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Abstract. Differential power analysis (DPA) is a statistical analysis
of the power traces of cryptographic computations. DPA has many ap-
plications including key-recovery on linear feedback shift register based
stream ciphers. In 2017, Dobraunig et. al. [1] presented a DPA on Keymill

to uncover the bit relations of neighbouring bits in the shift registers,
effectively reduces the internal state guessing space to 4-bit. In this work,
we generalise the analysis methodology to uncover more bit relations
on both linear feedback shift registers (LFSRs) and non-linear feedback
shift registers (NLFSRs) and with application to fresh re-keying scheme —
LR-Keymill. In addition, we improve the DPA on Keymill [1] by halving
the data resources needed for the attack.

Key words: SCA, DPA, LFSR, NLFSR, Fresh re-keying scheme, Keymill,
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1 Introduction

There are two major families of cryptanalysis on cryptographic primitives —
mathematical attack and side-channel analysis (SCA). Mathematical attacks
study the structure of a primitive to find exploitable mathematical structures and
utilise them to recover sensitive information from the primitive, for example the
differential cryptanalysis [2] and linear cryptanalysis [3]. Side-channel analysis,
on the other hand, tackles a primitive through other physical means, for example
observing the timing of the algorithm computation [4], the power consumption [5]
and injecting faults to the implementation [6].

The Internet of Things (IoT) is the ever-increasing collection of devices,
including small and constrained devices, such as Radio-Frequency IDentification
(RFID) tags and wireless sensors nodes, inter-connected with each other through
the Internet. These resource-constrained or low-cost devices could be operating
in hostile environments and are especially susceptible to SCA, in particular, the
differential power analysis [5] (DPA).

In a nutshell, DPA involves statistical analysis of the power traces of crypto-
graphic computations obtained using devices like oscilloscopes. It could be used to
target cryptographic algorithms that handles sensitive information [7,8,9,10,11,1]



and had proven to be practical and high success rate. Thus posting a serious
threat to embedded implementation of cryptographic primitives.

Most of the DPA on linear feedback shift register (LFSR) based stream
ciphers [9,8] involves power modelling and key hypothesis, in 2017, Dobrau-
nig et. al. [1] presented how DPA can be used on shift registers to uncover the
bit relations of neighbouring bits, allowing attacker to significantly reduce the
internal state guessing space. Inspired by their work, we generalised their analysis
to reveal more bit relations from a shift register through DPA and also taking into
account the linear or non-linear feedback function. In other words, we studied
the DPA on (non-)linear feedback shift registers.

Contribution. We extend analysis by Dobraunig et. al. [1] and propose a generic
DPA on (N)LFSRs. With this new analysis methodology, we present a DPA on
LR-Keymill, an improved version of Keymill designed to resist the DPA by [1],
breaking their 67.9-bit side-channel security claim with DPA resulting in 4-bit
key guessing. In addition, our new analysis methodology improves the previous
attack on Keymill by halving the amount of data resources needed to perform
the same attack.

Structure of this paper. We start off with the generic analysis on (N)LFSRs
in Section 2, followed by some toy examples for illustration in Section 3. Next,
we give the specification of Keymill and LR-Keymill in Section 4 and finally the
DPA on LR-Keymill and LR-Keymill in Section 5.

2 Dynamic Power Consumption of (N)LFSRs

Power consumption of D flip-flop. In [12], Zadeh and Heys presented that
at the rising edge of a clock, a D flip-flop consumes more power when there is a
state change, either 0 −→ 1 or 1 −→ 0. In a nutshell, they analysed D flip-flop
that is constructed from 6 NAND gates and showed that 3 of the gates changes
when the D flip-flop changes its state, as compared to 1 gate change when there
is no change its state.

Power consumption of a shift register. By the nature of a shift register,
say left-shift, the state of a register bit (current bit value) will be updated to the
state in the register bit on its right (succeeding bit value) in the next clock cycle.
In other words, the power consumption of the register bits in a shift register is
correlated to the value of the current and succeeding bit values. More precisely, if
the succeeding bit is the same as the current bit value, the register bit consumes
lesser power compared to the case when the bits are different and it has to change
its state.
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From power consumption differences to bit relations. As there are many
other activities happening concurrently with the updating of a register bit at the
rising edge of a clock, it is difficult to identify the relation between the current
and succeeding bit values from a single power trace. However, if we can introduce
a bit difference to that particular target register bit while all other computations
remain constant, we can gain information about some bit relations by comparing
the power consumption differences between two power traces, where one is the
original computation and the other is the instance with a bit difference.

2.1 Power Consumption Differences and Bit Relations

Shift registers are often part of a linear feedback shift register (LFSR) or non-
linear feedback shift register (NLFSR). We will address the feedback function in
Section 2.3. For the moment, let us focus only on the shift registers.

Let [x]y denote a register bit of interest in the square parenthesis with bit
value x, and y is the succeeding bit value. A bar symbol x denote having a
difference, in the case of bits, it is simply flipping of value. If a register bit
consumes more power when there is some difference, we denote it as +1, −1 if it
is consumes lesser power, and 0 if there is no difference in the power consumption.
In practice, the power trace is the summation of the power consumption of all the
register bits. Hence, we can apply simple arithmetic to compute the combined
power consumption difference.

Power consumption difference of a register bit. For a register bit, we only
need to consider the current (x) and succeeding bit value (y), denoted as [x]y.
There are 3 possible differential patterns:

Case 1.1: [x]y vs [x]y. If x = y, then the register bit does not have to change its
state. On the other hand, the second instance has x 6= y and more power is
consumed to change its state. Therefore, the latter instance consumes more
power (+1). Inversely, if x 6= y, then the power consumption for [x]y is lower
than [x]y (−1). To summarise:

• x = y, rise in power consumption difference +1.

• x 6= y, drop power consumption difference −1.

Case 1.2: [x]y vs [x]y. Pretty much the same observation as Case 1.1:

• x = y, rise power consumption difference +1.

• x 6= y, drop power consumption difference −1.

Case 1.3: [x]y vs [x]y. If x = y, we have x = y and thus for both instances the
register bit remains the same state. On the other hand, if x 6= y, then so does
x 6= y and both instances will consume more power to change its state. As a
result, both instances have the same power consumption trace (0) regardless
of the relation between x and y.

• For both x = y and x 6= y, no change in power consumption difference 0.
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Power consumption difference of multiple register bits. Using Case 1 as
the building blocks, we look at the combined power consumption of multiple
register bits.

Case 2.1: [x][y]z vs [x][y]z. The left register bit, [x]y vs [x]y, is Case 1.1 and the
right register bit, [y]z vs [y]z is Case 1.2. There are 4 possible combinations
of bit relations and 3 possible power consumption difference:

• x = y, y = z, rise in power consumption difference +2.

• x = y, y 6= z or x 6= y, y = z, no change in power consumption difference
0.

• x 6= y, y 6= z, drop in power consumption difference −2.

Observation 2.1: The change in power consumption in Case 2.1 is always
a multiple of 2, {−2, 0, 2}.
Observation 2.2: Observing power level +2 or −2 gives a clear indication
of the relations of (x, y) and (y, z). There is an ambiguity when the observed
power level is 0, but knowing one of the relations trivially reveals the relation
of the other to be the opposite.

Case 2.2: [x][y]z vs [x][y]z. Here we have left and right register bits as Case 1.1
and 1.3 respectively. Since Case 1.3 has static power consumption invariant
of the relation of (y, z). This simply has the same observation as Case 1.1 to
deduce the relation of (x, y).

• x = y, rise in power consumption difference +1.

• x 6= y, drop in power consumption difference −1.

Case 3: [x0][x1] . . . [xi−1][xi]xi+1 vs [x0][x1] . . . [xi−1][xi]xi+1. This is a general
case where all intermediate values have differences. The intermediate register
bits ([xj ]xj+1 and [xj ]xj+1, where j ∈ {1, . . . , i− 1}) are of Case 1.3. Thus,
these intermediate bit values have power consumption difference 0 and the
analysis can be reduced to the first and last register bits ([x0]x1 vs [x0]x1 and
[xi]xi+1 vs [xi]xi+1) which belong to Case 1.1 and 1.2 respectively. Similar
to Case 2.1, there are 4 possible combinations of bit relations and 3 possible
power consumption difference.

• x0 = x1, xi = xi+1, rise in power consumption difference +2.

• x0 = x1, xi 6= xi+1 or x0 6= x1, xi = xi+1, no change in power consump-
tion difference 0.

• x0 6= x1, xi 6= xi+1, drop in power consumption difference −2.

Practical observation of the power consumption differences. A natural
question is whether such power consumption differences {−2,−1, 0,+1,+2} (so-
called 5-class difference) can be observed in practice. The observation of the
power consumption difference had been done by the authors of [13] before, where
they did some experiments and showed that it is possible to observe 5-class and
even 9-class differences.
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2.2 Rule of Thumb for Power Consumption Differences and Bit
Relations

We denote a power consumption difference the subtraction of the original power
trace from the power trace with some differences.

If an incoming bit, so-called new bit, to a shift register has a difference
(respectively no difference) while the register bit in question, so-called current
bit, has no difference (respectively a difference), a rise in power consumption
difference indicates that the current and new bit value are equal, while a drop in
power consumption difference indicates that they are of different values.

If both the new and current bits have no difference or both with a difference,
we expect no change in the power consumption difference regardless of the bit
relation of these 2 bits.

Note that a bit relation does not reveal the actual value of the related bits,
but it reduces the guessing space by 1 bit because guessing the value for 1 bit
determines the value of the related bit too.

2.3 On (non-)linear feedback function

When targeting (N)LFSRs, we need to consider the actual specification of the
feedback function to determine how the differential propagates. We consider the
6 basic binary operations — AND (∧), NAND (∧), OR (∨), NOR (∨), XOR (⊕) and
NXOR (⊕). The truth table and differential table of these operations are listed in
Table 1.

x y x ∧ y x∧y x ∨ y x∨y x⊕ y x⊕y
Truth table

0 0 0 1 0 1 0 1
0 1 0 1 1 0 1 0
1 0 0 1 1 0 1 0
1 1 1 0 1 0 0 1

Differential table

∆ - 0.5 0.5 0.5 0.5 1 1
- ∆ 0.5 0.5 0.5 0.5 1 1
∆ ∆ 0.5 0.5 0.5 0.5 0 0

Table 1. Truth table and differential table of various binary operations. The
entries in the differential table indicates the probability of having a difference.

The linear operations (XOR and NXOR) are rather simple, we can trace the
differential trail trivially and know that it holds with probability 1. For the
non-linear operations (AND, NAND, OR and NOR), the differential propagation holds
with probability 0.5. Despite that, using power analysis we are able to know the
differential propagation which leads to knowing some information of the internal
state.
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Let y be the incoming uncertain bit to the register bit [x], as seen in Case 1’s
from Section 2.1, if the current bit x has no difference, then we expect a rise or
drop in power consumption difference if y has a difference. Thus if there is no
change in the power consumption, we know that y has no difference. On the other
hand, if x has difference, then observing no change in the power consumption
indicates that y has a difference too. Otherwise, we will observe a rise or drop in
power consumption difference and we know y has no difference.

In addition to knowing if y has a difference, it could also reveal some infor-
mation of the value of other bits. For example, let y = (x0 ∧ x2) ⊕ x2 and we
know x2 has a difference, because of the non-linear operation AND, we are not
sure if y has difference. If through the power analysis that we deduce that y has
a difference too, is necessary and sufficient that x0 = 0.

3 Analysis on Toy Examples

For the moment, let us omit the details of the feedback function and assume that
the attacker knows when a difference is introduced into the shift register as the
new bit.

3.1 Toy Shift Register

We use a simple toy example to illustrate how we can recover the bit relations.
Suppose we have a 6-bit shift register containing values ci, and xj the incoming
bits in the next 5 clock cycles, denoted as

Clock cycle 0 : [c0][c1][c2][c3][c4][c5]x0x1x2x3x4,

and suppose the values are [0][0][1][1][0][1]10011.
In another instance, there are bit differences in the incoming bits x0, x1 and

x3.
Clock cycle 0 : [c0][c1][c2][c3][c4][c5]x0x1x2x3x4

and the corresponding values are [0][0][1][1][0][1]01001.
After executing both computations and collecting their power traces, we can

compare the power trace and deduce 4 bit relations as seen in Table 2.
Suppose attacker’s goal is to recover the internal state at any clock cycle, the

values of ci and xj are unknown to the attacker but he knows the differential
positions in xj . From there, he is able to deduce the following relations c5 =
x0, x1 = x2 6= x3 = x4, and guess the shift register state at clock cycle 5 as one
of the following:

[c5][x0][x1][x2][x3][x4] ∈ {[0][0][0][0][1][1],
[0][0][1][1][0][0],

[1][1][0][0][1][1],

[1][1][1][1][0][0]}
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Clock Ori. shift ∆ shift Ori. ∆ Power Rise/ Relation
cycle register register dist. dist. diff. Drop obtained

0 [0][0][1][1][0][1]1 [0][0][1][1][0][1]0 - - - - -

1 [0][1][1][0][1][1]0 [0][1][1][0][1][0]1 3 4 +1 Rise c5 = x0
2 [1][1][0][1][1][0]0 [1][1][0][1][0][1]0 4 5 +1 - -

3 [1][0][1][1][0][0]1 [1][0][1][0][1][0]0 3 5 +2 Rise x1 = x2
4 [0][1][1][0][0][1]1 [0][1][0][1][0][0]1 4 5 +1 Drop x2 6= x3
5 [1][1][0][0][1][1] [1][0][1][0][0][1] 3 5 +2 Rise x3 = x4

Table 2. Toy shift register example: Power consumption difference and bit
relations obtained. Second and third columns are the register state of the original
and with some difference, “Ori. dist.” and “∆ dist.” indicates the Hamming
distance between the previous and current state, “Power diff.” indicates the
numerical power consumption differences, “Rise/Drop” is the observation of the
power consumption difference at the rising edge of the clock, and last column is
the bit relation obtained.

To summarise, if the attacker is able to obtain noiseless measurement for
these 2 computation instances, he is able to reduce the guessing complexity from
the naive 26 = 64 to just 4 guesses.

3.2 Toy Non-linear Feedback Shift Register

We use another toy example to illustrate how an analysis can be performed on
NLFSR. Suppose we have a 4-bit maximum period NLFSR (taken from [14])
defined as follows:

[xi+1
0 ][xi+1

1 ][xi+1
2 ][xi+1

3 ]← [xi1][xi2][xi3][xi0 ⊕ xi1 ⊕ xi2 ⊕ xi1xi2], (1)

where X0 = x00‖x01‖x02‖x03 is the initial state and xi1x
i
2 = xi1 ∧ xi2, for brevity we

omit the AND notation when there is no ambiguity.

Let the initial values be [0][0][1][0] and another instance had a bit differ-
ence at x03, i.e. [0][0][1][1]. After executing both computations and collecting
their power traces, we can compare the power trace and deduce 4 bit relations as
seen in Table 3.

Starting from a difference X0 = (0, 0, 0, ∆), we know the difference in the next
cycle is X1 = (0, 0, ∆, 0). Here, we observed a big drop1 in the power consumption
difference. As seen in Case 2.1 of Section 2.1, it indicates that the differential bit
is different from both its neighbours, thus we have x11 6= x12 and x12 6= x13.

For the next update, it could be X2 = (0, ∆, 0, 0) or X2 = (0, ∆, 0, ∆). Since
we observe no change in the power consumption difference, we know that the
new bit x23 has no difference. In addition, from Equation 1, we have

1 This drop in power consumption difference that was due to two register bits difference
is relatively “big” compared to a drop caused by a single register bit.
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Clock Ori. ∆ Ori. ∆ Power Rise/ Information
cycle NLFSR NLFSR dist. dist. diff. Drop obtained

0 [0][0][1][0]1 [0][0][1][1]1 - - - - -

1 [0][1][0][1]1 [0][1][1][1]1 3 1 −2 big drop x11 6= x12, x12 6= x13
2 [1][0][1][1]0 [1][1][1][1]0 3 1 −2 - x23 6= ∆,x11 = 1

3 [0][1][1][0] [1][1][1][0] 3 1 −2 - x24 6= ∆,x22 = 1

Table 3. Toy NLFSR example: Power consumption difference and bit relations
obtained. Second and third columns are the register state of the original and
with some difference, “Ori. dist.” and “∆ dist.” indicates the Hamming distance
between the previous and current state, “Power diff.” indicates the numerical
power consumption differences, “Rise/Drop” is the observation of the power
consumption difference at the rising edge of the clock, and last column is the
information obtained.

x10 ⊕ x11 ⊕ x12 ⊕ x11x12 = x10 ⊕ x11 ⊕ x12 ⊕ x11x12
⇒ x11(x12 ⊕ x12) = x12 ⊕ x12

which implies that x11 = 1.
From X2 = (0, ∆, 0, 0), it could propagate to X3 = (∆, 0, 0, 0) or X3 =

(∆, 0, 0, ∆). Since we again observe no change in power consumption difference,
we know that x33 has no difference and deduce that x22 = 1.

Combining all these information, we reduced the possible state of X2 from
24 = 16 to just 2 states as shown in the following:

[x20][x21][x22][x23] ∈ {[1][0][1][0],
[1][0][1][1]}

In fact, with information obtained up to clock cycle 2, it is sufficient to arrive at
the same conclusion.

4 Fresh Re-keying Schemes — Keymill and LR-Keymill

4.1 Fresh re-keying scheme

Although there are countermeasures [15,16,17,18] like masking and threshold
implementation to protect against DPA, they are generally costly to implement on
the encryption algorithms, unless they are designed to be side-channel protection
efficient, for example Pyjamask [19] and CRAFT [20].

Fresh re-keying scheme was proposed by Medwed et. al. [21] as a counter-
measure against side-channel analysis for low-cost devices. Low-cost devices
like RFID tags have very constrained hardware area to implement the crypto-
graphic algorithms, there may not be sufficient resources to implement effective
side-channel protections like masking or threshold implementation. Instead, the
idea of fresh re-keying scheme is to have a lightweight function g that derives
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session keys SK from given secret master key MK and nonce IV , denoted as
g(IV,MK) = SKIV , and use these fresh session keys for block cipher encryption
E.

Under the nonce-respecting scenario, a fresh re-keying scheme helps to protect
the block cipher against DPA since each encryption uses a different encryption
key. However, the question now is whether the re-keying scheme is resilient against
SCA. One can perceive a re-keying scheme as an encryption cipher, encrypting
difference nonces (plaintexts) using the same master key, and become a target
of SCA. While a re-keying scheme does not need very strong mathematical
properties like block ciphers, it should have the following 6 properties given
by [21]:

1. Good diffusion of the master key MK.
2. No synchronization between parties. Hence, g should be stateless.
3. No need for additional key material.
4. Little hardware overhead. Total costs lower than protecting E alone.
5. Easy protection against side-channel attacks.
6. Regularity.

Keymill [22] is NLFSR-based re-keying scheme designed by Taha et. al. to be
side-channel resilient at algorithmic level and not depending on the side-channel
countermeasure at the implementation level. However, Doraunig et. al. [1] found
a DPA using the Case 1.1 analysis (Section 2.1), breaking the scheme with 4-bit
key guessing and 128 chosen nonces2.

LR-Keymill [23]3 is an improved version of Keymill by the same designers,
the idea was to update all the NLFSRs simultaneously with the same IV bits,
making it non-trivial for the attacker to deduce which NLFSRs incur higher or
lower power consumption, thus increasing the search space and security bound.
Based on this argument, the designers claimed 67.9-bit security against DPA.
In this paper, however, we show that by exploiting the feedback functions of
LR-Keymill, we can still break the scheme with just 4-bit key guessing. In
addition, we show that we can half the amount of nonces (hence, power traces)
needed to attack Keymill.

In the following section, we first give the specification of LR-Keymill and
Keymill (as remarks), followed by the DPA on LR-Keymill, and finally the
improved attack on Keymill.

4.2 Specification of Keymill and LR-Keymill

Overview. The internal state S of LR-Keymill and Keymill consists of 4
NLFSRs — with shift registers R0, R1, R2 and R3 of length 31, 32, 32, 33 bits
and feedback functions F0, F1, F2 and F3 respectively.

2 Assuming noiseless measurements. Otherwise, the attacker could vary the last few
bits of the nonce to collect more power traces. More details in Section 3.4 of [1].

3 Nominated best paper [24].
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At the initialisation phase, an 128-bit master key MK will be loaded into these
registers. Next, an 128-bit initialisation vector IV is introduced to update the
internal state. After some preprocessing phase, it will start to release keystream
bits to form the session keys.

Internal state update. The bits in the registers are indexed in ascending order
Rx = s0s1 . . . s|Rx|−1. We denote Rxc[i] as the i + 1-th leftmost bit in register
Rx at clock cycle c, where c = 0 denote the initial state right after loading the
master key.

During an update, the feedback function Fx draws the information from Rx
and feedback to Ry, where y = x + c mod 4. Each registers does a left-shift,
drops the leftmost bit s0 and takes in the new bit into the rightmost position of
the register.

The feedback functions are defined as follow:

F0(R0) = s0 ⊕ s2 ⊕ s5 ⊕ s6 ⊕ s15 ⊕ s17 ⊕ s18 ⊕ s20 ⊕ s25 ⊕ s8s18
⊕ s8s20 ⊕ s12s21 ⊕ s14s19 ⊕ s17s21 ⊕ s20s22 ⊕ s4s12s22
⊕ s4s19s22 ⊕ s7s20s21 ⊕ s8s18s22 ⊕ s8s20s22 ⊕ s12s19s22
⊕ s20s21s22 ⊕ s4s7s12s21 ⊕ s4s7s19s21 ⊕ s4s12s21s22
⊕ s4s19s21s22 ⊕ s7s8s18s21 ⊕ s7s8s20s21 ⊕ s7s12s19s21
⊕ s8s18s21s22 ⊕ s8s20s21s22 ⊕ s12s19s21s22

F1(R1) = F2(R2) = s0 ⊕ s3 ⊕ s17 ⊕ s22 ⊕ s28 ⊕ s2s13 ⊕ s5s19 ⊕ s7s19
⊕ s8s12 ⊕ s8s13 ⊕ s13s15 ⊕ s2s12s13 ⊕ s7s8s12 ⊕ s7s8s14
⊕ s8s12s13 ⊕ s2s7s12s13 ⊕ s2s7s13s14 ⊕ s4s11s12s24
⊕ s7s8s12s13 ⊕ s7s8s13s14 ⊕ s4s7s11s12s24 ⊕ s4s7s11s14s24

F3(R3) = s0 ⊕ s2 ⊕ s7 ⊕ s9 ⊕ s10 ⊕ s15 ⊕ s23 ⊕ s25 ⊕ s30 ⊕ s8s15
⊕ s12s16 ⊕ s13s15 ⊕ s13s25 ⊕ s1s8s14 ⊕ s1s8s18 ⊕ s8s12s16
⊕ s8s14s18 ⊕ s8s15s16 ⊕ s8s15s17 ⊕ s15s17s24 ⊕ s1s8s14s17
⊕ s1s8s17s18 ⊕ s1s14s17s24 ⊕ s1s17s18s24 ⊕ s8s12s16s17
⊕ s8s14s17s18 ⊕ s8s15s16s17 ⊕ s12s16s17s24 ⊕ s14s17s18s24
⊕ s15s16s17s24

LR-Keymill. For the first 128 updates, all 4 registers are updated with a nonce
bit IV [c].

Ryc+1 = Ryc[1] ‖ Ryc[2] ‖ · · · ‖ Ryc[|Ry| − 1] ‖ Fx(Rxc)⊕ IV [c]

where y = x+ c mod 4 and c ∈ {0, . . . , 127}.
After the IV is completely absorbed, it is clocked for another 33 updates.

Ryc+1 = Ryc[1] ‖ Ryc[2] ‖ · · · ‖ Ryc[|Ry| − 1] ‖ Fx(Rxc)
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where y = x+ c mod 4 and c ∈ {128, . . . , 160}. So far, no keystream bit is being
outputted.

Lastly, in each clock cycle, the leftmost bit from each register is XORed to
form the output keystream bits KS.

Ryc+1 = Ryc[1] ‖ Ryc[2] ‖ · · · ‖ Ryc[|Ry| − 1] ‖ Fx(Rxc)

KS[i] = R0c[0]⊕R1c[0]⊕R2c[0]⊕R3c[0]

where y = x+ c mod 4, i = c− 161 and c ≥ 161.

Keymill. For the first 32 updates, each register is updated with a nonce bit
IV [4c+ x].

Ryc+1 = Ryc[1] ‖ Ryc[2] ‖ · · · ‖ Ryc[|Ry| − 1] ‖ Fx(Rxc)⊕ IV [4c+ x]

where y = x+ c mod 4 and c ∈ {0, . . . , 31}.
After the IV is completely absorbed, it is clocked for another 33 updates.

Ryc+1 = Ryc[1] ‖ Ryc[2] ‖ · · · ‖ Ryc[|Ry| − 1] ‖ Fx(Rxc)

where y = x+ c mod 4 and c ∈ {32, . . . , 64}. So far, no keystream bit is being
outputted.

Lastly, in each clock cycle, the leftmost bit from each register is outputted as
keystream bits KS (4 keystream bits per cycle).

Ryc+1 = Ryc[1] ‖ Ryc[2] ‖ · · · ‖ Ryc[|Ry| − 1] ‖ Fx(Rxc)

KS[4i]‖ . . . ‖KS[4i+ 3] = R0c[0]‖R1c[0]‖R2c[0]‖R3c[0]

where y = x+ c mod 4, i = c− 65 and c ≥ 65.

5 DPA on LR-Keymill and Keymill

5.1 DPA on LR-Keymill

In a nutshell, we analyse how a differential propagates through the internal state
and extract sufficient information for us to reduce the key guessing complexity
to the minimum of 4 bits.

When there is a difference in IV [c − 1], it is introduced to the rightmost
position of all 4 NLFSRs, namely R0c[30], R1c[31], R2c[31], R3c[32]. Here, we
obtain a combined bit relations of all the 4 NLFSRs and not able to distinguish
them. But we can gain more information if we observe the power trace for the
next few clock cycles. After 2 clock cycles, we see that these differences are now
at R0c+2[28], R1c+2[29], R2c+2[29], R3c+2[30], and R3c+2[30] is the first and only
difference to get fed back to the feedback function. In addition, in F3 the variable
s30 is a monomial term, this difference will propagate to some NLFSR with
probability 1, updating only a single NLFSR. Exploiting this fact allow us to

11



obtain a definitive bit relation. By letting the difference propagates further and
choose different bit difference in the nonce, we are able to obtain sufficient bit
relations to deduce the relations of all the neighbouring bits in the internal state.

Since LR-Keymill has a rotational cycle of period 4, we consider the nonce
differences in 4 different positions, 4i, 4i+ 1, 4i+ 2 and 4i+ 3.

Difference introduced at IV [4i]. Let the only difference in the nonce to be
at bit position 4i, the differential propagation can be seen in Figure 1-9.

Figure 1. The difference from IV is introduced to all the NLFSRs. As shown
by [23], the relation between neighbouring bits in the 4 NLFSRs are collectively
observed.

Figure 2. In the coming update, the rightmost register bit of each NLFSRs
has the same differential pattern as Case 2.1. By Observation 2.2, we are able to
obtain a collective bit relations of the next neighbouring bit.

Figure 3. Here, we expect no change in the power consumption difference.

Figure 4. This is where things start to get interesting. Notice that the difference
is fed back to R2, introducing with a new difference, which is like Case 1.1. By
observing the rise or drop of the power consumption difference, we can deter-
mine the bit relation of R24i+4[30] and R24i+4[31], denoted as R24i+4[(30, 31)],
deterministically.

Figure 5. Another 2 differences are fed back, namely to R1 and R2. For R2,
the update is the same as Case 2.2, thus this does not result in any rise or drop
in the power consumption difference. For R1, we can determine the bit relation
R14i+5[(30, 31)].

Figure 6. No new difference will be introduced to the internal state in the
coming update. The rightmost register bit of R1 and R2 are the same as Case
1.2, but the observable power consumption difference is the combined result of
R14i+6[(30, 31)] and R24i+6[(30, 31)]. If we are lucky and observed a rise or drop
in the power consumption difference, we know the bit relation for both registers.
Otherwise, we know exactly one relation is equal while the other is not equal,
but not the order. Nevertheless, this information is still useful to us when we
consider a nonce difference to be at 4i+ 1 (see analysis of Figure 15).

Figure 7. From this update, we can determine the bit relation of R24i+7[(30, 31)].

Figure 8. Lastly, the most involved relation to unravel. Like in Figure 6, we
have a Case 1.1 and 1.2 at R1 and R2 respectively. While this gives us a combined
result of the relation R14i+8[(30, 31)] and R24i+8[(30, 31)], we could still deduce
the relation deterministically through another power trace. When we consider
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another instance and introduce a difference at IV [4(i+1)], as seen in Figure 4, we
can recover the bit relation R24(i+1)+4[(30, 31)], which is the latter relation of the
combined bit relations. Therefore, we can determine the relation R14i+8[(30, 31)]
too.

Figure 9 (Summary). By introducing a single difference at IV [4i] and IV [4(i+
1)] on 2 separate nonces, we can learn 4 new relations over the course of 8
cycles: R24i+8[(26, 27)], R14i+8[(27, 28)], R24i+8[(29, 30)] and R14i+8[(30, 31)]. In
addition, we know a combined relation R14i+6[(30, 31)] and R24i+6[(30, 31)].

Difference introduced at IV [4i + 1]. We repeat the analysis with difference
in IV [4i+1] and observe how the differential pattern propagates. See Figure 10-16.

Figure 10. No difference is introduced yet since the difference is at IV [4i+ 1].

Figure 11-13. The same differential pattern as seen in Figure 1-3.

Figure 14. Here, we see that the feedback difference is sent to R3 as defined
by the cycle period of the LR-Keymill. As before, we can determine the relation
R34i+5[(31, 32)].

Figure 15. Similar analysis as Figure 5, we can determine the relation of
R24i+6[(30, 31)]. Recall in the analysis of Figure 6, we have the combined result
of R14i+6[(30, 31)] and R24i+6[(30, 31)], hence, we can also determine the bit
relation R14i+6[(30, 31)].

Figure 16 (Summary). By introducing a single difference at IV [4i + 1],
we can learn 2 new relations over the course of 6 cycles: R34i+6[(30, 31)] and
R24i+6[(30, 31)], plus an additional relation R14i+6[(30, 31)] when combined with
another power trace analysis.

Difference introduced at IV [4i+2] and IV [4i+3]. The analysis is pretty
much the same, thus for brevity we present the differential propagations (see
Figure 17-21 and Figure 22-26) and the summary of the analysis.

Figure 21 (Summary). By introducing a single difference at IV [4i+2], we can
learn 3 new relations over the course of 9 cycles: R04i+9[(26, 27)], R34i+9[(29, 30)]
and R04i+9[(29, 30)].

Figure 26 (Summary). By introducing a single difference at IV [4i+3], we can
learn 3 new relations over the course of 10 cycles:R14i+10[(27, 28)], R04i+10[(27, 28)]
and R14i+10[(30, 31)].
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Table 4. Bit relations learnt from introducing differences at IV [4i+ j] where
j = {0, . . . , 4}. The first column denotes the indices of each shift registers. (j)
denotes where the relation is obtained, (!), (?) and (*) denote derived relation
from multiple sources. The “Combined” column denotes the difference position
in the IV to obtain the 4 combined bit relations.

Clock cycle c = 4i+ 10

Rc[(x, x+ 1)] R3c R2c R1c R0c Combined

(25,24,24,23) (0) IV [4i+ 3]
(26,25,25,24) (1) (0) IV [4i+ 4]
(27,26,26,25) (*) (1) (!) (2) IV [4i+ 5]
(28,27,27,26) (2) (0) (3) (*) IV [4i+ 6]
(29,28,28,27) (?) (3) IV [4i+ 7]
(30,29,29,28) (2) IV [4i+ 8]
(31,30,30,29) (3) IV [4i+ 9]

5.2 Key-recovery on LR-Keymill

Recall that besides the aforementioned new bit relations, we can obtain the
combined relations for all 4 NLFSRs. Thus if we know 3 of the 4 relations, we
can fully determine all the bit relations.

In Table 4, (!) denotes the bit relation obtained from the effort of IV [4i]
and IV [4i+ 1], (?) denotes comes from IV [4i] and IV [4(i+ 1)], and (*) denotes
the derived information after knowing 3 out of 4 bit relations. One can see
that we can already determine the relations of both the neighbouring bits of
R04i+10[26], R14i+10[27], R24i+10[27] and R34i+10[28].

When we extend the analysis for another period of 4 cycles, we can determine
the bit relation of 5 consecutive bits in all 4 NLFSRs, see Table 5.

When we perform the analysis for j = {0, . . . , 35} and fixed i ∈ {0, . . . , 22}4,
it is sufficient for us to obtain 33 consecutive sets of bit relations for all 4 NLFSRs.
This gives us all the bit relations within each shift register in the internal state.
All that is left is to guess 1 key bits from each shift registers and we can either
roll back the updates to recover the master key.

In summary, we need noiseless measurement of 36 chosen nonces and and
4-bit key guessing to recover the master key.

5.3 Remark on filtering the noise

From a practical perspective, we expect there to be some noise during the
computation and power measurement. To overcome the noise, one could vary the
latter bits of the nonce to collect and average out the traces. This is because
internal state of LR-Keymill only depends on the nonce bits that are already
absorbed. Let i = 0, we only need to the first 47 nonce bits to be fixed5, there are

4 We bound the choice of i so that 4i+ j + 3 ≤ 128, the length of the nonce.
5 First 36 bits for introducing differences in the nonce and next 11 bits to be constant

to avoid affecting the differential trails.
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Table 5. Bit relations learnt from introducing differences at IV [4i+ j] where
j = {0, . . . , 7}. The first column denotes the indices of each shift registers. (j)
denotes where the relation is obtained, (!), (?) and (*) denote derived relation
from multiple sources. The “Combined” column denotes the difference position
in the IV to obtain the 4 combined bit relations.

Clock cycle c = 4i+ 14

Rc[(x, x+ 1)] R3c R2c R1c R0c Combined

(21,20,20,19) (0) IV [4i+ 3]
(22,21,21,20) (1) (0) IV [4i+ 4]
(23,22,22,21) (*) (1) (!) (2) IV [4i+ 5]
(24,23,23,22) (2) (0) (3) (*) IV [4i+ 6]
(25,24,24,23) (*) (4) (?) (3) IV [4i+ 7]
(26,25,25,24) (5) (*) (4) (2) IV [4i+ 8]
(27,26,26,25) (*) (5) (3) (6) IV [4i+ 9]
(28,27,27,26) (6) (4) (7) (*) IV [4i+ 10]
(29,28,28,27) (7) IV [4i+ 11]
(30,29,29,28) (6) IV [4i+ 12]
(31,30,30,29) (7) IV [4i+ 13]

still 81 bits of freedom to generate different nonces giving similar power traces to
filter the noise.

5.4 Improved attack on Keymill

In [1], the authors recovers 1 bit relation (x, y) per chosen nonce and only using
the information gained from Case 1.1. In fact, as seen in Case 2.1, if one observe
the power consumption difference in the next cycle, one could deduce another bit
relation (y, z) because (x, y) is already known. Thus, every chosen nonce with a
single bit input can actually recover 2 bit relations, effectively halves the number
of nonces (and corresponding power traces) needed to launch the attack.

Further analysis on the differential propagation can further reduce the number
of nonces needed. But we do not go further into improvement on the attack as
the attack complexity is already very low.

6 Conclusion and Future work

We presented the general DPA strategy to extract bit relation information from
shift registers through the power consumption difference. This methodology can
be applied to both LFSRs and NLFSRs. We applied the analysis technique to
break LR-Keymill security claim with 4-bit key guessing and halved the resources
to perform DPA on Keymill.

The main issue with LR-Keymill security claim is that it is an upper bound
assuming the NLFSRs as black boxes. It would be interesting to find a framework
to analyse and find the lower bound to Keymill-like structures, taking the
NLFSRs into account. A possible tweak to LR-Keymill to resist our DPA is
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to change all the NLFSRs to a same NLFR. But this makes the structure too
symmetrical and potentially leads to other mathematical attacks. It would also
be interesting to see if we can enhance LR-Keymill to improve its security lower
bound.
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Fig. 1. IV [4i] : S4i Fig. 2. S4i+1 Fig. 3. S4i+2

Fig. 4. S4i+3 Fig. 5. S4i+4 Fig. 6. S4i+5

Fig. 7. S4i+6 Fig. 8. S4i+7 Fig. 9. S4i+8
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Fig. 10. IV [4i+ 1] : S4i Fig. 11. S4i+1 Fig. 12. S4i+2

Fig. 13. S4i+3 Fig. 14. S4i+4 Fig. 15. S4i+5

Fig. 16. S4i+6
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Fig. 17. IV [4i+2] : S4i+5 Fig. 18. S4i+6 Fig. 19. S4i+7

Fig. 20. S4i+8 Fig. 21. S4i+9
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Fig. 22. IV [4i+3] : S4i+6 Fig. 23. S4i+7 Fig. 24. S4i+8

Fig. 25. S4i+9 Fig. 26. S4i+10
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