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Abstract—Fault attack is a class of active implementation
based attacks which introduces controlled perturbations in the
normal operation of a system to produce faulty outcomes. In
case of ciphers, these faulty outcomes can lead to leakage of
secret information, such as the secret key. The effectiveness and
practicality of fault attacks largely depend on the underlying fault
model and the type of fault induced. In this paper, we analyse the
drawbacks of persistent fault model in case of error correction
code (ECC) enabled systems. We further propose a novel fault
attack called Intermittent Fault Attack which is well suited for
ECC-enabled DRAM modules. We demonstrate the practicality
of our attack model by inducing single bit faults using pinpointed
Rowhammer technique in S-Boxes of block ciphers in a ECC
protected system.

Index Terms—Page Frame Cache, Rowhammer, Fault Attack,
OpenSSL, Error Correction Codes.

I. INTRODUCTION

Most of the modern computing devices include crypto-
graphic primitives to enable secure computation and commu-
nication. The support for cryptography is provided in forms of
hardware extension or software implementation or both. Albeit
being mathematically robust, most of these implementations
fall prey against attacks exploiting physical properties of
the underlying systems, such as power consumption, EM
radiation, timing variation, or faults . Such implementation-
centric attacks have recently gained a lot of attention from both
industry and academia due to their practicality and potency of
compromising devices starting from embedded spectrum to
cloud servers.

Fault attack (FA) is a class of active implementation based
attacks which introduces controlled perturbation in the normal
operation of a system resulting in faulty outcomes. The be-
haviour of a system under the influence of faults may reveal
valuable information such as secret key of a block cipher.
While controlled injection of faults is crucial for performing
successful FAs, it have been shown in several occasions that
even faults with minimal assumptions (such as, single/multiple
byte faults, bit flip faults) may lead to successful key recovery.
In fact, a single byte-fault is sufficient for extracting entire key
of AES [1]. Moreover, such faults can be injected via several
practical means in both embedded devices [2] and remotely
located servers [3].

Since first conceived by Boneh et. al. [4] in 1996, several
techniques have been proposed to exploit the information
leakage resulting from fault injections (in the context of block

ciphers)1. One common feature of all these techniques is that
they utilize the statistical bias introduced in some intermediate
state of a cipher to form a key distinguisher. One of the
well-studied and commonly used fault analysis techniques is
Differential Fault Analysis (DFA) where fault differentials in
correct-faulty ciphertext pairs are exploited. DFA has been
used extensively by security community to break ciphers like
DES [6], AES [7], PRESENT [8], etc. While DFA works
with random faults ignoring their physical properties, there
exist techniques called Statistical Fault Analysis (SFA) [9]
which typically exploit the device-centric fault properties.
Such properties are manifested in the form of statistical bias
in the fault distribution itself, and are dangerous in the sense
that they can bypass countermeasures based on classical fault
tolerance principles.

Recently, there have been two inclusions in the class of
so-called SFA attacks – Statistical Ineffective Fault Analysis
(SIFA) [10] and Persistent Fault Analysis (PFA) [11]. The
SIFA attacks typically rely on data-dependent ineffectivity of
faults. While the PFA has very similar mathematical prop-
erties, the fault model is very different from all other FAs
proposed till date. More specifically, while existing FAs exploit
transient faults, PFA targets the constants and tables in a
cipher implementation hence resulting in a fault which persists
through multiple encryption cycles. The advantage of such a
persistent fault model is that only a single injection is sufficient
to gather a lot of faulty ciphertexts. Moreover, the injection
happens before the encryptions begin and hence tight control
over the timing of injection is not required.

One of the main exploits of PFA are the table-based block
cipher implementations [11]. In a server environment, persis-
tent faults can be induced using well-known techniques such
as Row-Hammer bugs in modern DRAM chips [12]. While
recent operating systems try to throttle the exploitation of this
bug by restricting the access to the address-mapping, recent
work has shown that Row-Hammer faults can still be induced
in a controlled manner from the user space exploiting micro-
architectural components such as page-frame-cache [13]. This
specific work has also shown that the analysis technique in
PFA proposed in [11] (which targets only the last round of a
cipher), can be generalized to target even penultimate rounds.
Such generalization is crucial while attacking certain com-
mercial cipher implementations such as OpenSSL-AES [14].
Another alternative technique for targeting penultimate rounds

1There exists several examples of FA on public key implementations [5].
However, in this draft we restrict ourselves to block ciphers.
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has been proposed recently in [15]. However, the common
part of all these techniques is that they require access to the
ciphertexts. This criteria might not get fulfilled in all situations.

Modern DRAM memories often include Error-correcting
codes (ECC) for preventing corruptions in computations. Such
ECC-enabled memories are often considered as potential so-
lutions to Row-Hammer induced faults [16]. Although there
has been claims that even ECC-enabled memories may leak
some information though timing channels, it is not obvious
if such protections can also counter PFA-like attacks. There
are two observations which might make one think that ECC
is effective against PFA. The first observation is that the fault
cannot remain persistent anymore as it gets corrected once
the faulted memory location is accessed. As a result, no
faulty ciphertexts (resp. correct ciphertexts under the fault
influence) can be obtained.

In this paper, we further analyze the effectiveness of ECC
for preventing fault attacks exploiting memory faults. More
specifically, we show that ECC cannot prevent attacks exploit-
ing memory faults. Referring to the first observation from the
previous paragraph, here we introduce a new fault model called
Intermittent fault model, specific to ECC-enabled memories.
The main feature of Intermittent fault model is that it remains
in the system until the faulted location is accessed for the
first time. Based on this fault model we present a novel
attack strategy which does not require any access to the
ciphertexts. The proposed attack, called Intermittent fault
attack (InFA) can recover the entire key from a given block
cipher implementation.

II. INTERMITTENT FAULT MODEL

In this section, we introduce a new fault model, called
Intermittent Fault Model (InFA), suitable for error correction
enabled memory systems.

Why PFA won’t work in ECC memory?
Persistent Fault Attack or PFA is based on the underlying

fact that faults induced by Rowhammer on S-Boxes persist
until the S-Boxes are reloaded into the memory. That means,
a fault once injected can affect multiple encryptions thereby
producing a number of faulty ciphertexts and increasing the
efficiency of statistical attacks. However, on a ECC-enabled
memory, this simple fault model does not work. In ECC
memory, once a fault is injected it persists until that particular
memory row is accessed. Once the row that contains the fault
is accessed by the memory controller, the error correction
operation takes place and fault is corrected. In other words, a
fault once induced in an ECC-enabled DRAM lasts as long as
the faulty row is not accessed. Moreover, no faulty ciphertext
is generated in this case as the S-Box computation occurs
after correcting the error. Therefore, no statistical attacks can
be performed on the acquired ciphertexts due to lack of faulty
ones.

A. Error Correcting Codes

In modern systems, the primary component inside the pro-
cessor responsible for ECC checks is the memory controller.
Suppose the CPU wants to write a message of k bits into the

memory, the memory controller would append r bits of extra
information for error correction and detection to compose a
n = k+ r bit codeword and store it in the DRAM. The r bits
are calculated using linear block codes [17] - particularly the
(7,4) binary code. Since the Hamming Distance (HD) between
any codeword is atleast 3, the ECC scheme can detect upto 2
bit errors and correct a single bit fault. An extra parity bit is
added to differntiate between single bit and double bit errors,
which comprises the single error correction and double-bit
error detection (SECDED) scheme [17].

B. The Fault Model

ECC-enabled memory modules has been touted as a po-
tential countermeasure against Rowhmmer-induced faults for
a long time. However, Cojocar et. al. [18] showed that it is
possible to induce controlled faults in ECC memory which are
used extensively in server environments. They also showed
that the error correction operation imposes an additional
overhead which leads to an increase in overall access time
whenever a faulty location is accessed. This difference in time
can create a reliable timing channel to distinguish whether the
memory row accessed contains a faulty bit. This seemingly
simple timing channel was utlized by Kwong et al. [19] to
recover 1024-bit RSA key by inducing multiple faults in ECC
memory.

III. FAULT ANALYSIS ON MEMORY WITH ERROR
CORRECTION

One critical question regarding Improved PFA [15] and
DRPFA [13] attack is that whether they still hold if in-
memory error correction is present. It may seem that error
correction can easily throttle the attacks described in this
section. However, in reality, the vulnerability still holds.

The key observation in this context is that error correction
operation do incur some extra time, which eventually results
in an exploitable timing channel [18]. Unlike the other attacks,
in this case, the attacker cannot obtain the faulty ciphertexts.
Further, selective correct ciphertexts biased with the faults
(just like SIFA attacks) are also unavailable. However, an
attacker can still observe whether a fault induced by repeated
hammering is getting corrected or not from the aforementioned
timing difference. To further elaborate how this may lead
to a successful attack, let us assume a scenario where the
fault affects one of the T-tables of AES. This is a reason-
able assumption made based on the observations from our
previous experiments. Also, as we were successful in inducing
Rowhammer in the T-table after a profiling phase, it is possible
to pinpoint the position of the fault. Thus for simplicity, we
also assume that the attacker has the knowledge of the exact
fault location inside the corrupted T-table. We further assume
that the attacker exactly knows which of the T-tables (T0, T1,
T2 or T3) has got faulted 2. Finally, we consider that the
attacker can clearly identify the particular round when the error
correction takes place. This is possible using the cache access

2We found that vulnerable locations within a page remains almost constant.
Hence, if the attacker performs an initial profiling before the attack it is not
difficult to infer the fault location within the table.
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based attacks namely Prime+Probe [20] and Flush+Reload
[21] where an adversary can monitor the cache memory to
determine the cache accesses corresponding to different rounds
of AES execution. To ease the understanding of AES per
round accesses, authors in [22], [23] have devised methods
to measure cache accesses in fine granularity. Cache accesses
are utilized in this particular case to segregate between rounds
of AES execution. Now, the error correction mechanism comes
into play only when the faulty location is accessed. As
discussed in [18], the error detection and correction operations
incurs a timing overhead of hundreds of thousands of clock
cycles, which can be measured by the attacker. So, an attacker
can easily identify the round when the faulty location gets
accessed during the course of encryption.

Referring to the structures of the T-tables and the associated
AES implementation, it can be observed that each round
involves 16 table look-ups. We only focus on the cases when
the error gets corrected at the very first round of AES.
Rest of the cases can be discarded. Recall that an error
correction takes place whenever the faulty entry in the T-table
is accessed. Hence, an attacker, who can pinpoint the timing
of the correction, can also deduce the input of the T-table at
that time (since she has prior knowledge of which entry has
got corrupted ). This input actually corresponds to one byte of
the plaintext XOR-ed with one byte of the first round key. Since
the plaintext is known, the key byte can be directly deduced
once the T-table input is determined. 3

This apparently simple attack has certain critical intricacies.
Most importantly, in the presence of out-of-order execution it
becomes extremely difficult (if not impossible) to deduce for
which byte location the error correction has taken place. In
order to uniquely determine the key bytes even in this context
we apply a simple trick. We begin the attack with a randomly
chosen plaintext. Note that, we want the error correction to
happen at the first round, and we can identify the event while
it happens at the first round. The plaintext is chosen in a way so
that initially there is no error correction happening. Probability
of obtaining such a plaintext is fairly high (around 85%). Now,
we vary one of the bytes of the plaintext from 0 to 255 keeping
all other bytes constant. If faulty T-table and the location of
the fault within it is fixed every time, for some value of the
varying plaintext byte (let us denote the index of it by Pi), the
error correction will take place over there (i.e. for the byte
Pi). Since we started with no error correction taking place in
the first round, with this simple trick we can uniquely set and
determine the target key byte by byte making the correction
happen at the first round only for our target byte P0. The
entire first round key can be extracted by simply repeating
this technique.

The advantage of the aforementioned trick is that it can
uniquely identity the faulted byte location within a round. The
round of fault, on the other hand, can be identified with the

3In this context, it is worth recalling that a single round consists of total
16 T-table look-ups. One look-up takes place for each byte of AES state.
The table T0 is accessed for all the bytes in the first row of the state, and
similarly T1, T2 and T3 are accessed for rows 1, 2 and 3, respectively. So,
having a fault at T0 in the present context helps us to extract the key-bytes
corresponding to the first row elements.

prime-and-probe as described previously. However, one should
note that once the error correction takes place, the corrupted
T-table becomes fault-free. In order to restart fault injection in
the cipher computation, one need to perform the hammering
once again. Hence, if the corruption of computation happens
somewhere other than the first round, we need to restart the
hammering. A crucial question here is that how many times the
hammering should be restarted before we recover one target
key byte. Below we provide a statistical estimation of this
quantity.

Let us denote the event of a first round corruption as
“success” and the event associated with the rest of the things as
“failure”. The “failure” event can be divided into two different
sub-events – 1) the event when no fault happens at all, and
2) the event when the fault happens at some different round.
One may observe that the restart is only required for the later
event. In order to estimate the number of restarts required for
the extraction of a single key byte, we thus need to consider
two events – 1) the “success”: fault happens at the first round,
and 2) the “restart”: fault happens at some different round.

The immediate next step would be to estimate the proba-
bility of success and the probability of restart (without loss
of generality we denote this event as “failure” from now, as
we need not to bother about the event when no corruption
happens). Let us denote the probability of success as p and
the probability of failure as q = 1 − p. Considering the
facts that only one location t in a specific T-table Ta gets
corrupted in our experiment, and there are total 4 × 10 = 40
accesses made to Ta in an entire encryption operation, the
probability that no corruption (and hence no error correction)
happens in an encryption is ( 255256 )

40 = 0.855. Consequently,
the probability of at least one fault happening in an encryption
is 1 − ( 255256 )

40 = 0.145. In our experiments, the plaintext is
varied only by one byte location (hence, total 256 possible
plaintexts are tested, and a “success” event is bound to happen
within that by the properties of XOR operations). Thus, the
expected number of faulty encryptions happening within these
256 encryptions is given by 256× 0.145 = 37.12.

The probability of success now can be estimated as p =
1

37.12 = 0.026 (q = 1 − p). The number of restarts can now
be modelled with a random variable H having a truncated
Geometric distribution H ∼ TGeom(n, p) [24] having the
probability distribution function4:

g(h) =

{
pqh−1

1−qd−1 , for h ∈ {1, 2, · · ·d− 1}
0, otherwise

(1)

Here the parameter d in the distribution denote the maximum
number of trials that is allowed to be performed (in our
context, we know that roughly 40 restarts (on average) are
possible in total for most of the plaintext-key pairs. Hence
we adopt the truncated version of Geometric distribution for
modelling instead of the actual one).

We are mainly interested in estimating the mean of this
distribution. With our parameter settings, the mean turns out to

4The main difference between the Geometric distribution with its truncated
version is that the first one has an infinite support ({1, 2, · · ··}), whereas the
second one has a finite support within a predefined range ({a+ 1, a+ 2, · ·
·, b− 1}), where a and b are constants defining the range.
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be roughly 16−18. In other words, the hammering experiment
(for inducing faults in the T-table) should be repeated 16−18
times on average to extract one byte of the round key. Our
experiments also support this theoretical estimation.

IV. CONCLUSION

In this paper, we introduced a novel fault analysis tech-
nique, called Intermittent Fault Attack, which is well suited
for error correction code (ECC) enabled memory systems.
The proposed attack model takes advantage of the timing
channel produced during error correction in ECC memory to
leak information of the intermediate states of block cipher
operations adn eventually extract the secret key. As a practical
use-case, we demonstrate the attack on OpenSSL-AES to
perform complete key recovery.
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