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Abstract. We introduce a generalization of substitution permutation
networks using quasigroups. Then, we prove that for quasigroups isotopic
with a group G, the complexity of mounting a differential attack against
our generalization is the same as attacking a substitution permutation
network based on G. Although the result is negative, we believe that the
design can be instructional for teaching students that failure is a natural
part of research. Also, we hope to prevent others from making the same
mistake by showing where such a path leads.

1 Introduction

In its most basic form, differential cryptanalysis [2] predicts how certain changes
in the plaintext propagate through a cipher. When considering an ideally ran-
domizing cipher, the probability of predicting these changes is 1/2n, where n is
the number of input bits. Thus, in the ideal case, it is infeasible for an attacker to
use these predictions when n is, for example, 128. Unfortunately, designers use
theoretical estimates based on certain assumptions that do not always hold in
practice. Hence, differential cryptanalysis is often the most effective tool against
symmetric key cryptographic algorithms [17].

Quasigroups are group-like structures that, unlike groups, are not required
to be associative and to possess an identity element. The usage of quasigroups
as building blocks for cryptographic primitives is not very common. Regardless
of that, various such cryptosystems can be found in the literature [14,8,7,1,5,13].

In this paper we introduce a straightforward generalization of substitution-
permutation networks (SPN) and study its security. By replacing the group oper-
ation ⋆ between keys and (intermediary) plaintexts with a quasigroup operation
⊗ we aimed at extending the usage of quasigroups. Unfortunately, by means of
differential cryptanalysis we prove that in the case of quasigroups isotopic with
a group3 the problem of breaking an SPN using ⊗ reduces to breaking an SPN
using ⋆ and a substitution box (s-box) different from the initial one. Thus, if
we initialize the SPN with a random secret s-box, replacing ⋆ with ⊗ brings no
3 Note that this is the most popular method for generating quasigroups.
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extra security4. In the case of static s-boxes, changing ⋆ with ⊗ might even affect
the SPN’s security.

Although the design presented in this paper is not a successful one, we think
that its usefulness is twofold. 1 Most scientific reports and papers published
appear as sanitized accounts5 and this gives people a distorted view of scientific
research [16,11,23,28]. This leads to a view that implies that failure, serendipity
and unexpected results are not a normal part of science [11,21]. Hence, this report
provides students with an indication of the real processes of experimentation.
2 Negative results and false directions are rarely reported [11,26] and, thus,

people are bound to repeat the same mistakes. By presenting our results, we
hope to provide an opportunity for others to learn where this path leads. Hence,
preventing them to make the same mistakes6.

Structure of the paper. We introduce notations and definitions in Section 2.
An SPN generalization is introduced in Section 3 and its security is studied in
Section 4. We conclude in Section 5.

2 Preliminaries

Notations. Throughout the paper |G| will denote the cardinality of set G and ⊕
the bitwise xor operation. Also, by x∥y we understand the concatenation of the
strings x and y. When defining a permutation π we further use the shorthand
π = {a0, a1, . . . , aℓ} which translates into π(i) = ai for all i values. We also
define the identity permutation Id = {0, . . . , ℓ}.

2.1 Quasigroups

In this section we introduce a few basic notions about quasigroups. We base our
exposition on [22].

Definition 1. A quasigroup (G,⊗) is a set G equipped with a binary operation
⊗ : G × G → G, in which specification of any two of the values x, y, z in the
equation x⊗ y = z determines the third uniquely.

Definition 2. For a quasigroup (G,⊗) we define the left division x ⊘z = y
as the unique solution y to x ⊗ y = z. Similarly, we define the right division
z ⊘ y = x as the unique solution x to x⊗ y = z.

Lemma 1. The following identities hold

y ⊘(y ⊗ x) = x, (x⊗ y)⊘ y = x,

y ⊗ (y ⊘x) = x, (x⊘ y)⊗ y = x.
4 i.e. we simply obtain another instantiation of the SPN
5 Authors present their results as if they achieved them in a straightforward manner

and not through a messy process.
6 In [24], the author advises people to write down their mistakes so that they avoid

making them again in the future.



Definition 3. Let (G,⊗), (H, ⋆) be two quasigroups. An ordered triple of bijec-
tions π, ρ, ω of a set G onto the set H is called an isotopy of (G,⊗) to (H, ⋆) if
for any x, y ∈ G π(x) ⋆ ρ(y) = ω(x⊗ y). If such an isotopy exists, then (G,⊗),
(H, ⋆) are called isotopic.

A popular method for constructing quasigroups [7,8,13,27] is the following.
Choose a group (G, ⋆) (e.g. (Z2n ,⊕) or (Z2n ,+)) and three random permutations
π, ρ, ω : G → G. Then, define the quasigroup operation as x ⊗ y = ω−1(π(x) ⋆
ρ(y)). To see why this leads to a quasigroup, we note that x, y and z are mapped
uniquely to π(x), ρ(y) and ω(z) and, thus, any equation of the form π(x)⋆ρ(y) =
ω(z) is in fact uniquely resolved in the base group G given any of π(x), ρ(y) and
ω(z).

Example 1. Let (G, ⋆) = (Z4,⊕), ω−1 = {2, 1, 0, 3}, π = {2, 1, 3, 0} and ρ =
{2, 0, 3, 1}. The corresponding quasigroup operations for (Z4,⊗) can be found in
Table 1.

⊗ 0 1 2 3

0 2 0 1 3

1 3 1 0 2

2 1 3 2 0

3 0 2 3 1

⊘0 1 2 3

0 1 2 0 3

1 2 1 3 0

2 3 0 2 1

3 0 3 1 2

⊘ 0 1 2 3

0 3 0 1 2

1 2 1 0 3

2 0 3 2 1

3 1 2 3 0

Table 1: Quasigroup operations.

Example 2. Let (G, ⋆) = (Zn,−). Then G is isotopic with (Zn,+), where ω, π =
Id and ρ(i) = n− i mod n [27].

2.2 Group Differential Cryptanalysis
Differential cryptanalysis was initially introduced in [2] for (Z2n ,⊕) and was ex-
tended to abelian groups in [15]. We further extend the notion to non-commutative
groups.

Definition 4. Let G be a set equipped with a binary operation • : G×G → G.
The difference between two elements X,X ′ ∈ (G, •) is defined as ∆•(X,X ′) =
X •X ′.

Definition 5. Let (G, ⋆) be a group. We define the group differential probabilities

LDP⋆(σ, α, β) =
1

|G|
∑

X,X′∈G
∆⋆(X

−1,X′)=α

[∆⋆(σ(X)−1, σ(X ′)) = β]

RDP⋆(σ, α, β) =
1

|G|
∑

X,X′∈G
∆⋆(X,X′−1)=α

[∆⋆(σ(X), σ(X ′)−1) = β].



where σ : G → G is a permutation and α, β ∈ G.
Differential cryptanalysis exploits the high probability of certain occurrences

of plaintext differences and differences into the last round of the cipher [10].
Thus, an attacker first computes the values of a round’s LDP s (RDP s). Note
that in the case of groups LDP s are dependent only on the round’s non-linear
layer. Hence, in the case of SPNs only the s-box’s LDP values are needed. Once
the LDP s are computed, the attacker examines likely differential characteristics.
By a differential characteristic χ we understand a sequence of input and output
differences such that the output difference of a round is the input difference
of the next round. Using the most likely differential characteristic7 an attacker
exploits information coming into the last round of the cipher to derive parts of
the last layer’s subkey. More precisely, he partially decrypts the last round for
each pair of ciphertexts8 for all possible partial subkeys. When the difference for
the input to the last round corresponds to the value expected from χ a counter
incremented. The partial subkey value with the highest counter is assumed to
be the correct partial subkey. For a concrete example of the whole process, we
refer the reader to [10].
Example 3. Let (G, ⋆) = (Z8,⊕) and σ = {5, 1, 0, 3, 4, 2, 6, 7}. The difference
distribution table for the ⊕ operation and the σ s-box can be found in Table 2.
For simplicity, we multiplied all the LDP⊕(σ, α, β) values by |G|. Note that in
this case LDP⊕ = RDP⊕.

@
@@α
β

0 1 2 3 4 5 6 7

0 8 0 0 0 0 0 0 0

1 0 2 0 2 2 0 2 0

2 0 0 4 0 0 4 0 0

3 0 2 0 2 2 0 2 0

4 0 2 0 2 2 0 2 0

5 0 0 0 0 0 4 0 4

6 0 2 0 2 2 0 2 0

7 0 0 4 0 0 0 0 4

Table 2: Difference distribution table for ⊕ and σ.

3 Quasigroup Substitution Permutation Network
Let n be a positive integer and (G,⊗) a quasigroup. An SPN (see Figure 1)9 is
an iterated structure that processes a plaintext for r rounds. Each round consist
7 When constructing differential trails we ignore the case α, β = e, where e is the

identity element of G.
8 corresponding to the pairs of plaintexts used to generate χ
9 Figure 1 is based on the TikZ found in [12].
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Fig. 1: Quasigroup substitution permutation network

of a substitution layer (S1, . . . , Sn), a permutation layer (Pi) and a key mixing
operation. Also, the SPN has an initial round that consists only of a key mixing
operation. Note that for each round i the key schedule algorithm (KS) derives
the subkey ki from the initial key.

Let pi = p1i ∥ . . . ∥pni and ki = k1i ∥ . . . ∥kni be the intermediary plaintext and,
respectively, the subkey for round i10. Then, a left quasigroup SPN has as a key
mixing operation ki ⊗ pi = k1i ⊗ p1i ∥ . . . ∥kni ⊗ pni , while a right quasigroup SPN
has pi ⊗ ki = p1i ⊗ k1i ∥ . . . ∥pni ⊗ kni .

Remark 1. Let Si be randomly chosen for all i values. When (G,⊗) = (Z2n ,⊕),
the distribution of LDP values is studied in [20,19]. These results are extended
in [9], where the authors consider a generic abelian group (G,⊗). When all the
s-boxes are static11, the distribution of LDP s for (Z2n ,⊕) is studied for example
in [18,4,6].

10 Note that pji , k
j
i ∈ G for all j values.

11 i.e are fixed and public for all of the SPN’s implementations



4 Quasigroup Differential Cryptanalysis

In this section we extend the notion of differential cryptanalysis to quasigroup
SPNs. After showing that our generalisation is correct, we use it to study the
security of SPNs based on quasigroups isotopic to a group.

Definition 6. Let K be a key, (G,⊗) a quasigroup and • ∈ { ⊘,⊘}. We define
the quasigroup differential probabilities

DP•(σ, α, β) =
1

|G|
∑

X,X′∈G
∆•(X,X′)=α

[∆•(σ(X), σ(X ′)) = β],

KDP ⊘(σ, α, β,K) =
1

|G|
∑

X,X′∈G
∆ ⊘(X,X′)=α

[∆ ⊘(σ(K ⊗X), σ(K ⊗X ′)) = β],

KDP⊘(σ, α, β,K) =
1

|G|
∑

X,X′∈G
∆⊘(X,X′)=α

[∆⊘(σ(X ⊗K), σ(X ′ ⊗K)) = β],

where σ : G → G is a permutation and α, β ∈ G.

Example 4. Let ω−1 = {4, 7, 0, 5, 1, 2, 3, 6}, π = {6, 1, 5, 2, 3, 0, 4, 7} and ρ =
{5, 1, 2, 6, 4, 0, 7, 3}. Using Example 3 as a starting point, in Table 3 we present
the difference distribution tables for ⊗ and σ. To see that in general DP is

@
@@α
β

0 1 2 3 4 5 6 7

0 5 0 0 1 1 0 1 0

1 0 2 1 1 1 1 2 0

2 1 1 3 1 2 0 0 0

3 0 1 0 3 0 1 1 2

4 0 1 1 0 3 0 1 2

5 1 1 0 2 1 3 0 0

6 1 2 1 0 0 1 3 0

7 0 0 2 0 0 2 0 4

(a) |G| ·DP ⊘(σ, α, β)

@
@@α
β

0 1 2 3 4 5 6 7

0 3 2 1 0 0 0 1 1

1 1 3 0 0 1 2 1 0

2 0 0 3 1 1 2 1 0

3 0 1 2 3 0 0 1 1

4 1 0 0 1 3 0 2 1

5 2 0 0 2 0 4 0 0

6 1 1 1 1 2 0 2 0

7 0 1 1 0 1 0 0 5

(b) |G| ·DP⊘(σ, α, β)

Table 3: Difference distribution tables for ⊗ and σ.

different from KDP , we also computed the keyed distribution tables for K = 0.
The results are presented in Table 4.12

12 The code used to generate Tables 2 to 5 can be found at https://github.com/
teseleanu/quasigroup_differential_4_bit.

https://github.com/teseleanu/quasigroup_differential_4_bit
https://github.com/teseleanu/quasigroup_differential_4_bit


@
@@α
β

0 1 2 3 4 5 6 7

0 1 0 2 1 0 1 0 3

1 2 0 0 2 1 1 1 1

2 0 0 4 0 0 2 2 0

3 1 0 2 1 3 0 1 0

4 1 1 0 0 1 3 0 2

5 2 1 0 3 0 1 1 0

6 1 1 0 0 2 0 3 1

7 0 5 0 1 1 0 0 1

(a) |G| ·KDP ⊘(σ, α, β,K)

@
@@α
β

0 1 2 3 4 5 6 7

0 0 1 0 1 1 5 0 0

1 5 0 1 0 0 0 1 1

2 1 0 5 0 0 0 1 1

3 0 1 0 1 5 1 0 0

4 1 0 1 0 0 0 1 5

5 0 1 0 5 1 1 0 0

6 0 5 0 1 1 1 0 0

7 1 0 1 0 0 0 5 1

(b) |G| ·KDP⊘(σ, α, β,K)

Table 4: Keyed difference distribution tables for ⊗ and σ.

When G is an associative quasigroup13, we managed to prove (Lemma 2) that
key bits K have no influence on the input difference value ∆•, where • ∈ { ⊘,⊘},
and, thus, can be ignored. In other words, a keyed s-box has the same difference
distribution table as an unkeyed s-box (Corollary 1).

Lemma 2. If ⊗ is associative, then the following identities hold

∆ ⊘(K ⊗X,K ⊗X ′) = ∆ ⊘(X,X ′)

∆⊘(X ⊗K,X ′ ⊗K) = ∆⊘(X,X ′).

Proof. Using Lemma 1 we obtain

X ⊗∆ ⊘(X,X ′) = X ⊗ (X ⊘X ′) = X ′,

that leads to

∆ ⊘(K ⊗X,K ⊗X ′) = (K ⊗X) ⊘(K ⊗X ′)

= (K ⊗X) ⊘[K ⊗ (X ⊗∆ ⊘(X,X ′))]

= (K ⊗X) ⊘[(K ⊗X)⊗∆ ⊘(X,X ′)]

= ∆ ⊘(X,X ′).

Similarly we prove the second equation. ⊓⊔

Corollary 1. If ⊗ is associative, then the following identities hold

KDP ⊘(σ, α, β,K) = DP ⊘(σ, α, β),

KDP⊘(σ, α, β,K) = DP⊘(σ, α, β).

13 The need for associativity was pointed out to the author by one of the anonymous
reviewers.



Proof. According to Definition 1, given X and K there exists an unique element
Y such that X = K ⊗ Y . Thus, we have

DP ⊘(σ, α, β) =
1

|G|
∑

X,X′∈G
∆ ⊘(X,X′)=α

[∆ ⊘(σ(X), σ(X ′)) = β]

=
1

|G|
∑

K⊗Y,K⊗Y ′∈G
∆ ⊘(K⊗Y,K⊗Y ′)=α

[∆ ⊘(σ(K ⊗ Y ), σ(K ⊗ Y ′)) = β]

=
1

|G|
∑

K⊗Y,K⊗Y ′∈G
∆ ⊘(Y,Y

′)=α

[∆ ⊘(σ(K ⊗ Y ), σ(K ⊗ Y ′)) = β]

=
1

|G|
∑

Y,Y ′∈G
∆ ⊘(Y,Y

′)=α

[∆ ⊘(σ(K ⊗ Y ), σ(K ⊗ Y ′)) = β]

= KDP ⊘(σ, α, β,K),

where for the third equality we use Lemma 2. Similarly, we prove the second
equation. ⊓⊔

To see if our definition is a generalization for the group differential probability,
we must recover LDP and RDP when (G,⊗) is a group. We prove this in
Corollary 2. Note that any group is associative and, according to Corollary 1,
equivalence to DP suffices.
Lemma 3. If (G,⊗) forms a group then the following identities hold

∆ ⊘(X,X ′) = ∆⊗(X
−1, X ′),

∆⊘(X,X ′) = ∆⊗(X
′, X−1).

Proof. Note that
∆ ⊘(X,X ′) = α ⇐⇒ X ⊗ α = X ′

⇐⇒ X−1 ⊗X ′ = α ⇐⇒ ∆⊗(X
−1, X ′) = α.

Similarly, we prove the second equation. ⊓⊔
Corollary 2. If (G,⊗) forms a group then DP ⊘(σ, α, β) = LDP⊗(σ, α, β) and
DP⊘(σ, α, β) = RDP⊗(σ, α, β).
Proof. Note that

DP ⊘(σ, α, β) =
1

|G|
∑

X,X′∈G
∆ ⊘(X,X′)=α

[∆ ⊘(σ(X), σ(X ′)) = β]

=
1

|G|
∑

X,X′∈G
∆⊗(X−1,X′)=α

[∆⊗(σ(X)−1, σ(X ′)) = β]

= LDP⊗(σ, α, β).



Similarly we prove the second equation. ⊓⊔

The action of deriving ⊗ from ⋆ gives rise to a natural question: what happens
if we derive a new quasigroup operation ⊗̂ from ⊗? Unfortunately, according to
Lemma 4 we end up with another isotopy of ⋆. Thus, the problem of studying
KDP for a chain of isotopies is reduced to studying KDP for an isotopy of the
base operation ⋆.

Lemma 4. We define x ⊗̂ y = ω̂−1(π̂(x)⊗ ρ̂(y)). Then there exist ω′, π′, ρ′ such
that x ⊗̂ y = ω′−1(π′(x) ⋆ ρ′(y)).

Proof. Remark that

x ⊗̂ y = ω̂−1(π̂(x)⊗ ρ̂(y))

= ω̂−1(ω−1(π(π̂(x)) ⋆ ρ(ρ̂(y)))

= ω′−1(π′(x) ⋆ ρ′(y)),

where ω′ = ω̂ ◦ ω, π′ = π̂ ◦ π and ρ′ = ρ̂ ◦ ρ. ⊓⊔

When the base group (G, ⋆) is commutative we observe (Lemma 5) that
taking into consideration both ⊘and ⊘ for designing an SPN does not make
sense.

Lemma 5. We define x ⊗̄ y = ω−1(ρ(x) ⋆ π(y)) = z, x ¯⊘z = y and z ⊘̄ y = x.
If ⋆ is commutative then the following identities hold

KDP ⊘(σ, α, β,K) = KDP⊘̄(σ, α, β,K),

KDP⊘(σ, α, β,K) = KDP¯⊘(σ, α, β,K).

Proof. The lemma’s hypothesis implies that

x⊗ y = ω−1(π(x) ⋆ ρ(y))

= ω−1(ρ(x) ⋆ π(y))

= y ⊗̄x.

Thus, ∆ ⊘(x, y) = ∆ ⊘̄ (y, x) for any x, y ∈ G. Hence, KDP ⊘(σ, α, β,K) =
KDP⊘̄(σ, α, β,K). The second statement is proven similarly. ⊓⊔

Corollary 3. If ⋆ is commutative and π = ρ then we have KDP ⊘(σ, α, β,K) =
KDP⊘(σ, α, β,K).

We further study the impact of the ω, π, ρ permutations on KDP .

Lemma 6. Let π′ = ω−1 ◦ π, ρ′ = ω−1 ◦ ρ, σ′ = ω−1 ◦ σ ◦ ω. We define
x ∗ y = π′(x) ⋆ ρ′(y) = z, x\z = y and z/y = x. Then the following identities
hold

KDP ⊘(σ, α, β,K) = KDP\(σ
′, ω(α), ω(β), ω(K)),

KDP⊘(σ, α, β,K) = KDP/(σ
′, ω(α), ω(β), ω(K)).



Proof. First we rewrite

KDP ⊘(σ, α, β,K) =
1

|G|
∑
X∈G

∆⊗(X,α)=X′

[∆⊗(σ(K ⊗X), β) = σ(K ⊗X ′)].

Let ω(X) = Y , ω(X ′) = Y ′ and ω(α) = A. Then

X ⊗ α = X ′ ⇐⇒ π(X) ⋆ ρ(α) = ω(X ′)

⇐⇒ π′(ω(X)) ⋆ ρ′(ω(α)) = ω(X ′)

⇐⇒ π′(Y ) ⋆ ρ′(A) = Y ′

⇐⇒ Y ∗A = Y ′. (1)

Let ω(K) = K ′. Then we obtain

σ(K ⊗X) = σ(ω−1(π(K) ⋆ ρ(X))

= σ(ω−1(π′(ω(K)) ⋆ ρ′(ω(X))))

= ω−1(σ′(π′(K ′) ⋆ ρ′(Y )))

= ω−1(σ′(K ′ ∗ Y )) (2)

and similarly

σ(K ⊗X ′) = ω−1(σ′(K ′ ∗ Y ′)). (3)

Let ω(β) = B. Using Equations (2) and (3) we obtain

σ(K ⊗X)⊗ β = σ(K ⊗X ′) ⇐⇒ ω−1(σ′(K ′ ∗ Y ))⊗ β = ω−1(σ′(K ′ ∗ Y ′))

⇐⇒ π′(σ′(K ′ ∗ Y )) ⋆ ρ(β) = σ′(K ′ ∗ Y ′)

⇐⇒ π′(σ′(K ′ ∗ Y )) ⋆ ρ′(ω(β)) = σ′(K ′ ∗ Y ′)

⇐⇒ σ′(K ′ ∗ Y ) ∗B = σ′(K ′ ∗ Y ′). (4)

Using Equations (1) and (4) we obtain

KDP ⊘(σ, α, β,K) =
1

|G|
∑
X∈G

∆⊗(X,α)=X′

[∆⊗(σ(K ⊗X), β) = σ(K ⊗X ′)]

=
1

|G|
∑
Y ∈G

∆∗(Y,A)=Y ′

[∆∗(σ
′(K ′ ∗ Y ), B) = σ′(K ′ ∗ Y ′)]

=
1

|G|
∑

Y,Y ′∈G
∆\(Y,Y

′)=A

[∆\(σ
′(K ′ ∗ Y ), σ′(K ′ ∗ Y ′)) = B]

= KDP\(σ
′, A,B,K ′).

Similarly, we obtain KDP⊘(σ, α, β,K) = KDP/(σ
′, A,B,K). ⊓⊔



Lemma 6 tells us that it is irrelevant from a differential point of view14 if
we define the quasigroup operation with ω ̸= Id or ω = Id. Thus, we further
restrict our study15 to the quasigroup operation x⊗ y = π(x) ⋆ ρ(y).

Lemma 7. Let π′ = ρ−1◦π, σ′ = ρ−1◦σ◦ρ. We define x∗1y = ρ(π′(x)⋆y) = z,
x\1z = y and z/1y = x. Then the following identity holds

KDP ⊘(σ, α, β,K) = KDP\1
(σ′, ρ(α), ρ(β), ρ(K)).

Proof. Let ρ(X) = Y , ρ(X ′) = Y ′ and ρ(α) = A. Then

X ⊗ α = X ′ ⇐⇒ π(X) ⋆ ρ(α) = X ′

⇐⇒ ρ(π′(ρ(X)) ⋆ A) = ρ(X ′)

⇐⇒ ρ(π′(Y ) ⋆ A) = Y ′

⇐⇒ Y ∗1 A = Y ′. (5)

Let ρ(K) = K ′. Then we obtain

σ(K ⊗X) = σ(π(K) ⋆ ρ(X))

= σ(π′(ρ(K)) ⋆ Y )

= ρ−1(σ′(ρ(π′(K ′) ⋆ Y )))

= ρ−1(σ′(K ′ ∗1 Y )) (6)

and similarly

σ(K ⊗X ′) = ρ−1(σ′(K ′ ∗1 Y ′)). (7)

Let ω(β) = B. Using Equations (6) and (7) we obtain

σ(K ⊗X)⊗ β = σ(K ⊗X ′) ⇐⇒ ρ−1(σ′(K ′ ∗1 Y ))⊗ β = ρ−1(σ′(K ′ ∗1 Y ′))

⇐⇒ π′(σ′(K ′ ∗1 Y )) ⋆ ρ(β) = ρ−1(σ′(K ′ ∗1 Y ′))

⇐⇒ ρ(π′(σ′(K ′ ∗1 Y )) ⋆ B) = σ′(K ′ ∗1 Y ′)

⇐⇒ σ′(K ′ ∗1 Y ) ∗1 B = σ′(K ′ ∗1 Y ′). (8)

Using Equations (5) and (8) we obtain

KDP ⊘(σ, α, β,K) =
1

|G|
∑
X∈G

∆⊗(X,α)=X′

[∆⊗(σ(K ⊗X), β) = σ(K ⊗X ′)]

=
1

|G|
∑
Y ∈G

∆∗1 (Y,A)=Y ′

[∆∗1
(σ′(K ′ ∗1 Y ), B) = σ′(K ′ ∗1 Y ′)]

= KDP\1
(σ′, A,B,K ′).

⊓⊔
14 e.g. we obtain the same differential probability KDP
15 without loss of generality



Lemma 8. Let ρ′ = π−1◦ρ, σ′ = π−1◦σ◦π. We define x∗2y = π(x⋆ρ′(y)) = z,
x\2z = y and z/2y = x. Then the following identity holds

KDP⊘(σ, α, β,K) = KDP/2
(σ′, π(α), π(β), π(K)).

Lemma 8 is proven similarly to Lemma 7 and, thus, its proof is omitted.
Remark that our scope is to see how certain differences in the input affect the
output of the non-linear layer. But our non-linear layer has either the form
σ(ρ(π(x) ⋆ y)) or the form σ(π(x ⋆ ρ(y))). Thus, a simpler strategy would be
to study directly σ1 = ρ ◦ σ and σ2π ◦ σ instead of σ. Taking into account
the previous remark, we further restrict our study to x ⊗1 y = π(x) ⋆ y and
x⊗2 y = x ⋆ ρ(y).

Example 5. Using Examples 3 and 4 as starting points, in Table 5 we present
the difference distribution tables for ⊗1 and ⊗2.

@
@@α
β

0 1 2 3 4 5 6 7

0 2 2 0 0 0 0 2 2

1 0 2 0 2 2 0 0 2

2 0 0 2 2 0 0 2 2

3 2 0 2 0 2 0 0 2

4 2 0 0 2 2 0 2 0

5 0 0 0 0 0 8 0 0

6 2 2 2 2 0 0 0 0

7 0 2 2 0 2 0 2 0

(a) |G| ·KDP ⊘1(σ, α, β,K)

@
@@α
β

0 1 2 3 4 5 6 7

0 2 2 2 2 0 0 0 0

1 2 0 0 2 2 0 0 2

2 0 0 2 2 2 0 2 0

3 0 2 0 2 0 0 2 2

4 2 2 0 0 2 0 2 0

5 0 0 0 0 0 8 0 0

6 2 0 2 0 0 0 2 2

7 0 2 2 0 2 0 0 2

(b) |G| ·KDP⊘2(σ, α, β,K)

Table 5: Difference distribution tables for ⊗1 and ⊗2.

Example 6. Let G = Z256. To see how the maximum values for LDP⊕, KDP ⊘1
and KDP⊘2 are distributed, we run the following experiment 10000 times16.
We randomly generated π, ρ and then we computed the maximum values of
256 ·LDP⊕

17. Then we generated 1000 keys and for each π and ρ we computed
the mean value of the maximum values of 256 ·KDP ⊘1 and 256 ·KDP⊘2

. After
gathering data from these experiments we computed the expected value E[x]
and the median absolute deviation MAD for each differential probability. The
results are presented in Table 6.

We can see from Examples 3 and 5 that the difference distribution tables
for ⊕, ⊗1 and ⊗2 have nothing in common. Also, Example 6 tells us that the
16 The associated code can be found at https://github.com/teseleanu/quasigroup_

differential_8_bit.
17 In this case we excluded the value 256.

https://github.com/teseleanu/quasigroup_differential_8_bit
https://github.com/teseleanu/quasigroup_differential_8_bit


LDP⊕ KDP ⊘1 KDP⊘2

E[x] 11.3550 7.56167 7.56204

MAD 1.067740 0.036824 0.036817

Table 6: Distribution of maximal differential probabilities.

average probability of success for a differential attack is lower in the case of ⊗1

and ⊗2 than in the case of ⊕. Thus, it might seem that we discovered a new
method for improving SPNs.

Unfortunately, this is not the case. Let’s review what we want to do. We
want to study how input differences affect the output differences of a keyed s-
box σK . Since K and, for example, π are generated as a pair, for a differential
attack to work we do not really need to know K. The value π(K) suffices. Thus,
another way of studying the output differences of SK is by using ∆⋆. According
to Lemma 9 the resulting differential probability is independent of π(K). Hence,
the choice for the permutation that acts on the key is irrelevant. This leads to
the fact that using an isotopy is identical18 to using the base operation.

Lemma 9. The following identities hold

∆⋆((π(K) ⋆ X)−1, π(K) ⋆ X ′) = ∆⋆(X
−1, X ′),

∆⋆(X ⋆ π(K), (X ′ ⋆ π(K))−1) = ∆⋆(X,X ′−1).

Proof. We simply remark that

∆⋆((π(K) ⋆ X)−1, π(K) ⋆ X ′) = X−1 ⋆ π(K)−1 ⋆ π(K) ⋆ X ′

= X−1 ⋆ X ′ = ∆⋆(X
−1, X ′).

Similarly we obtain the second equation. ⊓⊔

To summarise all the lemmas and observations we provide the reader with
Proposition 1.

Proposition 1. A quasigroup SPN derived from a group SPN using an isotopy
has the same differential security as the same group SPN instantiated with a
different s-box.

5 Conclusions

In this paper we studied the effect of using quasigroups isotopic to groups when
designing SPNs. According to Lemmas 6 to 9, the problem of studying an SPN
based on an isotopic quasigroup reduces to studying an SPN based on the base
group. When we consider SPNs with random secret s-boxes (e.g. [3,25]) using an
isotopic quasigroup does not pose a problem, since studying its security reduces
18 from a differential point of view



to studying the security of an SPN with a different s-box than the original one.
Thus, in this case, the extension is secure, but, nevertheless, useless. When we
consider static s-boxes we encounter a security problem. Since the resulting new
s-box might not have the cryptographic properties of the initial s-box, using a
quasigroup operation might lead to cryptographic weaknesses unforeseen by the
designers of the static s-box.

Although this experiment failed from a cryptographic point of view, in our
opinion it can still be useful as a teaching tool, as well as for preventing others
from making the same mistake. Also, our analysis might serve as a stepping
stone to a security analysis of generic quasigroup SPNs.
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