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Abstract

In early nineties Carlet [1] introduced two new classes of bent functions, both derived
from the Maiorana-McFarland (M) class, and named them C and D class, respectively.
Apart from a subclass of D, denoted by D0 by Carlet, which is provably outside two
main (completed) primary classes of bent functions, little is known about their efficient
constructions. More importantly, both classes may easily remain in the underlying M
class which has already been remarked in [21]. Assuming the possibility of specifying
a bent function f that belongs to one of these two classes (apart from D0), the most
important issue is then to determine whether f is still contained in the known primary
classes or lies outside their completed versions. In this article, we further elaborate on the
analysis of the set of sufficient conditions given in [27] concerning the specification of bent
functions in C and D which are provably outside M. It is shown that these conditions,
related to bent functions in class D, can be relaxed so that even those permutations
whose component functions admit linear structures still can be used in the design. It is
also shown that monomial permutations of the form x2

r+1 have inverses which are never
quadratic for n > 4, which gives rise to an infinite class of bent functions in C but outside
M. Similarly, using a relaxed set of sufficient conditions for bent functions in D and
outside M, one explicit infinite class of such bent functions is identified. We also extend
the inclusion property of certain subclasses of bent functions in C and D, as addressed
initially in [1, 21], that are ultimately within the completed M class. Most notably, we
specify another generic and explicit subclass of D, which we call D?

2 , whose members are
bent functions provably outside the completed M class.
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1 Introduction

Bent functions were introduced by Rothaus [24] as discrete structures having close connection
to certain combinatorial objects such as difference sets and strongly regular graphs. More-
over, bent functions gained a wide range of practical applications in error correcting codes,
sequences, symmetric design and cryptography. An early theoretical analysis related to their
properties and construction methods goes back to the works of Dillon [13] and McFarland
[20]. The most significant impact of these works is the definition of two generic primary
classes of bent functions which are referred to as partial spread (PS) class due to Dillon and
the Maiorana-McFarland (M) class [20]. Another generic and primary class H was proposed
by Dobbertin [14] which includes bothM and the only explicit subclass of PS, due to Dillon
[13], commonly denoted by PSap. In 1993, Carlet [1] introduced two additional secondary
classes of bent functions, so-called C and D, which are derived through a suitable modification
of bent functions in the M class. The term secondary construction (class) generally refers
to the fact that such design methods require suitable bent functions as initial functions in
order to generate “new” bent functions (possibly not belonging to the same class as initial
functions). There has been an extensive research effort to provide several different secondary
constructions, see for instance [9, 8, 2, 7, 6, 15, 26, 25, 23, 22, 17, 29, 28]. For a survey
of the main known secondary constructions of bent functions the reader is referred to [3]
whereas an exhaustive survey on bent functions can be found in [5]. Both these primary and
secondary classes greatly contribute to enumeration and classification of bent functions even
though a complete solution to these problems seems to be elusive. This is also evident from
the work of Hou and Langevin [19], where the number of bent functions in eight variables
that belong to the two main primary classes is only a small fraction (of size 276) of the whole
space containing 2106 bent functions.

The main purpose of this paper is to provide a more accurate extended classification of
bent functions which belong to the secondary classes of bent functions C and D introduced
by Carlet [1]. These classes are derived from the M class (see (2), (1) and property (C)
below) by adding a characteristic (indicator) function of suitably chosen vector subspaces
to the functions in the M class. Nevertheless, apart from an explicit subclass D0 identified
by Carlet [1], the bent conditions in terms of the selection of a vector subspace L and a
permutation π (used to define the initial function f(x, y) = x · π(y) in M, where x, y ∈ Fn2 )
are rather hard to satisfy. Due to its simple definition, using relatively simple arguments,
Carlet showed that the class D0 lies outside both completed primary classes. The problem
of specifying bent functions in C was recently addressed in [21]. The hardness of satisfying
the (C) property (thus identifying a suitable permutation and related vector subspace) was
confirmed true in [21] since for some classes of permutation polynomials there are no suitable
linear subspaces of certain dimension for which the modification of f ∈M would give a bent
function f∗ ∈ C [21, Theorem 3.3]. On the other hand, for some other classes of permutations
and associated linear subspaces of the same dimension (where the above permutations are
inefficient) it could be verified that the property (C) is indeed satisfied [21]. Thus, given the
existence of bent functions f∗ ∈ C the most fundamental issue is to determine whether these
functions are essentially contained in the known primary classes (which gives nothing new in

2



that case) or these functions potentially lie outside the known classes. It should be remarked
that certain choices of the indicator functions used to define f∗ from f ∈ M are provably
non-efficient in this context, thus giving rise to bent functions f∗ that still remain in the M
class.

This article further refines the work [27], where a set of sufficient conditions for the choice
of the permutation π and the corresponding linear subspace was provided so that a bent
function f∗ that belongs either to C or D is outside the completed M class. The derived
sufficient conditions in [27] are relatively simple and the main constraint relates to the choice
of permutations that do not admit linear structures. Even though the proofs of main results
in [27] implicitly use the assumption that the component functions of a permutation (linear
combinations of its coordinate functions) are without linear structures, the statements are
given using a weaker (in general incorrect) formulation that the permutation does not admit
linear structures. This refined and stronger condition then excludes the use of quadratic
monomial permutations in the design since their component functions inevitably admit linear
structures. Nevertheless, related to D class, we show that this condition can be relaxed thus
allowing that a certain number of component functions may admit linear structures though
such permutations still can be employed to generate bent functions outsideM. In connection
to this, we derive an infinite class of bent functions which belongs to D but its members are
provably outside M.

Similarly, concerning the C class of bent functions, we show that monomial permutations
of the form x2

r+1 have inverses which are never quadratic for n > 4 which also give rise to
an infinite class of bent functions in C but outsideM. Though we mainly consider monomial
permutations (being easier to analyze in this context), we address the use of some infinite
classes of non-monomial permutations for the same purpose. We also extend the inclusion
property of certain subclasses of bent functions in C and D, as addressed initially in [1, 21],
that are ultimately within the completedM class. Most notably, we specify another generic
and explicit subclass of D, which we call D?2, whose members are bent functions provably
outside the completed M class.

However, we could not establish whether bent functions outside M identified in this
paper are also outside the completed PS class. This is mainly due to a rather involved
definition of the permutations and the associated linear subspaces and consequently we could
not apply a similar technique as the one used by Carlet for the class D0. The existence of
similar indicators as for the M class seems to be the essential obstacle towards more precise
classification. In this direction, we provide some simple graph theoretic arguments (based
on the hardness of identifying cliques in a graph) that the problem of specifying an efficient
indicator for the PS class might be NP-hard in general.

The rest of this article is organized as follows. In Section 2 we provide some basic defini-
tions related to Boolean (and in particular bent) functions along with the exact definitions
of C and D classes. Sufficient conditions that bent functions in C or D do not belong to the
completedM class are given in Section 3. In Section 4, we demonstrate that some instances
of bent functions in C, identified in [21], do not belong to the completed M class. Sufficient
conditions ensuring that bent functions in D are outside the completedM class are shown to
be relatively easily satisfied in Section 4.2. In Section 5, we provide sufficient conditions on
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the choice of defining indicator subspaces so that certain subclasses of C and D intersect with
M. Another generic and explicit subclass of D, whose members are bent functions provably
outside the completedM class, is specified in Section 6. Some concluding remarks are given
in Section 7.

2 Preliminaries

Let F2 denote the binary field and let the n-dimensional vector space spanned over F2 be
denoted by Fn2 = {x = (x1, . . . , xn) : xi ∈ F2, for i = 1, . . . , n}. The extension of the Galois
field of degree n over F2 is denoted by F2n . Any function from Fn2 to F2 (or, equivalently from
F2n to F2) is called a Boolean function on n variables and the set of all Boolean functions on
n variables is denoted by Bn.

For a detailed study of Boolean functions we refer to Carlet [3, 4], and Cusick and
Stănică [11]. For the convenience of the reader, we recall some basic notions below. For
any binary string x, the (Hamming) weight of x, denoted by wt(x), is defined as the number
of nonzero entries of x. By abuse of notation, we sometimes write wt(d) for a positive integer
d and mean that d is implicitly represented as a binary string. The algebraic normal form
(ANF) of a Boolean function f ∈ Bn is

f(x1, . . . , xn) =
∑

a=(a1,...,an)∈Fn
2

µax
a1
1 · · ·x

an
n ,

where µa ∈ F2, for all a ∈ Fn2 . The algebraic degree of f is deg(f) = maxa∈Fn
2
{wt(a) : µa 6= 0}.

The standard inner (dot) product of two vectors u, x ∈ Fn2 is defined as u · x :=
∑n

i=1 uixi.
Once the basis of F2n over F2 is fixed one can isomorphically identify Fn2 with F2n . The degree
of a mapping f(x) =

∑2n−1
i=0 aix

i over F2n is the largest Hamming weight of exponent i for
which ai ∈ F2. is nonzero.

We denote by Tr(·) the absolute trace on F2n and by Tnk (·) the trace function from F2n

to F2k , where k divides n:

Tnk (β) = β + β2
k

+ · · ·+ β2
(n/k−1)k

.

The isomorphism between the vector space Fn2 and F2n (using a suitable basis) implies that
u · x corresponds to Tr(ux).

The derivative of f ∈ Bn at a ∈ Fn2 , denoted by Daf , is a Boolean function defined by

Daf(x) = f(x+ a) + f(x), for all x ∈ Fn2 .

Higher order derivatives of a Boolean function refer to k-dimensional vector subspaces, where
k > 1. Suppose {a1, a2, . . . , ak} is a basis of a k-dimensional subspace V of Fn2 (we write
dim(V ) = k). The k-th derivative of f with respect to V , denoted by DV f , is a Boolean
function defined by

DV f(x) = DakDak−1
. . . Da1f(x), for all x ∈ Fn2 .
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It should be noted that DV f is independent of the choice of the basis of V .
A Boolean function f ∈ Bn, where n is an even positive integer, is said to be a bent

function if Wf (u) ∈ {−2n/2, 2n/2}, for all u ∈ Fn2 .

2.1 Bent functions in C and D

The Maiorana-McFarland class M is the set of m-variable (m = 2n) Boolean functions of
the form

f(x, y) = x · π(y) + g(y), for all x, y ∈ Fn2 ,

where π is a permutation on Fn2 , and g is an arbitrary Boolean function on Fn2 . From this
class Carlet [1] derived the C class of bent functions that contains all functions of the form

f(x, y) = x · π(y) + 1L⊥(x) (1)

where L is any linear subspace of Fn2 , 1L⊥ is the indicator function of the space L⊥, and π is
any permutation on Fn2 such that:

(C) φ(a+ L) is a flat (affine subspace), for all a ∈ Fn2 , where φ := π−1.

The permutation φ and the subspace L are then said to satisfy the (C) property, or for short
(φ,L) has property (C).

Another class introduced by Carlet [1], called D, is defined similarly as

f(x, y) = x · π(y) + 1E1(x)1E2(y) (2)

where π is a permutation on Fn2 and E1, E2 two linear subspaces of Fn2 such that π(E2) = E⊥1 .
A special subclass of the C and D classes is the D0 subclass. It contains all functions of

the form
f(x, y) = x · π(y) + δ0(x),

where δ0(x) =
∏n
i=1(xi + 1) so that it corresponds to the case E1 × E2 = {0} × Fn2 .

Definition 1 A class of bent functions {f} ∈ Bn is complete if it is globally invariant under
the action of the general affine group (the group of all invertible matrices of size n× n over
F2) and under the addition of affine functions. The completed class is the smallest possible
class that properly includes the class under consideration.

3 Sufficient conditions for functions in C and D to be outside
M#

A useful indicator for the purpose of establishing whether a given bent function belongs to
the completed Maiorana-McFarland class (M#) is given below.
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Lemma 1 [13, p. 102] An m-variable bent function f , m = 2n, belongs toM# if and only if
there exists an n-dimensional linear subspace V of Fm2 such that the second order derivatives

DαDβf(x) = f(x) + f(x+ α) + f(x+ β) + f(x+ α+ β)

vanish (thus DαDβf(x) = 0 for all x ∈ Fn2 ) for any α, β ∈ V .

In [27], the authors provided sufficient conditions for bent functions in C and D not to
belong to M#. One of the two conditions requires that “π has no nonzero linear structure”
and is present in both [27, Theorem 1] and [27, Theorem 2], referring to C and D class
respectively. However, the proofs of both theorems essentially use a correct condition which
can be stated as “u · π has no nonzero linear structure for all u ∈ Fn2\{0n}”. Hence, the
results in [27] should be restated in a more precise manner as follows.

Theorem 1 [27, Theorem 1] Let m = 2n ≥ 8 be an even integer and let f(x, y) = π(y) · x+
1L⊥(x), where L is any linear subspace of Fn2 and π is a permutation on Fn2 such that (π, L)
has property (C). If (π, L) satisfies:

1) dim(L) ≥ 2;

2) u · π has no nonzero linear structure for all u ∈ Fn2\{0n},

then f does not belong to M#.

Theorem 2 [27, Theorem 2] Let m = 2n > 6 be an even integer and let f(x, y) = π(y) ·
x+ 1E1(x)1E2(y), where π is a permutation on Fn2 , and E1, E2 are two linear subspaces of Fn2
such that π(E2) = E⊥1 . If (E1, E2, π) satisfies:

1) dim(E1) ≥ 2 and dim(E2) ≥ 2;

2) u · π has no nonzero linear structure for all u ∈ Fn2\{0n};

3) deg(π) ≤ n− dim(E2),

then f is a bent function in D and it does not belong to M#.

In this section, using the above criterion, we derive a slightly relaxed set of sufficient
conditions for bent functions in D not to belong to the completed M class. The main
difference compared to Theorem 2 is the possibility of defining bent functions outside M#

using certain classes of permutations whose components (thus u · π(y)) may admit linear
structures. This is in particular useful when considering quadratic permutations which are
not covered by the following result which is a direct consequence of [10, Theorem 5].

Proposition 1 Let π(x) = xd be a monomial permutation over F2n. Then none of the
component functions of π(x) will admit a linear structure if and only if wt(d) ≥ 3.

Proof. The result follows from [10, Theorem 5] which states that Tr(uxd) : Fn2 → F2 admits
a linear structure only if wt(d) ∈ {1, 2}. Furthermore, if wt(d) ∈ {1, 2} there will always exist
(at least) one u ∈ F∗2n so that Tr(uxd) has a linear structure. Thus, selecting π(x) = xd so
that wt(d) ≥ 3 (thus π is at least cubic since wt(d) ≥ 3) gives the result. �
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3.1 Sufficient conditions for class D

We know show that even though a certain number of component functions of π may admit
linear structures, such permutations can still be used for defining bent functions in D. The
following preparatory result will be frequently used when dealing with the second order
derivatives of indicators of (n− 2)-dimensional subspaces.

Lemma 2 Let n be a positive integer. Let E1 be a subspace of Fn2 such that dim(E1) = n−2.
If a(1), b(1) /∈ E1 and a(1) + b(1) /∈ E1, then

Da(1)Db(1)1E1(x) = 1.

If a(1), b(1) /∈ E1 and a(1) + b(1) ∈ E1, then

Da(1)Db(1)1E1(x) = 0.

Furthermore, Da(1)1E1(x) = 0 if a(1) ∈ E1 and deg (Da(1)1E1(x)) = 1 when a(1) ∈ Fn2 \ E1.

Proof. We know sup(1E1(x)) = E1 and sup(1E1(x + a(1))) = E1 + a(1), where sup(1E1(x))
denotes the support of the function 1E1 . For shortness, define Ea1 = E1 + a(1),Eb1 = E1 + b(1)

and Ea,b1 = E1 + a(1) + b(1). Then, it can be easily verified that

sup (Da(1)Db(1)1E1(x)) = {E1 ∪ Ea1 ∪ Eb1 ∪ E
a,b
1 } mod 2,

where in the multi-set sup(Da(1)Db(1)1E1(x)) we remove vectors appearing even number of

times. FR: I feel we can use m̂od 2 instead of mod 2 Now if a(1), b(1) /∈ E1 and a(1)+b(1) /∈ E1,
the four cosets of E1 partition the space Fn2 , i.e., {E1 ∪ Ea1 ∪ Eb1 ∪ E

a,b
1 } mod 2 = Fn2 since

dim(E1) = n− 2. This implies that Da(1)Db(1)1E1(x) = 1.

If a(1), b(1) /∈ E1 and a(1) + b(1) ∈ E1, then E1 = Ea,b1 and also Ea1 = Eb1 since E1 + a(1) +
b(1) = E1 implies that E1 + a(1) = E1 + b(1). Hence, Da(1)Db(1)1E1(x) = 0.

If a(1) ∈ E1, thenDa(1)1E1(x) = 0. If a(1) /∈ E1, then sup (Da(1)1E1(x)) = {E1∪Ea1} mod 2
is an (n− 1)-dimensional subspace of Fn2 . Hence, for a(1) /∈ E1, deg (Da(1)1E1(x)) = 1. �

Theorem 3 Let m = 2n ≥ 8 be an even integer and let f(x, y) = π(y) · x + 1E1(x)1E2(y),
where π is a permutation on Fn2 , and E1, E2 are two linear subspaces of Fn2 such that π(E2) =
E⊥1 . If (E1, E2, π) satisfies:

1. dim(E2) = 2;

2. For any subspace Λ of Fn2 of dimension n − 3 and any nonzero vector ν ∈ Fn2 , there
always exists at least one vector α ∈ Λ \ {0n} such that Dν(α · π) 6= const.;

3. deg(π) ≤ n− 2,

then f does not belong to M#.
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Proof. Let a(1), b(1), a(2), b(2) ∈ Fn2 . We prove that f does not belong to M#, by using
Lemma 1. We need to show that there does not exist V ⊂ Fm2 , with dim(V ) = n, such that

D(a(1),a(2))D(b(1),b(2))f = 0,

for any (a(1), a(2)), (b(1), b(2)) ∈ V .
In the following, we will directly use the fact that dim(E2) = dim(E⊥1 ) and deg (1E1(x)) =

dim(E2) since E1, E2 are two linear subspaces of Fn2 such that π(E2) = E⊥1 . On the other
hand, we have deg (1E2(y)) = n− dim(E2). The second derivative of f with respect to a and
b can be written as,

D(a(1),a(2))D(b(1),b(2))f(x, y)

= x · (Da(2)Db(2)π(y)) + a(1) ·Db(2)π(y + a(2))

+b(1) ·Da(2)π(y + b(2)) +DaDb1E1(x)1E2(y)

= x · (Da(2)Db(2)π(y)) + a(1) ·Db(2)π(y + a(2)) + b(1) ·Da(2)π(y + b(2)) (3)

+1E1(x)Da(2)Db(2)1E2(y) + 1E2(y + a(2))Da(1)1E1(x)

+1E2(y + b(2))Db(1)1E1(x) + 1E2(y + a(2) + b(2))Da(1)+b(1)1E1(x).

We denote the set {(x, 0n) | x ∈ Fn2} by ∆, and consider two cases V = ∆ and V 6= ∆.

1. For V = ∆, we can find two vectors (a(1), 0n), (b(1), 0n) ∈ ∆ such that

Da(1)Db(1)1E1(x) 6= 0,

since deg (1E1(x)) = dim(E2) = 2. Further, using a(2) = b(2) = 0n, (3) gives

D(a(1),a(2))D(b(1),b(2))f(x, y) = 1E2(y)(Da(1)1E1(x) +Db(1)1E1(x) +Da(1)+b(1)1E1(x))

= 1E2(y)Da(1)Db(1)1E1(x) 6= 0

since deg (1E2(y)) = n− 2.

2. For V 6= ∆, we have 1 ≤ |V ∩∆| ≤ 2n−1 since V ∩∆ is also a subspace. Further, we have

|V ∩∆| = 2i, where i = 0, 1, · · · , n−1. We set V =
{

(v
(1)
1 , v

(1)
2 ), (v

(2)
1 , v

(2)
2 ), . . . , (v

(2n)
1 , v

(2n)
2 )

}
and split the proof into three cases depending on the cardinality of V ∩∆:

(a) When 1 ≤ |V ∩ ∆| < 2n−3, we have |{v(1)2 , v
(2)
2 , . . . , v

(2n)
2 }| > 8. This is because

V ∩∆ is an additive subgroup of V and from the definition of ∆ and Lagrange’s

theorem, we know |{v(1)2 , v
(2)
2 , . . . , v

(2n)
2 }| = |V |/|V ∩∆| > 2n

2n−3 = 8. Thus, there

exist a, b ∈ V such that a(2), b(2) /∈ E2 and a(2) + b(2) /∈ E2. Then, by Lemma 2,

Da(2)Db(2)1E2(y) 6= 0

since dim(E2) = 2. Because deg(1E1(x)) = 2, we have DaDbf(x, y) 6= 0 since the
term 1E1(x)Da(2)Db(2)1E2(y) cannot be cancelled in (3).
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(b) When 2n−3 ≤ |V ∩ ∆| ≤ 2n−1, we have |{v(1)2 , v
(2)
2 , . . . , v

(2n)
2 }| ≥ 2. For any

nonzero vector b = (b(1), b(2)) ∈ V such that b(2) 6= 0n, we can always find a
vector a(1) ∈ |V ∩ ∆| such that the term a(1) · Db(2)π(y) 6= const. in (3) . This
comes from our assumption that there is at least one vector α ∈ Λ such that
Dν(α · π) = α · Dνπ 6= const. for any Λ, with dim(Λ) = n − 3, and any given
nonzero ν ∈ Fn2 .

We select a = (a(1), 0n) ∈ V ∩ ∆ and b = (b(1), b(2)) ∈ V . Thus, with a(2) = 0n,
(3) becomes:

D(a(1),a(2))D(b(1),b(2))f(x, y)

= a(1) ·Db(2)π(y) + 1E2(y)Da(1)1E1(x)

+ 1E2(y + b(2))Db(1)1E1(x) + 1E2(y + b(2))Da(1)+b(1)1E1(x) (4)

= a(1) ·Db(2)π(y) + 1E2(y)Da(1)1E1(x) + 1E2(y + b(2))Da(1)1E1(x+ b(1)).

There are five cases to be considered.

i) If a(1), b(1) ∈ E1, implying Da(1)1E1(x) = 0 and Da(1)1E1+b(1)
(x) = 0, then

D(a(1),a(2))D(b(1),b(2))f(x, y) = a(1) ·Db(2)π(y) 6= 0

since a(1) ·Db(2)π(y) 6= const.

ii) If a(1) ∈ E1 and b(1) /∈ E1, then Da(1)1E1(x) = 0 and Da(1)1E1+b(1)
(x) =

Db(1)1E1(x) 6= 0, by Lemma 2. It means that (4) does not equal zero since

a(1) ·Db(2)π(y) + 1E2(y + b(2))Da(1)1E1(x+ b(1))

cannot be canceled as Da(1)1E1(x+ b(1)) depends (linearly) on x.

iii) The case a(1) /∈ E1 and b(1) ∈ E1 is similar to ii), this time Da(1)1E1(x)
depends (linearly) on x and thus D(a(1),a(2))D(b(1),b(2))f(x, y) 6= 0.

iv) If a(1), b(1), a(1) + b(1) /∈ E1, we have Da(1)Db(1)1E1(x) = 1 by Lemma 2. Then

D(a(1),a(2))D(b(1),b(2))f(x, y)

= a(1) ·Db(2)π(y) + 1E2(y)Da(1)1E1(x) + 1E2(y + b(2))Da(1)1E1(x+ b(1))

= a(1) ·Db(2)π(y) + 1E2(y)Da(1)Db(1)1E1(x) +Db(2)1E2(y)Da(1)1E1(x+ b(1))

= a(1) ·Db(2)π(y) + 1E2(y) +Db(2)1E2(y)Da(1)1E1(x+ b(1)) 6= 0, (5)

since deg(π) ≤ n− 2 = deg(1E2(y)) implying deg(a(1) ·Db(2)π(y)) < n− 2.

v) If a(1), b(1) /∈ E1 and a(1) + b(1) ∈ E1, by Lemma 2, Da(1)Db(1)1E1(x) = 0.
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Further,

D(a(1),a(2))D(b(1),b(2))f(x, y)

= a(1) ·Db(2)π(y) + 1E2(y)Da(1)1E1(x) + 1E2(y + b(2))Da(1)1E1(x+ b(1))

= a(1) ·Db(2)π(y) + 1E2(y)Da(1)1E1(x)

+1E2(y)Da(1)1E1(x+ b(1)) + 1E2(y)Da(1)1E1(x+ b(1)) (6)

+1E2(y + b(2))Da(1)1E1(x+ b(1))

= a(1) ·Db(2)π(y) +
(

1E2(y)Da(1)1E1(x) + 1E2(y)Da(1)1E1(x+ b(1))
)

+
(

1E2(y)Da(1)1E1(x+ b(1)) + 1E2(y + b(2))Da(1)1E1(x+ b(1))
)

= a(1) ·Db(2)π(y) + 1E2(y)Da(1)Db(1)1E1(x) +Db(2)1E2(y)Da(1)1E1(x+ b(1))

= a(1) ·Db(2)π(y) +Db(2)1E2(y)Db(1)1E1(x) 6= 0

since Db(1)1E1(x) 6= const..

Combining items 1 and 2, we deduce that f does not belong to M#. �

From the proving process of Theorem 3, the condition that deg(π) ≤ n − 2 is only used
in item 2− (b)− iv). Now we provide an alternative condition which covers item 2− (b)− iv)
of Theorem 3.

Corollary 1 Let m = 2n ≥ 8 be an even integer and let f(x, y) = π(y) · x + 1E1(x)1E2(y),
where π is a permutation on Fn2 , and E1, E2 are two linear subspaces of Fn2 such that π(E2) =
E⊥1 . If (E1, E2, π) satisfies:

1. dim(E2) = 2;

2. For any subspace Λ of Fn2 of dimension n − 3 and any given nonzero vector ν ∈ Fn2 ,
there always exists at least one vector α ∈ Λ \ {0n} such that Dν(α · π) 6= const.;

3. sup (Dν(ω · π)) 6= E2 for any ν ∈ Fn2 \ {0n} and ω /∈ E1;

then f does not belong to M#.

Proof. The first two conditions are identical to those of Theorem 3. We use the third
condition to show item 2− (b)− iv) of Theorem 3.

When a(1), b(1), a(1) + b(1) /∈ E1, we have Da(1)Db(1)1E1(x) = 1 by Lemma 2. From (5),

D(a(1),a(2))D(b(1),b(2))f(x, y) = a(1) ·Db(2)π(y) + 1E2(y) +Db(2)1E2(y)Da(1)1E1(x+ b(1)).

Since dim(E2) = 2, we have wt(1E2(y)) = 4. Due to the assumption that sup(Dν(ω ·π)) 6= E2

for ν ∈ Fn2 \ {0n} and ω /∈ E1, we have

a(1) ·Db(2)π(y) + 1E2(y) 6= 0.
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If Db(2)1E2(y) 6= 0, then Db(2)1E2(y)Da(1)1E1(x + b(1)) must depend on x since a(1) /∈ E1. If
Db(2)1E2(y) = 0, then Db(2)1E2(y)Da(1)1E1(x+ b(1)) = 0. Hence, we have

D(a(1),a(2))D(b(1),b(2))f(x, y) = a(1) ·Db(2)π(y) + 1E2(y) +Db(2)1E2(y)Da(1)1E1(x+ b(1)) 6= 0.

�

Remark 1 The set of sufficient conditions in Theorem 1 can also be relaxed when the di-
mension of L is strictly greater than 2. In this case, the condition 2) of Theorem 1 becomes
: u · π has no nonzero linear structure for all u ∈ L⊥\{0n}, where L⊥\{0n} 6= ∅. However,
we do not consider the case dim(L) > 2 and therefore we omit the proof of this result.

4 Generic methods for bent functions in C and D outside M#

In this section we apply the criterion derived in the previous section to those bent functions
given in [21] that satisfy the (C) property, and later we provide some examples of bent
functions in D that are outside M#.

4.1 Bent functions in C outside M#

For convenience of the reader, we first recall a subset of bent functions given in [21] that
satisfy the (C) property which are also outside the M# class as already demonstrated in
[27].

Theorem 4 [21, Theorem 5.8] Suppose φ(y) = y2
r+1, for all y ∈ F2n, where gcd(r, n) = e,

n/e is odd (which implies gcd(2n − 1, 2r + 1) = 1).

(i) Then (φ,L) (where L is a subspace of dim(L) = 2) satisfies the (C) property if and
only if L = 〈u, cu〉 where u ∈ F∗2n and 1 6= c ∈ F∗2e.

(ii) We assume that e = gcd(n, r) > 1 and L = 〈u1, c1u1, . . . , cs−1u1〉, dim(L) = s, ci ∈ F∗2e,
1 ≤ i ≤ s− 1, s ≥ 2, and u1 ∈ F∗2n. Then (φ,L) satisfies the (C) property.

The following example specifies in detail a bent function lying in the C class and outside
of M#.

Example 1 [27] Let n = 2p where p is any odd prime, r = 2 and e = gcd(n, r) = 2. Since
n/e is odd, it is known that gcd(2r + 1, 2n− 1) = 1. Therefore φ(y) = y2

r+1 is a permutation

on F2n. Let ζ be a primitive element of F2n. Therefore, λ = ζ
2n−1
2e−1 = ζ

2n−1
3 is a generator

of F2e. Define a permutation π(y) = φ−1(y) = yγ, where γ(2r + 1) ≡ 1 (mod 2n − 1). Given
r and n, γ can be computed easily using the Euclidean algorithm. Consider a bent function
f(x, y) = x · π(y) ∈ M, where x, y ∈ Fn2 and π : Fn2 → Fn2 . According to Theorem 4, if we
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choose L = 〈1, λ〉 then the function f∗(x, y) = x · π(y) + 1L⊥(x) is in C. The bent function
f∗ can be explicitly written (over F2n) as:

f∗(x, y) = Trn1 (xyγ) + (Trn1 (x) + 1)(Trn1 (λx) + 1)

= Trn1 (xyγ) + Trn1 (x)Trn1 (λx) + Trn1 ((1 + λ)x) + 1.
(7)

We set n = 6 and r = 2. Thus, from γ(2r + 1) ≡ 1 (mod 2n − 1), we have γ = 38 and
π(y) = y38. The permutation π is thus cubic and by Proposition 1 none of its component
functions admit linear structures. Therefore, by Theorem 1, the function f∗ is outside M#.

The above example can be generalized by ensuring that wt(γ) ≥ 3, where γ satisfies
γ(2r+1) ≡ 1 (mod 2n−1) for a given permutation φ(y) = y2

r+1 and π(y) = φ−1(y) = yγ . The
monomial permutation π needs to be at least cubic, so that by Proposition 1 its component
functions Tr(uπ(x)) do not admit linear structures.

Lemma 3 Let n > 4 be a positive integer and let r satisfies the condition of Theorem 4.
Then, the unique 1 < γ < 2n − 1 which satisfies γ(2r + 1) ≡ 1 (mod 2n − 1) is such that
wt(γ) > 2. In other words, for any 1 ≤ i 6= j ≤ n− 1, we always have

(2i + 2j)(2r + 1) /≡ 1 mod (2n − 1). (8)

Proof. Without loss of generality, we set i < j < n. There are two cases to be considered.

1. If i+ r ≥ n (that is r ≥ n− i), then we have two cases to be considered.

(a) If i = n− 2, then j = n− 1 (since i < j < n). We have

(2i + 2j)(2r + 1) = 2i+r + 2j+r + 2i + 2j

≡ 2i+r−n + 2j+r−n + 2i + 2j mod (2n − 1) (9)

≡ 2r−2 + 2r−1 + 2n−2 + 2n−1 mod (2n − 1).

There are also two cases to be considered.

i. When r = n− 1, from (9), after substituting we get

(2i + 2j)(2r + 1) ≡ 2n−3 + 1 /≡ 1 mod (2n − 1).

ii. When r < n− 1, that is, r ≤ n− 2, from (9), we have

2r−2 + 2r−1 + 2n−2 + 2n−1 ≤ 2n−4 + 2n−3 + 2n−2 + 2n−1 < 2n − 1,

where the latter relation is true for n > 4 so that (2i + 2j)(2r + 1) 6≡ 1(
mod 2n − 1).

(b) If i < n− 2, that is i ≤ n− 3, then we have

2i+r−n + 2j+r−n + 2i + 2j ≤ 2r−3 + 2(n−1)+(n−1)−n + 2n−3 + 2n−1

≤ 2n−4 + 2n−2 + 2n−3 + 2n−1

< 2n − 1

(10)
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2. If i+ r < n (that is r < n− i), then we have two cases to be considered.

(a) If j + r < n, then (2i + 2j)(2r + 1) = 2i+r + 2j+r + 2i + 2j . There are three cases
to be considered.

i. When j+r < n−1 (that is, i+r < n−2), we have 2i+r+2j+r+2i+2j < 2n−1
and consequently (2i + 2j)(2r + 1) /≡ 1 mod (2n − 1).

ii. When j + r = n− 1 and i+ r = n− 2, there are two cases to be considered.

A. For r = 1 and using (9), we get

2i+r+2j+r+2i+2j = 2n−2+2n−1+2n−3+2n−2 ≡ 2n−3+1 mod (2n−1).

B. When r > 1 (that is, r ≥ 2), we have

2i+r + 2j+r + 2i + 2j ≤ 2n−2 + 2n−1 + 2n−4 + 2n−3 < 2n − 1.

iii. When j+r = n−1 and i+r < n−2, we know i+r ≤ n−3 and i ≤ n−4. We
can conclude the same as in part B, thus (2i + 2j)(2r + 1) /≡ 1 mod (2n − 1).

(b) If j + r ≥ n, then

(2i + 2j)(2r + 1) = 2i+r + 2j+r−n + 2i + 2j mod (2n − 1). (11)

There are two cases to be considered.

i. When r = n − 1 (that is, i = 0 and j ≥ 2 since i + r < n and j + r ≥ n
respectively), there are also two cases to be considered.

A. When j = n − 1, setting i = 0 and r = n − 1 = j in (11), we have
2n−1 + 2n−2 + 20 + 2n−1 = 2n−2 + 2 6≡ 1 mod (2n − 1).

B. When 2 ≤ j ≤ n− 2, using (11), we have

2i+r + 2j+r−n + 2i + 2j ≤ 2n−1 + 2n−3 + 20 + 2n−2 < 2n − 1.

ii. When r ≤ n− 2, there are also three cases to be considered.

A. When i+ r ≤ n− 2, we have i ≤ n− 3 since r ≥ 1. Further,

2i+r + 2j+r−n + 2i + 2j ≤ 2n−2 + 2j−(i+2) + 2n−3 + 2n−1 < 2n − 1.

B. When i+ r = n− 1, j = n− 1, we have

2i+r + 2j+r−n + 2i + 2j = 2n−1 + 2r−1 + 2n−r−1 + 2n−1

≡ 2r−1 + 2n−r−1 + 1 mod (2n − 1)
/≡ 1 mod (2n − 1).

C. When i+ r = n− 1, j ≤ n− 2, we have r ≥ 2 since j + r ≥ n. Then,

2i+r + 2j+r−n + 2i + 2j ≤ 2n−1 + 2r−2 + 2n−r−1 + 2n−2. (12)
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We know 2 ≤ r ≤ n− 1. There are three cases to be considered.
When r = 2, we have

2i+r + 2j+r−n + 2i + 2j ≤ 2n−1 + 20 + 2n−3 + 2n−2

< 2n − 1.

When r = n− 1, we have

2i+r + 2j+r−n + 2i + 2j ≤ 2n−1 + 2n−3 + 20 + 2n−2 < 2n − 1.

When 2 < r < n − 1, we have i ≤ n − 4 (resp. j + r − n ≤ n − 4 ) since
i+ r = n− 1 (resp. j ≤ n− 2, r < n− 1). It gives

2i+r + 2j+r−n + 2i + 2j ≤ 2n−1 + 2n−4 + 2n−4 + 2n−2 < 2n − 1.

Combining items 1 and 2, we have (2i + 2j)(2r + 1) /≡ 1 mod (2n − 1) as claimed. �

Theorem 5 Let φ(y) = y2
r+1 be a permutation over F2n and π(y) = φ−1(y) = yγ be its

inverse, for n > 4. In addition, assume that the conditions of Theorem 4 are satisfied with
respect to the choice of L. Then, the bent function f(x, y) = x · π(y) + 1L⊥(x) belongs to C
and is outside M#.

Proof. The proof follows from assumptions and the results given by Proposition 1, Lemma
3 and Theorem 1. �

Remark 2 Theorem 5 resembles the statement of Lemma 2 in [27]. However, Lemma 2
in [27] uses a weaker (in general incorrect) condition that π has no linear structures. Even
though we mostly use monomial permutations on Fn2 , whose component functions by Lemma 3
do not admit linear structures for n > 4, for instance when n = 4 a permutation φ(y) = y2

r+1

and its inverse can be quadratic so that the second condition of Theorem 1 is not satisfied.

4.2 Bent functions in D outside M#

The set of sufficient conditions related to class D, given in Theorem 2, can be easily satisfied
whenever we use monomial permutations π(y) = yd with wt(d) ≥ 3. The following result was
stated in [27, Proposition 1] and is based on Theorem 2. However, due to the existence of
linear structures for quadratic monomial permutations, the condition that deg(π) ≥ 3 must
be included.

Proposition 2 [27] Let n be even. Then any monomial permutation π(y) = yd, where
3 ≤ deg(π) ≤ n − 2, satisfies the required conditions in Theorem 2 for the 2-dimensional

vector subspace E2 = 〈ζ
2n−1

3 , ζ
2(2n−1)

3 〉, where ζ is a primitive element of F2n. Thus, f(x, y) =
π(y) · x+ 1E1(x)1E2(y), where π(E2) = E2 = E⊥1 , is a bent function in D and outside M#.

Proof. The proof is similar to that of Proposition 1 in [27] and therefore omitted. �
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Remark 3 Notice that Example 2 given in [27] is not affected by the above correction since
it uses a cubic monomial permutation π.

On the other hand, quadratic non-monomial permutations can be used in Theorem 3 as
illustrated below.

Proposition 3 Let n = 2m,m = 3, π(y) = y5 + y2m+4 + y4·2
m+1 : F2n → F2n. Let E2, E1 be

defined as in Proposition 2. Then f(x, y) = π(y) · x + 1E1(x)1E2(y) is a bent function in D
and outside M#.

Proof. In Theorem 3.4 in [16], it was shown that any polynomial of the form π(y) =
y5 + y2m+4 + y4·2

m+1 : F22m → F22m is a permutation over F2m
2 , for odd m. Using the

programming package Magma it was confirmed that π(y) and its component functions do not
admit linear structures. Therefore, using the same arguments as in the proof of Proposition
2 we have that f(x, y) = π(y) · x+ 1E1(x)1E2(y) is a bent function in D and outside M#. �

Remark 4 For reasonably large m, we could confirm (using MAGMA) that the component
functions of the permutation π from [16, Theorem 3.4] do not admit linear structure. We
conjecture that the result is true for any n = 2m, with m odd.

As mentioned earlier, the main purpose of providing a relaxed set of sufficient conditions in
Theorem 3, related to linear structures of a permutation π, is the possibility of employing
quadratic monomial permutations π. We now provide a useful application of Theorem 3 to
cover the case when π is a quadratic monomial permutation, thus u·π admits linear structures
for any nonzero u ∈ Fn2 , but still satisfying the set of sufficient conditions to generate bent
functions outside M.

Theorem 6 Let π(y) = yd be a quadratic permutation over F2n (n ≥ 5), where d = 2j(2i+1)
for 0 ≤ i, j ≤ n − 1 and i 6= 0, so that gcd(2n − 1, 2i + 1) = 1. Let also E2 = 〈ζa, ζb〉 be a
2-dimensional linear subspace of Fn2 , where ζ is a primitive element of F2n and 0 ≤ b < a ≤
2n − 1. If gcd(n, i) = 1 and

(a− b)(2i+j − 2j) ≡ 0 mod (2n − 1)

then π(E2) = E⊥1 and π satisfies the conditions of Theorem 3. Thus, the function f(x, y) =
π(y) · x+ 1E1(x)1E2(y) is a bent function in D but outside M∗.

Proof. Clearly, for n ≥ 5 and deg(π) = 2, the condition deg(π) ≤ n− dim(E2) is satisfied.
We know show that the condition (a− b)(2j+i−2j) ≡ 0 mod (2n−1) is sufficient so that

the subspace E2 is mapped to a subspace. Noting that ζa 7→ ζad and ζb 7→ ζbd, it is required
that ζa + ζb is mapped by π to (ζa + ζb)d = ζad + ζbd. Therefore

(ζa + ζb)2
j+i+2j = ζa(2

j+i+2j) + ζb(2
j+i+2j)

(ζa + ζb)2
j+i

(ζa + ζb)2
j

= ζa(2
j+i+2j) + ζb(2

j+i+2j)

ζa(2
j+i+2j) + ζa2

j+i+b2j + ζb2
j+i+a2j + ζb(2

j+i+2j) = ζa(2
j+i+2j) + ζb(2

j+i+2j)

ζa2
j+i+b2j = ζb2

j+i+a2j .
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It follows that

a2j+i + b2j ≡ b2j+i + a2j mod (2n − 1),

2j+i(a− b)− 2j(a− b) ≡ 0 mod (2n − 1)

(a− b)(2j+i − 2j) ≡ 0 mod (2n − 1).

which implies (a− b)(2j+i − 2j) ≡ 0 mod (2n − 1), as stated.
It remains to show that the condition 2) of Theorem 3 is satisfied. Let Λ be a subset of

F2n such that |Λ| ≥ 2n−3. We want to show that given any ν ∈ F∗2n , we can always find (at
least) one element α′ ∈ Λ such that Tr(α′π(y)) + Tr(α′π(y + ν)) 6= const. Let α, ν ∈ F∗2n .
We have

Tr(απ(y)) + Tr(απ(y + ν)) = Tr(αy2
j(2i+1)) + Tr(α(y + ν)2

j(2i+1))

= Tr(αν2
j(2i+1)) + Tr(αy2

j+i
ν2

j
) + Tr(αν2

j+i
y2

j
)

= Tr(αν2
j(2i+1)) + Tr(αy2

j+i
ν2

j
+ α2iν2

j+2i
y2

j+i
),

(13)

and therefore Tr(απ(y)) + Tr(απ(y + ν)) = const. if and only if αν2
j

+ α2iν2
j+2i

= 0,
which is equivalent to α2i−1ν2

j(22i−1) = 1. Since by assumption gcd(n, i) = 1, implying that
gcd(2n − 1, 2i − 1) = 1, then α2i−1 is a permutation. Then, for any fixed ν ∈ F∗2n there is

exactly one solution for α2i−1ν2
j(22i−1) = 1 and therefore there always exist a nonzero α′ ∈ Λ

so that Tr(α′π(y)) + Tr(α′π(y + ν)) 6= const..
Thus, all three conditions imposed by Theorem 3 are satisfied and f is a bent function

outside M∗. �

It was already noted in [27] that one can find many different tuples (a, b) such that
E2 = 〈ζa, ζb〉 is mapped to some 2-dimensional space by π. The additional condition gcd(n, i)
in Theorem 6, compared to Proposition 2 in [27], does not affect the number of tuples (a, b)
that define E2, though it somewhat reduces the choices of (i, j) tuples.

4.3 Inclusion in the PS class

The so-called PS class, originally considered by Dillon [13], can be viewed as a union of PS−
and PS+. The former subclass corresponds to defining the support of f as a union of 2n/2−1

disjoint linear subspaces (intersecting trivially in 0) of dimension n/2 without including the
all-zero vector. The subclass PS+ uses as a support a union of 2n/2−1 + 1 disjoint linear
subspaces of dimension n/2 and includes the all-zero vector. In general, proving that a given
bent function does not belong to the completed PS class is much harder than for the M
class due to the lack of useful indicators. We translate the problem of determining whether a
given function belongs to the PS class to a graph theoretical problem to show its difficulty.

In a graph, a clique is a set of vertices such that any two vertices are adjacent. A clique
cover of a given undirected graph is a partition of the vertices of the graph into cliques.

Proposition 4 Let f : Fn2 → F2 be a bent function and Gf = (V,E) its corresponding
graph, where V = sup(f) \ {0}, E = {{x, y} | x, y ∈ V, x − y ∈ sup(f)}. If the function
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f ∈ PS−(PS+) then the graph Gf has a clique cover where all cliques are disjoint and of
size 2n/2−1(2n/2−1 + 1). If the graph Gf has a clique cover where all cliques correspond to
subspaces, which are disjoint and of size 2n/2−1(2n/2−1 + 1), then f ∈ PS−(f ∈ PS+).

Proof. If a subset H ∪ {0}, H ⊆ V, forms a subspace of Fn2 , then any two x, y ∈ H must
be connected and therefore vertices corresponding to elements of H must form a clique. If
f ∈ PS−, sup(f) is exactly a union of 2n/2−1 disjoint n

2 -linear subspaces without the 0 vector.

The graph G must therefore contain exactly 2n/2−1 cliques of size 2
n
2 − 1 which cover the

entire graph and are disjoint. If f ∈ PS+, sup(f) is exactly a union of 2n/2−1 + 1 disjoint
n
2 -linear subspaces. When defining the set of vertices V the 0 vector is removed. The graph

G must therefore contain exactly 2n/2−1+1 cliques of size 2
n
2 −1 which again cover the entire

graph and are disjoint.
If all the cliques contained in such a cover also correspond to subspaces and are disjoint,

the converse is true as well. �

Therefore we can translate the initial problem into graph-theoretical terms in the following
way: “Given a bent function f , does the graph Gf have a clique cover where all cliques
correspond to subspaces, are disjoint, and of size 2

n
2 − 1?”

In graph theory, the so-called Clique Cover Problem is very well known: “Given a graph
G and an integer k, can the vertices of the graph be partitioned into k cliques?” It was proven
in [18] that this is an NP-complete problem. A related problem of finding the minimum clique
cover of a graph, that is, finding the minimum integer k for which there exists a clique cover
with k cliques, is an NP-hard problem.

This, together with the fact that many other closely related problems in graph theory are
proven to be either NP-hard or NP-complete, makes us believe that determining whether an
arbitrary bent function f lies within the PS class is either an NP-hard or an NP-complete
problem.

5 Sufficient conditions for functions in C and D to be in M#

In this section, we will extend the results regarding some special choices of indicator functions
of linear subspaces given in [21, 1] related to the class membership. In [21, Proposition 4.1], it
was remarked that certain members of the class C intersect withM whenever L is selected as
L = E × Fn2 for some linear subspace E. We here show that some other nontrivial selections
of the subspace L also lead to bent functions that are both in C and M.

We first consider f ∈ C as defined by (1), thus the C class of functions. It is obvious that
f ∈ M# if deg(π(y)) = 1, hence we consider the case that deg(π(y)) > 1. The linear kernel
of f will denote the set of those vectors a such that Daf is a constant function, which forms
a linear subspace of Fn2 , see e.g. [11].

Theorem 7 Let m = 2n ≥ 8 be an even integer and let f(x, y) = π(y) · x+ 1L⊥(x), where L
is any linear subspace of Fn2 and π is a permutation on Fn2 such that (π, L) has property (C).
Let S be a linear subspace of Fn2 . If (S, π) satisfies:
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1) S ⊆ L⊥;

2) For any u ∈ S, there exists a linear subspace K0 of Fn2 such that Dv(u · π(y)) = 0 for any
v ∈ K0;

3) DuDvπ(y) = 0 for u, v ∈ K0;

4) dim(S ×K0) ≥ n.

then f belongs to M#.

Proof. Let a(1), b(1), a(2), b(2) ∈ Fn2 . We prove that f belongs to M#, by using Lemma 1.
We need to show that there exists an n-dimensional subspace V of Fm2 such that

D(a(1),a(2))D(b(1),b(2))f(x, y) = 0,

for any (a(1), a(2)), (b(1), b(2)) ∈ V .
Let V ⊆ S ×K0 and take (a(1), a(2)), (b(1), b(2)) ∈ V . We notice that dim(S ×K0) ≥ n

and in particular if dim(S ×K0) = n then S ×K0 = V . We have

D(a(1),a(2))D(b(1),b(2))f(x, y) = x · (Da(2)Db(2)π(y)) + a(1) ·Db(2)π(y + a(2)) (14)

+ b(1) ·Da(2)π(y + b(2)) +Da(1)Db(1)1L⊥(x).

From (14), we have
D(a(1),a(2))D(b(1),b(2))f(x, y) = 0,

since S ⊆ L⊥ and for any u ∈ S, by assumption, there exists a linear subspace K0 of Fn2 such
that Dv(u · π(y)) = 0 for any v ∈ K0.

�

An example of application of Theorem 7, for the purpose of identifying bent functions that
belong to both C andM#, is given below and it utilizes a particular class of involutions over
F2n (permutations having the property that F ◦ F (x) = x).

Lemma 4 [21] Suppose u, v, w, z ∈ F2n. A set L = {u, v, w, z} is a flat of F2n of dimension
6 2 if and only if u+ v + w + z = 0.

Theorem 8 Let n ≥ 3 be an integer, and let α(1), α(2) ∈ Fn2 . Let π be an involution, defined
as

π(y) =


y, y ∈ Fn2 \ {α(1), α(2)}
α(1), y = α(2)

α(2), y = α(1).

Let f(x, y) = π(y) · x+ 1L⊥(x), where L = {0, α(1), α(2), α(1) + α(2)}. Then f belongs to both
C and M#.
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Proof. Since π is an involution, we have π−1 = π. Let a ∈ Fn2 . From Lemma 4 and the
definition of C class of bent functions, if

π(a) + π(α(1) + a) + π(α(2) + a) + π(α(1) + α(2) + a) = 0, (15)

then (π, L) has property (C). From the definition of π, (15) holds and thus f belongs to C.
Let S = L⊥ and K0 = L. By Theorem 7, it is sufficient to show that

Dv(u · π(y))) = 0 for any u ∈ L⊥ and v ∈ L, (16)

since only the item 2) of Theorem 7 needs to be verified. Now there are two cases to be
considered.

1. If y ∈ Fn2 \L, then (y+ v) ∈ Fn2 \L for any v ∈ L (since L is an additive group). Thus,
we have

Dv(u · π(y)) = u · π(y) + u · π(y + v)) = u · v = 0,

for any u ∈ L⊥ and v ∈ L. Notice that for y ∈ Fn2 \L we have π(y) = y and consequently
u · π(y + v)) = u · y + u · v.

2. If y ∈ L, then π(y) ∈ L. Thus u · π(y)) = 0 since u ∈ S = L⊥, that is, Dv(u · π(y)) = 0
for any u ∈ L⊥.

Combining items 1 and 2, we conclude that f belongs to M#. �

In his pioneering work [1], Carlet defined an explicit class of bent functions called D0 which
corresponds to the case E1 = {0n} and E2 = Fn2 . Furthermore, it was also remarked [1,
Remark, pg. 9] that considering the case E1 = Fn2 and E2 = {0n} only leads to bent
functions in D that are provably in M. We show that the same conclusion is valid when
dimE2 = 1, thus excluding this case for possible further analysis.

Proposition 5 Let m = 2n be an even integer and let f(x, y) = π(y)·x+1E1(x)1E2(y), where
π is a permutation on Fn2 , and E1, E2 are two linear subspaces of Fn2 such that π(E2) = E⊥1 .
If dim(E2) = 1, then f belongs to M#.

Proof. According to Lemma 1, we need to show that there exist an n-dimensional subspace
V such that

D(a(1),a(2))D(b(1),b(2))f = 0,

for any (a(1), a(2)), (b(1), b(2)) ∈ V . Set V = {(x, 0n) | x ∈ Fn2}. Since dim(E2) = 1 and
π(E2) = E⊥1 , we have Da(1)Db(1)1E1(x) = 0 for any a(1), b(1) ∈ Fn2 . Therefore, we have

D(a(1),a(2))D(b(1),b(2))f(x, y)

= 1E2(y)(Da(1)1E1(x) +Db(1)1E1(x) +Da(1)+b(1)1E1(x))

= 1E2(y)Da(1)Db(1)1E1(x) = 0

for any (a(1), a(2)), (b(1), b(2)) ∈ V , which shows that f belongs to M#. �
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6 An explicit class of bent functions D?2 outside M#

Whereas our sufficient conditions, related to non-inclusion in the completedM class, could be
specified for certain permutation monomials, we now largely extend these specific instances
by specifying two generic explicit subclass of D, which we call D?2 and D?1, whose members
are bent functions provably outside the completed M class.

Due to the selection of the 0-dimensional subspace E1, thus E1 = {0n} and consequently
E2 = Fn2 , the explicit class D0 of bent functions introduced by Carlet [1] does not impose
any additional conditions on the choice of a permutation π. On the other hand, as already
remarked, when dim(E2) ∈ {0, 1} (hence dim(E1) ∈ {n, n − 1}) such bent functions in D
are provably within M#. In what follows, we first consider the case dim(E2) = n − 2 and
define an explicit class D?2 of bent functions where the subscript actually refers to the fact
that dim(E1) = 2. For this purpose, we employ a class of permutations on Fn2 derived from
the identity permutation given by:

π?(y) =


y, y 6∈ {e(l), e(t)};
e(l), y = e(t);

e(t), y = e(l),

(17)

where l, t ∈ {1, 2, . . . , n} with l 6= t, and furthermore e(l), e(t) ∈ Fn2 denote elements in the

canonical basis of Fn2 . More precisely, e
(l)
i = 1 if and only if i = l, otherwise e

(l)
i = 0. It can be

readily verified that selecting E1 = 〈e(l), e(t)〉 and E2 = E⊥1 , implies that π?(E2) = E2 = E⊥1 .
Thus, the function f(x, y) = π?(y) · x+ 1E1(x)1E2(y) is a bent function which belongs to D,
where x, y ∈ Fn2 .

Lemma 5 Let k > 2 be an integer and f ∈ Bk. If wt(f) = 1 so that f(x) = 1α(x) for some
α ∈ Fk2, then we have

DaDbf 6= const.,

for any two different nonzero vectors a, b ∈ Fk2. Further, deg(DaDbf) = k − 2.

Proof. For any nonzero vector a ∈ Fk2, we always have wt(Daf) = 2 when wt(f) = 1.
Further, we have wt(DaDbf) = 4 for any nonzero vectors a, b ∈ Fk2, where b 6= a, since
||{α, α + a, α + b, α + a + b}|| = 4 when f(x) = 1α(x). Since k > 2 we conclude that
DaDbf 6= const. for any two different nonzero vectors a, b ∈ Fk2.

From wt(DaDbf) = 4, we have

deg(DaDbf) ≥ k − 2. (18)

If wt(a) = t, we have ai1 = 1, . . . , ait = 1 for some 1 ≤ i1 < · · · < it ≤ k. . Further, the terms

of the maximum degree in
k∏
i=1

(xi + αi + 1) +
k∏
i=1

(xi + αi + ai + 1) are x1 · · ·xi1−1xi1+1 · · ·xk,

x1 · · ·xi2−1xi2+1 · · ·xk, · · · , x1 · · ·xit−1xit+1 · · ·xk, which equal that of
k∏
i=1

(xi + αi + bi + 1) +
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k∏
i=1

(xi + ai + bi + αi + 1) since α+ (α+ a) + (α+ b) + (α+ a+ b) = 0k. Thus, we have

deg(DaDbf) ≤ k − 2. (19)

Hence, combing (18) and (19), we have deg(DaDbf) = k − 2.
�

Theorem 9 Let n ≥ 5 be a positive integer and π?(y) be a permutation over Fn2 given by
(17). Let l, t be two positive integers such that 1 ≤ l < t ≤ n. Define f(x, y) = π?(y) · x +
1E1(x)1E2(y), with x, y ∈ Fn2 , where E1 = 〈e(l), e(t)〉 and E2 = E⊥1 so that dim(E2) = n − 2.
Then f is a bent function outside M#.

Proof. According to the definition of D class bent functions, it is obvious that f is a bent
function.

From Lemma 1, it is sufficient to show for any n-dimensional linear subspace V of F2n
2 ,

we always find two distinct vectors a, b ∈ F2n
2
∗

such that DaDbf 6= 0.
Without loss of generality, we set l = 1, t = 2 so that e(1) = (1, 0, 0, . . . , 0) and e(2) =

(0, 1, 0, . . . , 0). Then,

f(x, y) = π?(y) · x+ 1E1(x)1E2(y)

=

(
y +

(
n∏
i=1

(yi + e
(1)
i + 1) +

n∏
i=1

(yi + e
(2)
i + 1)

)
(e(1) + e(2))

)
· x+ 1E1(x)1E2(y)

=

(
y +

(
(y1 + y2)

n∏
i=3

(yi + 1)

)
(1, 1, 0, . . . , 0)

)
· x+ 1E1(x)1E2(y)

= x · y + (x1 + x2)(y1 + y2)
n∏
i=3

(yi + 1) + (y1 + 1)(y2 + 1)
n∏
i=3

(xi + 1).

For any two nonzero vectors a, b ∈ {02} × Fn2 × {0n−2}, we have

DaDbf(x, y) = c+ 0 +DaDb

(
(y1 + 1)(y2 + 1)

n∏
i=3

(xi + 1)

)

where c ∈ F2 is a constant. For any two nonzero vectors a = (02, â, 0n−2), b = (02, b̂, 0n−2) ∈
{02} × Fn2 × {0n−2}, we have

DaDbf(x, y) = c+ 0 +DaDb

(
(y1 + 1)(y2 + 1)

n∏
i=3

(xi + 1)

)
= c+ 0 +DâDb̂

(
(y1 + 1)(y2 + 1)

n∏
i=3

(xi + 1)

)
where c ∈ F2 is a constant. Then, by Lemma 5, we have

deg (DaDb (1E1(x)1E2(y))) = deg

(
DaDb

(
(y1 + 1)(y2 + 1)

n∏
i=3

(xi + 1)

))
= deg

(
DâDb̂

(
(y1 + 1)(y2 + 1)

n∏
i=3

(xi + 1)
))

= n− 2,
(20)
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for any nonzero a, b ∈ {02} × Fn2 × {0n−2}. Hence, DaDbf(x, y) 6= const. for any nonzero
a, b ∈ {02} × Fn2 × {0n−2}. Similarly, we have DaDbf(x, y) 6= const. for any nonzero a, b ∈
{02+n} × Fn−22 .

Further, since n ≥ 5, there must exist l′ ∈ {3, 4, . . . , n} such that DaDb (1E1(x)1E2(y))
depends on the variable xl′ if DaDb (1E1(x)1E2(y)) 6= const. for any a, b ∈ F2n

2
∗
. From the

ANF of f and the definition of π?, DaDb

(
x · y + (x1 + x2)(y1 + y2)

n∏
i=3

(yi + 1)

)
can not

depend on the variable xl′ . Hence, we have

DaDbf 6= const. if DaDb (1E1(x)1E2(y)) 6= const.. (21)

Similarly, there must exist t′ ∈ {3, 4, . . . , n} such thatDaDb

(
(x1 + x2)(y1 + y2)

n∏
i=3

(yi + 1)

)
depends on the variable yt′ if DaDb

(
(x1 + x2)(y1 + y2)

n∏
i=3

(yi + 1)

)
6= const. for any a, b ∈

F2n
2
∗

(using that n ≥ 5). From the ANF of f and the definition of π?, DaDb (x · y + 1E1(x)1E2(y))
cannot depend on the variable yt′ . Hence, we have

DaDbf 6= const. if DaDb

(
(x1 + x2)(y1 + y2)

n∏
i=3

(yi + 1)

)
6= const.. (22)

Let V be an arbitrary n-dimensional subspace F2n
2 . Denote by V̂ = {(v3, . . . , vn+2)|v ∈ V }

and Û = {(vn+3, . . . , v2n)|v ∈ V }. We have

dim(V̂ ) + dim(Û) ≥ dim(V̂ × Û) ≥ n− 2,

where V̂ ×Û denotes the Cartesian product of V̂ and Û . There are two cases to be considered.

1. If ||V̂ ∩Fn2 || ≥ 4, we can select two vectors a, b ∈ V such that (a3, a4, . . . , an+1, an+2) 6=
0n, (b3, b4, . . . , bn+1, bn+2) 6= 0n and (a3, a4, . . . , an+1, an+2) 6= (b3, b4, . . . , bn+1, bn+2).
Thus, DaDb (1E1(x)1E2(y)) 6= constant. From (21), we have DaDbf 6= const..

2. If ||V̂ ∩ Fn2 || < 4, then dim(V̂ ) ≤ 1. Thus, we have dim(Û) ≥ n − 3, that is,

||Û ∩ Fn−22 || ≥ 4 since n > 5. We can select two different vectors a, b ∈ V such that
(an+3, an+4, . . . , a2n) 6= 0n−2, (bn+3, bn+4, . . . , b2n) 6= 0n−2 and (an+3, an+4, . . . , a2n) 6=

(bn+3, bn+4, . . . , b2n). Thus, DaDb

(
(x1 + x2)(y1 + y2)

n∏
i=3

(yi + 1)

)
6= const.. From (22),

we have DaDbf 6= const..

�

We denote the class of bent functions, specified by means of Theorem 9, by D?2 to indicate
that dim(E1) = 2 and the superscript “?′′ emphasizes the fact that there exist other permu-
tations π (apart from π?) that can be used for the same purpose when E1 is a 2-dimensional
subspace.
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7 Conclusions

Two secondary classes of bent functions, that possibly provide instances of bent functions
outside the standard primary classes, were introduced by Carlet more than two decades ago
and a single class named D0 was shown to be outside PS# and M#. We further refine
sufficient conditions for the members of C and D class to be outside M# compared to [27]
and identify a few infinite subclasses of bent functions that do not belong to the completed
M class. More importantly, another explicit subclass of bent functions in D, denoted by D?2,
has been introduced and it is shown that its members are strictly outsideM#. The question
whether these functions are also outside the completed PS class (the inclusion in this class
being equivalent to the NP-hard problem of identifying cliques in a graph, cf. Section 4.3)
remains open and is quite difficult due to the lack of indicators.
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