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Abstract

Constructions and equivalence of APN functions play a significant role in the research of cryptographic functions. On
finite fields of characteristic 2, 6 families of power APN functions and 14 families of polynomial APN functions have
been constructed in the literature. However, the study on the equivalence among the aforementioned APN functions is
rather limited to the equivalence in the power APN functions. Meanwhile, the theoretical analysis on the equivalence
between the polynomial APN functions and the power APN functions, as well as the equivalence in the polynomial
APN functions themselves, is far less studied. In this paper, we give the theoretical analysis on the inequivalence in 8
known families of polynomial APN functions and power APN functions.
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1. Introduction

Cryptographic function is the only nonlinear component of symmetric cryptographic algorithm such as stream
cipher, block cipher and Hash function. Researchers have introduced various criteria to measure the resistance of a
cryptographic function to different kinds of cryptanalysis, including differential uniformity, nonlinearity, algebraic
degree, boomerang uniformity, etc. The lower the differential uniformity of a function is, the better its security
against differential cryptanalysis is. Due to practical application, most cryptographic functions are defined over the
finite field with even characteristic. The differential uniformity of a cryptographic function is at least 2 over such
field, the functions achieving the least differential uniformity are called almost perfect nonlinear(APN) over the field
of characteristic 2.

The differential uniformity is preserved under some equivalence relations between cryptographic functions such
as affine equivalence, extended affine equivalence (EA-equivalence) and CCZ-equivalence. It is known that affine
equivalence is EA-equivalence, EA-equivalence is a simple particular case of CCZ-equivalence, but the converse is
not necessarily true.

Constructing new APN functions is one of main topics in the research of cryptography functions, and the new
APN function can not be included in the existing families of APN functions in the sense of equivalence. So it is
necessary to check the equivalence between APN functions.

It is difficult to find new families of APN functions. Up to now, only 6 families of power APN functions and 14
infinite families of APN polynomials are known since 1990’s, which are listed in tables I and II respectively. Recently
Budaghyan et al. proved that f3(x) is equivalent to f11(x), and both of them are included in f4(x)[1].
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Table 1: Known infinite families of APN power functions over F2n

Family Exponent Conditions Algebraic degree Source

Gold 2i + 1 gcd(i, n) = 1 2 [2]

Kasami 22i − 2i + 1 gcd(i, n) = 1 i + 1 [3]

Welch 2t + 3 n = 2t + 1 3 [4]

Niho
2t + 2

t
2 − 1, t even

2t + 2
(3t+1)

2 − 1, t odd
n = 2t + 1

(t+2)
2

t + 1
[5]

Inverse 22t − 1 n = 2t + 1 n − 1 [6, 7]

Dobbertin 24i + 23i
+ 22i

+ 2i − 1 n = 5i i + 3 [8]

The research of equivalence of APN functions is focused on the equivalence between power functions [9, 10, 11,
12, 13]. In 2018, Dempwolff gave a general result about CCZ-equivalence among power APN functions over the finite
field of characteristic p. Let F = Fpn be a finite field, fd(x) = xd and fe(x) = xe be two APN power functions over F.
Then fd and fe are CCZ-equivalent if and only if there exists some a ∈ [0, n − 1] such that e ≡ dpa mod pn − 1 or
ed ≡ pa mod pn − 1[14]. So the equivalences between any two power APN functions are resolved completely.

The theoretical analysis of equivalence between polynomial APN function and power APN function only be found
in literature[15, 16]. For example, Budaghyan et al. proved that their functions are EA-inequivalent to any power APN
function, and CCZ-inequivalent to Gold function, inverse function and Dobbertin function for n ≥ 12 . Generally,
the equivalence between new family of APN functions and power APN functions is checked by searching the CCZ-
equivalent invariants on a small number of variables, but very little theoretical results were known.

In 2012, Yoshiara proved the Edel’s conjecture: Let f and g be quadratic APN functions on a finite field F2n with
n ≥ 2. Then f is CCZ-equivalent to g if and only if f is EA-equivalent to g [17]. In 2016, she proved: Let F2n be a finite
field. If a quadratic APN function f and a power APN function g is CCZ-equivalent, then f is EA-equivalent to one
of the Gold function(n ≥ 3) [9]. which implies that CCZ-equivalence between a quadratic polynomial APN function
and a power APN function can be turned into CCZ-equivalence between a quadratic polynomial APN function and a
Gold function. Furthermore, as Gold function is a quadratic function, it can be turned into EA-equivalence. In this
paper, we consider the 8 known families of quadratic polynomial APN functions constructed in [15][18, 19], and we
prove that all these functions are CCZ-inequivalent to power APN functions, therefore some theoretical results on
CCZ-equivalence between quadratic polynomial APN functions and power APN functions are obtained.

We first give the preliminaries needed in this paper, then we give the proofs of CCZ-inequivalence between fi(x)
(in table II) and power APN functions(i = 1, 2, 4, 5, 6, 7, 8, 9), which is the main part of our paper. For f4(x), we
discuss CCZ-inequivalence by proving CCZ-inequivalence between fi(x)(i = 3, 11) and power APN functions.

2. Preliminaries

Denote by F2 the finite field with two elements. For a positive integer n, let F2n be the finite field with 2n elements,
which is a linear space with dimension n over F2, F∗2n be the multiplicative group of F2n . A function from F2n to itself
is called almost perfect nonlinear(APN) if for any a , 0, b ∈ F2n , the number of solutions in F2n of the equation
f (x + a) − f (x) = b is at most 2.

A polynomial L(x) ∈ F2n [x] is called a linearized polynomial if L(x) can be written as

L(x) =
n−1∑
i=0

aix2i
, ai ∈ F2n .

A polynomial from F2n to itself is called affine, if it is defined by the sum of a linearized polynomial and a constant
polynomial over F2n .
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Table 2: Known infinite families of quadratic APN polynomial over F2n

ID Functions Conditions In

fi(x)
i = 1, 2

x2s+1 + u2k−1
x2ik+2mk+s

n = pk, gcd(k, p) = gcd(s, pk) = 1,
p ∈ {3, 4}, i = sk mod p,m = p − i,

n ≥ 12, u primitive in F∗2n

[15]

f3(x) x22i+2i
+ cxq+1 + dx(22i+2i)q

q = 2m, n = 2m, gcd(i,m) = 1,
gcd(2i + 1, q + 1) , 1, dcq + c , 0,
d < {λ(2i+1)(q−1), λ ∈ F2n }, dq+1 = 1

[18]

f4(x)
x(x2i

+ xq + cx2iq)
+x2i

(cqxq + sx2iq) + x(2i+1)q

q = 2m, n = 2m, gcd(i,m) = 1,
c ∈ F2n , s ∈ F2n \ Fq,

X2i+1 + cX2i
+ cqX + 1

has no solution x s.t. xq+1 = 1

[18]

f5(x) x3 + a−1Tr(a3x9) a , 0 [19]
f6(x) x3 + a−1Tr3

n(a3x9 + a6x18) 3|n, a , 0 [19]
f7(x) x3 + a−1Tr3

n(a6x18 + a12x36) 3|n, a , 0 [19]

fi(x)
i = 8, 9, 10

ux2s+1 + u2k
x2−k+2k+s

+vx2−k+1 + wu2k+1x2s+2k+s

n = 3k, gcd(k, 3) = gcd(s, 3k) = 1,
v,w ∈ F2k , vw , 1,

3 | (k + s), u primitive in F∗2n

[20, 21]

f11(x)
dx2i+1 + dqxq(2i+1)

cxq+1 +
∑m−1

s=1 γsx2s(q+1)

q = 2m, n = 2m, gcd(i,m) = 1, i,m odd,
γs ∈ F2m , c < F2m

d not a cube
[21]

f12(x)
(x + xq)2i+1 + u′(ux + uqxq)(2i+1)2 j

+u(x + xq)(ux + uqxq)

q = 2m, n = 2m,m ≥ 2 even,
gcd(i,m) = 1 and j even,

u primitive in F∗2n , u′ ∈ F2m not a cube
[22]

f13(x)
a2x22m+1+1 + b2x2m+1+1+

ax22m+2 + bx2m+2 + (c2 + c)x3

n = 3m,m odd
L(x) = ax22m

+ bx2m
+ cx satisfies

the conditions in [23, Theorem 6.3]
[23]

f14(x)

u(uqx + xqu)(xq + x)
+(uqx + xqu)22i+23i

+a(uqx + xqu)22i
(xq + x)2i

+b(xq + x)2i+1

q = 2m, n = 2m, gcd(i,m) = 1,
a, b ∈ F2m and X2i+1 + aX + b

has no solution overF2m

[24]

For any m ≥ 1 such that m | n,

Trm
n (x) =

n
m−1∑
i=0

x2im

denotes the trace function from F2n to F2m . When m = 1, we denote it by Tr(x), which is called absolute trace function.

Definition 2.1. (EA equivalence) Two functions f , g : F2n → F2n are extended affine equivalent (EA-equivalent) if
there exist two affine permutations L1, L2 : F2n → F2n and an affine function L : F2n → F2n such that g = L1◦ f ◦L2+L.

Let f : F2n → F2n be a function, the graph G f of f is the set G f = {(x, f (x))|x ∈ F2n } ⊆ F2
2n .

Definition 2.2. (CCZ equivalence) Two functions f , g : F2n → F2n are CCZ-equivalent if there exists an affine
permutation L(x) such that L(G f ) = Gg.

We first give the following two important results about EA-equivalence and CCZ-equivalence.

Theorem 2.3 ([17],Theorem 1). Let f and g be quadratic APN functions on a finite field F2n with n ≥ 2. Then f is
CCZ-equivalent to g if and only if f is EA-equivalent to g .
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Theorem 2.4 ([9],Theorem 2). Let F2n be a finite field, f be a quadratic APN function, and fd(x) = xd : F2n →
F2n (n ≥ 3) be a power APN function. If f and fd are CCZ-equivalent, then f is EA-equivalent to the Gold function
gs(x) = x2s+1 for some integer s with 1 ≤ s < n

2 coprime to n.

From Theorem 2.4, it is obvious that if a quadratic APN function is EA-inequivalent to any Gold functions, then
it is CCZ-inequivalent to any power APN functions.

Let i, j, s, t be any positive integers, if 2i + 2 j = 2s + 2t, then i = s and j = t, or i = t and j = s. Using this
conclusion, we have the following lemma.

Lemma 2.5. Let i , j mod n, s , t mod n be any positive integers, x2i+2 j
, x2s+2t

be two monomials over F2n . Then
x2i+2 j

= x2s+2t
if and only if i ≡ s mod n and j ≡ t mod n, or j ≡ s mod n and i ≡ t mod n.

Proof. The sufficiency is obvious, we just give the proof of the necessity. By choosing integers l1, l2, l3, l4 suitably,
we can assume all of the i − nl1, j − nl2, s − nl3, t − nl4 are in the interval of [0, n − 1]. As a result, x2i+2 j

= x2s+2t
can

be written as
x2i−nl1+nl1+2 j−nl2+nl2

= x2s−nl3+nl3+2t−nl4+nl4
.

Namely
x2i−nl1+2 j−nl2

= x2s−nl3+2t−nl4
.

Since i − nl1, j − nl2, s − nl3, t − nl4 are less than n, then

1 < 2i−nl1 + 2 j−nl2 < 2n, 1 < 2s−nl3 + 2t−nl4 < 2n.

So that

i − nl1 = s − nl3 and j − nl2 = t − nl4, or j − nl2 = s − nl3 and i − nl1 = t − nl4.

Which is equivalent to

i ≡ s mod n and j ≡ t mod n, or j ≡ s mod n and i ≡ t mod n.

Let L(x) =
∑n−1

j=0 c jx2 j
be a linearized polynomial over F2n , g(x) = x2r+1 be a Gold function. Then

g(L(x)) = (
n−1∑
j=0

c jx2 j
)2r+1 =

n−1∑
j=0

n−1∑
i=0

c jc2r

i x2r+i+2 j
.

If r + i , j, then there exist only two terms of the type x2r+i+2 j
in g(L(x)) from Lemma 2.5. And if the subscripts of

coefficients of polynomial function belong to the ring Z/nZ , i.e. i ≡ j mod n⇒ ci = c j, then we have the following
corollary.

Corollary 2.6. If r + i , j, then the coefficient of the term of the type x2r+i+2 j
of g(L(x)) is c jc2r

i + ci+rc2r

j−r.

If we rearrange the terms of g(L(x)), then g(L(x)) can be expressed as

g(L(x)) =
n−1∑
i=0

n−1∑
j=0

c jc2r

i+ jx
2 j(2r+i+1).

Let Z be the set of all integers. We have the following corollary.

Corollary 2.7. Let 0 ≤ i1 , i2 ≤ n− 1, and 2r + i1 + i2 , 0 mod n. Then {x2 j(2r+i1+1)| j ∈ Z} ∩ {x2 j′ (2r+i2+1)| j′ ∈ Z} = ∅
over F2n .
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Proof. If x2 j(2r+i1+1) = x2 j′ (2r+i2+1), then by Lemma 2.5, we have{
j + r + i1 ≡ j′ + r + i2 mod n
j ≡ j′ mod n or

{
j + r + i1 ≡ j′ mod n
j ≡ j′ + r + i2 mod n

By solving this congruence equations, we have i1 = i2 or 2r + i1 + i2 = 0 mod n, a contradiction.

3. Main Conclusion

Without further explanation, the functions in this section are all defined over the finite field F2n , and the subscripts
of the coefficients of polynomial function belong to the ring Z/nZ, i.e. i ≡ j mod n⇒ ci = c j.

Lemma 3.1. Let L(x) =
∑2k−1

j=0 b jx2 j
be a linearized polynomial over F22k . If b0 = 1, bk = 0, b j =

r j

c2 j
+c2k+ j , c ∈

F22k , r j ∈ F2k , b j+k = b j (1 ≤ j ≤ k − 1), then L(x) is a linear permutation.

Proof. The fact r j ∈ F2k implies b2k

j = ( r j

c2 j
+c2k+ j )2k

=
r2k

j

c2 j+k
+c22k+ j =

r j

c2 j+k
+c2 j = b j, 1 ≤ i ≤ k − 1. Assume L(a) = 0 for

some a ∈ F22k , that is

2k−1∑
j=0

b ja2 j
= 0. (1)

Since b0 = 1, bk = 0, b j+k = b j (1 ≤ j ≤ k − 1), from (1), we have

a +
k−1∑
j=1

b j(a2 j
+ a2k+ j

) = 0. (2)

Raising both sides of equation (2) to the 2k−th power leads to

a2k
+

k−1∑
j=1

b j(a2 j
+ a2k+ j

) = 0. (3)

It follows from (2) and (3) that

a2k
+ a = 0. (4)

Substituting (4) into (2), we obtain a = 0. So L(x) is a linear permutation.

Let s, k be odd, (s, k) = 1, b, c ∈ F22k , r j ∈ F2k . If c < F2k and b is not a cube, then f11(x) = bx2s+1 + b2k
x2k+s+2k

+

cx2k+1+
∑k−1

j=1 r jx2 j+k+2 j
, h(x) = bx2s+1+b2k

x2k+s+2k
+cx2k+1 are APN functions over F22k [21], and we have the following

proposition (different proof can be found in [1]).

Proposition 3.2. f11(x) is EA-equivalent to h(x).

Proof. Let L(x) =
∑2k−1

i=0 bix2i
be defined as in Lemma 3.1. Then

L( f11(x)) =
2k−1∑
i=0

bi(bx2s+1 + b2k
x2k+s+2k

+ cx2k+1 +

k−1∑
j=1

r jx2 j+k+2 j
)2i

=

2k−1∑
i=0

bib2i
x2i(2s+1) +

2k−1∑
i=0

bib2k+i
x2i+k(2s+1)

+

2k−1∑
i=0

bic2i
x2i(2k+1) +

2k−1∑
i=0

bi

k−1∑
j=1

r2i

j x2i+ j(2k+1). (5)
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Next we will compute (5) item by item.
1) The second term

∑2k−1
i=0 bib2k+i

x2i+k(2s+1) of (5) can be rewritten as

2k−1∑
i=0

bi+kb2i
x2i(2s+1).

Hence the sum of the first and second term of (5) is equal to

2k−1∑
i=0

bib2i
x(2s+1)2i

+

2k−1∑
i=0

bi+kb2i
x2i(2s+1)

=

2k−1∑
i=0

(bi + bi+k)b2i
x2i(2s+1).

As bi+k = bi (1 ≤ i ≤ k − 1), all the terms are 0 in the above form except i = 0, k. That is to say, the above form equals
to

(b0 + bk)bx2s+1 + (bk + b0)b2k
x2k(2s+1).

The fact b0 = 1, bk = 0 implies that the sum of the first and second term of (5) is

bx2s+1 + b2k
x2k(2s+1).

2) The third term of (5) is

2k−1∑
i=0

bic2i
x2i(2k+1) =

k−1∑
i=0

bic2i
x2i(2k+1) +

2k−1∑
i=k

bic2i
x2i(2k+1)

=

k−1∑
i=0

bic2i
x2i(2k+1) +

k−1∑
i=0

bk+ic2k+i
x2i(2k+1).

The fact b0 = 1, bk = 0 and bi+k = bi(1 ≤ i ≤ k − 1) implies the third term equals to

cx2k+1 +

k−1∑
i=1

bi(c2i
+ c2k+i

)x2i(2k+1).

3) The fourth term
∑2k−1

i=0 bi
∑k−1

j=1 r2i

j x2i+ j(2k+1) of (5) can be transformed into

k−1∑
j=1

2k−1∑
i=0

bir2i

j x2i+ j(2k+1).

Using the similar process to the above form that is used to the third term, the fourth term can be written as

k−1∑
j=1

(r jx2 j+k+2 j
+

k−1∑
i=1

bi(r2i

j + r2i+k

j )x2i+ j(2k+1)).

Because ri ∈ F2k , so r2i

j + r2i+k

j = 0 (1 ≤ i ≤ k − 1), as a result, the fourth term is

k−1∑
j=1

r jx2 j+k+2 j
.
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So the form of (5) is

bx2s+1 + b2k
x2k(2s+1) + cx2k+1 +

k−1∑
i=1

bi(c2i
+ c2k+i

)x2i(2k+1) +

k−1∑
j=1

r jx2 j+k+2 j

= bx2s+1 + b2k
x2k(2s+1) + cx2k+1 +

k−1∑
i=1

(bi(c2i
+ c2k+i

) + ri)x2i(2k+1)

= bx2s+1 + b2k
x2k(2s+1) + cx2k+1,

where the last equality follows from bi =
ri

c2i
+ c2k+i . So we have L( f11(x)) = h(x), and by Lemma 3.1, L(x) is a linear

permutation, so f11(x) is EA-equivalent to h(x).

Lemma 3.3 ([13],Corollary 3). Let h(x) = bx2s+1 + b2k
x2k+s+2k

+ cx2k+1 with b, c ∈ F22k . If c < F2k and b is not a cube,
then h(x) is CCZ-inequivalent to Gold function g(x) = x2r+1, where 1 ≤ r < n

2 coprime to n = 2k.

By Lemma 3.3 and the transitivity of equivalence, we can obtain the following proposition.

Proposition 3.4. f11(x) is CCZ-inequivalent to Gold function g(x) = x2r+1.

Let n = 2m(m ≥ 3), gcd(s,m) = 1, α, β ∈ F2n , and β2m+1 = 1, β < {λ(2s+1)(2m−1)|λ ∈ F2n }, βα2m
+ α , 0. Then

f3(x) = x22s+2s
+ αx2m+1 + βx22s+m+2s+m

is a quadratic APN function[18]. We can assume 0 < s < 2m.
Before we give the EA-inequivalence result between f3(x) and Gold function, we need the following lemma.

Lemma 3.5. If m ≥ 4, then
(1) {x2i(2m+s+1)|i ∈ Z} ∩ {x2i(2s+1)|i ∈ Z} = ∅, {x2i(2m+s+1)|i ∈ Z} ∩ {x2i(2m+1)|i ∈ Z} = ∅;
(2) {x2i(2m+2s+1)|i ∈ Z} ∩ {x2i(2s+1)|i ∈ Z} = ∅, {x2i(2m+2s+1)|i ∈ Z} ∩ {x2i(2m+1)|i ∈ Z} = ∅.

Proof. We only prove (1), (2) can be proved by the similar way.
We claim m + s + s , 0 mod n. In fact m < m + s + s < 5m.
If m + 2s = 2m, then m = 2s, but (s,m) = 1, a contradiction;
If m+ 2s = 4m, then 3m = 2s and 2 | m, hence we may assume m = 2l. The fact m ≥ 4 implies l ≥ 2 and l | m. On

the other hand, by substituting m = 2l into 3m = 2s, we get s = 3l, hence l | s, but (s,m) = 1, a contradiction. Hence
by Corollary 2.7, {x2i(2m+s+1)|i ∈ Z} ∩ {x2i(2s+1)|i ∈ Z} = ∅.

Because of 2m < m+ s+m < 4m, hence m+ s+m , 0 mod n. By Corollary 2.7, {x2i(2m+s+1)|i ∈ Z} ∩ {x2i(2m+1)|i ∈
Z} = ∅.

Proposition 3.6. If m ≥ 4, then f3(x) is not EA-equivalent to Gold function g(x) = x2r+1, where 1 ≤ r < n
2 coprime to

n = 2m.

Proof. We assume f3(x) is EA-equivalent to Gold function. Because the two functions are quadratic, we can assume
there exist linear functions L1(x) =

∑n−1
i=0 bix2i

, L2(x) =
∑n−1

i=0 cix2i
and affine function L′(x) such that L1( f3(x)) =

g(L2(x)) + L′(x), that is

n−1∑
i=0

bi(x22s+2s
+ αx2m+1 + βx22s+m+2s+m

)2i
= (

n−1∑
i=0

cix2i
)2r+1 + L′(x). (6)

The left hand of equality (6) equals to

m−1∑
i=0

(bi + bi+mβ
2i+m

)x2i+s(2s+1) +

m−1∑
i=0

(biα
2i
+ bi+mα

2i+m
)x2i(2m+1) +

m−1∑
i=0

(bi+m + biβ
2i

)x2i+m+s(2s+1).

On the left hand of equality (6), we only have the terms of the type

x2i(22s+2s), x2i(2m+1), x2i(22s+m+2s+m)
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Because {x2i(22s+2s)|i ∈ Z} = {x2i(22s+m+2s+m)|i ∈ Z} = {x2i(2s+1) | i ∈ Z}, by Lemma 3.5, the terms of the type x2i(2m+s+1)

and x2i(2m+2s+1) are missing in the left hand of (6). Therefore, for any i, we get the equalities from the right hand of (6)

(a) cic2r

i+s+m−r + ci+s+mc2r

i−r = 0,
(b) cic2r

i+2s+m−r + ci+2s+mc2r

i−r = 0.

We will prove that equality (6) holds only if bi = 0 for all i. Assume, on the contrary, there exists bi , 0 for some i.
1) If there exists b jα

2 j
+ b j+mα

2 j+m
, 0 for some j, then b j or b j+m is nonzero, meanwhile we have both

b j + b j+mβ
2 j+m

and b j+m + b jβ
2 j

are nonzero because of β2m+1 = 1. As a consequence all the coefficients of the terms
of the type x2 j(22s+2s), x2 j(2m+1) and x2 j(22s+m+2s+m) are nonzero on the left hand of equality (6). Hence this is true for the
right hand of equality (6), by Corollary 2.6, we have

(c) c j+sc2r

j+2s−r + c j+2sc2r

j+s−r , 0,
(d) c jc2r

j+m−r + c j+mc2r

j−r , 0,
(e) c j+s+mc2r

j+2s+m−r + c j+2s+mc2r

j+s+m−r , 0.

We consider the following cases.
Case 1 When c j+s+m−r , 0, c j+2s+m−r , 0, and c j−r , 0.
Since c j+s+m−r , 0, c j+2s+m−r , 0, c j−r , 0, we get from (a), (b), (e)

c jc−2r

j−r = c j+s+mc−2r

j+s+m−r,

c jc−2r

j−r = c j+2s+mc−2r

j+2s+m−r,

c j+s+mc−2r

j+s+m−r , c j+2s+mc−2r

j+2s+m−r.

Hence we come to an obvious contradiction.
Case 2 When c j+s+m−r , 0, c j+2s+m−r , 0, and c j−r = 0.
Since c j−r = 0, we get c j , 0 from (d). For c j , 0, c j−r = 0, we have c j+s+m−r = 0 from (a), a contradiction.
Case 3 When c j+s+m−r , 0, c j+2s+m−r = 0.
Since c j+2s+m−r = 0, we have c j+2s+m , 0 from (e). Furthermore, we get c j−r = 0 from (b), as a consequence we

have c j , 0 from (d). Therefore we get c j+s+m−r , 0, c j , 0, c j−r = 0, which is contradict with (a).
Case 4 When c j+s+m−r = 0.
Since c j+s+m−r = 0, we have c j+s+m , 0 and c j+2s+m−r , 0 from (e). Furthermore equation (a) implies c j−r = 0,

hence c j , 0 from (d). So we get c j+2s+m−r , 0, c j , 0, c j−r = 0, which is contradict with (b).
2) If b jα

2 j
+ b j+mα

2 j+m
= 0 for all j, then the coefficients of the term of the type x2 j(2m+1) is zero for all j on the

left hand of equality (6). Since bi , 0 and β2m+1 = 1, neither bi + bi+mβ
2i+m

nor bi+m + biβ
2i

is zero, as a consequence
the coefficients of the terms of the type x2i(22s+2s) and x2i(22s+m+2s+m) are nonzero on the left hand of equality (6). Hence
this is true for the right hand of equality (6), by Corollary 2.6, we have

(c′) ci+sc2r

i+2s−r + ci+2sc2r

i+s−r , 0,
(e′) ci+s+mc2r

i+2s+m−r + ci+2s+mc2r

i+s+m−r , 0,
(d′) c jc2r

j+m−r + c j+mc2r

j−r = 0 for any j.

We consider the following cases.
Case 1 When ci+2s+m−r , 0, ci+2s−r , 0 and ci+s−r , 0.
From (a), we have

(a′) ci+sc2r

i+2s+m−r + ci+2s+mc2r

i+s−r = 0.

From (d′), we have

(d′′) ci+2sc2r

i+2s+m−r + ci+2s+mc2r

i+2s−r = 0.

Since ci+2s+m−r , 0, ci+2s−r , 0, ci+s−r , 0, we get from (c′), (d′′), (a′)
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ci+sc−2r

i+s−r , ci+2sc−2r

i+2s−r,
ci+2sc−2r

i+2s−r = ci+2s+mc−2r

i+2s+m−r,
ci+sc−2r

i+s−r = ci+2s+mc−2r

i+2s+m−r.

Thus we come to an obvious contradiction.
Case 2 When ci+2s+m−r , 0, ci+2s−r , 0, and ci+s−r = 0.
Since ci+s−r = 0, we get ci+s , 0 from (c′). For ci+s−r = 0, ci+s , 0, we have ci+2s+m−r = 0 from (a′), a

contradiction.
Case 3 When ci+2s+m−r , 0, ci+2s−r = 0.
Since ci+2s−r = 0, we have ci+2s , 0 from (c′), but ci+2s+m−r , 0, ci+2s−r = 0, which is contradict with (d′′).
Case 4 When ci+2s+m−r = 0.
Since ci+2s+m−r = 0, we get ci+2s+m , 0, ci+m+s−r , 0 from (e′), therefore ci+2s−r = 0 from (d′′), moreover

ci+2s , 0, ci+s−r , 0 from (c′), which is a contradiction with (a′).
Therefore the hypothesis that there exists bi , 0 for some i is not valid, i.e. L1(x) = 0. whereas f3(x) is EA-

inequivalent to Gold function g(x) = x2r+1.

Let q = 2m, n = 2m, gcd(i,m) = 1, c ∈ F2n , s ∈ F2n \ Fq, X2i+1 + cX2i
+ cqX + 1 have no solution x such that

xq+1 = 1. Then f4(x) = x(x2i
+ xq + cx2iq) + x2i

(cqxq + sx2iq) + x(2i+1)q is a quadratic APN function[18]. By the
transitivity of equivalence and Theorem 3.7 in [1], combing Proposition 3.5 or 3.6, we have the following proposition.

Proposition 3.7. f4(x) is CCZ-inequivalent to Gold function g(x) = x2r+1, where 1 ≤ r < n
2 coprime to n = 2m.

For any n, f (x) = x3 + Tr(x9) is an APN function over F2n [16], and this function has the following property.

Proposition 3.8 ([16],Theorem 3). Let f (x) = x3 +Tr(x9). If n ≥ 7 and n > 2p (p , 1, 3 and p is the smallest positive
integer with (p, n) = 1), then f (x) is CCZ-inequivalent to g(x) = x2r+1, where 1 ≤ r < n

2 coprime to n.

At the same time, Budaghyan et al. proved that f (x) in Proposition 3.8 is CCZ-inequivalent to any power function
over F27 ([16],Corollary 4), but for n > 7, there are no results.

f (x) = x3 + Tr(x9) is generalized to the form f5(x) = x3 + a−1Tr(a3x9) with a , 0 in [19]. Furthermore f6(x) =
x3 + a−1Tr3

n(a3x9 + a6x18) and f7(x) = x3 + a−1Tr3
n(a6x18 + a12x36) are constructed when 3|n and a , 0, all of them are

quadratic APN functions.

Proposition 3.9. Let a , 0, n ≥ 6. Then f5(x) = x3 + a−1Tr(a3x9) is CCZ-inequivalent to g(x) = x2r+1, where
1 ≤ r < n

2 coprime to n.

Proof. We assume f5(x) is EA-equivalent to some Gold function. Because the two functions are quadratic, we can
assume there exist linear permutations L1(x) =

∑n−1
i=0 bix2i

, L2(x) =
∑n−1

i=0 cix2i
and affine function L′(x) such that

L1( f5(x)) = g(L2(x)) + L′(x), that is

n−1∑
i=0

bi(x3 + a−1Tr(a3x9))2i
= (

n−1∑
i=0

cix2i
)2r+1 + L′(x),

which is equivalent to
n−1∑
i=0

bix3·2i
+ (

n−1∑
i=0

bia−2i
)Tr(a3x9) =

n−1∑
j=0

n−1∑
i=0

c jc2r

i x2r+i+2 j
+ L′(x). (7)

It follows from L1(x) is a permutation that we have L1(a−1) =
∑n−1

i=0 bia−2i
, 0. Then for any j the coefficient of the

term of the type x9·2 j
is nonzero on the left hand of equality (7). Hence this is true for the right hand of equality (7),

by Corollary 2.6, we have

(a) c j+3c2r

j−r + c jc2r

j+3−r , 0, for any j.
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Since n ≥ 6, there exists integer p with p , 1, p , 3, gcd(p, n) = 1. By Lemma 3.5, for any j, the term of the type
x2 j(2p+1) is missing in the left hand of (7), so we get the equality from the right hand of (7)

(b) c j+pc2r

j−r + c jc2r

j+p−r = 0, for any j.

If for any j, c j , 0, then from (a) and (b), we have

(c) c jc−2r

j−r , c j+3c−2r

j+3−r
(d) c jc−2r

j−r = c j+pc−2r

j+p−r.

From (d), we get
c jc−2r

j−r = c j+pc−2r

j+p−r = c j+2pc−2r

j+2p−r = · · · = c j+(n−1)pc−2r

j+(n−1)p−r.

Since gcd(n, p) = 1, we have c j+sp , c j+tp if 0 ≤ s , t ≤ n−1, which implies c jc−2r

j−r = cmc−2r

m−r for any m, It contradicts
(c).

Thus there exists some j such that c j = 0, which implies c j+p = 0 from (a) and (b). Repeating this process, we
have c j+kp = 0, for any k. But gcd(n, p) = 1 implies c j = 0 for any j. A contradiction. Thus f5(x) is EA-inequivalent
to any Gold function.

By the similar process of proof in Proposition 3.9, we have the following two propositions.

Proposition 3.10. Let a , 0, 3|n. Then f6(x) = x3 + a−1Tr3
n(a3x9 + a6x18) is CCZ-inequivalent to g(x) = x2r+1, where

1 ≤ r < n
2 coprime to n.

Proposition 3.11. Let a , 0, 3|n. Then f7(x) = x3+a−1Tr3
n(a6x18+a12x36) is CCZ-inequivalent to g(x) = x2r+1, where

1 ≤ r < n
2 coprime to n.

Let n = 3k, gcd(k, 3) = gcd(s, 3k) = 1, v, w ∈ F2k , vw , 1, 3 | (k + s), u primitive in F∗2n . Then

f8(x) = ux2s+1 + u2k
x2−k+2k+s

+ vx2−k+1(v , 0),

f9(x) = ux2s+1 + u2k
x2−k+2k+s

+ wu2k+1x2s+2k+s
(w , 0)

are quadratic APN functions. [21, 20]
Similarly as Lemma 3.5, we have the following lemma.

Lemma 3.12. (1) {x2i(2k+s+1)|i ∈ Z} ∩ {x2i(2s+1)|i ∈ Z} = {x2i(2k+s+1)|i ∈ Z} ∩ {x2i(22k+s+1)|i ∈ Z} = {x2i(2k+s+1)|i ∈
Z} ∩ {x2i(2k+1)|i ∈ Z} = ∅;

(2) {x2i(2k+2s+1)|i ∈ Z} ∩ {x2i(2s+1)|i ∈ Z} = {x2i(2k+2s+1)|i ∈ Z} ∩ {x2i(22k+s+1)|i ∈ Z} = {x2i(2k+2s+1)|i ∈ Z} ∩ {x2i(2k+1)|i ∈
Z} = ∅;

(3) {x2i+k−s(22s+1)|i ∈ Z}∩ {x2i(2s+1)|i ∈ Z} = {x2i+k−s(22s+1)|i ∈ Z}∩ {x2i(22k+s+1)|i ∈ Z} = {x2i+k−s(22s+1)|i ∈ Z}∩ {x2i(2k+1)|i ∈
Z} = ∅;

Proposition 3.13. f8(x) is not EA-equivalent to Gold function g(x) = x2r+1, where 1 ≤ r < n
2 coprime to n

Proof. We assume f8(x) is EA-equivalent to Gold function. Because the two functions are quadratic, we can assume
there exist linear functions L1(x) =

∑n−1
i=0 bix2i

, L2(x) =
∑n−1

i=0 cix2i
and affine function L′(x) such that L1( f8(x)) =

g(L2(x)) + L′(x), that is

n−1∑
i=0

bi(ux2s+1 + u2k
x22k+2k+s

+ vx22k+1)2i
= (

n−1∑
i=0

cix2i
)2r+1 + L′(x). (8)

The left hand of equality (8) equals to

n−1∑
i=0

biu2i
x2i(2s+1) +

n−1∑
i=0

biu2i+k
x2i+k(2k+2s) +

n−1∑
i=0

biv2i
x2i(22k+1).
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On the left hand of equality (8), we only have the terms of the type

x2i(2s+1), x2i+k(2k+2s), x2i(22k+1).

We will prove that equality (8) holds only if bi = 0 for all i. Assume on the contrary there exists bi , 0 for some i. As
a consequence all the coefficients of the terms of the type x2i(2s+1), x2i+k(2k+2s) and x2i(22k+1) are nonzero on the left hand
of equality (8). Hence this is true for the right hand of equality (8), by Corollary 2.6, we have

(a) ci+sc2r

i−r + cic2r

i+s−r , 0,
(b) ci+2kc2r

i+k+s−r + ci+k+sc2r

i+2k−r , 0,
(c) ci+2kc2r

i−r + cic2r

i+2k−r , 0,

By (1) and (2) of Lemma 3.12, the terms of the type x2i(2k+s+1), x2i(2k+2s+1) are missing in the left hand of equality (8),
we get the equalities from the right hand of equality (8)

(d) cic2r

i+s+k−r + ci+s+kc2r

i−r = 0, for any i,
(i) cic2r

i+2s+k−r + ci+2s+kc2r

i−r = 0, for any i,

1) If bi+k+s = 0, then the coefficient of the term of the type x2i+k+s(22k+1) is zero on the left hand of equality (8). As
a consequence the coefficient of the term of the type x2i+k+s(22k+1) is zero on the right hand of equality (8). By Corollary
2.6, we have

(e) ci+sc2r

i+k+s−r + ci+k+sc2r

i+s−r = 0,

We consider the following cases.
Case 1 When ci+s+k−r , 0, ci+s−r , 0, and ci−r , 0.
Since ci+s+k−r , 0, ci+s−r , 0, and ci−r , 0, we get from (d), (e), (a)

cic−2r

i−r = ci+k+sc−2r

i+k+s−r,
ci+sc−2r

i+s−r = ci+k+sc−2r

i+k+s−r,
cic−2r

i−r , ci+sc−2r

i+s−r.

Therefore we come to an obvious contradiction.
Case 2 When ci+s+k−r , 0, ci+s−r , 0, and ci−r = 0.
Since ci−r = 0, we get ci , 0 from (a). For ci , 0, ci−r = 0, we have ci+s+k−r = 0 from (d), a contradiction.
Case 3 When ci+s+k−r , 0, ci+s−r = 0.
Since ci+s−r = 0, we get ci+s , 0 from (a). For ci+s , 0, ci+s−r = 0, we have ci+s+k−r = 0 from (e), a contradiction.
Case 4 When ci+s+k−r = 0.
Since ci+s+k−r = 0, we have ci+s+k , 0 from (b). Furthermore, (e) implies ci+s−r = 0, hence ci−r , 0 from (a). The

fact ci+s+k , 0, ci−r , 0, ci+k+s−r = 0 implies a contradiction with (d).
2) If bi+k+s , 0, then the coefficients of the terms of the type x2i+k+s(2s+1), x2i+2k+s(2k+2s) and x2i+k+s(22k+1) are nonzero

on the left hand of equality (8). As a consequence the coefficients of the terms of the type x2i+k+s(2s+1), x2i+2k+s(2k+2s) and
x2i+k+s(22k+1) are zero on the right hand of equality (8). By Corollary 2.6, we have

(h) ci+k+2sc2r

i+k+s−r + ci+k+sc2r

i+k+2s−r , 0,
( f ) ci+sc2r

i+2s+2k−r + ci+2k+2sc2r

i+s−r , 0,
(g) ci+sc2r

i+k+s−r + ci+k+sc2r

i+s−r , 0.

We consider the following cases.
Case 1 When ci−r , 0, ci+k+2s−r , 0 and ci+k+s−r , 0.
Since ci−r , 0, ci+k+2s−r , 0 and ci+k+s−r , 0, we get from (i), (d), (h)

cic−2r

i−r = ci+k+2sc−2r

i+k+2s−r,
cic−2r

i−r = ci+s+kc−2r

i+s+k−r,
ci+k+2sc−2r

i+k+2s−r , ci+s+kc−2r

i+s+k−r.
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So we come to an obvious contradiction.
Case 2 When ci−r , 0, ci+k+2s−r , 0, and ci+k+s−r = 0.
Since ci+k+s−r = 0, we get ci+k+s , 0 from (b). For ci+k+s , 0, ci+k+s−r = 0, we have ci−r = 0 from (d), a

contradiction.
Case 3 When ci−r , 0, ci+k+2s−r = 0.
Since ci+k+2s−r = 0, we have ci+k+2s , 0 from (h). For ci+k+2s−r = 0, ci+k+2s , 0, we have ci−r = 0 from (i), a

contradiction.
Case 4 When ci−r = 0.
Since ci−r = 0, we get ci , 0, ci+s−r , 0 from (a). Moreover, ci+k+2s−r = 0 from (i) and ci+k+s−r = 0 from (d),

which is a contradiction with (h).
Therefore the hypothesis that there exists bi , 0 for some i is not valid, i.e. L1(x) = 0. whereas f8(x) is EA-

inequivalent to Gold function g(x) = x2r+1.

Proposition 3.14. f9(x) = ux2s+1 + u2k
x2−k+2k+s

+ wu2k+1x2s+2k+s
(w , 0) is CCZ-inequivalent to gold function g(x) =

x2r+1, where 1 ≤ r < n
2 coprime to n.

Proof. We assume f9(x) is EA-equivalent to some Gold function. Because the two functions are quadratic, we can
assume there exist linear permutations L1(x) =

∑n−1
i=0 bix2i

, L2(x) =
∑n−1

i=0 cix2i
and affine function L′(x) such that

L1( f9(x)) = g(L2(x)) + L′(x), that is

n−1∑
i=0

bi(ux2s+1 + u2k
x2−k+2k+s

+ wu2k+1x2s+2k+s
)2i
= (

n−1∑
i=0

cix2i
)2r+1 + L′(x). (9)

The left hand of equality (9) equals to

n−1∑
i=0

biu2i
x2i(2s+1) +

n−1∑
i=0

biu2k+i
x2i+k(2k+2s) +

n−1∑
i=0

biw2i
x2i+s(2k+1)

On the left hand of equality (9), we only have the terms of the type

x2i(2s+1), x2i+k(2k+2s), x2i+s(2k+1).

We will prove that equality (9) holds only if bi = 0 for all i. If there exists bi , 0 for some i. As a consequence all
the coefficients of the terms of the type x2i(2s+1), x2i+k(2k+2s) and x2i+s(2k+1) are nonzero on the left hand of equality (9).
Hence this is true for the right hand of equality (9), by Corollary 2.6, we have

(a) ci+sc2r

i−r + cic2r

i+s−r , 0,
(b) ci+2kc2r

i+k+s−r + ci+k+sc2r

i+2k−r , 0,
(c) ci+sc2r

i+s+k−r + ci+s+kc2r

i+s−r , 0.

By (1), (2) of Lemma 3.12, the terms of the type x2i(2k+s+1), x2i(2k+2s+1) are missing in the left hand of equality (9), we
get the equalities from the right hand of equality (9)

(d) cic2r

i+s+k−r + ci+s+kc2r

i−r = 0, for any i,
(e) cic2r

i+2s+k−r + ci+2s+kc2r

i−r = 0, for any i.

1) If bi+2k−s = 0, then the coefficients of the terms of the type x2i+2k−s(2s+1), x2i−s(2k+2s) and x2i(22k+1) are zero on the
left hand of equality (9). As a consequence the coefficients of the terms of the type x2i+2k−s(2s+1), x2i−s(2k+2s) and x2i(22k+1)

are zero on the right hand of equality (9). By Corollary 2.6, we have

( f ) ci+2kc2r

i+2k−s−r + ci+2k−sc2r

i+2k−r = 0,
(g) ci+k−sc2r

i−r + cic2r

i+k−s−r = 0,
(h) ci+2kc2r

i−r + cic2r

i+2k−r = 0.
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We consider the following cases.
Case 1 When ci+s+k−r , 0, ci−r , 0, and ci+2k−r , 0.
Since ci+s+k−r , 0, ci−r , 0, and ci+2k−r , 0, we get from (d), (h), (b)

cic−2r

i−r = ci+k+sc−2r

i+k+s−r,
ci+2kc−2r

i+2k−r = cic−2r

i−r ,
ci+2kc−2r

i+2k−r , ci+k+sc−2r

i+k+s−r.

Thus we come to an obvious contradiction.
Case 2 When ci+s+k−r , 0, ci−r , 0, and ci+2k−r = 0.
Since ci+2k−r = 0, we get ci+2k , 0 from (b). For ci+2k−r = 0, ci+2k , 0, we have ci−r = 0 from (h), a contradiction.
Case 3 When ci+s+k−r , 0, ci−r = 0.
Since ci−r = 0, we get ci+s−r , 0, ci , 0 from (a). As a consequence we have ci+s+k−r = 0 from (d), a contradiction.
Case 4 When ci+s+k−r = 0.
Since ci+s+k−r = 0, we have ci+s+k , 0, ci+s−r , 0 from (c). Furthermore, (b) implies ci+2k−r , 0 and (d) implies

ci−r = 0. Because of ci−r = 0, we have ci , 0 from (a). The fact ci , 0, ci+2k−r , 0, ci−r = 0 implies that there is a
contradiction with (h).

2) If bi+2k−s , 0, then the coefficients of the terms of the type x2i+2k−s(2s+1), x2i−s(2k+2s) and x2i(22k+1) are nonzero
on the left hand of equality (9). As a consequence the coefficients of the terms of the type x2i+2k−s(2s+1), x2i−s(2k+2s) and
x2i(22k+1) are nonzero on the right hand of equality (9). By Corollary 2.6, we have

(i) ci+2kc2r

i+2k−s−r + ci+2k−sc2r

i+2k−r , 0,
( j) ci+k−sc2r

i−r + cic2r

i+k−s−r , 0,
(k) ci+2kc2r

i−r + cic2r

i+2k−r , 0.

From (3) of Lemma 3.1, the term of the type x2i+k−s(22s+1) is missing on the left hand of equality (9), it is true for the
right hand of equality (9), as a consequence we have

(l) ci+k+sc2r

i+k−s−r + ci+k−sc2r

i+k+s−r = 0.

We consider the following cases.
Case 1 When ci−r , 0, ci+k+s−r , 0 and ci+k−s−r , 0.
Since ci−r , 0, ci+k+s−r , 0 and ci+k−s−r , 0, we get from (l), (d), ( j)

ci+k+sc−2r

i+s+k−r = ci+k−sc−2r

i+k−s−r,
cic−2r

i−r = ci+s+kc−2r

i+s+k−r,
cic−2r

i−r , ci+k−sc−2r

i+k−s−r.

Therefore we come to an obvious contradiction.
Case 2 When ci−r , 0, ci+k+s−r , 0 and ci+k−s−r = 0.
Since ci+k−s−r = 0, we get ci+k−s , 0 from ( j). For ci+k−s , 0, ci+k−s−r = 0, we have ci+k+s−r = 0 from (l), a

contradiction.
Case 3 When ci−r , 0, ci+k+s−r = 0.
Since ci+k+s−r = 0, we have ci+k+s , 0 from (b). For ci+k+s−r = 0, ci+k+s , 0, we have ci−r = 0 from (d), a

contradiction.
Case 4 When ci−r = 0.
Since ci−r = 0, we get ci , 0, ci+s−r , 0 from (a). Therefore ci+k+s−r = 0 from (d), ci+k+s , 0 from (c), and

ci+k−s−r , 0 from ( j), which is a contradiction with (l).
Therefore the hypothesis that there exists bi , 0 for some i is not valid, i.e. L1(x) = 0. whereas f9(x) is EA-

inequivalent to Gold function g(x) = x2r+1.

Let s, k, p be positive integers. If n = pk ≥ 12, p ∈ {3, 4}, gcd(k, p) = gcd(s, pk) = 1, i ≡ sk mod p, t =
p − i, α ∈ F∗2n is a prime element, then fi(x) = x2s+1

+ α2k−1x2ik+2kt+s
is an APN function with the following property
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(i = 1, 2)[15].

Proposition 3.15 ([15],Corollary 4, 5). If k ≥ l, then fi(x), i = 1, 2 are CCZ-inequivalent to gold function g(x) = x2r+1,
where 1 ≤ r < n

2 coprime to n.

Theorem 3.16. The quadratic APN functions fi(x) (i = 1, 2, 4, 5, 6, 7, 8, 9) are CCZ-inequivalent to power APN func-
tions.

Proof. It is obvious by combing Theorem 2.4 and Proposition 3.7, 3.9, 3.10, 3.11, 3.13, 3.14 3.15.

Therefore we give the theoretical proof of the inequivalence between fi(x) (i = 1, 2, 4, 5, 6, 7, 8, 9) and power APN
functions, as a consequence, f (x) in Proposition 3.8 is CCZ-inequivalent to power APN functions on F2n for any n.

[1] Budaghyan L, Calderini M, Villa I.: On Equivalences between known families of quadratic APN functions. Http-
s://eprint.iacr.org/2019/793.pdf

[2] Gold R. Maximal recursive sequences with 3-valued recursive cross-correlation functions[J]. IEEE Transactions on Information Theory, 1968,
14(1): 154-156

[3] Kasami T. The weight enumerators for several classes of subcodes of the 2nd order binary Reed-Muller codes[J]. Information and Control,
1971, 18(4): 369-394

[4] Dobbertin H. Almost perfect nonlinear power functions on GF(2n): the Welch case[J]. IEEE Transactions on Information Theory, 1999,
45(4): 1271-1275

[5] Dobbertin H. Almost perfect nonlinear power functions on GF(2n): the Niho case[J]. Information and Computation, 1999, 151(1-2): 57-72
[6] Beth T, Ding C. On almost perfect nonlinear permutations[C]//Workshop on the Theory and Application of Cryptographic Techniques.

Springer, Berlin, Heidelberg, 1993: 65-76
[7] Nyberg K. Differentially uniform mappings for cryptography[C]// Workshop on the Theory and Application of Cryptographic Techniques.

Springer, Berlin, Heidelberg, 1993: 55-64
[8] Dobbertin H. Almost perfect nonlinear power functions on GF(2n): a new case for n divisible by 5[C]//Finite Fields and Applications.

Springer, Berlin, Heidelberg, 2001: 113-121
[9] Yoshiara S. Equivalences of power APN funcitons with power or quadratic APN functions[J]. Journal of Algebraic Combinatorics, 2016,

44(3): 561-585
[10] Budaghyan L. On inequivalence between known power APN functions[C]//Proc. Conference BFCA 2008, Copenhagen. 2008
[11] Lachaud G, Wolfmann J. The weights of the orthogonals of the extended quadratic binary Goppa codes[J]. IEEE Transactions on Information

Theory, 1990, 36(3): 686-692
[12] Canteaut A, Charpin P, Dobbertin H. Weight divisibility of cyclic codes, highly nonlinear functions on Fm

2 , and crosscorrelation of maximum-
length sequences[J]. Society for Industrial and Applied Mathe- matics, 2000, 13 (1) :105-138

[13] Bracken C, Byrne E, Markin N, et al.On the equivalence of quadratic APN funcitons[J].Designs,Code and Cryptography, 2011, 61(3): 261-
272

[14] Dempwolff U. CCZ equivalence of power functions[J]. Designs, Codes and Cryptography, 2018, 86(3): 665-692
[15] Budaghyan L, Carlet C, Leander G. Two classes of quadratic APN binomials inequivalent to power functions[J]. IEEE Transactions on

Information Theory, 2008, 54(9): 4218-4229
[16] Budaghyan L, Carlet C, Leander G. Constructing new APN functions from known ones[J]. Finite Fields and Their Applications, 2009, 15(2):

150-159
[17] Yoshiara S. Equivalences of quadratic APN functions[J]. Journal of Algebraic Combinatorics, 2012, 35(3): 461-475
[18] Budaghyan L, Carlet C. Classes of quadratic APN trinomials and hexanomials and related structures[J].IEEE Transactions on Information

Theory, 2008, 54(5): 2354-2357
[19] Budaghyan L, Carlet C, Leander G. On a construction of quadratic APN functions. In 2009 IEEE Information Theory Workshop, 2009:

374-378
[20] Bracken C, Byrne E, Markin N, et al. A few more quadratic APN functions[J]. Cryptography and Communications, 2011, 3(1): 43-53
[21] Bracken C, Byrne E, Markin N, et al. New families of quadratic almost perfect nonlinear trinomials and multinomials[J]. Finite Fields and

Their Applications, 2008, 14(3): 703-714
[22] Zhou Y, Pott A. A new family of semifields with 2 parameters[J]. Advances in Mathematics, 2013, 234: 43-60
[23] Budaghyan L, Calderini C, Carlet R, Coulter R, Villa I. Construting APN functions through iostopic shift. Cryptology ePrint Archive, Report

2018/769
[24] Taniguchi H. On some quadratic APN functions. Des, Codes Cryptogr. 2019, https://doi.org/10.1007/S10623-018-00598-2

14


