
Improved Primitives for MPC over Mixed
Arithmetic-Binary Circuits

Daniel Escudero1, Satrajit Ghosh1, Marcel Keller2,
Rahul Rachuri1, Peter Scholl1

1 Aarhus University, {escudero, satrajit, rachuri, peter.scholl}@cs.au.dk
2 CSIRO’s Data61, mks.keller@gmail.com

Abstract. This work introduces novel techniques to improve the trans-
lation between arithmetic and binary data types in secure multi-party
computation. We introduce a new approach to performing these conver-
sions using what we call extended doubly-authenticated bits (edaBits),
which correspond to shared integers in the arithmetic domain whose
bit decomposition is shared in the binary domain. These can be used
to considerably increase the efficiency of non-linear operations such as
truncation, secure comparison and bit-decomposition.
Our edaBits are similar to the daBits technique introduced by Rotaru
et al. (Indocrypt 2019). However, we show that edaBits can be directly
produced much more efficiently than daBits, with active security, while
enabling the same benefits in higher-level applications. Our method for
generating edaBits involves a novel cut-and-choose technique that may
be of independent interest, and improves efficiency by exploiting natural,
tamper-resilient properties of binary circuits that occur in our construc-
tion. We also show how edaBits can be applied to efficiently implement
various non-linear protocols of interest, and we thoroughly analyze their
correctness for both signed and unsigned integers.
The results of this work can be applied to any corruption threshold,
although they seem best suited to dishonest majority protocols such as
SPDZ. We implement and benchmark our constructions, and experimen-
tally verify that our technique yields a substantial increase in efficiency.
EdaBits save in communication by a factor that lies between 2 and 60
for secure comparisons with respect to a purely arithmetic approach, and
between 2 and 25 with respect to using daBits. Improvements in through-
put per second are slightly lower but still as high as a factor of 47. We
also apply our novel machinery to the tasks of biometric matching and
convolutional neural networks, obtaining a noticeable improvement as
well.

1 Introduction

Secure multi-party computation, or MPC, allows a set of parties to compute
some function f on private data, in such a way that the parties do not learn
anything about the actual inputs to f , beyond what could be computed given
the result. MPC can be used in a wide range of applications, such as private
statistical analysis, machine learning, secure auctions and more.



MPC protocols can vary widely depending on the adversary model that is
considered. For example, protocols in the honest majority setting are only secure
as long as fewer than half of the parties are corrupt and colluding, whilst pro-
tocols secure against a dishonest majority allow all-but-one of the parties to be
corrupt. Another important distinction is whether the adversary is assumed to
be semi-honest, that is, they will always follow the instructions of the protocol,
or malicious, and can deviate arbitrarily.

The mathematical structure underpinning secure computation usually re-
quires to fix what we call a computation domain. The most common examples
of such domains are computation modulo a large number (prime or power of two)
or binary circuits (computation modulo two). In terms of cost, the former is more
favorable to integer computation such as addition and multiplication while the
latter is preferable for highly non-linear functions such as comparisons.

Applications often feature both linear and non-linear functionality. For ex-
ample, convolution layers in deep learning consist of dot products followed by
a non-linear activation function. It is therefore desirable to convert between
an arithmetic computation domain and binary circuits. This has led to a line
of works exploring this possibility, starting with the ABY framework [DSZ15]
(Arithmetic-Boolean-Yao) in the two-party setting with semi-honest security.
Other works have extended this to the setting of three parties with an honest
majority [MR18, ABF+18], dishonest majority with malicious security [RW19],
as well as creating compilers that automatically decide which parts of a program
should done in the binary or arithmetic domain [BDK+18, IMZ19, CGR+19].

A particular technique that is relevant for us is so-called daBits [RW19]
(doubly-authenticated bits), which are random secret bits that are generated
simultaneously in both the arithmetic and binary domains. These can be used
for binary/arithmetic conversions in MPC protocols with any corruption set-
ting, and have in particular been used with the SPDZ protocol [DPSZ12], which
provides malicious security in the dishonest majority setting. Later works have
given more efficient ways of generating daBits [AOR+19, RST+19, BST20], both
with SPDZ and in the honest majority setting.

Another recent work uses function secret sharing [BGI15] for binary/arithmetic
conversions and other operations such as comparison [BGI19]. This approach
leads to a fast online phase with just one round of interaction and optimal
communication complexity. However, it requires either a trusted setup, or an
expensive preprocessing phase which has not been shown to be practical for
malicious adversaries.

Limitations of daBits. Using daBits, it is relatively straightforward to con-
vert between two computation domains. However, we found that in application-
oriented settings the benefit of daBits alone is relatively limited. More concretely,
if daBits are used to compute a comparison between two numbers that are secret-
shared in ZM , for large arithmetic modulus M , the improvement is a factor of
three at best. The reason for this is that the cost of creating the required daBits
comes quite close to computing the comparison entirely in ZM . This limitation
seems to be inherent with any approach based on daBits, since a daBit requires

2



generating a random shared bit in ZM . The only known way of doing this with
malicious security require first performing a multiplication (or squaring) in ZM
on a secret value [DFK+06, DEF+19]. However, secret multiplication is an ex-
pensive operation in MPC, and doing this for every daBit gets costly.

1.1 Our Contributions

In this paper, we present a new approach to converting between binary and arith-
metic representations in MPC. Our method is general, and can be applied to a
wide range of corruption settings, but seems particularly well-suited to the case
of dishonest majority with malicious security such as SPDZ [DPSZ12, DKL+13],
over the arithmetic domain Zp for large prime p, or the ring Z2k [CDE+18]. Un-
like previous works, we do not generate daBits, but instead create what we call
extended daBits (edaBits), which avoid the limitations above. These allow con-
versions between arithmetic and binary domains, but can also be used directly
for certain non-linear functions such as truncations and comparisons. We found
that, for two- and three-party computation, edaBits allow to reduce the commu-
nication cost by up to two orders of magnitude and the wall clock time by up
to a factor of 50 while both the inputs as well as the output are secret-shared in
an arithmetic domain.

Below we highlight some more details of our contribution.

Extended daBits. An edaBit consists of a set of m random bits (rm−1, . . . , r0),

secret-shared in the binary domain, together with the value r =
∑m−1
i=0 ri2

i

shared in the arithmetic domain. We denote these sharings by [rm−1]2, . . . , [r0]2
and [r]M , for arithmetic modulus M . Note that a daBit is simply an edaBit of
length m = 1, and m daBits can be easily converted into an edaBit with a linear
combination of the arithmetic shares. We show that this is wasteful, however,
and edaBits can in general be produced much more efficiently than m daBits,
for values of m used in practice.

Efficient malicious generation of edaBits. Let us first consider a simple
approach with semi-honest security. If there are n parties, we have each party
locally sample a value ri ∈ ZM , then secret-shares ri in the arithmetic domain,
and the bits of ri in the binary domain. We refer to these sharings as a private
edaBit known to Pi. The parties can combine these by computing

∑
i r
i in the

arithmetic domain, and executing n − 1 protocols for addition in the binary
domain, with a cost O(nm) AND gates. Compared with using daBits, which
costs O(m) secret multiplications in ZM , this is much cheaper if n is not too
large, by the simple fact that AND is a cheaper operation than multiplication
in MPC.

To extend this naive approach to the malicious setting, we need a way to
somehow verify that a set of edaBits was generated correctly. Firstly, we extend
the underlying secret-sharing scheme to one that enforces correct computations
on the underlying shares. This can be done, for instance, using authenticated

3



secret-sharing with information-theoretic MACs as in SPDZ [DPSZ12]. Secondly,
we use a cut-and-choose procedure to check that a large batch of edaBits are cor-
rect. This method is inspired by previous techniques for checking multiplication
triples in MPC [BLN+15, FKOS15, FLNW17]. However, the case of edaBits is
much more challenging to do efficiently, due to the highly non-linear relation
between sharings in different domains, compared with the simple multiplicative
property of triples (shares of (a, b, c) where c = ab).

Cut-and-choose approach. Our cut-and-choose procedure begins as in the semi-
honest case, with each party Pi sampling and inputting a large batch of private
edaBits of the form (rim−1, . . . , r

i
0), ri. We then run a verification step on Pi’s

private edaBits, which begins by randomly picking a small subset of the edaBits to
be opened and checked for correctness. Then, the remaining edaBits are shuffled
and put into buckets of fixed size B. The first edaBit in each bucket is paired
off with every other edaBit in the bucket, and we run a checking procedure on
each of these pairs. To check a pair of edaBits r, s, the parties can compute r+ s
in both the arithmetic and binary domains, and check these open to the same
value. If all checks pass, then the parties take the first private edaBit from every
bucket, and add this to all the other parties’ private edaBits, created in the
same way, to obtain secret-shared edaBits. Note that to pass a single check, the
adversary must have corrupted both r and s so that they cancel each other out;
therefore, the only way to successfully cheat is if every bucket with a corrupted
edaBit contains only corrupted edaBits. By carefully choosing parameters, we can
ensure that it is very unlikely the adversary manages to do this. For example,
with 40-bit statistical security, from the analysis of [FLNW17], we could use
bucket size B = 3 when generating more than a million sets of edaBits.

While the above method works, it incurs considerable overhead compared
with similar cut-and-choose techniques used for multiplication triples. This is
because in every pairwise check within a bucket, the parties have to perform
an addition of binary-shared values, which requires a circuit with O(m) AND
gates. Each of these AND gates consumes an authenticated multiplication triple
over Z2, and generating these triples themselves requires additional layers of
cut-and-choose and verification machinery, when using efficient protocols based
on oblivious transfer [NNOB12, FKOS15, WRK17b].

To reduce this cost, our first optimization is as follows. Recall that the check
procedure within each bucket is done on a pair of private values known to one
party, and not secret-shares. This means that when evaluating the addition cir-
cuit, it suffices to use private multiplication triples, which are authenticated
triples where the secret values are known to party Pi. These are much cheaper
to generate than fully-fledged secret-shared triples, although still require a veri-
fication procedure based on cut-and-choose. To further reduce costs, we propose
a second, more significant optimization.

Cut-and-choose with faulty check circuits. Instead of using private triples that
have been checked separately, we propose to use faulty private triples, that is,
authenticated triples that are not guaranteed to be correct. This immediately

4



raises the question, how can the checking procedure be useful, if the verification
mechanism itself is faulty? The hope is that if we randomly shuffle the set of
triples, it may still be hard for an adversary who corrupts them to ensure that
any incorrect edaBits are canceled out in the right way by the faulty check
circuit, whilst any correct edaBits still pass unscathed. Proving this, however, is
challenging. In fact, it seems to inherently rely on the structure of the binary
circuit that computes the check function. For instance, if a faulty circuit can
cause a check between a good and a bad edaBit to pass, and the same circuit
also causes a check between two good edaBits to pass, for some carefully chosen
inputs, then this type of cheating can help the adversary.

To rule this out, we consider circuits with a property we call weak additive
tamper-resilience, meaning that for any tampering that flips some subset of AND
gate outputs, the tampered circuit is either incorrect for every possible input,
or it is correct for all inputs. This notion essentially rules out input-dependent
failures from faulty multiplication triples, which avoids the above attack and
allows us to simplify the analysis.

Weak additive tamper-resilience is implied by previous notions of circuits
secure against additive attacks [GIP+14], however, these constructions are not
practical over F2. Fortunately, we show that the standard ripple-carry adder
circuit satisfies our notion, and suffices for creating edaBits in Z2k . However, the
circuit for binary addition modulo a prime, which requires an extra conditional
subtraction, does not satisfy this. Instead, we adapt the circuit over the integers
to use in our protocol modulo p, which allows us to generate length-m edaBits
for any m < log p; this turns out to be sufficient for most applications.

With this property, we can show that introducing faulty triples does not
help an adversary to pass the check, so we can choose the same cut-and-choose
parameters as previous works on triple generation, while saving significantly in
the cost of generating our triples used in verification. The bulk of our technical
contribution is in analysing this cut-and-choose technique.

Silent OT-friendly. Another benefit of our approach is that we can take advan-
tage of recent advances in oblivious transfer (OT) extension techniques, which
allow to create a large number of random, or correlated, OTs, with very lit-
tle interaction [BCG+19b]. In practice, the communication cost when using this
“silent OT” method can be more than 100x less than OT extension based on pre-
vious techniques [IKNP03], with a modest increase in computation [BCG+19a].
In settings where bandwidth is expensive, this suits our protocol well, since we
mainly use MPC operations in F2 to create edaBits, and these are best done with
OT-based techniques. This reduces the communication of our edaBits protocol
by an O(λ) factor, in practice cutting communication by 50–100x, although we
have not yet implemented this optimization.

Note that it does not seem possible to exploit silent OT with previous daBit
generation methods such as by Aly et al. [AOR+19]. This is due to the limitation
mentioned previously that these require a large number of random bits shared
in Zp, which we do not know how to create efficiently using OT.

5



Applications: improved conversions and primitives. edaBits can be used
in a natural way to convert between binary and arithmetic domains, where each
conversion of an m-bit value uses one edaBit of length m, and a single m-bit
addition circuit. (In the mod-p case, we also need one “classic” daBit per con-
version, to handle a carry computation.) However, for many primitives such as
secure comparison, equality test and truncation, a better approach is to exploit
the edaBits to perform the operation without doing an explicit conversion. In the
Z2k case, a similar approach was used previously when combining the SPDZ2k
protocol with daBit-style conversions [DEF+19]. We adapt these techniques to
work with edaBits, in both Z2k and Zp. As an additional contribution, more at
the engineering level, we take great care in all our constructions to ensure they
work for both signed and unsigned data types. This was not done by previous
truncation protocols in Z2k based on SPDZ [DEF+19, DEK19], which only per-
form a logical shift, as opposed to the arithmetic shift that is needed to ensure
correctness on signed inputs.

Handling garbled circuits. Our conversion method can also be extended to con-
vert binary shares to garbled circuits, putting the ‘Y’ into ‘ABY’ and allowing
constant round binary computations. In this paper, we do not focus on this,
since the technique is exactly the same as described in [AOR+19]; when using
binary shares based on TinyOT MACs, conversions between binary and gar-
bled circuit representation comes for free, based on the observation from Hazay
et al. [HSS17] that TinyOT sharings can be locally converted into shares of a
multi-party garbled circuit.

Performance evaluation. We have implemented our protocol in all relevant
security models and computation domains as provided by MP-SPDZ [Kel20], and
we found it reduces communication both in microbenchmarks and application
benchmarks when comparing to a purely arithmetic or a daBit-based implemen-
tation. More concretely, for secure comparisons the reduction in communication
lies between a factor of 2 and 60 going from purely arithmetic to edaBits, and be-
tween 2 and 25 from daBits to edaBits. Improvements in throughput per second
are slightly lower but still as high as a factor of 47. Generally, the improve-
ments are higher for dishonest-majority computation and semi-honest security
when considering black-box approaches such as purely arithmetic computation
or using daBits. However, semi-honest computation allows for non-black-box
approaches [MR18, DSZ15] that are as fast as ours.

We have also compared our implementation with the most established soft-
ware for mixed circuits [BDK+18] and found that it still improves up to a factor
of two for a basic benchmark in semi-honest two-party computation. However,
they maintain an advantage if the parties are far apart (100 ms RTT) due to
the usage of garbled circuits.

Finally, a comparison with a purely arithmetic implementation of deep-
learning inference shows an improvement of up to a factor six in terms of both
communication and wall clock time.

6



1.2 Paper Outline

We begin in Section 2 with some preliminaries. In Section 3, we introduce edaBits
and show how to instantiate them, given a source of private edaBits. We then
present our protocol for creating private edaBits in Section 4, based on the new
cut-and-choose procedure. Then, in Sections 4.2–4.4 we describe abstract cut-
and-choose games that model the protocol, and carry out a formal analysis.
Then in Section 5 we show how to use edaBits for higher-level primitives like
comparison and truncation. Finally, in Section 6, we analyze the efficiency of
our constructions and present performance numbers from our implementation.

2 Preliminaries

In this work we consider three main algebraic structures: ZM for M = p where
p is a large prime, M = 2k where k is a large integer, and Z2.

2.1 Arithmetic Black-Box

We model MPC via the arithmetic black box model (ABB), which is an ideal
functionality in the universal composability framework [Can01]. This function-
ality allows a set of n parties P1, . . . , Pn to input values, operate on them, and
receive outputs after the operations have been performed. Typically (see for
example Rotaru and Wood [RW19]), this functionality is parameterized by a
positive integer M , and the values that can be processed by the functionality
are in ZM , with the native operations being addition and multiplication modulo
M .

In this work, we build on the basic ABB to construct edaBits, which are used
in our higher-level applications. We therefore consider an extended version of the
arithmetic black box model that handles values in both binary and arithmetic
domains. First, within one single instance of the functionality we can have both
binary and arithmetic computations, where the latter can be either modulo p or
modulo 2k. Furthermore, the functionality allows the parties to convert a single
binary share into an arithmetic share of the same bit (but not the other way
round). We will use this limited conversion capability to bootstrap to our fully-
fledged edaBits, which can convert larger ring elements in both directions, and
with much greater efficiency. The details of the functionality are presented in
Fig. 1.

Notation. As shorthand, we write [x]2 to refer to a secret bit x that has been
stored by the functionality FABB, and similarly [x]M for a value x ∈ ZM with
M ∈ {p, 2k}. We overload the operators + and ·, writing for instance, [y]M =
[x]M · [y]M + c to denote that the secret values x and y are first multiplied using
the Mult command, and then the public constant c is added using LinComb.

7



Functionality FABB

Input: On input (Input, Pi, type, id, x) from Pi and (Input, Pi, type, id) from all
other parties, with id a fresh identifier, type ∈ {binary, arithmetic} and x ∈
Z2 or x ∈ ZM (depending on type), store (type, id, x).

Linear Combination: On input (LinComb, type, id, (idj)
m
j=1, type, c, (cj)

m
j=1),

where each idj is stored in memory and c, cj ∈ Z2 if type = binary or
c, cj ∈ ZM if type = arithmetic, retrieve ((type, id1, x1), . . . , (type, idm, xm)),
compute y = c +

∑
j xj · cj modulo 2 if type = binary and modulo M if

type = arithmetic, and store (type, id, y).
Multiply: On input (Mult, type, id, id1, id2) from all parties (where id1, id2 are

present in memory), retrieve (type, id1, x), (type, id2, y), compute z = x · y
modulo 2 if type = binary and modulo M if type = arithmetic, and store
(id, z).

From Binary to Arithmetic: On input (ConvertB2A, id, id′) from all par-
ties, retrieve (binary, id′, x) and store (arithmetic, id, x).

Output: On input (Output, type, id) from all honest parties (where id is present
in memory), retrieve (type, id, y) and output it to the adversary. Wait for
an input from the adversary; if this is Deliver then output y to all parties,
otherwise output Abort.

Fig. 1. Ideal functionality for the MPC arithmetic black box modulo 2 and modulo
M , where M is either 2k or p.

Instantiations. There are several ways to instantiate the basic commands of
this functionality, depending on the adversarial setting. In the honest majority
setting one can use for example Shamir secret-sharing or replicated-secret shar-
ing [DN07, BLW08], which can be either passively or actively secure [FLNW17].
In the dishonest majority setting, additive secret-sharing is typically used. For
the case of active security, we can combine this with information-theoretic MACs
to enforce correct opening of shared values [DPSZ12, DKL+13, CDE+18, WRK17b].
Furthermore, the conversions between the arithmetic bits and binary sharings
can be implemented via daBits, as shown in [AOR+19, RW19, RST+19]. We
present a short summary of this daBit generation method in Section A in the
appendix.

Since all of these are linear secret-sharing schemes, when secret values inside
FABB represent sharings under such a scheme, the LinComb command of FABB

can be implemented by simply computing the same linear combination on the
shares. The Mult command is usually realized by preprocessing multiplication
triples, that is, shared values [a]M , [b]M , [c]M where a, b are uniformly random
in ZM and c = a · b. Given such a triple, two secret values [x]M , [y]M can be
multiplied by first opening x+ a and y + b, and then computing

[z]M = (x+ a)(y + b)− (x+ a)[b]M − (y + b)[a]M + [c]M

which can be computed as a linear operation in the secret values, producing
z = xy.

8



We remark that preprocessing triples is often the most expensive part of the
entire MPC protocol, especially in the dishonest majority setting. In the arith-
metic case, these can be produced using linearly or somewhat homomorphic
encryption [DPSZ12, KPR18], oblivious linear function evaluation [DGN+17]
or, with a higher communication cost, oblivious transfer [KOS16, CDE+18]. In
the binary case with M = 2, techniques based on oblivious transfer are usu-
ally fastest, and these are known as the TinyOT family of protocols [NNOB12,
FKOS15, WRK17a, WRK17b].

3 Extended daBits

The main primitive of our work is the concept of extended daBits, or edaBits.
Unlike a daBit, which is a random bit b shared as ([b]M , [b]2), an edaBit is a
collection of bits (rm−1, . . . , r0) such that (1) each bit is secret-shared as [ri]2
and (2) the integer r =

∑m
i=0 ri2

i is secret-shared as [r]M .
One edaBit of length m can be generated from m daBits, and in fact, this

is typically the first step when applying daBits to several non-linear primitives
like truncation. Instead of following this approach, we choose to generate the
edaBits—which is what is needed for most applications where daBits are used—
directly, which leads to a much more efficient method and ultimately leads to
more efficient primitives for MPC protocols.

At a high level, our protocol for generating edaBits proceeds as follows. Let us
think initially of the passively secure setting. Each party Pi samples m random
bits rii,0, . . . , r

i
i,m−1, and secret-shares these bits towards the parties over Z2, as

well as the integer ri =
∑m−1
j=0 ri,j2

j over ZM . Since each edaBit is known by one
party, these edaBits must be combined to get edaBits where no party knows the
underlying values. We refer to the former as private edaBits, and to the latter as
global edaBits. The parties combine the private edaBits by adding them together:
the arithmetic shares can be simply added locally as [r]M =

∑n
i=1[ri]M , and the

binary shares can be added via an n-input binary adder. Some complications
arise, coming from the fact that the ri values may overflow mod p. Dealing with
this is highly non-trivial, and we will discuss this in detail in the description of
our protocol in Section 3.2. However, before we dive into our construction, we
will first present the functionality we aim at instantiating. This functionality is
presented in Fig. 2.

3.1 Functionality for Private Extended daBits

We also use a functionality FedaBitsPriv, which models a private set of edaBits that
is known to one party. This functionality is defined exactly as FedaBits, except
that the bits r0, . . . , rm−1 are given as output to one party; additionally, if that
party is corrupt, the adversary may instead choose these bits.

The heaviest part of our contribution lies on the instantiation of this func-
tionality, which we postpone to Section 4.

9



Functionality FedaBits

The functionality is parametrized by M ∈ {2k, p} and m ≤ logM . It has the
same features as FABB, together with the following command:

Create edaBits: On input (edabit, idM , id2) from all parties, sample
(r0, . . . , rm−1) ∈ Zm2 uniformly at random and store (binary, id2, rj) for
j = 0, . . . ,m− 1, together with (arithmetic, idM , r), where r =

∑m−1
j=0 rj2

j .

Fig. 2. Ideal functionality for extended daBits.

3.2 From Private to Global Extended daBits

As we discussed already at the beginning of this section, one can instantiate
FedaBits using FedaBitsPriv, by combining the different private edaBits to ensure
no individual party knows the underlying values. Small variations are required
depending on whether M = 2k or M = p, for reasons that will become clear in
a moment.

Now, to provide an intuition on our protocol, assume that the ABB is storing
([ri]M , [ri,0]2, . . . , [ri,m−1]2) for i = 1, . . . , n, where party Pi knows (ri,0, . . . , ri,m−1)

and ri =
∑m−1
j=1 ri,j2

j . The parties can add their arithmetic shares to get shares

of r′ =
∑n
i=1 ri mod M , and they can also add their binary shares using a

binary n-input adder, which results in shares of the bits of r′, only without
modular reduction.

Since we want to output a random m-bit integer, the parties need to remove
the bits of r′ beyond the m-th bit from the arithmetic shares. We have binary
shares of these carry bits as part of the output from the binary adder, so using
log(n) calls to ConvertB2A of FABB, each of which costs a (regular) daBit, we can
convert these to the arithmetic world and perform the correction. Notice that
for the case of M = 2k, m = k, we can omit this conversion since the arithmetic
shares are already reduced.

Even without the correction above, the least significant m bits of r′ still
correspond to r0, . . . , rm−1. This turns out to be enough for some applications
because it is easy to “delete” the most significant bit in Z2k by multiplying with
two. We call such an edaBit loose as apposed to a strict one as defined in Fig. 2.

One must be careful with potential overflows modulo M . If M = 2k, then
any overflow bits beyond the k-th position can simply be discarded. On the
other hand, if M = p, as long as m < log p then we can still subtract the
log n converted carries from the arithmetic shares to correct for any overflow
modulo p. The protocol is given in Fig. 3, and the security stated in Theorem
1 below, whose proof follows in a straightforward manner from the correctness
of the additions in the protocol. In the protocol, nBitADD denotes an n-input
binary adder on m-bit inputs. This can be implemented naively in a circuit with
< (m+ log n) · (n− 1) AND gates.

10



Protocol ΠedaBits

Pre:

– Access to FedaBitsPriv.
– If M = p, then 0 < m < log(p).

Post: The parties get ([r]M , [ri]2, . . . , [ri]2) where r =
∑m−1
j=1 ri2

j and the bits
are uniform to the adversary.

1. The parties call the functionality FedaBitsPriv to get random shares
([ri]M , [ri,0]2, . . . , [ri,m−1]2), for i = 1, . . . , n. Party Pi additionally learns
ri,j and ri =

∑m−1
j=1 ri,j2

j .

2. The parties invoke FABB to compute [r′]M =
∑n
i=1[ri]M .

3. The parties invoke FABB to compute nBitADD (([r1,j ]2)j , . . . , ([rn,j ]2)j), ob-
taining m+ logn bits ([b0]2, . . . , [bm+log(n)−1]2).

4. Call ConvertB2A from FABB to convert [bj ]2 7→ [bj ]M for j = m, . . . ,m +
log(n)− 1. If M = 2k, values bj for j > k do not need to be converted, and
for the sake of notation, we denote [bj ]2k := 0 for j > k.

5. Use FABB to compute [r]M = [r′]M − 2m
∑log(n)−1
j=0 [bj+m]M2j .

6. Output ([r]M , [b0]2, . . . , [bm−1]2).

Fig. 3. Protocol for generating global edaBits from private edaBits.

Theorem 1. Protocol ΠedaBits UC-realizes functionality FedaBits in the (FedaBitsPriv,FB2A)-
hybrid model.

4 Instantiating Private Extended daBits

Our protocol for producing private edaBits is fairly intuitive. The protocol begins
with each party inputting a set of edaBits to the ABB functionality. However,
since a corrupt party may input inconsistent edaBits (that is, the binary part
may not correspond to the bit representation of the arithmetic part), some extra
checks must be set in place to ensure correctness. To this end, the parties engage
in a consistency check, where each party must prove that their private edaBits
were created correctly. We do this with a cut-and-choose procedure, where first a
random subset of a certain size of edaBits is opened, their correctness is checked,
and then the remaining edaBits are randomly placed into buckets. Within each
bucket, all edaBits but the first one are checked against the first edaBit by adding
the two in both the binary and arithmetic domains, and opening the result. With
high probability, the first edaBit will be correct if all the checks pass.

This method is based on a standard cut-and-choose technique for verifying
multiplication triples, used in several other works [FKOS15, FLNW17]. However,
the main difference in our case is that the checking procedure for verifying two
edaBits within a bucket is much more expensive: checking two multiplication
triples consists of a simple linear combination and openeing, whereas to check

11



edaBits, we need to run a binary addition circuit on secret-shared values. This
binary addition itself requires O(m) multiplication triples to verify, and the
protocol for producing these triples typically requires further cut-and-choose
steps to ensure correctness and security.

In this work, we take a different approach to reduce this overhead. First, we
allow some of the triples used to perform the check within each bucket to be
incorrect, which saves in resources as a triple verification step can be omitted.
Furthermore, we observe that these multiplication triples are intended to be
used on inputs that are known to the party proposing the edaBits, and thus it
is acceptable if this party knows the bits of the underlying triples as well. As
a result, we can simplify the triple generation by letting this party sample the
triples together with the edaBits, which is much cheaper than letting the parties
jointly sample (even incorrect) triples. Note that even though the triples may
be incorrect, they must still be authenticated (in practice, with MACs) by the
party who proposes them so that the errors cannot be changed after generating
the triples.

To model this, we extend the arithmetic black box model with the following
commands, for generating a private triple, and for faulty multiplication, which
uses a previously stored triple to do a multiplication.

Input Triple. On input (Triple, id, a, b, c) from Pi, where id is a fresh binary
identifier and a, b, c ∈ {0, 1}, store (Triple, i, id, a, b, c).

Faulty Multiplication. On input (FaultyMult, id, id1, id2, idT , i) from all par-
ties (where id1, id2 are present in memory), retrieve (binary, id1, x), (binary, id2, y),
(Triple, i, idT , a, b, c), compute z = x · y ⊕ (c⊕ a · b), and store (id, z).

The triple command can be directly instantiated using Input from FABB, while
FaultyMult uses Beaver’s multiplication technique with one of these triples. Note
that in Beaver-based binary multiplication, it is easy to see that any additive
error in a triple leads to exactly the same error in the product.

Now we are ready to present our protocol to preprocess private edaBits, de-
scribed in Fig. 4. The party Pi locally samples a batch of edaBits and multiplica-
tion triples, then inputs these into FABB. The parties then run the CutNChoose
subprotocol, given in Fig. 5, to check that the edaBits provided by Pi are con-
sistent. The protocol outputs a batch of N edaBits, and is parametrized by a
bucket size B, and values C,C ′ which determine how many edaBits and triples
are opened, respectively. BitADDCarry denotes a two-input binary addition cir-
cuit with a carry bit, which must satisfy the weakly additively tamper resilient
property given in the next section. As we will see later, this can be computed
with m AND gates and depth m− 1.3

The cut-and-choose protocol starts by using a standard coin-tossing func-
tionality, FRand, to sample public random permutations used to shuffle the sets

3 This circuit is rather naive, and in fact there are logarithmic depth circuits with
a greater number of AND gates. However, as we will see later in the section, it is
important for our security proof to use specifically these naive circuits to obtain
the tamper-resilient property. Furthermore, they are only used in the preprocessing
phase, so the overhead in round complexity is insignificant in practice.

12



Protocol ΠedaBitsPriv

Pre: FABB with modulus M , length parameter m ∈ Z with m ≤ log2M
Post: Batch of N shared edaBits {([rj ]M , [rj,0]2, . . . , [rj,m−1]2)}Nj=1, where
party Pi knows the underlying bits.

1. Pi samples rj,0, . . . , rj,m−1 ∈ Z2, for j = 1, . . . , NB + C, and inputs these
to FABB in Z2.

2. Pi computes rj =
∑m−1
i=0 rj,i2

i and inputs rj ∈ ZM to FABB.
3. Pi samples (N(B−1) +C′)m random bit triples and inputs these to FABB.
4. The parties run the CutNChoose procedure to check the consistency of these

edaBits. If the check passes, then the parties obtain N edaBits. Otherwise,
they abort.

Fig. 4. Protocol for producing private extended daBits.

of edaBits and triples. The coin-tossing can be implemented, for example, with
hash-based commitments in the random oracle model. Then the first C edaBits
and C ′m triples are opened and tested for correctness; this is to ensure that
not too large a fraction of the remaining edaBits and triples are incorrect. Then
the edaBits are divided into buckets of size B, together with B − 1 sets of m
triples in each bucket. Then, the top edaBit from each bucket is checked with
every other edaBit in the bucket by evaluating a binary addition circuit using the
triples, and comparing the result with the same addition done in the arithmetic
domain. Each individual check in the CutNChoose procedure takes two edaBits
of m bits each, and consumes m triples as well as a single regular daBit, needed
to convert the carry bit from the addition into the arithmetic domain. Note that
when working with modulus M = 2k, if m = k then this conversion step is not
needed.

4.1 Weakly Tamper-Resilient Binary Addition Circuit

To implement the BitADDCarry circuit we use a ripple-carry adder, which com-
putes the carry bit at every position with the following equation:

ci+1 = ci ⊕ ((xi ⊕ ci) ∧ (yi ⊕ ci)),∀i ∈ {0,m− 1} (1)

where c0 = 0, and xi, yi are the i-th bits of the two binary inputs. It then outputs
zi = xi ⊕ yi ⊕ ci, for i = 0, . . . ,m− 1, and the last carry bit cm. Note that this
requires m AND gates and has linear depth.

Below we define the tamper-resilient property of the circuit that we require.
We consider an adversary who can additively tamper with a binary circuit by
inducing bit-flips in the output wires of any AND gate.

Definition 1. A binary circuit C : F2m
2 → Fm+1

2 is weakly additively tamper
resilient, if given any tampered circuit C∗, obtained by additively tampering C,
one of the following holds:

13



Procedure CutNChoose

Pre: A batch of (NB+C) shared edaBits {([r]M , [r0]2, . . . , [rm−1]2)}NB+C
j=1 and

a batch of (N · (B − 1) ·m+C′ ·m) triples, all stored in FABB, where party Pi
knows the underlying bits of the edaBits and the triples.
Post: N verified edaBits
The parties do the following:

1. Using FRand, sample two public random permutations and use these to
shuffle the edaBits and the triples.

2. Open the first C of the shuffled edaBits in both worlds, and the first C′ ·m
triples. Abort if any of the edaBits or the triples are inconsistent.

3. Place the remaining edaBits into buckets of size B and the triples into
buckets of size (B − 1) ·m.

4. For each bucket, select the first edaBit ([r]M , [r0]2, . . . , [rm−1]2), and for
every other edaBit ([s]M , [s0]2, . . . , [sm−1]2) in the same bucket, perform
the following check:
(a) Let [r + s]M = [r]M + [s]M .
(b) Let ([c0]2, . . . , [cm]2) = BitADDCarry([r0]2, . . . , [rm−1]2, [s0]2, . . . , [sm−1]2),

using the FaultyMult command to evaluate each AND gate.
(c) Convert [cm]2 7→ [cm]M with ConvertB2A.
(d) Let [c′]M = [r+ s]M − 2m · [cm]M . Open c′ and the corresponding bits

c0, . . . , cm−1 from the binary world, and check that c′ =
∑m−1
i=0 ci2

i.
5. If all the checks pass, output the first edaBit from each of the N buckets.

Fig. 5. Cut-and-choose procedure to check correctness of input edaBits.

1. ∀(x, y) ∈ Fm2 : C(x, y) = C∗(x, y).

2. ∀(x, y) ∈ Fm2 : C(x, y) 6= C∗(x, y).

Intuitively, this says that the tampered circuit is either incorrect on every
possible input, or functionally equivalent to the original circuit. In our protocol,
this property restricts the adversary from being able to pass the check with a
tampered circuit with bad edaBits as well as the same circuit with good edaBits.
It ensures that if any multiplication triple is incorrect, then the check at that
position would only pass with either a good edaBit, or a bad edaBit (but not
both).

We now show that this property is satisfied by the ripple-carry adder circuit
above, which we use.

Lemma 1. The ripple carry adder circuit above is weakly additively tamper-
resilient (Definition 1).

Proof. Consider a tampered circuit C∗, and let i be the smallest index where the
AND gate in equation 1 has been tampered. Since ci was computed correctly,
we have C∗(x, y)[i + 1] = C(x, y)[i + 1] ⊕ 1. Therefore, any tampering leads to
incorrect output, so the circuit is weakly additively tamper resilient.

14



As a side note, the naive binary circuit which requires 2 AND gates per carry
computation also has the property of being weakly additively tamper resilient.
Because it has 2 AND gates, it can either be the case that C(x, y) = C∗(x, y)
or C(x, y) = C∗(x, y) ⊕ 1, depending on whether the carry computation was
tampered with 1 triple or 2 triples. In either case, this is independent of x and
y.

In the case of generating edaBits over Zp, we still use the ripple-carry adder
circuit, and our protocol works as long as the length of the edaBits satisfies
m < log(p). If we wanted edaBits with m = dlog pe, for instance to be able to
represent arbitrary elements of the field, it seems we would need to use an addi-
tion circuit modulo p. Unfortunately, the natural circuit consisting of a binary
addition followed by a conditional subtraction is not weakly additively tamper
resilient. One possible workaround is to use Algebraic Manipulation Detection
(AMD) [GIP+14, GIW16] circuits, which satisfy much stronger requirements
than being weakly additively tamper resilient, however this gives a very large
overhead in practice.

4.2 Overview of Cut-and-Choose Analysis

The remainder of this section is devoted to proving that the cut-and-choose
method used in our protocol is sound, as stated in the following theorem.

Theorem 2. Let N ≥ 2s/(B−1) and C = C ′ = B, for some bucket size B ∈
{3, 4, 5}. Then the probability that the CutNChoose procedure in protocol ΠedaBitsPriv

outputs at least one incorrect edaBit is no more than 2−s.

Assuming the theorem above, we can prove that our protocol instantiates the
desired functionality, as stated in the following theorem. The only interesting
aspect to note about security is that we need m ≤ logM to ensure that the
value c′ computed in step 4d of CutNChoose does not overflow modulo p when
M = p is prime. This guarantees that the check values are computed the same
way in the binary and arithmetic domains.

Theorem 3. Protocol ΠedaBitsPriv securely instantiates the functionality FedaBitsPriv

in the FABB-hybrid model.

To give some idea of parameters, in Table 1 we give the required bucket
sizes and number N of edaBits that must be produced to ensure 2−s failure
probability according to Theorem 2. Note that these are exactly the same bounds
as the standard cut-and-choose procedure without any faulty verification steps
from [FLNW17]. Our current proof relies on case-by-case analyses for each bucket
size, which is why Theorem 2 is not fully general. We leave it as an open problem
to obtain a general result for any bucket size.

Overview of Analysis. We analyse the protocol by looking at two abstract
games, which model the cut-and-choose procedure. The first game, RealGame,

15



Table 1. Number of edaBits produced by CutNChoose for statistical security 2−s and
bucket size B, with C = C′ = B.

s B # of edaBits

40 3 ≥ 1048576

40 4 ≥ 10322

40 5 ≥ 1024

80 5 ≥ 1048576

RealGame

1. A prepares NB + C shared edaBits {([rj ]M , [rj,0]2, . . . , [rj,m−1]2)}NB+C
j=1 ,

and batch of N(B − 1) +C′ potentially tampered circuits {C∗j}N(B−1)
j=1 to

send to the challenger.
2. The challenger shuffles the edaBits and the circuits using 2 permutations.
3. The challenger opens C edaBits in both worlds and C′ circuits randomly.

If any of the edaBits are inconsistent, or the circuits have been tampered,
Abort.

4. Within each bucket, for every pair of edaBits (r, (ri)i) and (s, (si)i), take the
next circuit C∗ and compute (c0, . . . , cm) = C∗(r0, . . . , rm−1, s0, . . . , sm−1).
Compute c =

∑m−1
i=0 ci2

i and check that r + s− 2m · cm equals c.

The adversary wins if all the checks pass and there is at least one corrupted
edaBit in the output.

Fig. 6. Abstract game modelling the actual cut-and-choose procedure

models the protocol fairly closely, but is difficult to directly analyze. We then
make some simplifying assumptions about the game to get SimpleGame, and
show that any adversary who wins in the real protocol can be translated into an
adversary in the SimpleGame. This is the final game we actually analyze.

4.3 Abstracting the Cut-and-Choose Game

We first look more closely at the cut-and-choose procedure by defining an ab-
stract game, RealGame, shown in Figure 6, that models this process. Note that
in this game, the only difference compared with the original protocol is that the
adversary directly chooses additively tampered binary circuits, instead of mul-
tiplication triples. The check procedure is carried out exactly as before, so it is
clear that this faithfully models the original protocol.

Complexities of analyzing the game. In this game, the adversary can pass the
check with a bad edaBit in two different ways. The first is to corrupt edaBits in
multiples of the bucket size B, and hope that they all end up in the same bucket
so that the errors cancel each other out. The second way is to corrupt a set of

16



SimpleGame

1. A prepares NB +C balls, corrupts b of them and sends them to the chal-
lenger.

2. The challenger opens C of them randomly and checks whether all of them
are good. If any one of them is not good, Abort.

3. The challenger permutes and throws NB balls into N buckets each of size
B uniformly at random. Then sends the order of arrangement to A.

4. A prepares N(B− 1) +C′ triangles, corrupts t of them and sends them to
the challenger.

5. The challenger opens C′ of them randomly and checks whether all of them
are good. If any one of them is not good, Abort.

6. The challenger permutes and throws N(B − 1) triangles into N buckets
uniformly at random and runs the Simple BucketCheck subroutine.

7. If Simple BucketCheck returns 1, the challenger outputs first ball from
each bucket. Else, Abort.

A wins if there is no Abort and at least one bad ball is in the output.

Fig. 7. Simplified CutNChoose game

edaBits and guess the permutation in which they are most likely to end up. Once
a permutation is guessed, the adversary will know how many triples it needs to
corrupt in order to cancel out the errors, and must also hope that the triples
end up in the right place.

To compute the exact probability of all these events, we will also have to
consider the number of ways in which the bad edaBits can be corrupted. For
edaBits which are m bits, there are up to 2m − 1 different ways in which they
may be corrupted. On top of that, we have to consider the number of different
ways in which these bad edaBits may be paired in the check. In order to avoid
enumerating the cases and the complex calculation involved, we simplify the
game in a few ways which can only give the adversary a better chance of winning.
However, we show that these simplifications are sufficient for our purpose.

4.4 The SimpleGame

In this section we analyze a simplified game and bound the success probability
of any adversary in that game by 2−s. Before explaining the simple game, we
will leave the complicated world of edaBits and triples. We define a TRIP to be
a set of triples that is used to check two edaBits. In our simple world edaBits
transform into balls, GOOD edaBits into white balls ( ) and BAD edaBits into
gray balls ( ). An edaBit is BAD when at least one of the underlying bits are
not correct. TRIPs transform themselves into triangles, GOOD TRIPs into white
triangles ( ) and BAD TRIPs into gray triangles ( ). We define a TRIP to be
BAD when it helps the adversary to win the game, in other words if it can alter
the result of addition of two edaBits. Figure 7 illustrates the simple game.

17



Simple BucketCheck

Input: N buckets and a function f . Each bucket contains B balls {x1, . . . , xB}
and (B − 1) triangles {y1, . . . , yB−1}.
Output: 0 or 1.
Runs this check in each bucket:

1. Check the configuration of [x1, xi|yi−1] ∀i ∈ [2, B].
– If [x1, xi|yi−1] ∈ {[ , | ], [ , | ], [ , | ]} return Reject.
– If [x1, xi|yi−1] ∈ [ , | ] and f( , , ) = 0 return Reject.
– If [x1, xi|yi−1] ∈ [ , | ] and f( , , ) = 0 return Reject.

2. Otherwise return Accept.

If check returns Accept for all the buckets, then output 1; Otherwise output 0.

Fig. 8. A simple bucket check procedure

In the SimpleGame A wins if there is no Abort (means A passes all the checks)
and there is at least one bad ball in the final output. The simple BucketCheck
checks all the buckets. Precisely, in each bucket two balls are being checked using
one triangle. For example, let us consider the size of the buckets B = 3. Now
one bucket contains three balls [B1, B2, B3] and two triangles [T1, T2]. Then
BucketCheck checks if the configurations [B1, B2|T1] and [B1, B3|T2] matches
any one of these configurations {[ , | ], [ , | ], [ , | ]}. If that is the case then
BucketCheck Aborts. When there are two bad balls and one triangle the abort
condition depends on the type of bad balls. That means we are considering all
bad balls to be distinct, say with different color shades. As a result, in some cases
challenger aborts if the checking configuration matches [ , | ] and in other cases
it aborts due to [ , | ] configuration.

In the simple world everyone has access to a public function f , which takes
two bad balls and a triangle as input and outputs 0 or 1. If the output is zero, that
means it is a bad configuration, otherwise it is good. This function is isomorphic
to the check from step 4 of RealGame, which takes 2 edaBits and a circuit as
inputs and outputs the result of the check. The BucketCheck procedure uses
f to check all the buckets. Figure 8 illustrates the check in detail. A passes
BucketCheck if all the check configurations are favorable to the adversary. These
favorable check configurations are illustrated in Table 2.

Table 2. Favorable combination of balls and triangles for the adversary.

Balls Triangles

/

18



After throwing triangles, in each bucket, if the check configuration of balls
and triangles are from the first three entries of Table 2, then BucketCheck will
not Abort. For the last entry BucketCheck will not Abort if the output of f is 1.
Notice that if BucketCheck passes only due to the first configuration of Table 2
in all buckets, then the output from each bucket is going to be a good ball and A
loses. So ideally we should take that into account while computing the winning
probability of the adversary. However, for most of the cases it is sufficient to
show that for large enough N the Pr[A passes BucketCheck] is negligible in the
statistical security parameter s, as that will bound the winning probability of A
in the simple game.

Before analyzing the SimpleGame, we show that security of RealGame follows
directly from security of SimpleGame. Intuitively, that is indeed the case, as in the
SimpleGame an adversary chooses number of bad triangles adaptively; Whereas
in the RealGame it has to fix the tampered circuits before seeing the permuted
edaBits. Thus, if an adversary cannot win the SimpleGame then it must be more
difficult for it to succeed in the RealGame.

Lemma 2. Security against all adversaries in SimpleGame implies security against
all adversaries in RealGame.

Proof. (Sketch.) We prove that by showing if there exist an efficient adversary B
that wins RealGame with non-negligible probability, then there exist an efficient
adversary A against the SimpleGame challenger that wins the game with non-
negligible probability. A simulates the challenger of the RealGame and uses B
to win the SimpleGame. B sends a batch of edaBits and a set of circuits to
A. A transforms the edaBits into circles. It randomly permutes the circuits,
and transforms them into triangles. Clearly, a ball (or triangle) is good or bad
depends on whether that was a good or bad edaBit (or a circuit).
A sends the set of balls to the SimpleGame challenger. The challenger throws

them randomly in buckets, sends the arrangement to A. Then A sends the set
of triangles to the challenger. The challenger throws them randomly in buckets,
and sends the arrangement to A. In the RealGame A throws edaBits and the
circuits according to the arrangement of balls and triangles in the SimpleGame.
Clearly, the simulation is indistinguishable from a RealGame challenger. Thus
from the final distribution of triangles, B cannot distinguish whether it is in the
RealGame or in the simulation. Also in the SimpleGame the BucketCheck uses
the public function f , which is isomorphic to check function that takes as input
two edaBits and a circuit and outputs the result of the check, from step 4 of the
RealGame. Consequently, if B wins with non-negligible probability then A wins
the SimpleGame with a non-negligible probability.

Throughout the analysis, we use b to denote the number of bad balls and t
to denote the number of bad triangles. Now in order to win the SimpleGame the
adversary has to pass all the three checks, so let us try to bound the success
probability of A for each of them. Throughout the analysis we consider N ≥
2

s
B−1 , that is for B ≥ 3, N(B − 1) ≥ 2

s
B−1+1 and we are opening B(≥ 3) balls

and B triangles in the first two checks.

19



Opening C balls: In the first check the challenger opens C balls and check
whether they are good. So,

Pr[C balls are good] =

(
NB+C−b

C

)(
NB+C
C

) ≈ (1− b/(NB + C))C .

Now for b = (NB + C)α, where 1/(NB + C) ≤ α ≤ 1, the probability can be
written as (1− α)C . In order to bound the success probability of the adversary
with the statistical security parameter s, let us consider the case when α ≥
2s/B−1
2s/B

and C = B. Thus,

Pr[C balls are good] ≈ (1− α)C = (2−s/B)B = 2−s.

So if the challenger opens B balls to check then in order to pass the first check

A must corrupt less than α fraction of the balls, where α = 2s/B−1
2s/B

. Lemma 3
follows from the above analysis.

Lemma 3. The probability of A passing the first check in SimpleGame is less

than 2−s, if the adversary corrupts more than α fraction of balls for α = 2s/B−1
2s/B

and the challenger opens B balls.

Opening C′ triangles: In this case we’ll consider the probability of A passing
the second check. This is similar to the previous check, the only difference is
that here the challenger opens C ′ triangles and checks whether they are good.
Consequently,

Pr[C ′ triangles are good] =

(
N(B−1)+C′−t

C′

)(
N(B−1)+C′

C′

) ≈ (1− t/(N(B − 1) + C ′))C
′
.

As in the previous case, if t is more than β fraction of the total number of

triangles for β = 2s/B−1
2s/B

, we can upper bound the success probability of A by

(2−s/B)C
′
. Thus for C ′ = B the success probability of A in the second check can

be bounded by 2−s. Lemma 4 follows from the above analysis.

Lemma 4. The probability of A passing the second check in SimpleGame is less
than 2−s, if the adversary corrupts more than β fraction of triangles for β =
2s/B−1
2s/B

and the challenger opens B triangles.

Lemmas 3–4 show that it suffices to only look at the first two checks to prove
security when the fraction of bad balls or bad triangles is sufficiently large.
However, when one of these is small, we also need to analyze the checks within
each bucket in the game.

20



BucketCheck procedure: In this case we consider that the adversary passes
first two checks and reaches the last level of the game. However, in order to
win the game the adversary has to pass the BucketCheck. Note that now we are
dealing with NB balls and the challenger already fixes the arrangement of NB
balls in N buckets. Once the ball permutation is fixed that imposes a restriction
on the number of favorable (for A) triangle permutations. For example, let us
consider that the challenger throws 12 balls into 4 buckets of size 3 and fixes
this permutation:

{[ , , ][ , , ][ , , ][ , , ]}

Then there are only two possible favorable permutations of triangles:

{[ , ][ , ][ , ][ , ]}
{[ , ][ , ][ , ][ , ]}

Two favorable permutations come from the fact that the third bucket contains
two bad balls. From Table 2 we can see that whenever there are two bad balls
in a bucket the adversary can pass the check in that bucket either with a good
triangle or with a bad triangle. That means both configurations [ , | ] and
[ , | ] might be favorable to the adversary. Now A can use the public function
f to determine the value of f( , , ) and f( , , ). In this example, let us
consider the value of f( , , ) to be 1; Then the first permutation of triangles is
favorable to the adversary. As a result the probability of passing the BucketCheck
essentially depends on the probability of hitting that specific permutation of
triangles among all possible arrangements of triangles. Then the probability of
the adversary passing the last check given a specific arrangement of balls Li is
given by:

Pr[A passes BucketCheck|Li] = 1/

(
N(B − 1)

t

)
where t = N(B − 1)β. Thus,

Pr[A passes BucketCheck|Li] =
(N(B − 1)β)!(N(B − 1)(1− β))!

N(B − 1)!

In order to upper bound Pr[A passes BucketCheck] we will upper bound the
probability for different ranges of α and β. Note that the total probability is
given by:

Pr[A passes BucketCheck] =
∑
i

Pr[A passes BucketCheck|Li] · Pr[Li]

If we can argue that for all possible (2s/B−1)/2s/B ≥ α ≥ 1/NB, the maximum
probability for Pr[A passes BucketCheck|Li], for some configuration Li, can be
bounded by 2−s, then:

Pr[A passes BucketCheck] ≤
∑
i

2−s · Pr[Li]

21



Note that the maximum possible value of α is 1, however as the challenger
opens C balls and C ′ triangles, the adversary cannot set α to be 1. To pass the
first check A must set α to be less than (2s/B − 1)/2s/B if the challenger opens
B balls and B triangles.

Now let us try to bound Pr[A passes BucketCheck|Li]. The value of
(
N(B−1)

t

)
maximizes at t ≈ N(B − 1)/2. Starting from the case when there is no bad
triangle, the probability monotonically decreases from 1 to its minimum at β ≈
1/2, and then it monotonically increases to 1 when all triangles are bad. We
analyze the success probability of A in three cases.

Case I (B− 1 ≤ t ≤ N(B− 1)− (B− 1)): Here we are considering the cases
when A chooses number of bad triangles t from the range [B − 1, N(B − 1) −
(B − 1)] to maximize its success probability. Now,

Pr[A passes BucketCheck|Li] = 1/

(
N(B − 1)

t

)
.

Clearly, the probability is maximum when t is equal to (B − 1) or N(B − 1) −
(B − 1), which is given by:

Pr[A passes BucketCheck|Li] =
(B − 1)! · (N(B − 1)− (B − 1))!

N(B − 1)!

=

(
B − 1

N(B − 1)

)
·
(

B − 2

N(B − 1)− 1

)
· · ·
(

1

N(B − 1)− (B − 2)

)
Now given N ≥ 2

s
B−1 we have,

Pr[A passes BucketCheck|Li] ≤
(

1

2
s

B−1

)B−1
= 2−s.

Thus for a given b if the adversary chooses number of bad triangles t ∈ [B −
1, N(B − 1)− (B − 1)], then:

Pr[A passes BucketCheck] ≤
∑
i

2−s · Pr[Li].

Given b bad balls and (NB−b) good balls one can arrange them in NB!/(NB−
b)! ways. So the probability of hitting a specific arrangement Li is (NB−b)!/NB!.
Thus:

Pr[A passes BucketCheck] ≤ NB!

(NB − b)!
· 2−s · (NB − b)!

NB!
= 2−s.

Case II (t > (N(B−1)− (B−1))): If t is greater than (N(B−1)− (B−1))
then the adversary will not be able to pass the second check as the challenger
opens C ′ = B triangles. Thus,

Pr[C ′ triangles are good] =

(
N(B−1)+C′−t

C′

)(
N(B−1)+C′

C′

) ≤ (1− t

N(B − 1) +B

)B

≤
(

2B − 2

N(B − 1) +B

)B
=

(
2

N

)B
·

(
B − 1

B − 1 + B
N

)B
,

22



which is less than 2−s given N ≥ 2
s

B−1 and s
B−1 > B.

Case III (t < B−1): Here we try to find the best strategy for the adversary
and then show that the success probability can be bounded by 2−s ifN ≥ 2s/B−1.
We analyze the probability for three sub-cases, specifically for bucket size 3, 4
and 5, as that allows us to use our cut and choose technique for a wide range of
practical parameters.

Bucket size 3: For bucket size 3 we have to consider two cases, namely t = 0
and t = 1. Let us first consider the case when t = 0. Clearly, if A corrupt all the
NB+C balls in a way such that f( , , ) always returns 1, then the adversary
trivially passes BucketCheck. However in that case A fails with probability 1 as
the challenger opens B balls in the first check. If A corrupts α fraction of NB

balls, where α ≥ 2s/B−1
2s/B

; Then the success probability of the A can be bounded

by 2−s, if the challenger opens C = B balls in the first check, given N ≥ 2
s

B−1 .
To pass the first check A can only corrupt less than α fraction of NB balls.
However, in that case the total number of good balls are more than one. Notice
that if there is even one good ball out of the NB balls, then in the BucketCheck
[ , | ] or [ , | ] check configuration occurs for most of Lis, and A fails. More
precisely, whenever the number of bad balls are not multiple of B, then there
exist a bucket with a good ball and a bad ball, thus probability of A passing
BucketCheck becomes zero. When number of bad balls are multiple of B then
there exist very few configurations for which the probability of A passing the
BucketCheck is one; For all other possible combinations it become zero. As an
example, for (B = 3, N = 3,K = 2, t = 0) only one type of configuration is
favorable for the adversary when K is fixed, where K is the number of bad balls
to be outputted at the end of the BucketCheck, thus 1 ≤ K ≤ N − 1:

{[ , , ][ , , ][ , , ]}

Since f( , , ) returns 1, we can assume that all the bad balls are corrupted in
the same way. Let us consider b = KB, then:

Pr[A passes BucketCheck] ≤
(
N
K

)(
NB
KB

)
At K ≈ N/2 this probability reaches its minimum value 2−(NB−1) � 2−s. At
K = 1 and K = (N −1) the probability reaches its maximum value which is less
than (B − 1)!/(NB − (B − 1))B−1 ≤ 2−s for B ≥ 3 as NB > 2s/2. Given that,
the best strategy of the adversary would be to corrupt one bucket, so that it can
pass the first check and hope to hit a favorable configuration in the BucketCheck.
However, in that case the probability is still negligible in s. Note that the analysis
for this case is same as the one from [FLNW17].

For t = 1 the analysis is very much similar to the previous case. Only dif-
ference is that now the adversary has to compensate for that one bad triangle.
In this case the adversary can win only when the number of bad balls b are
KB, KB − 1 or KB + 1 for 1 ≤ K ≤ (N − 1). We are not considering the

23



case when K is N , as in that A passing the first check is negl(s). For example
for (B = 3, N = 4,K = 2, t = 1), these are three possible type of favorable
configurations for the adversary:

{[ , , ][ , , ][ , , ][ , , ]}
{[ , , ][ , , ][ , , ][ , , ]}
{[ , , ][ , , ][ , , ][ , , ]}

In the first case there must exist exactly one bad ball pair in one corrupted
bucket such that f( , , ) returns 1, thus for that pair the adversary can use
the bad triangle. In the second case the adversary uses the bad triangle to check
one {bad ball, good ball} pair in the second bucket. In a similar way in the third
case A uses the bad triangle to check one {good ball, bad ball} pair in the third
bucket. Note that in the second case the good ball in the second bucket can
be placed in four possible positions to generate other favorable permutations.
Similarly in the third case the bad ball in the third bucket can be placed in
four possible positions to generate other favorable permutations. For all other
arrangement the adversary fails BucketCheck, as it has to deal with more than
one {bad ball, good ball} pair.

Now the probability of A passing the BucketCheck for the case when b = KB
and t = 1 is given by:

Pr[A passes BucketCheck] ≤
(
N
K

)(
NB
KB

) · (B − 1) ·K · 1

N(B − 1)
.

The probability of A passing the BucketCheck when b = KB − 1 and t = 1
is given by:

Pr[A passes BucketCheck] ≤
(
N
K

)(
NB
KB−1

) · (B − 1) ·K · 1

N(B − 1)
.

In the last case for b = KB + 1 and t = 1 the probability is given by:

Pr[A passes BucketCheck] ≤
(
N
K

)(
NB
KB+1

) · (B − 1) · (N −K) · 1

N(B − 1)
.

The probability of success in the second case for K = 1 is higher than the
probabilities in the first case for all possible K. In fact it maximizes at K = 1 in
the second case; which is the same as the highest probability in the third case
when K = (N −1). Consequently the best strategy of the adversary would be to
corrupt minimum number of balls, to minimize the failure probability of opening
and checking C balls, and try to achieve the maximum success probability from
the BucketCheck. That means the optimal strategy for the adversary would be
the second case with K = 1. Thus,

Pr[A passes BucketCheck] ≤ (B − 1)!

(NB − (B − 2))B−1
≤ 2−s, for B ≥ 3.

24



Bucket size 4: The analysis for the cases B = 4, t = 0 and t = 1 follows directly
from the analysis from B = 3. In other words, the configurations remain the
same, the only difference being the bucket size is now 4.

For bucket size B = 4 and t = 2, there are six possible favorable configura-
tions for the adversary when K is fixed, where K is the number of bad balls to
be outputted at the end of the BucketCheck, thus 1 ≤ K ≤ N − 1. For example
for (B = 4, N = 4,K = 2, t = 2) these are the six possible configurations for the
adversary:

{[ , , , ][ , , , ][ , , , ][ , , , ]}
{[ , , , ][ , , , ][ , , , ][ , , , ]}
{[ , , , ][ , , , ][ , , , ][ , , , ]}
{[ , , , ][ , , , ][ , , , ][ , , , ]}
{[ , , , ][ , , , ][ , , , ][ , , , ]}
{[ , , , ][ , , , ][ , , , ][ , , , ]}

For all these cases the success probability of the adversary in the BucketCheck
can be expressed as:

Pr[A passes BucketCheck]

≤
(
N

K

)(
K(B − 1)

g1 + b1

)(
(N −K)(B − 1)

b2

)
1(
NB

KB−g1+b2

) 1(
N(B−1)

t

) , (2)

where g1 is the total number of good balls in the chosen K buckets (which output
bad balls at the end of BucketCheck), b1 is the total number of different kind of
bad balls( ), such that f( , , ) returns 1 and b2 is the total number of bad
balls from other (N −K) buckets. Note that number of bad triangles t is equal
to g1 + b1 + b2. As an example let us consider the first configuration among the
six favorable configurations; In that case g1 = 1, b1 = 0 and b2 = 1, thus:

Pr[A passes BucketCheck] ≤
(
N

K

)(
K(B − 1)

1

)(
(N −K)(B − 1)

1

)
1(
NB
KB

) 1(
N(B−1)

t

) .
Now for each of these configurations the probability is maximum either at K = 1
or at K = N − 1. After calculating the probabilities for each of these configura-
tions at K = 1 and K = N − 1 it is easy to see that the success probability of
the adversary is maximum in the fourth case for K = N − 1. Thus:

Pr[A passes BucketCheck] ≤ 9N(N − 1) · 1(
4N
3

) · 1(
3N
2

)
=

(
3N − 3

3N − 1

)
·
(

3

4N

)
·
(

2

4N − 1

)
·
(

2

4N − 2

)
≤
(

3N − 3

3N − 1

)
· 2−s/3 · 2−s/3 · 2−s/3 ≤ 2−s, given N ≥ 2s/B−1.

25



Bucket size 5: Once again, the analysis from the previous cases carries over for
t = 0, 1, 2, t = 3 being the only new case we have to analyze.

For the case when B = 5 and t = 3, there are 10 favorable configurations for
the adversary when K is fixed. For N = 4 and K = 2, these are the cases:

{[ , , , , ][ , , , , ][ , , , , ][ , , , , ]}
{[ , , , , ][ , , , , ][ , , , , ][ , , , , ]}
{[ , , , , ][ , , , , ][ , , , , ][ , , , , ]}
{[ , , , , ][ , , , , ][ , , , , ][ , , , , ]}
{[ , , , , ][ , , , , ][ , , , , ][ , , , , ]}
{[ , , , , ][ , , , , ][ , , , , ][ , , , , ]}
{[ , , , , ][ , , , , ][ , , , , ][ , , , , ]}
{[ , , , , ][ , , , , ][ , , , , ][ , , , , ]}
{[ , , , , ][ , , , , ][ , , , , ][ , , , , ]}
{[ , , , , ][ , , , , ][ , , , , ][ , , , , ]}

Using eq. (2) we can calculate the probabilities for these 10 cases at K = 1
and K = N − 1 to find the best case scenario for the adversary. Doing so,
we found that the first case from the figure at K = 1, and the fourth case at
K = N −1 have the best probabilities. Considering the first case, this would be,

Pr[A passes BucketCheck] ≤
(
N

1

)
·
(

4

3

)
· 1(

5N
2

) · 1(
4N
3

)
= N · 4 · 1(

5N
2

) · 1(
4N
3

)
=

(
2

5N

)
·
(

6

5N − 1

)
·
(

1

4N − 1

)
·
(

1

4N − 2

)
≤ 2−s/4 · 2−s/4 · 2−s/4 · 2−s/4 ≤ 2−s, given N ≥ 2s/B−1.

Even though the probability is the same for the fourth case with K = N − 1,
since the number of bad balls are much higher than the first case, the overall
probability will be lower for the fourth, making the first case the best one.

We summarize the analysis as follows.

Lemma 5. The probability of A passing the BucketCheck in SimpleGame is less
than 2−s, if N ≥ 2s/(B−1) and the challenger opens C = B balls and C ′ = B
triangles during first two checks of SimpleGame for B ∈ {3, 4, 5} given s

B−1 > B.

Proof. This follows from the case-by-case analysis of BucketCheck procedure,
together with Lemma 3 and Lemma 4.

Combining Lemma 2 and Lemma 5, this completes the proof of Theorem 2.

26



Remark 1. As we already mentioned the bound we obtain is not general. How-
ever, from Lemma 5 it is evident that one can produce more than 1024 edaBits
efficiently with 40-bit statistical security using different bucket sizes with our
CutNChoose technique, which is sufficient for the applications we are considering
in this work. It also shows that if we want to achieve 80-bit statistical security for
N ≥ 220, then increasing the bucket size from 3 to 5 would be sufficient. Table 1
shows the number of edaBits we can produce with different size of buckets.

5 Primitives

This section describes the high-level protocols we build using our edaBits, both
over Z2k and Zp. We focus on secure truncation (Section 5.1) and secure integer
comparison (Section 5.2), although our techniques apply to a much wider set of
non-linear primitives that require binary circuits for intermediate computations.
For example, our techniques also allow us to compute binary-to-arithmetic and
arithmetic-to-binary conversions of shared integers, by plugging in our edaBits
into the conversion protocols from [Cd10] and [DEF+19] for the field and ring
cases, respectively.

Throughout this section our datatypes are signed integers in the interval
[−2`−1, 2`−1). On the other hand, our MPC protocols operate over a modulus
M ≥ 2` which is either 2k or a prime p. Given an integer α ∈ [−2`−1, 2`−1), we
can associate to it the corresponding ring element in ZM by computing α mod
M ∈ ZM (modular reduction returns integers in [0,M)). We denote this map
by RepM (α), and we may drop the sub-index M when it is clear from context.
Finally, in the protocols below LT denotes a binary less-than circuit.

5.1 Truncation

Recall that our datatypes are signed integers in the interval [−2`−1, 2`−1), rep-
resented by integers in ZM where M ≥ 2` via RepM (α) = α mod M . The goal
of a truncation protocol is to obtain [y] from [a], where y = Rep

(⌊
α
2m

⌋)
and

where a = Rep(α). This is a crucial operation when dealing with fixed-point
arithmetic, and therefore an efficient solution for it has a substantial impact in
the efficiency of MPC protocols for a wide range of applications. An important

observation is that, as integers,
⌊
α
2m

⌋
= α−(α mod 2m)

2m . If M is an odd prime
p, this corresponds in Zp to y = (Rep(α)− Rep(α mod 2m)) · Rep(2m)−1. Fur-
thermore, Rep(α mod 2m) = α mod 2m = a mod 2m and Rep(2m) = 2m, so

y = a−(a mod 2m)
(2m)−1 .

Truncation over Z2k . Truncation protocols over fields typically exploit the fact
that one can divide by powers of 2 modulo p. This is not possible when working
modulo 2k. Instead, we take a different approach. Let [a]2k be the initial shares,
where a = Rep(α) with α ∈ [−2`−1, 2`−1) (notice that it may be the case that

27



` < k). First, we provide a method, LogShift, for computing the logical right
shift of a by m positions, assuming that a ∈ [0, 2`). That is, if a is

(0, . . . , 0︸ ︷︷ ︸
k−`

, a`−1, . . . , a0︸ ︷︷ ︸
`

),

this procedure will yield shares of

(0, . . . , 0︸ ︷︷ ︸
k−`+m

, a`−1, . . . , am︸ ︷︷ ︸
`−m

).

Then, to compute the arithmetic shift, we use the fact that4⌊ α
2m

⌋
≡ LogShiftm(a+ 2`−1)− 2`−m−1 mod 2k.

Now, to compute the logical shift, our protocol begins just like in the field case
by computing shares of a mod 2m and subtracting them from a, which produces
shares of (ak−1, . . . , am, 0, . . . , 0). The parties then open a masked version of
a − (a mod 2m) which does not reveal the upper k − ` bits, and then shift to
the right by m positions in the clear, and undo the truncated mask. One has to
account for the overflow that may occur during this masking, but this can be
calculated using a binary LT circuit.

The details of our logical shift protocol are provided in Fig. 9, and we analyze
its correctness next. First, it is easy to see that c = 2k−m((a + r) mod 2m), so
c/2k−m = (a mod 2m) + r− 2mv, where v is set if and only if c/2k−m < r. From
this we can see that the first part of the protocol [a mod 2m]2k is correctly com-
puted. Privacy of this first part follows from the fact that r mod 2m completely
masks a mod 2m when c is opened.

For the second part, let us write b = 2ma′, then d = 2k−`+m((a′ + r′) mod
2`−m), so d/2k−`+m = a′+r′−2`−mu, where u is set if and only if d/2k−`+m < r′,
as calculated by the protocol. We get then that a′ = d/2k−`+m − r′ + 2`−mu,
and since a′ is precisely LogShiftm(a), we conclude the correctness analysis.

Probabilistic Truncation. Recall that in the field case one can obtain probabilis-
tic truncation avoiding a binary circuit, which results in a constant number of
rounds. Over rings this is a much more challenging task. For example, probabilis-
tic truncation with a constant number of rounds is achieved in ABY3 [MR18],
but requires, like in the field case, a 2s gap between the secret values and the
actual modulus, which in turn implies that only small non-negative values can
be truncated.

In Fig. 10, we take a different approach. Intuitively, we follow the same
approach as in ABY3, which consists of masking the value to be truncated with
a shared random value for which its corresponding truncation is also known,

4 Notice that we can use the LogShift method on a + 2`−1 since, α + 2`−1 ∈ [0, 2`),
which implies that (a+ 2`−1) mod 2k = α+ 2`−1 and therefore (a+ 2`−1) mod 2k is
`-bits long, as required.

28



Logical right shift over Z2k

Pre:
– FABB

– Input [a]2k where a ∈ [0, 2`).
– Number of bits to shift m
– edaBit ([r]2k , [r]2) of length m
– edaBit ([r′]2k , [r

′]2) of length `−m
Post: [y]2k , where y = LogShiftm(a).

1. The parties compute shares of a mod 2m as follows:
(a) Call c = open

(
2k−m · ([a]2k + [r]2k )

)
(b) Compute [v]2 = LT((ci)

k
i=k−m+1, ([ri]2)m−1

i=0 )
(c) Convert [v]2 7→ [v]2k
(d) Let [a mod 2m]2k = 2m [v]2k − [r]2k + c/2k−m.

2. The parties compute the truncation:
(a) Compute [b]2k = [a]2k − ([a]2k mod 2m).
(b) Call d = open(2k−` · ([b]2k + 2m [r′]2k )).
(c) Compute [u]2 = LT((di)

k−1
i=k−`+m, ([r

′
i]2)`−m−1

i=0 )
(d) Convert [u]2 7→ [u]2k .a

(e) Output [y]2k = 2`−m [u]2k + d/2k−`+m − [r′]2k

a One can optimize this by noticing that we only need shares of u modulo
2k−`+m.

Fig. 9. Protocol for performing logical right-shift

opening this value, truncating it and removing the truncated mask. In ABY3 a
large gap is required to ensure that the overflow that may happen by the masking
process does not occur with high probability. Instead, we allow this overflow bit
to be non-zero and remove it from the final expression. Doing this naively would
require us to compute a LT circuit, but we avoid doing this by using the fact that,
because the input is positive, the overflow bit can be obtained from the opened
value by making the mask value also positive. This leaks the overflow bit, which
is not secure, and to avoid this we mask this single bit with another random bit.
This protocol can be seen as an extension of the probabilistic truncation protocol
by Dalskov et al. [DEK19]. Below, we provide an analysis for our extension that
also applies to said protocol.

Now we analyze the protocol. First we notice that c = 2k−`−1c′ where c′ =
(2mr+r′)+a+2`b−2`+1vb, where v is set if and only if (2mr+r′)+a overflows
modulo 2`. It is easy to see that this implies that c′` = v ⊕ b, so we see that
v = c′` ⊕ b, as calculated in the protocol.

On the other hand, we have that (c′ mod 2`) = (2mr + r′) + a − 2`v, so
a mod 2m = (c′ mod 2m) − r′ + 2mu, where u is set if (c′ mod 2m) < r′. From
this it can be obtained that

⌊
(c′ mod 2`)/2m

⌋
− r + 2`−m = ba/2mc+ u.

29



Probabilistic truncation over Z2k

Pre:
– FABB

– Input [a]2k where a ∈ [0, 2`).
– ` < k
– Number of bits to truncate m
– edaBit ([r]2k , [r]2) of length (`−m)
– edaBit ([r′]2k , [r

′]2) of length m
– Random bit [b]2k

Post: [y]2k where y = ba/2mc+u with u = 1 with probability (a mod 2m)/2m.

1. Call c = open(2k−`−1 · ([a]2k + 2` [b]2k + 2m [r]2k + [r′]2k )). Write c =
2k−`−1c′.

2. Compute [v]2k = [b⊕ c′`]2k = [b]2k + c′` − 2c′` [b]2k
3. Output [y]2k = (c′ mod 2`)/2m − [r]2k + 2`−m [v]2k

Fig. 10. Probabilistic truncation in domain modulo power of two using edaBits

Remark 2. The protocol we discussed above only works if a ∈ [0, 2`), that is, if
the value α represented α ∈ [0, 2`−1). We can extend it to α ∈ [−2`−1, 2`−1) by
using the same trick as in the deterministic truncation: The truncation is called
with a+ 2`−1 as input, and 2`−m−1 is subtracted from the output.

Truncation over Fields. We begin with a protocol, presented originally by
Catrina and de Hoogh [Cd10], and optimize it with our edaBits. For this protocol
we require a larger gap between the shares and the secret to be truncated,
more precisely, it must hold that p > 2`+s+1, where s is the statistical security
parameter. The protocol is presented in Fig. 11.

To see the correctness of the protocol, begin by observing that because p >
2`+s+1, and since b ∈ [0, 2`) the addition of b and 2mr + r′ does not overflow
modulo p and therefore c is actually equal to b + 2mr + r′, as integers. This
preserves the privacy of b as b ∈ [0, 2`) and 2mr + r′ is uniformly random in
[0, 2`+s+1). Given this, it holds then that (c mod 2m) = (b mod 2m) + (2mr +
r′ mod 2m) − v · 2m, where v ∈ {0, 1} is set if and only if (b mod 2m) + (r mod
2m) /∈ [0, 2m). Now, observe that this condition triggers if and only if c mod 2m =∑m−1
i=0 ci2

i is smaller than r mod 2m =
∑m−1
i=0 ri2

i, so the bit v can be obtained
by executing a (unsigned) binary less-than circuit as done by the protocol. We
remark that for this step we use our optimized binary-shared bits, which provides
an important optimization with respect to the protocol from Catrina et al.

Taking into account that (2mr + r′) mod 2m = r′, and also that a ≡ b mod
2`−1, (c mod 2m)− r′ + v · 2m is the same as a mod 2m, we obtain that the first
part of the protocol in which shares of a mod 2m are computed is correct. Finally,
the ending step computes the formula for the truncation, which concludes the
correctness analysis.

30



Deterministic Truncation over Fp

Pre:

– Shares [a] = [Rep(α)], integer 0 < m < `.
– edaBit ([r]M , [r]2) of length `−m+ s.
– edaBit ([r′]M , [r

′]2) of length m.

Post: Shares [y] where y = Rep
(⌊

α
2m

⌋)
.

1. First the parties compute shares of a mod 2m as follows:
(a) Let [b] = 2`−1 + [a];
(b) Call c = open([b] + 2m[r] + [r′]);
(c) The parties compute [v]2 = LT

(
(ci)

m−1
i=0 , ([r

′
i]2)m−1

i=0

)
;

(d) Convert [v]2 7→ [v].
(e) Let [a mod 2m] = [c mod 2m]− [r′] + [v]2m.

2. Compute the truncated value using the formula as follows. Let (2m)−1 be
the inverse of 2m modulo p. Output [y] = (2m)−1 · ([a]− [a mod 2m]).

Fig. 11. Deterministic truncation over fields with share gap

Probabilistic Truncation. The protocol above is not constant round, as it requires
the computation of a less-than circuit on inputs of length m. It turns out that
if one is willing to allow for some small error, a much more efficient protocol
can be devised, as by Catrina and Saxena [CS10]. This protocol follows the
same blueprint as the deterministic one, except that the computation of the
overflow bit v is omitted. The description of the protocol can be found in Fig. 12.
Following the analysis from the previous protocol, this implies that the value d
computed in the protocol is d = (a mod 2m)− 2mv, so the final value computed
is (a− (a mod 2m))/2m + v, which is the desired truncation, off by at most one
bit. Furthermore, it is easy to see that the result is biased towards the nearest
truncation.

5.2 Integer Comparison

Another important primitive that appears in many applications is integer com-
parison. In this case, two secret integers [a]M and [b]M are provided as input,

and the goal is to compute shares of α
?
< β, where a = Rep(α) and b = Rep(β).

As noticed by previous works (e.g. [Cd10, DEF+19]), this computation re-
duces to extracting the MSB from a shared integer as follows: If α, β ∈ [−2k−2, 2k−2),
then α − β = [−2k−1, 2k−1), so a − b = Rep(α − β) corresponds to the sign of
α− β, which is minus (i.e. the bit is 1) if and only if α is smaller than β.

To extract the MSB, we simply notice that MSB(α) = −
⌊

α
2k−1

⌋
mod 2k, so

this can be extracted with the protocols we have seen in the previous sections.

31



Probabilistic truncation over Fp

Pre:

– FABB with p > 2k+s+1.
– Shares [a] = [Rep(α)], integer 0 < m < k.
– edaBit ([r]M , [r]2) of length k −m+ s.
– edaBit ([r′]M , [r

′]2) of length m.

Post: Shares [y] where y ≈ Rep
(⌊

α
2m

⌋)
.

1. Let [b] = 2k−1 + [a];
2. Call c = open([b] + 2m[r] + [r′]);
3. Let [d] = [c mod 2m]− [r′].
4. Output [y] = (2m)−1 · ([a]− [d]).

Fig. 12. Probabilistic truncation over fields.

Table 3. Amortized costs for generating 1 Private, and 1 Global edaBit. Costs for
Global edaBits do not include the cost of the n additional sets of Private edaBits that
are needed.

Private edaBits Global edaBits
Z2k Fp Z2k Fp

Faulty edaBits B B 0 0 (l −m+ s, m)
Faulty Triples (B − 1)m (B − 1)m 0 0
Secure Triples 0 0 (log n)(n− 1) (logn)(n− 1)
daBits 0 (B − 1) 0 logn
Openings (Z2) (3m+ 1)(B − 1) (3m+ 1)(B − 1) (2m+ 2 logn)(n− 1) (2m+ 3 logn)(n− 1)
Openings (ZM ) (B − 1) (B − 1) 0 0

6 Applications and Benchmarks

6.1 Theoretical Cost

We present the theoretical costs of the different protocols in the paper, starting
with the cost for producing Private and Global edaBits in terms of the different
parameters.

Table 3 shows the main amortized costs for generating a Private and Global
edaBit of length m. For Global edaBits, we assume have the required correct
Private edaBits to start with, which is why number of Faulty edaBits needed is
0. B is the bucket size for the cut-and-choose procedure and n is the number of
parties.

Table 4 shows the cost for two of our primitives from Section 5, namely com-
parison of m-bit numbers and truncation of an `-bit number by m binary digits.
For computation modulo a prime, there is also a statistical security parameter
s.

Comparison in Z2k is our only application where it suffices to use loose edaBits
(where the relation between the sets of shares only holds modulo 2m, c.f. Sec-

32



Table 4. Cost of our primitives. Numbers in brackets indicate edaBit length.

Comparison Truncation
Z2k Fp Z2k Fp

Strict edaBits 0 2 (m+ 1, s+ 1) 2 (l −m, m) 2 (l −m+ s, m)
Loose edaBits 1 (m+ 1) 0 0 0
classic daBits 1 1 2 1
Online ANDs ∼ 2m ∼ 2m ∼ 2m ∼ 2k

tion 3.2). This is because the arithmetic part of an edaBit is only used in the
first step (the masking) but not at the end. Recall that the truncation proto-
cols always use the arithmetic part of an edaBit twice, once before opening and
once to compute an intermediate or the final result. Using a loose edaBit would
clearly distort the result. With comparison on the other hand, an edaBit is only
used to facilitate the conversion to binary computation, after which the result is
converted back to arithmetic computation using a classic daBit.

6.2 Implementation Results

We have implemented our approach in a range of domains and security mod-
els, and we have run the generation of a million edaBits of length 64 on AWS
c5.9xlarge with the minimal number of parties required by the security model
(two for dishonest majority and three for honest majority). Table 5 shows the
throughput for various security models and computation domains, and Table 6
does so for communication. In the prime field case, we use log p ≈ 128 to allow
additional room needed for comparisons, while for arithmetic mod 2k we use
k = 64. For computation modulo a prime with dishonest majority, we present
figures for arithmetic computation both using oblivious transfer (OT) [KOS16]
and LWE-based semi-homomorphic encryption (HE) [KPR18]. Note that the
binary computation is always based on oblivious transfer for dishonest majority
and that all our results include all consumable preprocessing such as multipli-
cation triples but not one-off costs such as key generation. The source code of
our implementation has been added to MP-SPDZ [CSI20].

We have also implemented 63-bit5 comparison using edaBits, only daBits,
and neither, and we have run one million comparisons in parallel again on AWS
c5.9xlarge. Table 7 shows the throughput for our various security models and
computation domains, and Table 8 does so for communication. Note that the
arithmetic baseline uses either the protocol of Catrina and de Hoogh [Cd10] (Fp)
or the variant by Dalskov et al. [DEK19] (Z2k).

Our results highlight the advantage of our approach over using only daBits.
The biggest improvement comes in the dishonest majority with semi-honest se-
curity model. For the dishonest majority aspect, this is most likely because there

5 Comparison in secure computation is generally implemented by extracting the most
significant bit of difference. This means that 63-bit is the highest accuracy achievable
in computation modulo 264, which the natural modulus on current 64-bit platforms.

33



Table 5. Number of edaBits generated (in 1000s) per second in various settings

Domain Strict edaBits Loose edaBits

Dishonest maj.

Malicious
2k (OT) 4.6 7.3
p (OT) 3.6 4.2
p (HE) 2.7 3.4

Semi-hon.
2k (OT) 456.7 922.5
p (OT) 228.0 892.6
p (HE) 470.5 905.6

Honest maj.
Malicious

2k 191.5 205.8
p 156.6 162.1

Semi-hon.
2k 2032.1 7180.0
p 1367.7 4934.3

Table 6. Communication per edaBit (in kbit) in various settings

Domain Strict edaBits Loose edaBits

Dishonest maj.

Malicious
2k (OT) 1335.5 480.2
p (OT) 1936.9 1473.2
p (HE) 940.8 779.7

Semi-hon.
2k (OT) 22.5 9.6
p (OT) 43.9 9.6
p (HE) 11.8 9.6

Honest maj.
Malicious

2k 5.6 3.7
p 7.6 6.4

Semi-hon.
2k 0.3 0.2
p 0.5 0.2

is a great gap in the cost between multiplications and inputs (the latter is used
extensively to generate edaBits). For the semi-honest security aspect, note that
our approach for malicious security involves a cascade of sacrificing because the
edaBit sacrifice involves binary computation, which in turn involves further sac-
rifice of AND triples. Finally, the improvement in communication is generally
larger than the improvement in wall clock time. We estimate that this is due
to the fact that switching to binary computation clearly reduces communication
but increases the computational complexity.

6.3 Comparison to Previous Works

Dishonest majority. The authors of HyCC [BDK+18] report figures for biometric
matching with semi-honest two-party computation in ABY [DSZ15] and HyCC.
The algorithm essentially computes the minimum over a list of small-dimensional
Euclidean distances. The aforementioned authors report figures in LAN (1Gbps)
and artificial WAN settings of two machines with four-core i7 processors. For a

34



Table 7. Number of comparisons (in 1000s) per second in various settings

Domain Arithm. daBits edaBits

Dishonest maj.

Malicious
2k (OT) 0.5 1.2 4.4
p (OT) 0.3 0.3 1.6
p (HE) 0.6 0.7 2.0

Semi-hon.
2k (OT) 5.2 14.4 275.6
p (OT) 1.6 3.3 79.7
p (HE) 5.9 12.8 170.6

Honest maj.
Malicious

2k 76.4 119.2 170.4
p 66.9 78.3 80.1

Semi-hon.
2k 500.6 1007.7 1607.6
p 157.8 277.1 457.6

Table 8. Communication per comparison (in kbit) in various settings

Domain Arithm. daBits edaBits

Dishonest maj.

Malicious
2k (OT) 21737.7 9058.6 1310.5
p (OT) 40108.5 34019.1 4783.3
p (HE) 3020.5 3210.9 1584.8

Semi-hon.
2k (OT) 2283.0 830.2 39.0
p (OT) 7353.1 3503.0 134.9
p (HE) 411.6 219.1 38.7

Honest maj.
Malicious

2k 63.4 27.8 5.4
p 94.3 85.0 19.9

Semi-hon.
2k 14.5 7.1 0.4
p 37.4 23.1 1.4

fair comparison, we have run our implementation using one thread limiting the
bandwidth and latency accordingly. Table 9 shows that our results improves on
the time in the LAN setting and on communication generally as well as on the
in the WAN setting for larger instances compared to their A+B setting (without
garbled circuits). The WAN setting is less favorable to our solution because it
is purely based on secret sharing and we have not particularly optimized the
number of rounds.

Honest majority (three parties, one semi-honest corruption). Our approach is
not directly comparable to ABY3 by Mohassel and Rindal [MR18] because they
use the specifics of replicated secret sharing for the conversion. We do note
however that their approach of restricting binary circuits to the binary domain
is comparable to our solution, and that they use the same secret sharing schemes
as us in the 2k domain. We compare their results with our approach applied to
logistic regression. Their software implementation [MR19] runs all parties on
the same host without communication encryption. For a fair comparison, we

35



Table 9. Overall time and communication for biometric matching

LAN (s) WAN (s) Comm. (MB)

n = 1000
ABY/HyCC (A+Y) 0.22 2.5 9.5
ABY/HyCC (A+B) 0.22 6.1 10.6
Ours 0.12 8.3 7.4

n = 4096
ABY/HyCC (A+Y) 0.63 6.6 40.4
ABY/HyCC (A+B) 0.72 13.6 43.6
Ours 0.48 12.6 29.1

n = 13684
ABY/HyCC (A+Y) 3.66 17.5 138.0
ABY/HyCC (A+B) 5.4 26.2 190.8
Ours 2.00 22.9 111.8

have run their software as well as ours in the same setting on the same desktop
machine with an i7 processor. In our software, we use the special truncation
according to Dalskov et al. [DEK19] and either edaBits or bit decomposition as
in the work above for comparison. The comparison in turn is used for a piece-
wise approximation of the sigmoid function. Table 10 shows that edaBit-based
comparison generally comes close to ABY3’s bit decomposition.

Dimension Batch size ABY3 [MR18] Ours (ABY3 comp.) Ours (edaBits)

10

128 1495 1801 1671
256 1402 1407 1230
512 1229 1014 827

1024 976 656 479

100

128 1303 1372 1269
256 1064 988 904
512 732 657 560

1024 349 387 316

1000

128 327 436 422
256 148 284 271
512 74 167 159

1024 35 90 84

Table 10. Iterations per second for logistic regression

daBits. Aly et al. [AOR+19] report figures for daBit generation with dishonest
majority and malicious security in eight threads over a 10 Gbps network. For
two-party computation using homomorphic-encryption, they achieve 2150 daBits
per second at a communication cost of 94 kbit per daBit. In a comparable set-
ting, we found that our protocol produces 12292 daBits per second requiring

36



a communication cost of 32 kbit. Note however that Aly et al. use somewhat
homomorphic encryption while our implementation is based on cheaper semi-
homomorphic encryption.

Convolutional Neural Networks. We also apply our techniques to the convolu-
tional neural networks.Dalskov et al. [DEK19] present an implementation for
deep learning inference. We have adapted their implementation to our setting
and present a comparison for the simplest network (MobileNet V1 0.25 128) in
Table 11. It shows that edaBits reduce the communication and time in most se-
curity models. The only exception is semi-honest honest-majority computation
modulo 2k, where Dalskov et al. use the conversion by Mohassel et al. [MR18],
which has similar properties to our approach. The figures for malicious protocols
have been generated using bucket size four because the batches would otherwise
far exceed the required edaBits.

Domain Time (s) Comm. (GB)

Dish. maj.

Mal.
2k (OT)

[DEK19] 1264.9 1748.4
Ours 455.3 561.9

p (HE)
[DEK19] 1377.8 282.4
Ours 552.9 299.9

S-h.
2k (OT)

[DEK19] 139.5 199.2
Ours 23.8 32.4

p (HE)
[DEK19] 129.1 37.1
Ours 22.4 6.8

Hon. maj.

Mal.
2k

[DEK19] 5.3 2.5
Ours 3.4 2.2

p
[DEK19] 9.0 8.7
Ours 8.3 4.6

S-h.
2k

[DEK19] 0.2 0.1
Ours 0.3 0.1

p
[DEK19] 3.3 3.4
Ours 2.2 0.3

Table 11. Time and communication for MobileNet inference

Acknowledgements. We thank Deevashwer Rathee and the authors of [CGR+19]
for pointing out corrections to our cost analysis, Sameer Wagh for helpful com-
ments on an earlier version of the paper, and the anonymous CRYPTO 2020
reviewers for valuable feedback. This work has been supported by the European
Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme under grant agreements No 669255 (MPCPRO) and

37



No 803096 (SPEC), the Danish Independent Research Council under Grant-ID
DFF–6108-00169 (FoCC), the Concordium Blockhain Research Center, Aarhus
University and an Aarhus University Forskningsfond (AUFF) starting grant.

Bibliography

[ABF+18] Toshinori Araki, Assi Barak, Jun Furukawa, Marcel Keller, Yehuda Lin-
dell, Kazuma Ohara, and Hikaru Tsuchida. Generalizing the SPDZ com-
piler for other protocols. In David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 880–895.
ACM Press, October 2018.

[AOR+19] Abdelrahaman Aly, Emmanuela Orsini, Dragos Rotaru, Nigel P. Smart,
and Tim Wood. Zaphod: Efficiently combining LSSS and garbled circuits
in SCALE. In WAHC ’19: Proceedings of the 7th ACM Workshop on
Encrypted Computing & Applied Homomorphic Cryptography. ACM, 2019.
https://eprint.iacr.org/2019/974.

[BCG+19a] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter
Rindal, and Peter Scholl. Efficient two-round OT extension and silent non-
interactive secure computation. In Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 291–
308. ACM Press, November 2019.

[BCG+19b] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Efficient pseudorandom correlation generators: Silent OT
extension and more. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 489–518.
Springer, Heidelberg, August 2019.

[BDK+18] Niklas Büscher, Daniel Demmler, Stefan Katzenbeisser, David Kretzmer,
and Thomas Schneider. HyCC: Compilation of hybrid protocols for prac-
tical secure computation. In David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 847–861.
ACM Press, October 2018.

[BGI15] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In
Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II,
volume 9057 of LNCS, pages 337–367. Springer, Heidelberg, April 2015.

[BGI19] Elette Boyle, Niv Gilboa, and Yuval Ishai. Secure computation with
preprocessing via function secret sharing. In Dennis Hofheinz and Alon
Rosen, editors, TCC 2019, Part I, volume 11891 of LNCS, pages 341–371.
Springer, Heidelberg, December 2019.

[BLN+15] Sai Sheshank Burra, Enrique Larraia, Jesper Buus Nielsen, Peter Sebas-
tian Nordholt, Claudio Orlandi, Emmanuela Orsini, Peter Scholl, and
Nigel P. Smart. High performance multi-party computation for binary
circuits based on oblivious transfer. Cryptology ePrint Archive, Report
2015/472, 2015. http://eprint.iacr.org/2015/472.

[BLW08] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework
for fast privacy-preserving computations. In Sushil Jajodia and Javier
López, editors, ESORICS 2008, volume 5283 of LNCS, pages 192–206.
Springer, Heidelberg, October 2008.

[BST20] Charlotte Bonte, Nigel P. Smart, and Titouan Tanguy. Thresholdiz-
ing hasheddsa: Mpc to the rescue. Cryptology ePrint Archive, Report
2020/214, 2020. https://eprint.iacr.org/2020/214.

38

https://eprint.iacr.org/2019/974
http://eprint.iacr.org/2015/472
https://eprint.iacr.org/2020/214


[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society
Press, October 2001.

[Cd10] Octavian Catrina and Sebastiaan de Hoogh. Improved primitives for se-
cure multiparty integer computation. In Juan A. Garay and Roberto De
Prisco, editors, SCN 10, volume 6280 of LNCS, pages 182–199. Springer,
Heidelberg, September 2010.

[CDE+18] Ronald Cramer, Ivan Damg̊ard, Daniel Escudero, Peter Scholl, and Chaop-
ing Xing. SPD Z2k : Efficient MPC mod 2k for dishonest majority. In Ho-
vav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II,
volume 10992 of LNCS, pages 769–798. Springer, Heidelberg, August 2018.

[CGR+19] Nishanth Chandran, Divya Gupta, Aseem Rastogi, Rahul Sharma, and
Shardul Tripathi. EzPC: Programmable and efficient secure two-party
computation for machine learning. In 2019 IEEE European Symposium
on Security and Privacy (EuroS&P), pages 496–511. IEEE, 2019.

[CS10] Octavian Catrina and Amitabh Saxena. Secure computation with fixed-
point numbers. In Radu Sion, editor, FC 2010, volume 6052 of LNCS,
pages 35–50. Springer, Heidelberg, January 2010.

[CSI20] CSIRO’s Data61. MP-SPDZ. https://github.com/data61/MP-SPDZ,
2020.

[DEF+19] Ivan Damg̊ard, Daniel Escudero, Tore Kasper Frederiksen, Marcel Keller,
Peter Scholl, and Nikolaj Volgushev. New primitives for actively-secure
MPC over rings with applications to private machine learning. In 2019
IEEE Symposium on Security and Privacy, pages 1102–1120. IEEE Com-
puter Society Press, May 2019.

[DEK19] Anders Dalskov, Daniel Escudero, and Marcel Keller. Secure evaluation of
quantized neural networks. Cryptology ePrint Archive, Report 2019/131,
2019. https://eprint.iacr.org/2019/131.

[DFK+06] Ivan Damg̊ard, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and Tomas
Toft. Unconditionally secure constant-rounds multi-party computation
for equality, comparison, bits and exponentiation. In Shai Halevi and Tal
Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 285–304. Springer,
Heidelberg, March 2006.

[DGN+17] Nico Döttling, Satrajit Ghosh, Jesper Buus Nielsen, Tobias Nilges, and
Roberto Trifiletti. TinyOLE: Efficient actively secure two-party compu-
tation from oblivious linear function evaluation. In Bhavani M. Thurais-
ingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS
2017, pages 2263–2276. ACM Press, October / November 2017.

[DKL+13] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter
Scholl, and Nigel P. Smart. Practical covertly secure MPC for dishon-
est majority - or: Breaking the SPDZ limits. In Jason Crampton, Sushil
Jajodia, and Keith Mayes, editors, ESORICS 2013, volume 8134 of LNCS,
pages 1–18. Springer, Heidelberg, September 2013.

[DN07] Ivan Damg̊ard and Jesper Buus Nielsen. Scalable and unconditionally
secure multiparty computation. In Alfred Menezes, editor, CRYPTO 2007,
volume 4622 of LNCS, pages 572–590. Springer, Heidelberg, August 2007.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multi-
party computation from somewhat homomorphic encryption. In Reihaneh
Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of
LNCS, pages 643–662. Springer, Heidelberg, August 2012.

39

https://github.com/data61/MP-SPDZ
https://eprint.iacr.org/2019/131


[DSZ15] Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - A
framework for efficient mixed-protocol secure two-party computation. In
NDSS 2015. The Internet Society, February 2015.

[FKOS15] Tore Kasper Frederiksen, Marcel Keller, Emmanuela Orsini, and Peter
Scholl. A unified approach to MPC with preprocessing using OT. In Tetsu
Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, Part I, volume
9452 of LNCS, pages 711–735. Springer, Heidelberg, November / Decem-
ber 2015.

[FLNW17] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-
throughput secure three-party computation for malicious adversaries and
an honest majority. In Jean-Sébastien Coron and Jesper Buus Nielsen, ed-
itors, EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages 225–255.
Springer, Heidelberg, April / May 2017.

[GIP+14] Daniel Genkin, Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and Eran
Tromer. Circuits resilient to additive attacks with applications to secure
computation. In David B. Shmoys, editor, 46th ACM STOC, pages 495–
504. ACM Press, May / June 2014.

[GIW16] Daniel Genkin, Yuval Ishai, and Mor Weiss. Binary AMD circuits from
secure multiparty computation. In Martin Hirt and Adam D. Smith, edi-
tors, TCC 2016-B, Part I, volume 9985 of LNCS, pages 336–366. Springer,
Heidelberg, October / November 2016.

[HSS17] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost con-
stant round MPC combining BMR and oblivious transfer. In Tsuyoshi
Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part I, volume
10624 of LNCS, pages 598–628. Springer, Heidelberg, December 2017.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending obliv-
ious transfers efficiently. In Dan Boneh, editor, CRYPTO 2003, volume
2729 of LNCS, pages 145–161. Springer, Heidelberg, August 2003.

[IMZ19] Muhammad Ishaq, Ana L. Milanova, and Vassilis Zikas. Efficient MPC via
program analysis: A framework for efficient optimal mixing. In Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors,
ACM CCS 2019, pages 1539–1556. ACM Press, November 2019.

[Kel20] Marcel Keller. MP-SPDZ: A versatile framework for multi-party com-
putation. Cryptology ePrint Archive, Report 2020/521, 2020. https:

//eprint.iacr.org/2020/521.
[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster ma-

licious arithmetic secure computation with oblivious transfer. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers,
and Shai Halevi, editors, ACM CCS 2016, pages 830–842. ACM Press,
October 2016.

[KPR18] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making
SPDZ great again. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 158–189.
Springer, Heidelberg, April / May 2018.

[MR18] Payman Mohassel and Peter Rindal. ABY3: A mixed protocol framework
for machine learning. In David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang, editors, ACM CCS 2018, pages 35–52. ACM Press,
October 2018.

[MR19] Payman Mohassel and Peter Rindal. ABY3, 2019. https://github.com/
ladnir/aby3/.

40

https://eprint.iacr.org/2020/521
https://eprint.iacr.org/2020/521
https://github.com/ladnir/aby3/
https://github.com/ladnir/aby3/


[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and
Sai Sheshank Burra. A new approach to practical active-secure two-
party computation. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 681–700. Springer, Heidel-
berg, August 2012.

[RST+19] Dragos Rotaru, Nigel P. Smart, Titouan Tanguy, Frederik Vercauteren,
and Tim Wood. Actively secure setup for SPDZ. Cryptology ePrint
Archive, Report 2019/1300, 2019. https://eprint.iacr.org/2019/1300.

[RW19] Dragos Rotaru and Tim Wood. MArBled circuits: Mixing arithmetic and
Boolean circuits with active security. In Feng Hao, Sushmita Ruj, and
Sourav Sen Gupta, editors, INDOCRYPT 2019, volume 11898 of LNCS,
pages 227–249. Springer, Heidelberg, December 2019.

[WRK17a] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated gar-
bling and efficient maliciously secure two-party computation. In Bha-
vani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, ed-
itors, ACM CCS 2017, pages 21–37. ACM Press, October / November
2017.

[WRK17b] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure
multiparty computation. In Bhavani M. Thuraisingham, David Evans, Tal
Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 39–56. ACM
Press, October / November 2017.

41

https://eprint.iacr.org/2019/1300


A Classic daBits

Recall that a (classic) daBit is defined as a pair ([b]M , [b]2), where b ∈ {0, 1}
is a random bit. We make use of these daBits to convert one single bit from
the binary world to the arithmetic world. Classic daBits can be preprocessed as
described in [AOR+19, RW19, RST+19, DEF+19], for example. First, we review
at a very high level how these methods work. Then, in Section A.1, we present
the explicit protocols we use in our implementation for generating daBits, and
their relation to the works we mentioned above.

Marbled Circuits [RW19]. Each party proposes a set of daBits, whose con-
sistency is checked via cut-and-choose techniques. Then these bits are XORed
together to output the final daBits. This method works for both M = p and
M = 2k with minor modifications.

Zaphod [AOR+19]. First arithmetic shares of random bits are produced. Then
these are converted to binary shares by observing that the overflow bits in the
arithmetic world are rather predictable if the shares are only between two parties.
The resulting binary-shared bits may not be correct, so a consistency check is
put in place. This works by taking a linear random combination of the bits in
both worlds and checking its consistency (in the arithmetic world the LSB must
be extracted, which requires an extra sub-protocol). This method is suited for
M = p.

Actively Secure Setup for SPDZ [RST+19]. This works considers a much
more general concept of daBits in which bits can be shared modulo many differ-
ent primes. The layout of the protocol is similar to the one from Zaphod: Random
bits are generated modulo a large-enough prime, and these are converted locally
to shares over the integers. Then these are converted to shares modulo each de-
sired prime, and their correctness is checked via linear combinations. Since in
[RST+19] the odd primes may be small, the authors have to consider a variant
of the subset sum problem to argue security. When instantiating their method
with 2 and our large prime p, we notice that their methods essentially lead to
an optimized version of Zaphod (in fact, when the odd primes are large enough
one can avoid the subset-sum assumption entirely by masking the upper bits as
done in Zaphod).

SPDZ2k [DEF+19]. The tools presented in this work are enough to produces
daBits, although the authors do not consider this concept explicitly. In a nutshell,
this approach would follow the exact same template as in Zaphod, making use
of the fact that in SPDZ2k, the parties can obtain binary additive shares of
an arithmetically-shared bit b by simply considering the LSB of their shares.
Compare this to the field case, where the overflow bit mod p must be predicted
and corrected. Furthermore, one can also observe than in SPDZ2k opening the

42



Generation of faulty daBits

Pre:

– FABB

– Threshold t (maximal number of corrupted parties)

Post: supposed daBit ([b]M , [b]2)

1. t+ 1 parties (w.l.o.g P1, . . . , Pt+1) each input a bit bi into FABB both mod
M and mod 2, resulting in ([bi]M , [bi]2) for i = 1, . . . , t+ 1.

2. All parties compute ([b]M , [b]2) = ([
⊕t+1

i=1 bi]M , [
⊕t+1

i=1 bi]2). The first half
can be computed using the fact that a⊕b = a+b−2ab for a, b ∈ {0, 1} ⊂ Z
while the second is straight-forward given that a⊕ b = a+ b for a, b ∈ Z2.

Fig. 13. Protocol to generate supposed daBits in any domain

LSB of an arithmetically shared value is also efficient and does not require any
overhead with respect to opening the full value (in fact, it is more efficient),
unlike the field case.

A.1 Our daBit Implementation

Our daBit generation over is similar to the one considered in Zaphod [AOR+19].
However, we modify the first step in which arithmetic shares of a random bit are
produced. Instead of using the random-bit generation from SPDZ, we let each
party share an arithmetic bit and then these will be added to produce the desired
bit. This is presented in Fig. 13. The result is trivially correct if all parties are
honest. Furthermore, as the number of participating is larger than the number
of corrupted parties, the results is a random bit from the view of the adversary
in that case. The protocol costs t multiplications in FABB.

We also notice that if the arithmetic modulus is a power of two, it is easy
to construct a daBit from a random bit by having the parties input the least
significant bit of their share to the binary computation and then computing the
XOR without communication. In other words, parties can locally convert an
additive secret sharing modulo 2k locally. Let bi denote an additive share of b
modulo 2k held by Pi. Then, bi mod 2 is a valid share of b modulo 2:∑

(bi mod 2) mod 2 =
(∑

bi mod 2k
)

mod 2 = b mod 2.

This is precisely how Zaphod converts from modulo p to modulo 2, but they
do not consider the modulo 2k case. We present this optimization in Fig. 14.
Furthermore, as a bonus, we observe that in the honest majority setting where
no MAC are required this procedure can be made much simpler, and we present
this in Fig. 15

Note that our protocol for SPDZ2k is more general than the one proposed by
Damg̊ard et al. [DEF+19] because theirs only works if the binary part of FABB is

43



SPDZ2k daBit generation

Pre:
1. FABB with the arithmetic part based on SPDZ2k
2. Total number of parties n

Post: supposed daBit ([b]2k , [b]2) where [b]2k is guaranteed to be in {0, 1}

1. The parties generate a random bit [b]2k as described by Damg̊ard et al.
[DEF+19].

2. Let bi denote the additive share of b held by Pi, that is b =
∑n
i=1 bi

mod 2k. Pi inputs bi mod 2 to the binary part of FABB.
3. The parties compute [b]2 =

⊕n
i=1[bi mod 2]2.

Fig. 14. Protocol to generate supposed daBits with SPDZ2k

daBit generation modulo in Z2k without MAC

Pre: FABB where the arithmetic part is based on purely on additive or repli-
cated secret sharing and the binary part uses the same secret sharing
scheme

Post: supposed daBit ([b]2k , [b]2) where [b]2k is guaranteed to be in {0, 1}

1. The parties generate a random bit [b]2k in the arithmetic part of FABB.
2. Let {b1i , . . . , bmi } denote the shares of b held by Pi. Pi computes {b1i mod

2, . . . , bmi mod 2} and uses them as shares for the binary part of FABB.

Fig. 15. Protocol to generate supposed daBits in protocols module 2k without MAC

implemented by SPDZ2k for k = 1, which has the disadvantage that computing
an AND has cost quadratic in the security parameter s whereas the protocol
by Frederiksen et al. [FKOS15] for example has linear cost in that regard while
achieving the same security properties.

In our construction two things must be checked to prevent cheating from
an active adversary. First, as in Zaphod, parties may cause the final daBit to
be inconsistent, in the sense that the arithmetic and binary parts may contain
different bits. Second, unlike the construction from Zaphod, it is not guaranteed
that the value each party inputs is indeed a bit.

To fix the first issue we simply resort to the same technique as in Zaphod
of computing s random linear combinations modulo two in both domains, after
which s daBits have to be discarded for privacy. This method has asymptoti-
cally no overhead in terms of daBits being produced because the batch can be
arbitrarily large. On the other hand, to fix the second issue, we check that the
arithmetic part of each of the final daBits contains indeed a bit, which can be
done by checking x(1− x) = 0 with x being the arithmetic share. This adds one
multiplication per daBit. Furthermore, we notice that we are checking that the
final daBit contains a bit, rather than checking that each of the original daBits

44



daBit check

Pre: m supposed bits ([bi]M , [bi]2) in FABB where m > s for statistical security
parameter s

Post: m− s verified daBits

1. The parties do the following s times:
(a) Generate m fresh public random bits ri
(b) Compute [

⊕m
i=1 ri · bi]2 and open it.

(c) Compute [r] := [
∑m
i=1 ri · bi]M .

– If M = 2k, call r′ = open([r · 2k−1]2k ) and compute r′/2k−1 =
(r · 2k−1 mod 2k)/(2k−1) = r mod 2.

– If M = p, call r′ = open([r]p + 2 ·
∑s+1
i=0 [ci]p · 2i) with random bits

[ci]p and compute r mod 2 = r′ mod 2.
Abort if r mod 2 does not match the bit from the previous step.

2. Discard ([bi]M , [bi]2) for i ∈ [m− s+ 1,m].
3. For i ∈ [1,m− s], compute and open [bi · (1− bi)]M . Abort if any value is

not zero.a

a This check may be omitted if M = 2k and the bit generation via SPDZ2k
from Fig. 14 is used.

Fig. 16. Protocol to check classic daBits

input by each party contain a bit. This is more efficient and it is also secure,
as there is at least one honest party who inputs a bit, and therefore the XOR
operation becomes an oblivious selection between x or 1−x, where x is the XOR
of the arithmetic shares of the adversary. If the result is a bit, then x was a bit
to begin with.

Fig. 16 shows our adapted checking protocol. Aly et al. argue that any in-
correct daBit would lead to a 1/2 probability of failure in step 1c, hence s
independent repetitions would fail at least once with overwhelming probability.
They also argue that discarding s daBits after the checks protects the secrecy
of the remaining ones.

45


	Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits

