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Abstract

Constructions and equivalence of APN functions play a significant role in the research of cryptographic functions. On
finite fields of characteristic 2, 6 families of power APN functions and 14 families of polynomial APN functions have
been constructed in the literature. However, the study on the equivalence among the aforementioned APN functions is
rather limited to the equivalence in the power APN functions. Meanwhile, the theoretical analysis on the equivalence
between the polynomial APN functions and the power APN functions, as well as the equivalence in the polynomial
APN functions themselves, is far less studied. In this paper, we give the theoretical analysis on the inequivalence in 8
known families of polynomial APN functions and power APN functions.
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1. Introduction

Cryptographic function is the only nonlinear component of symmetric cryptographic algorithm such as stream
cipher, block cipher and Hash function. Researchers have introduced various criteria to measure the resistance of a
cryptographic function to different kinds of cryptanalysis, including differential uniformity, nonlinearity, algebraic
degree, boomerang uniformity, etc. The lower the differential uniformity of a function is, the better its security
against differential cryptanalysis is. Due to practical application, most cryptographic functions are defined over the
finite field with even characteristic. The differential uniformity of a cryptographic function is at least 2 over such
field, the functions achieving the least differential uniformity are called almost perfect nonlinear(APN) over the field
of characteristic 2.

The differential uniformity is preserved under some equivalence relations between cryptographic functions such
as affine equivalence, extended affine equivalence (EA-equivalence) and CCZ-equivalence. It is known that affine
equivalence is EA-equivalence, EA-equivalence is a simple particular case of CCZ-equivalence, but the converse is
not necessarily true.

Constructing new APN functions is one of main topics in the research of cryptography functions, and the new
APN function can not be included in the existing families of APN functions in the sense of equivalence. So it is
necessary to check the equivalence between APN functions.

It is difficult to find new families of APN functions. Up to now, only 6 families of power APN functions and 14
infinite families of APN polynomials are known since 1990’s, which are listed in tables I and II respectively. Recently
Budaghyan et al. proved that f3(x) is equivalent to fi;(x), and both of them are included in f4(x)[1].
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Table 1: Known infinite families of APN power functions over [Fo»

Family Exponent Conditions | Algebraic degree | Source
Gold 21+ 1 ged(i,n) =1 2 [2]
Kasami 2% i 4 gcd(i,n) =1 i+1 [3]
Welch 2'+3 n=2t+1 3 [4]
, 2'+27 - 1,teven =2
Niho Gie1) n=2t+1 [5]
2'+272 —1,todd t+1
Inverse 2% n=2t+1 n-—1 [6, 7]
Dobbertin | 2% +2% +2% +2/ -1 n=>5i i+3 (8]

The research of equivalence of APN functions is focused on the equivalence between power functions [9, 10, 11,
12, 13]. In 2018, Dempwolff gave a general result about CCZ-equivalence among power APN functions over the finite
field of characteristic p. Let F = [F ). be a finite field, f;(x) = x? and f.(x) = x¢ be two APN power functions over F.
Then f; and f, are CCZ-equivalent if and only if there exists some a € [0,n — 1] such that e = dp* mod p" — 1 or
ed = p* mod p" — 1[14]. So the equivalences between any two power APN functions are resolved completely.

The theoretical analysis of equivalence between polynomial APN function and power APN function only be found
in literature[15, 16]. For example, Budaghyan et al. proved that their functions are EA-inequivalent to any power APN
function, and CCZ-inequivalent to Gold function, inverse function and Dobbertin function for n > 12 . Generally,
the equivalence between new family of APN functions and power APN functions is checked by searching the CCZ-
equivalent invariants on a small number of variables, but very little theoretical results were known.

In 2012, Yoshiara proved the Edel’s conjecture: Let f and g be quadratic APN functions on a finite field F»» with
n > 2. Then f is CCZ-equivalent to g if and only if f is EA-equivalent to g [17]. In 2016, she proved: Let [F,» be a finite
field. If a quadratic APN function f and a power APN function g is CCZ-equivalent, then f is EA-equivalent to one
of the Gold function(n > 3) [9]. which implies that CCZ-equivalence between a quadratic polynomial APN function
and a power APN function can be turned into CCZ-equivalence between a quadratic polynomial APN function and a
Gold function. Furthermore, as Gold function is a quadratic function, it can be turned into EA-equivalence. In this
paper, we consider the 8 known families of quadratic polynomial APN functions constructed in [15][18, 19], and we
prove that all these functions are CCZ-inequivalent to power APN functions, therefore some theoretical results on
CCZ-equivalence between quadratic polynomial APN functions and power APN functions are obtained.

We first give the preliminaries needed in this paper, then we give the proofs of CCZ-inequivalence between f;(x)
(in table II) and power APN functions(i = 1,2,4,5,6,7,8,9), which is the main part of our paper. For fi(x), we
discuss CCZ-inequivalence by proving CCZ-inequivalence between f;(x)(i = 3, 11) and power APN functions.

2. Preliminaries

Denote by [F; the finite field with two elements. For a positive integer n, let IFo» be the finite field with 2" elements,
which is a linear space with dimension n over [F,, [F;, be the multiplicative group of 2. A function from . to itself
is called almost perfect nonlinear(APN) if for any a # 0, b € Fy, the number of solutions in . of the equation
f(x+a)— f(x) = bis at most 2.

A polynomial L(x) € Fa[x] is called a linearized polynomial if L(x) can be written as

n—1

L(x) = Z a,-xz’, a; € Fon.

i=0

A polynomial from [, to itself is called affine, if it is defined by the sum of a linearized polynomial and a constant
polynomial over [Fy».



Table 2: Known infinite families of quadratic APN polynomial over Fp»

ID Functions Conditions In
n = pk, ged(k, p) = ged(s, pk) =1,
f,(x) 2541 k=1 ik 4 omk+s . .
i= 19 X +u” x pef3,4},i=sk mod p,m=p—i, [15]
’ n > 12, u primitive in 5,
; . q= 2" n =2m,gcd(i,m) =1,
f3(x) K22 x4 dx e gedQi + 1,g+ 1) # 1,dc? + ¢ # 0, [18]
d ¢ {(A@*DaD 3 e Fp),di*! =1
_ ‘ q=2",n=2m,gcd(i,m) =1,
£ vx(le + x4 + cx?) _ ce Fou, s € Fo \ F, (18]
4 +x% (¢1x9 + sx*) + x+Da X2 X +c1X + 1
has no solution x s.t. x7*! =1
f5(x) X +a ' Tr(d*x%) a+0 [19]
Jo(x) X+ a‘lTrfl(a3x9 + alx'®) 3ln,a # 0 [19]
Fr(x) ® 4+ a Tl (ax"® + a'?x%0) 3ln,a+0 [19]
£ L 2 2 e n = 3k, gcd(k, 3) = ged(s, 3k) = 1,
i=8,9,10 Fux2 T 2122 nwE sz,'vv.v .¢ 1.’ [20.21]
3| (k+ s), u primitive in [,
d 2it] + dq g(2i+1) q = Zm,n = 21’)’!, ng(l, m) = 1, i,m Odd,
X X
S (x) et 4 YLy ) vs € Fon,c ¢ Fom [21]
s=1.78 d notacube
; ; =2".n=2m,m > 2 even
2'+1 ’ qq\(2'+1)2/ q > 1M 2 )
Gy | FEET Wl utah cd(i,m) = 1 and j even, [22]
fal®) +ux + x9)(ux + udx?) £ J
u primitive in I, u’ € Fo» not a cube
2 p2m+l g 2 _omtlyq n= 31’1’!, m Odd
+b + " m .
fiz(x) oy A L(x) = ax®" + bx>" + cx satisfies [23]
ax®" 2 £ bx" 2 4 (¢ + o)X
the conditions in [23, Theorem 6.3]
u(uix + xu)(x? + x) m .
+(qu " xqu)22i+23i q= 2 ,n= 2m, g?d(l, m) = 1,
fra(x) +a(uix + xqu)zzi(xq + x)zi a,b € Fon and X' v aX +b [24]
il has no solution over Fon
+b(x7 + x)=*

For any m > 1 such that m | n,

denotes the trace function from F;. to Fo». When m = 1, we denote it by Tr(x), which is called absolute trace function.

Definition 2.1. (EA equivalence) Two functions f, g : Fon — Fon are extended affine equivalent (EA-equivalent) if
there exist two affine permutations Ly, L, : Wy — Fou and an affine function L : Ty — Fou such that g = Lyo folL,+L.

2]

m

T (x) = Z "

i=0

Let f : Fy» — o be a function, the graph G of fis the set Gy = {(x, f(x))lx € F} C IF%

Definition 2.2. (CCZ equivalence) Two functions f, g : Fon — Fou are CCZ-equivalent if there exists an affine

permutation L(x) such that L(Gr) = G,.

We first give the following two important results about EA-equivalence and CCZ-equivalence.

Theorem 2.3 ([17],Theorem 1). Let f and g be quadratic APN functions on a finite field Fo» with n > 2. Then f is

CCZ-equivalent to g if and only if f is EA-equivalent to g .

3




Theorem 2.4 ([9],Theorem 2). Let Fy. be a finite field, f be a quadratic APN function, and fi(x) = x? : Fon —
Fon (n = 3) be a power APN function. If f and fq are CCZ-equivalent, then f is EA-equivalent to the Gold function
gs(x) = x¥'*! for some integer s with 1 < s < 5 coprime to n.

From Theorem 2.4, it is obvious that if a quadratic APN function is EA-inequivalent to any Gold functions, then
it is CCZ-inequivalent to any power APN functions.

Let i, j, s, be any positive integers, if 2042/ =242 theni=sand j=t ori=tand j = s. Using this
conclusion, we have the following lemma.

. . I . iy s40t .
Lemma 2.5. Leti # j mod n, s #t mod n be any positive integers, x> **', x> **" be two monomials over Fy.. Then
21427 2542

X =X ifandonlyifi=s mod nand j=t modn,or j=s mod nandi =t mod n.

Proof. The sufficiency is obvious, we just give the proof of the necessity. By choosing integers Iy, [, [3, I4 suitably,

we can assume all of the i — nly, j —nly, s — nls, t — nly are in the interval of [0,7 — 1]. As a result, x2*2 = x**2' can
be written as
i—nly +nl j—nly+nl- s—nly+nl- —nly+nl,
x2 1+aly g pj=nly+nly =x2 3nly 4 i-nly 4.
Namely
xzi—nll 4pi-nly _ xzmx/} +2Hx14.
Since i — nly, j—nly, s —nl3, t — nly are less than n, then
1<2m g2/ < 1 <287 4 2 <,
So that
i—-nly=s—-nlzand j—nly =t—nly, orj—nly=s—nlzandi—nl; =t—nly.
Which is equivalent to
i=s modnand j=t modn, orj=s modnandi=¢t mod n.
O
Let L(x) = ;:é c szf be a linearized polynomial over Fy., g(x) = x> *! be a Gold function. Then
n—1 n—1 n—1
i or roartignj
g(L(x)) — (Z ij2/ 27 +1 — Z cjci2 xz +2/.
=0 =0 i=0

-~

If r + i # j, then there exist only two terms of the type x2+2 in g(L(x)) from Lemma 2.5. And if the subscripts of
coefficients of polynomial function belong to the ring Z/nZ ,i.e. i = j mod n = c¢; = c;, then we have the following
corollary.

Corollary 2.6. If r +i # j, then the coefficient of the term of the type X2y of g(L(x)) is ¢ jcfr + c,-+rc§r_r.

If we rearrange the terms of g(L(x)), then g(L(x)) can be expressed as

n—1 n—1 )
or 2J 2r+i 1
g(L(x)) = E CjCiy X @D
i=0 j=0

Let Z be the set of all integers. We have the following corollary.

Corollary 2.7. Let0 < iy # i» <n—1,and2r+iy +i» # 0 mod n. Then {x*@"*V|j e Z}n (x> @>*V|j e 7} = &
over Fou.



Proof. If x?@™+D = el @2+ then by Lemma 2.5, we have
j+r+ii=j+r+i modn j+r+ii=j modn
{jEj’ mod n or {jEj’+r+i2 mod n
By solving this congruence equations, we have i} = ip or 2r + i} + i = 0 mod n, a contradiction.

3. Main Conclusion

Without further explanation, the functions in this section are all defined over the finite field [F,., and the subscripts
of the coefficients of polynomial function belong to the ring Z/nZ,i.e. i = j mod n = ¢; = c;.

T

i k+j c €
2 425

Lemma 3.1. Let L(x) = Z?ﬁal bjx2j be a linearized polynomial over Fpx. If by = 1, by = 0, b; =
Fox, rj € Fox, bjog = bj (1 < j < k—1), then L(x) is a linear permutation.

ok

Proof. The fact r; € Fy implies b?k = (czfgz“f )zk = L-Z"*kraicﬂk*/ = czf*:ﬁrcﬂ =bj, 1 <i<k-1. Assume L(a) = O for
some a € [Fyx, that is
2%-1 _
Z bjaz'] =0. 1))
j=0
Since by = 1, by =0, bj = bj(1 < j < k- 1), from (1), we have
k=1
j kej
a+ij(a2 +a®’y=o. 2)
=1

Raising both sides of equation (2) to the 2¥—th power leads to

k-1
&+ Z i@ +a®”)=0. 3)
=1
It follows from (2) and (3) that
& +a=0. 4)

Substituting (4) into (2), we obtain a = 0. So L(x) is a linear permutation.
O

Let s, k be odd, (s,k) = 1, b, ¢ € Fyu, r; € Fy. If ¢ ¢ Fy and b is not a cube, then fi;(x) = bx2+! + p¥ 27+ 4
cx?H 4 ]j‘;% r jx2'+k+2/, h(x) = bx**1 + b2 327 +2 4 ex?+1 are APN functions over [F52[21], and we have the following
proposition (different proof can be found in [1]).

Proposition 3.2. f(x) is EA-equivalent to h(x).
Proof. Let L(x) = Zizfa ! b,-xzi be defined as in Lemma 3.1. Then

1
2kl )2"

2k-1 k
rjXx

K k K+ k k —
L X)) = bibx> T+ b¥ 2T w4
11 i
i=0 j=1
2%-1 21
— Z blbzi x21(2Y+1) 4 Z bib2k+ix2i+k(2s+1)
=0 =0

2k-1 2k-1 k=1

i i i oitj(ok
+ Z biCZ X2 2k+1) + Z bizr? )CZ e +1)' 5)
i=0

=0 j=1
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Next we will compute (5) item by item.
1) The second term Y2551 b;p*" x> @+ of (5) can be rewritten as

2k-1

Z bk p2 2@+
i=0

Hence the sum of the first and second term of (5) is equal to
2%-1 ' 21 o
Z b; pr @2 Z kabz' 2@+
=0 i=0

2k=1

= > (bi + bi)b? O,
i=0

As biy; = b; (1 < i < k—1),all the terms are 0 in the above form except i = 0, k. That is to say, the above form equals
to
(bo + bbx> ™+ + (by + bo)b? 2@+,

The fact by = 1, b = 0 implies that the sum of the first and second term of (5) is

s k okens
be +1 + b2 )C2 2 +1).

2) The third term of (5) is

2k-1 2k—1
Z bic 2 21(2k+1) Zbcz'xz (2%+1) 4 Z bcrxzf(zul)
i=0
k=1 k=1
— Z b,»c x2'(2‘+1> i Z bkﬂczh'xz'(zkn).
i=0 i=0

The fact by = 1, by = 0 and b,y = b;(1 < i < k— 1) implies the third term equals to
k=1 . . Lo
+ Zbi(czl i C2k+‘)x2'(2*+1).
i=1
3) The fourth term 32! Zk ! 2' x2/@%D) of (5) can be transformed into

k=1 2k—1
br 21 2l+f(2k+1)

j=1 i=0

Using the similar process to the above form that is used to the third term, the fourth term can be written as

k-1 k-1

Jtk 9 i i+k i+j 9k
Z(rsz +2 +Zb,-(r§ +r§ 22Dy,
j=1 i=1

Because r; € Fx, so r?i + r?”k =0(1 <i<k-1),as aresult, the fourth term is

k-1
rjx
J=1

2tk 4



So the form of (5) is
k-1 k-1
s k k(s k i k+i ik J+k 40
a2t g p2 2@ 2 Zbi(czl g )x2‘(2 +) erxzf +21
i=1 =
k-1
K k k k i k+i ik
= b2t 4 B2 D oo Z(bi(cT +2 )+ )@
i=1
5 k k(s k
= ha2 4 pE B @D 2L
i
2i 2k+i
. ) ) ' +c
permutation, so fi;(x) is EA-equivalent to A(x).

where the last equality follows from b; = . So we have L(f(x)) = h(x), and by Lemma 3.1, L(x) is a linear

O

Lemma 3.3 ([13],Corollary 3). Let h(x) = bx®*! + b2 x*"*2 4 ex®+ with b, ¢ € Fyx. If ¢ ¢ Fy and b is not a cube,

n

then h(x) is CCZ-inequivalent to Gold function g(x) = x> *!, where 1 < r < 5 coprime to n = 2k.
By Lemma 3.3 and the transitivity of equivalence, we can obtain the following proposition.
Proposition 3.4. fi,(x) is CCZ-inequivalent to Gold function g(x) = x*>*'.

Letn = 2m(m > 3), ged(s,m) = 1, @, B € Far, and B7*! = 1, B ¢ (A2*DQ" D[} € Fpu), Bo?" + @ # 0. Then
£ = X272 4 x4 B2 s a quadratic APN function[18]. We can assume 0 < s < 2m.
Before we give the EA-inequivalence result between f3(x) and Gold function, we need the following lemma.

Lemma 3.5. Ifm > 4, then ‘ ‘
() D e ZYn (@ DiezZ) =2, (P VieZ)n{(x?@VieZ) = o;
Q) (2T e Zy N2 CDieZy = @, KF@THie Z)n @ )ie Z) = .

Proof. We only prove (1), (2) can be proved by the similar way.

Weclaimm+s+s#0 mod n. Infactm<m+ s+ s < 5S5m.

If m+2s =2m, then m = 2s, but (s, m) = 1, a contradiction;

If m+2s = 4m, then 3m = 2s and 2 | m, hence we may assume m = 2/. The fact m > 4 implies [ > 2 and / | m. On
the other hand, by substituting m = 2/ into 3m = 2s, we get s = 3/, hence [ | s, but (s,m) = 1, a contradiction. Hence
by Corollary 2.7, {(x*@""*D}i e Z} N {x*@*V)i e Z} = @. ‘ ‘

Because of 2m < m+s+m < 4m, hence m+s+m # 0 mod n. By Corollary 2.7, {x*@""*Dji € Z} n {x*®"*V}i €
7) = 2. O

Proposition 3.6. If m > 4, then f3(x) is not EA-equivalent to Gold function g(x) = x**!, where 1 < r < 5 coprime to
n="2m.

Proof. We assume f3(x) is EA-equivalent to Gold function. Because the two functions are quadratic, we can assume
there exist linear functions L;(x) = Y7 bix®, Ly(x) = Y c;x* and affine function L'(x) such that L;(f3(x)) =
g(Ly(x)) + L' (x), that is

n—1

n—1

2s K m 2s+m s+m i i nr
Zbi(xz +2° 4 a2t +ﬁx2 st )2 — (Zcixz )2 +1 + L (%) ©)
i=0 i=0

The left hand of equality (6) equals to

m—1 m—1 m—1

2i+m 2i+s 2541 2i Qi+m 2:’ 2m 2/‘ 2i+m+x 2541
Db+ i) £ N b 4 by D £ N (i + b7,
i=0 i=0 i=0

On the left hand of equality (6), we only have the terms of the type

i(n2s s i(ym 2s5+m g Hs+m
K@) 2@ 2@

x2

7



Because (x> "+ € Z} = (x* @i € 7} = (x* @+ | i € Z), by Lemma 3.5, the terms of the type x>+
and x2@"”"*D are missing in the left hand of (6). Therefore, for any i, we get the equalities from the right hand of (6)

2" 20 _
(@) CiClygemor T CirstmCi_, = 0,

2
() cic i2stm—r T Cia2smCi_, = =0.

We will prove that equality (6) holds only if b; = O for all i. Assume, on the contrary, there exists b; # 0 for some i.

1) If there exists b jozzj +b j+mazj+m # 0 for some j, then b; or bj,,, is nonzero, meanwhile we have both
bj+ by’ and bj,,, + b;B¥ are nonzero because of 82! = 1. As a consequence all the coefficients of the terms
of the type x2'@+2) x2@"+1) gpd x2'@*"+2"™) gre nonzero on the left hand of equality (6). Hence this is true for the
right hand of equality (6), by Corollary 2.6, we have

2" 2"
(C) C]+~‘Cj+2$ r + C]+25C]+5 —-r # 0’
(d) cjc2 + cj+mc .70,

Jtm—=r

2" 2"
(e) Cj+s+mC JH2s+m—r + CJ+23+ij+Y+m r #0.

We consider the following cases.
Case1l When cjigim—r # 0, Cjro54m—r # 0,and ¢c;_, # 0.
Since Cjt+s+m—r # 07 Cj+2s+m—r # 07 Cj-r # O’ we get from (a)7 (b), (e)
_or _or
c./'cj—r = Cf+5+mcj+5+l11 r
CJCJ_z; = c/+23+mcﬁ?2v+m r’

=2" =2
cherCJJer r # C/+2V+’"C]+23+m r

Hence we come to an obvious contradiction.

Case 2 When cjigim—r # 0, Cjro54m—r # 0,and ¢;_, = 0.

Since ¢j_, = 0, we get ¢; # 0 from (d). For ¢; # 0, ¢;_, = 0, we have ¢j;sn— = 0 from (a), a contradiction.

Case3 When ¢jisim—r # 0, Cjr25em—r = 0.

Since ¢jie4em-r = 0, we have cjyo5.m # 0 from (e). Furthermore, we get c;_, = 0 from (b), as a consequence we
have c; # 0 from (d). Therefore we get ¢j,sem—r # 0, ¢; # 0, c;—, = 0, which is contradict with (a).

Case4 When cjygipm-r = 0.

Since ¢jigim—r = 0, we have cjisim # 0 and ¢jio54m—r # 0 from (e). Furthermore equation (a) implies ¢;_, = 0,
hence ¢; # 0 from (d). So we get ¢jio5m—r # 0, ¢; # 0, ¢j—, = 0, which is contradict with (b).

2) Ifb jazj +b j+mazw = 0 for all j, then the coefficients of the term of the type *¥2'@"+D s zero for all jon the
left hand of equality (6). Since b; # 0 and f*"*' = 1, neither b; + biy,8> " nor by + bif% is zero, as a consequence
the coefficients of the terms of the type x2@*2" and x2 @™ *+2"™ are nonzero on the left hand of equality (6). Hence
this is true for the right hand of equality (6), by Corollary 2.6, we have

’ 2"

() CH?CHZJ r ¥ CHZ?CHY rF 0
’

(e’ Cl+5+mcz+25+m Pt Cl+25+mcl+s+m r #0,
’ 2" 2"

) CiChimer T CjamCi, = Oforany j.

We consider the following cases.
Casel When ciogimr #0, Ciyos—r # 0and ci5_, # 0.
From (a), we have

’ 2" 2" _
(a ) CitsCiydsm—r + Cit2s+mCiys—y = 0.

From (d’), we have

7 2" 2" _
(d ) Cir2sCiingim—r + Cit2s+mCitos—y = 0.

Since Cit2s+tm-r F O’ Citos—r F O, Cits—r F O’ we get from (C’)’ (d”)’ (a/)



CitsCy, F Ciy2sC,

1+s -r 1+2v r”

Ci+2sC i+2s—r — C’+25+W’Ct+2s+m—r’
Cl+5c1+s -r Ci+2‘f+mcii+2rs+m—r‘
Thus we come to an obvious contradiction.

Case2 When ciio5im—r £ 0, Civos—r # 0, and ¢jy5—, = 0.

Since ¢y = 0, we get ¢iyy # 0 from (¢’). For c¢iry—r = 0, civy # 0, we have ¢jpog0m—r = 0 from (a’), a
contradiction.

Case3 When ¢jo5imr # 0, Cizos—r = 0.

Since ¢;25- = 0, we have c¢;,o, # 0 from (¢), but ¢;250m—r # 0, Ciras—r = 0, which is contradict with (d”).

Case4 When ¢; 251 =0.

Since ¢iypgem—r = 0, we get Cirosem # 0, Cipmrs—r # 0 from (¢’), therefore cjyp—, = 0 from (d”), moreover
Cizos 7 0, Cirs—r # 0 from (¢”), which is a contradiction with (a’).

Therefore the hypothesis that there exists b; # 0 for some i is not valid, i.e. L;(x) = 0. whereas f3(x) is EA-
inequivalent to Gold function g(x) = x> 1.

O

Letg = 2", n = 2m, ged(i,m) = 1, ¢ € For, s € Fp \ Fy, X2+ 4 ¢X? + ¢?X + 1 have no solution x such that
x7*1 = 1. Then fi(x) = x(x* + x¢ + cx??) + x* (¢9x? + sx*9) + x?*D4 is a quadratic APN function[18]. By the
transitivity of equivalence and Theorem 3.7 in [1], combing Proposition 3.5 or 3.6, we have the following proposition.

Proposition 3.7. f,(x) is CCZ-inequivalent to Gold function g(x) = x**!, where 1 < r < 5 coprime to n = 2m.
For any n, f(x) = x> + Tr(x°) is an APN function over F,. [16], and this function has the following property.

Proposition 3.8 ([16],Theorem 3). Let f(x) = x>+ Tr(x°). If n > 7 and n > 2p (p # 1,3 and p is the smallest positive
integer with (p,n) = 1), then f(x) is CCZ-inequivalent to g(x) = x> *!, where 1 < r < 5 coprime to n.

At the same time, Budaghyan et al. proved that f(x) in Proposition 3.8 is CCZ-inequivalent to any power function
over [Fy7 ([16],C0rollary 4), but for n > 7, there are no results.

fx) = x>+ Tr(x9) is generalized to the form f5(x) = x3 + a '"Tr(a®x%) with a # 0 in [19]. Furthermore f5(x) =
B +a'Te (@ x° + a®x'®) and f7(x) = x>+ a ' Tr} (a®x'® + a'?x3®) are constructed when 3|n and a # 0, all of them are

quadratic APN functions.

Proposition 39. Leta # 0,n > 6. Then f5(x) = x> + a”'Tr(a*x’) is CCZ-inequivalent to g(x) = x**!, where
1 < r < 5 coprime to n.

Proof. We assume fs5(x) is EA-equivalent to some Gold function. Because the two functions are quadratic, we can
assume there exist linear permutations L(x) = Z?:_ol bix%, Ly(x) = ;:01 ¢;x* and affine function L'(x) such that
Li(f5(x)) = g(La(x)) + L'(x), that is

n—1 n-1
D b +a @) = () e P+ L),
i=0 i=0

which is equivalent to
n—1 n—1 n-1

n—1
D b+ (Y bia ) Te@x) = X ¥ L L (x). 7
i=0 i=0 Jj=0 i=0

It follows from L;(x) is a permutation that we have L, (@h = 2?2—01 bia’zi # 0. Then for any j the coefficient of the
term of the type x°?' is nonzero on the left hand of equality (7). Hence this is true for the right hand of equality (7),
by Corollary 2.6, we have

(a) Cj+3Cj L tcjc ]+3 , # 0, forany j.
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Since n > 6, there exists integer p with p # 1, p # 3, gcd(p,n) = 1. By Lemma 3.5, for any j, the term of the type
x¥'@"*+D is missing in the left hand of (7), so we get the equality from the right hand of (7)

v r o _ ;
(b)  cjipci, +cjciy,, =0, forany j.

If for any j, ¢; # 0, then from (a) and (b), we have

(c) cj I ;ﬁ c]Jrgc]Jr23 .

(d) C]C] rT CJ+PCj+p r
From (d), we get

-2 _ - _ - —or
CjCjr = CjrpCirpr = Cjx2pCii2pr = " = Cj+('l—])l7cj+(n—1)p—r‘
Since ged(n, p) = 1, we have cjy5p # Cjyrp if 0 < 5 # t < n—1, which implies ¢ jcj‘. = CpCy, for any m, It contradicts
(©).
Thus there exists some j such that ¢; = 0, which implies ¢, = 0 from (a) and (b). Repeating this process, we

have cj., = 0, for any k. But gcd(n, p) = 1 implies ¢; = 0 for any j. A contradiction. Thus f5(x) is EA-inequivalent
to any Gold function. O

By the similar process of proof in Proposition 3.9, we have the following two propositions.

Proposition 3.10. Leta # 0, 3|n. Then fs(x) = x> + a‘lTrﬁ(a3x9 +a%x'3) is CCZ-inequivalent to g(x) = x**!, where
1 < r < 5 coprime to n.

Proposition 3.11. Leta # 0, 3|n. Then f1(x) = x° +a‘1Tri(a(’x]8 +a'2x3%) is CCZ-inequivalent to g(x) = x> *!, where
1 < r < 5 coprime to n.

Let n = 3k, ged(k,3) = ged(s,3k) =1, v, w € For, vw £ 1, 3| (k + 5), u primitive in F;,. Then
fa(x) = ux® ' + T R vxz_k“(v + 0),

k —k L~k k k-
ch(x) — ux25+1 + uz x2 +2KF8 + Wuz +1x2:+2 H(W + 0)

are quadratic APN functions. [21, 20]
Similarly as Lemma 3.5, we have the following lemma.

Lemma 3.12. (1) (X@" Vi € Z) n (@) € 7) = (Z@7)i e Z) n ((FET) e 7) = (PFET) e
ZyN{(xX@ e 7) = o,

(2) (2D e 71N 2@ e Z) = (2O e ZY N (xF @) e Z) = (P e Z) 0 (2@ D) e
7} = @;
(3) {x21+k—x(22x+1)|i E Z} ﬂ {x21(2x+1)|i e Z} — {x21+k—x(22x+1)|i E Z} ﬂ {x21(22k+x+1)|i E Z} — {x21+k—x(22x+1)|i e Z} ﬂ {x21(2k+1)|i e
7} = @

Proposition 3.13. f(x) is not EA-equivalent to Gold function g(x) = x**!, where 1 < r < 5 coprime to n

Proof. We assume f3(x) is EA-equivalent to Gold function. Because the two functions are quadratic, we can assume
there exist linear functions Ly(x) = Z?;(; bix*, Ly(x) = 3" 1 0 Ci x% and affine function L’(x) such that L;(fz(x)) =
g(La(x)) + L' (x), that is

n—1 n—1

s k 2k 4 Hk+s 2k i i "
E bi(uxz +1 + uz x2 +2k + VX2 +1)2 — ( E Cixz )2 +1 + L,(x). (8)
i=0 i=0

The left hand of equality (8) equals to

n—1 n—1 n—1

i nigns ik Hitkok  os i ni(n2k
E b,'btz )C2 2°+1) + E biu2 x2 (2542%) + E biVZ x2 2 +l)'
i=0 i=0 i=0
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On the left hand of equality (8), we only have the terms of the type

i(ns i+k (k 5 i(~2k
K@D 2 20,

We will prove that equality (8) holds only if b; = 0 for all i. Assume on the contrary there exists b; # 0 for some i. As
a consequence all the coefficients of the terms of the type x*@*+D_ x2"@+2) and x?@*+1 are nonzero on the left hand
of equality (8). Hence this is true for the right hand of equality (8), by Corollary 2.6, we have

(a) c,ﬂcl 4 + ¢ic ,H .70,
(b) c’+2kcé+k+s r +2€t+k+scl+2k r * 0
(¢) cisarcr, +ciciyy_, # 0,

By (1) and (2) of Lemma 3.12, the terms of the type xZ @D 2@ gre missing in the left hand of equality (8),
we get the equalities from the right hand of equality (8)

o " .
d) cicpgp, t c,+s+kc = 0, forany i,

2"
() CiCipgp, t Cz+25+kC, , =0, forany i,

1) If bi+k+s = 0, then the coefficient of the term Of the type _)C2Hk+x(22k+1) is zero on the left hand of equality (8) As
a consequence the coefficient of the term of the type x2"@HD s zero on the right hand of equality (8). By Corollary
2.6, we have

2" 2r _
(&)  CirsCrypygy T CitktsCirg—y = 0,

We consider the following cases.
Casel Whencigyr#0, ciys—r #0,and ¢;_, # 0.
Since cirsik—r # 0, Civs—r # 0, and c;_, # 0, we get from (d), (e), (a)

72 = ¢, -2’
CiCilp = CitktsCippys- r
Ci+bcz+3 -r C’+k+ACt+k+v r

2
Ci€; # C’+‘Ct+s r

Therefore we come to an obvious contradiction.

Case2 Whenciygi—r #0, ciys—r #0,and ¢;_, = 0.

Since ¢;_, = 0, we get ¢; # 0 from (a). For ¢; # 0, ¢;—, = 0, we have ¢, 51— = 0 from (d), a contradiction.

Case3 Whencgpr #0, ciys_r = 0.

Since cj5-r = 0, we get ¢jyy # 0 from (a). For ciys # 0, ciys—r = 0, we have ¢ 54— = 0 from (e), a contradiction.

Case4 When c¢jygpr =0.

Since ¢t s+k—r = 0, we have cjy 41 # 0 from (b). Furthermore, (e) implies ¢;.s—, = 0, hence c;_, # 0 from (a). The
fact cirs4k # 0, ciep # 0, Ciyrrs—r = 0 implies a contradiction with (d).

2) If bix+s # 0, then the coefficients of the terms of the type 2D 2P g 272D are nonzero
on the left hand of equality (8). As a consequence the coefficients of the terms of the type x2@+1) x2""@%42) 4pq
X2 @D are zero on the right hand of equality (8). By Corollary 2.6, we have

(h) Cl+k+223 l+k+Y P T C’+k+écl+k+2v r # 0,

) CitsCiiossdk—r + C’+2k+zscl+s r* 0,
2"

(g) CirsCiliprs—r T Cl‘*‘k'*'VCHv r # 0.

We consider the following cases.
Case1l When Ci—r O, Citk+2s-r F 0 and Citk+s—r F 0.
Since ¢;—y # 0, Cirki25—r # 0 and cjip45-r # 0, we get from (i), (d), (h)

-2" 2"
CiC;~ Cl+k+2scl+k+25 ")
2
CiC;~ Ct+s+kcl+é+k o
r r

. -2 . -
c’+k+23‘ci+k+2s—r # CitstkCifgpp—r
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So we come to an obvious contradiction.

Case2 Whenc,, #0, Cirgr25—r # 0, and cjpjers—r = 0.

Since Citirs—r = 0, we get Cirrs # 0 from (b). For cipges # 0, Civkrs—r = 0, we have ¢;-, = 0 from (d), a
contradiction.

Case3 Whenc,, #0, ¢cirgxi25—r = 0.

Since ¢iypi25—r = 0, we have ciiri0s # 0 from (h). For ¢iypio5—r = 0, Ciyrzos # 0, we have ¢;_, = 0 from (i), a
contradiction.

Case4 Whenc;_, =0.

Since ¢;—, = 0, we get ¢; # 0, ¢iy5—r # 0 from (a). Moreover, ciiri25—r = 0 from (i) and c¢jyx45—r = O from (d),
which is a contradiction with ().

Therefore the hypothesis that there exists b; # 0 for some i is not valid, i.e. L;(x) = 0. whereas f3(x) is EA-
inequivalent to Gold function g(x) = x> 1.

O

K —k k+s k K k+s
25+1 27542 +wu2 +lx2 +2

Proposition 3.14. fo(x) = ux +u'x
x** where 1 < r < % coprime to n.

(w # 0) is CCZ-inequivalent to gold function g(x) =

Proof. We assume fo(x) is EA-equivalent to some Gold function. Because the two functions are quadratic, we can
assume there exist linear permutations L(x) = Zl’.’z_ol bix%, Ly(x) = ;:01 ¢;x* and affine function L’(x) such that
Li(fo(x)) = g(La(x)) + L'(x), that is

n—1

n—1

s k —k 4 Hk+s k sy ok+s ni i or
Z Di(ux® 1 i 2T 2 2N (Z VY 4 (). 9)
= i=0

The left hand of equality (9) equals to

n—1 n—1 n—1

2i 2i 2.Y+1 2k+i 2i+k 2k+2x 2i 2i+.¥ 2k+1
Eb,-ux( )+§b,-ux( )+Ebiwx( )
i=0 i=0 i=0

On the left hand of equality (9), we only have the terms of the type

i(ns i+k ok 5 i+s 9k
K@D 2R 2t

We will prove that equality (9) holds only if b; = 0 for all i. If there exists b; # O for some i. As a consequence all
the coefficients of the terms of the type x> D), X2 @42) and 2@+ are nonzero on the left hand of equality (9).
Hence this is true for the right hand of equality (9), by Corollary 2.6, we have

2"
(@) cisc +cich #0,
2" 2"
(b) Ci2kCil gy g r + C’+k+écl+2k r #0,
2"
(©) CitsCiysp—r + C’+T+kct+$ P ¥ 0.

By (1), (2) of Lemma 3.12, the terms of the type x2@""+D x2@"*+D) gre missing in the left hand of equality (9), we
get the equalities from the right hand of equality (9)

o
d) ¢ iCptker + c,+b+kc =0, forany i,

27‘
() ciCipoppy T CivastkCi, = 0, forany i.
i+2k—s (s i—s (yk s i(~2k
2@ 2T gpnd ¥ @HD gre zero on the
i+2k—s (s i—s(yk s 1772k
PEQ ) 2R gng (2@

1) If biyr—s = 0, then the coefficients of the terms of the type x
left hand of equality (9). As a consequence the coefficients of the terms of the type x
are zero on the right hand of equality (9). By Corollary 2.6, we have

2" 2" —
(f) Ct+2kC,J§2k S—r +zcz+2k sCilioky = 07
(&) Citk- sCiiy +Ci Ct+k s—r = 0,

2" —
(h)  ciynci, +c cl+2k ,=0.
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We consider the following cases.
Casel When ciysi4—r #0, ciep #0, and cjp— # 0.
Since cisii—r # 0, ci—p # 0, and cjy21—, # 0, we get from (d), (h), (b)

CiC,-__zrr = Ci+k+.vc;_2/:+s_r’
CHakCiipy, = CiCiys

Ci+2kci_-i—2rk—r # Ci"'k‘*'sci_-%—zkr+s—r'

Thus we come to an obvious contradiction.

Case2 Whenciygir#0, ¢ioy #0, and c¢jo— = 0.

Since cjrop—r = 0, we get ciyor # 0 from (b). For cipox—r = 0, civox # 0, we have ¢;_, = 0 from (h), a contradiction.

Case3 Whenciigii—r 20, ¢iop = 0.

Since ¢;—, = 0, we get ¢j+s—r # 0, ¢; # 0 from (a). As a consequence we have c;y .- = 0 from (d), a contradiction.

Cased4 Whencjygy, =0.

Since Ciygik—r = 0, we have cipgx # 0, ciys—r # 0 from (c). Furthermore, (b) implies c;o—, # 0 and (d) implies
ci-r = 0. Because of ¢;_, = 0, we have ¢; # 0 from (a). The fact ¢; # 0, cirok—r # 0, ¢;-, = 0 implies that there is a
contradiction with (k).

2) If biyr—s # 0, then the coefficients of the terms of the type x
on the left hand of equality (9). As a consequence the coefficients of the terms of the type x
X2 @D are nonzero on the right hand of equality (9). By Corollary 2.6, we have

i+2k— i— k i(n2k
2@ 27 and x2 @D are nonzero

i+2k—5 (s i-s (nk
2A@ ) 222 gpq

: 2" 2"
(l) Ci+2kci+2!(_s_r +2€i+2kfsci+2k_r +0,
(.]) ci+k—sg’i_r + Cig;‘_'_k_s_r # 09
(k) cirmcr, + cicipyy, 0.

From (3) of Lemma 3.1, the term of the type K@D g missing on the left hand of equality (9), it is true for the
right hand of equality (9), as a consequence we have

2" 2"
(l) CitktsCitk—s—r + Citk—sCitkrs—r = 0.

We consider the following cases.
Casel Whenc;, #0, Ciyprs—r # 0and cj s, # 0.
Since ¢;—y # 0, Citk+s—r # 0 and cjpp—s—r # 0, we get from (1), (d), ()

PV g
CitketsCif iy = Citk=sCifps—p>
o o
CiCily = CivstkCiy iy
;

2r
CiC;~, F Cisk—sC

i+k—s—r"
Therefore we come to an obvious contradiction.

Case2 Whenc,, #0, Cipgrs—r # 0 and cjyp—s—r = 0.

Since ciip—s—r = 0, we get cjyr—s # 0 from (j). For cjpp—s # 0, Cist—s—r = 0, we have cjix45—r = 0 from (/), a
contradiction.

Case3 Whenc,, #0, ¢irgrs—r = 0.

Since ¢jikys—r = 0, we have ¢y # 0 from (b). For cippi5r = 0, Ciypas # 0, we have ¢;_, = 0 from (d), a
contradiction.

Case4 Whenc;_, =0.

Since ¢;-, = 0, we get ¢; # 0, ¢iy5—r # 0 from (a). Therefore cji4s5—r = O from (d), cisr+s # 0 from (c¢), and
Cirk—s—r # 0 from (), which is a contradiction with (/).

Therefore the hypothesis that there exists b; # 0 for some i is not valid, i.e. L;(x) = 0. whereas fo(x) is EA-
inequivalent to Gold function g(x) = x> *!.
O

Let s, k, p be positive integers. If n = pk > 12, p € {3,4}, ged(k, p) = ged(s,pk) = 1,i = sk mod p, t =

p — i, @ € F}, is a prime element, then f;(x) = K2 @2 122 g an APN function with the following property

13



(i=1,2)[15].

Proposition 3.15 ([15],Corollary 4, 5). Ifk > I, then fi(x),i = 1,2 are CCZ-inequivalent to gold function g(x) = x* *1,
where 1 < r < 5 coprime to n.

Theorem 3.16. The quadratic APN functions f;(x) (i =1,2,4,5,6,7,8,9) are CCZ-inequivalent to power APN func-
tions.

Proof. Tt is obvious by combing Theorem 2.4 and Proposition 3.7, 3.9, 3.10, 3.11, 3.13, 3.14 3.15. U

Therefore we give the theoretical proof of the inequivalence between f;(x) (i = 1,2,4,5,6,7,8,9) and power APN

functions, as a consequence, f(x) in Proposition 3.8 is CCZ-inequivalent to power APN functions on F. for any n.
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