(2019), available at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions

. Péppelmann, T., Giineysu, T.: Towards practical lattice-based public-key encryption
on reconfigurable hardware. In: Lange, T., Lauter, K., Lisonek, P. (eds.) SAC 2013.
LNCS, vol. 8282, pp. 68-85. Springer, Heidelberg (Aug 2014)

. Song, M., Lee, S., Lee, E., Shin, D.J., Kim, Y.S., No, J.S.: Analysis of error depen-
dencies on newhope (2019)

https://eprint.iacr.org/2019/1451
https://eprint.iacr.org/2019/1451
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

	An upper bound on the decryption failure rate of static-key NewHope
	Introduction
	Related work
	Contributions
	Discussion

	Preliminaries
	NewHope
	The ring R
	Distributions on R

	Correctness
	Dependencies between coefficients of d

	NewHope512
	NewHope1024
	Ensuring 69640972 2,1 86418188 is small

	Software

