A "Final” Security Bug

Nguyen Thoi Minh Quan *

Abstract

This article discusses a fixed EI critical security bug in Google Tink’s
Ed25519 Java implementation. The bug allows remote attackers to ex-
tract the private key with only two Ed25519 signatures. The vulnerability
comes from the misunderstanding of what ”"final” in Java programming
language means. The bug was discovered during security review before
Google Tink was officially released. It reinforces the challenge in writing
safe cryptographic code and the importance of the security review process
even for the code written by professional cryptographers.

1 Ed25519

In this section, we’ll briefly describe Ed25519 signature [3], [4]. Ed25519 signa-
ture is carefully designed with excellent security engineering consideration. You
can read a nice insightful article about elliptic-curve signature design by Daniel
Berstein and Tanja Lange [5]. We use notation from [3], [4].

Fix a prime ¢ = 22°5—19, a finite field F},, d = —121655/121666. The elliptic
curve E is defined by the following equation: —z2 + 3% = 1 + dz?y%. The base
point B has prime order [= 2252 4+ 27742317777372353535851937790883648493.

Before describing how to compute Ed25519 signatures, we define a few pa-
rameters. Fix the bit length b = 256. A point P = (x,y) is encoded as
(b — 1)-bit encoding of y followed by a sign bit of x, denoted as (z,y). We
use a cryptographic hash function H = SHA512 so that H’s output is 2b-bit
length. The private key is k. From H(k) = (ho, h1,--- ,h2p—1), we compute
a=2"24 Zs’;g 2¢h;. The public key is A where A = aB.

To compute the signature of message M, we compute r = H (hp, -+ , hop—1, M),
R=rBand S=(r+ H(R,A, M)a) mod [. The signature is 2b-string (R, S).

2 The ”final” vulnerability

Security review

Let’s talk about the security review process before digging into the vulnerability
itself. Google Tink’s Java Ed25519 was implemented from scratch because Java
Cryptography Architecture (JCA) didn’t have Ed25519. The code was compli-
cated, so I conducted a security review for it. It was my 1lst time to review

*https://www.linkedin.com/in/quan-nguyen-a3209817, https://github.com/cryptosubtlety,
https://scholar.google.com/citations?user=9uUqJITIAAAAJ, msuntmquan@gmail.com

IThe fix is public in github [I] and the bug has been simplified and transformed into a
challenge in Google CTF final [2].

optimized low-level cryptographic code, so it was chaotic. The followings did
not happen in chronological order as I tried to make the review process look
systematic :)

Believe it or not, whenever I review cryptographic code, the 1st thing I do
isn’t looking for cryptographic bugs. The reason is that general security bugs
such as memory corruption bugs are easier to exploit and have far reaching
serious security consequences. If attackers get remote code execution in our
process then all bets are off, the cryptographic code’s security is not impor-
tant anymore. Fortunately, in this case, the code was written in memory safe
programming language Java, so I could focus on cryptographic bugs.

To me, the optimized code is not intuitive nor understandable. In a typical
security review, I read the original papers to understand the protocol and read
the code and try to map the code to the papers. For optimized cryptographic
code, reading the original papers is not enough, I need to read other papers
that describe fast and optimized algorithms. Ed25519’s implementation needs
optimization at 2 layers : at the finite field layer F;; and at the elliptic curve
arithmetic computation layer on E. The optimized algorithms make the code
incomprehensible. In around 2 months, I spent around 1-2 hours every day. I
read the code, read the papers, tried to reason every single line of code what
it means. I was pretty clueless what types of security bugs I was looking for.
In a typical case, I often read the existing vulnerabilities and attacks to make
sure that the code doesn’t make the same mistakes. In this case, at the time,
there was no precedent for Ed25519 security bugs that I was aware of, i.e., I had
nothing to learn from. However, my instinct told me that a complicated code
that has been developed in a short period of time and the code was too difficult
to understand, it couldn’t be right. Therefore, I kept looking and in the end, I
had a pretty good idea what’s going on with the code at the high level.

I've learned from other security reviews that arithmetic errors in crypto-
graphic code may be exploitable, so I paid attention to the correctness of the
code. Besides checking the code, I wrote tests. At the finite field layer Fy, I
wrote simple tests, yet powerful to give me certain confidence on the correct-
ness of the code. As everyone in security knows, Java Biglnteger is not safe
to use in cryptographic implementation but I could use its arithmetic compu-
tation results to test against Tink’s finite field implementation. If Biglnteger
computation’s results match Tink Fj, computation’s results, I can sleep a little
bit better. I didn’t find any bugs in Tink F,’s implementation. At the ellip-
tic curve arithmetic computation layer, I found an apparently non-exploitable
bug. This is the bug’s description in github ”The bug is that isNonZeroVar-
Time assumes the input is reduced while it isn’t. Furthermore, the reduced
number representation is not unique, e.g., the following array is essentially
zero [67108845, 33554431, 67108863, 33554431, 67108863, 33554431, 67108863,
33554431, 67108863, 33554431]. We have to call Field25519.contract() before
checking for zero.” I couldn’t recall how I found those mysterious numbers,
probably through a tedious process of printing out certain variables or solving
some simple equations. Besides testing the code with Google Wycheproof’s
tests, I also wrote a few other tests. In one test, I fixed a key, generated random
multiple messages, signed them and verified their signatures. This is to test 2
properties: one key can be used to sign multiple messages and sign and verify
functions are compatible with each other. In another test, I used one key to sign
the same message multiple times and as Ed25519 is deterministic, the outputs

should be a single unique signature. This is to test the deterministic property
of Ed25519 signature. One of my tests failed and during the investigation of
the failed test, I found the ”final” bug which I will describe in the next section.
It’s worth mentioning that standard tests using the test vectors in RFC won’t
detect the bug as I'll explain below. In fact, the code’s author wrote tests using
RFC test vectors.

The ”final” bug

Besides its critical severity, the bug is fascinating because it’s unexpected and
it happened at a place where I typically never looked at. It reminds me of fond
memory hunting for security bugs.

Let’s look at the extracted vulnerable code.

public byte[] sign(final byte[] data) {
return Ed25519.sign (data, publicKey, hashedPrivateKey);
}

static byte[] sign(final byte[] message, final byte[] publicKey,
final byte[] hashedPrivateKey) {
MessageDigest digest = EngineFactory . MESSAGE DIGEST
.getInstance ("SHA-5127);
digest .update (hashedPrivateKey , FIELD_LEN, FIELD LEN);
digest .update (message);
byte[] r = digest.digest ();
reduce (r);
byte [] rB = Arrays.copyOfRange(scalarMult(r).toBytes(), 0,
FIELD_LEN) ;
digest .reset ();
digest .update (rB);
digest .update (publicKey);
digest .update (message);
byte [] hram = digest.digest ();
reduce (hram);
mulAdd (hashedPrivateKey , hram, hashedPrivateKey, r);
return Bytes.concat (rB, Arrays.copyOfRange(hashedPrivateKey, 0,
FIELD_.LEN));

}

// Computes (ab + ¢) mod 1.
// Note that the method only uses the 1st 32 bytes of each array.
private static void mulAdd(byte[] s, byte[] a, byte[] b, byte[] ¢)

Recall that we need to compute (hg,h1,- -+ ,hop—1) = H(k) where k is the
private key. In signature computation, the private key k is never used directly,
so the code’s author precomputes (hg, hy,- -, hop—1) once and stores the result
in the variable hashedPrivateKey. The 1st sign(byte/] data) method calls the 2nd
sign(final byte[] message, final byte[] publicKey, final byte[] hashedPrivateKey)
method. Pay attention to the keyword ”final” in method’s parameter final
byte[] hashedPrivateKey. In Java programming language, the keyword final
signals the intention that the parameter is a constant and the callee shouldn’t

change the parameter. However, while the declaration final byte[] x means
that z is constant, as x is just a reference to a ”byte[]” array, z’s content (aka
the array) can be changed! I.e., if the callee changes elements of the array
hashedPrivateKey, the compiler will not raise compiling errors.

Let’s continue exploring the code. The 2nd sign method first computes
H (R, publicK ey, message) and stores the result in variable hram. It then calls
mulAdd(hashed PrivateKey, hram, hashedPrivateKey, r). The mulAdd(s, a, b, c)
method computes (axb+c) mod I, i.e., it computes (hramxhashed Private K ey|:
32] +) mod | (where hashedPrivateKey[: 32] denotes the 1st 32 bytes of
hashedPrivatekey), i.e., it’s our S. There is an odd thing happening here
as well. The variable hashedPrivateKey is reused twice in the method mu-
[Add(hashedPrivateKey, hram, hashedPrivateKey, r), i.e., after computation, it
stores the result back to hashedPrivateKey, i.e., it stores S backs to the first 32
bytes of hashedPrivateKey (recall that hashedPrivateKey is an 64-byte array).
In combination of the final issue above, we see that:

e hashedPrivateKey value is changed.

e The 1st 32 bytes of modified hashedPrivateKey is published in S. Note
that the 1st 32 bytes of original hashedPrivateKey is not leaked.

Once the bug is found, the exploitation is pretty straightforward. In fact,
based on the bug, T wrote a challenge in Google CTF final [2] and several CTF
teams could solve it. The challenge was named Ed25519Final where the word
”final” has double meanings: the challenge was used in the CTF final and it
gave a hint where the bug was, in the ”final” keyword in Java programming
language.

Now, let’s describe how to compute a if we use the same key to sign the
same message twice. We have the following equations:

S1 = (r1 + H(R, publicK ey, message) * a;) mod I
So = (ro + H(R, publicK ey, message) * az) mod [

where a = a1, as correspond to the 1st 32 bytes of our hashedPrivateKey. Be-
fore continuing, it’s worth noting that the 1st signature is correctly produced
and only the 2nd signature is wrong, so the standard tests in RFC won’t help
detecting the bug. We notice the following:

e As we sign the same message: r| =19 =71.

e Due to the leakage and modification of hashed Private Key, we know that
as = Sl.

Therefore:

S = (r+ H(R, publicK ey, message) xa;) mod [(1)
Sy = (r + H(R, publicK ey, message) x S1) mod [(2)

From equation (2), we can compute r = (Sy — H(R, publicK ey, message) * S1)
mod [. Plugr into (1), we have a = a1 = ((S1—7)*(H (R, publicK ey, message) !
mod [)) mod I. Happy hacking!

Acknowledgement

Thanks Daniel Bleichenbacher and Thai Duong for fruitful cryptographic dis-
cussions during Google Tink and Wycheproof’s development.

References

[1] Quan Nguyen. https://github.com/google/tink/commit/d4665a4fdb55{b9f61a0elc155516138096afb16.

[2] Quan Nguyen. https://github.com/google/google-
ctf/tree/master/2017 /finals/2017-finals-crypto-
ed25519finalchallenge/attachments.

[3] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin
Yang. High-speed high-security signatures.

[4] Daneil J. Berstein. https://ed25519.cr.yp.to/python/ed25519.py.

[5] Daniel J. Bernstein and Tanja Lange. How to design an elliptic-curve signa-
ture system.

	Ed25519
	The "final" vulnerability

