
Two-Sided Malicious Security for Private Intersection-Sum with

Cardinality

Peihan Miao‡,∗, Sarvar Patel†, Mariana Raykova†, Karn Seth†, and Moti Yung†

† Google LLC

{sarvar, marianar, karn, moti}@google.com
‡ Visa Research

pemiao@visa.com

Abstract

Private intersection-sum with cardinality allows two parties, where each party holds a private
set and one of the parties additionally holds a private integer value associated with each element
in her set, to jointly compute the cardinality of the intersection of the two sets as well as the
sum of the associated integer values for all the elements in the intersection, and nothing beyond
that.

We present a new construction for private intersection sum with cardinality that provides
malicious security with abort and guarantees that both parties receive the output upon success-
ful completion of the protocol. A central building block for our constructions is a primitive called
shuffled distributed oblivious PRF (DOPRF), which is a PRF that offers oblivious evaluation
using a secret key shared between two parties, and in addition to this allows obliviously permut-
ing the PRF outputs of several parallel oblivious evaluations. We present the first construction
for shuffled DOPRF with malicious security. We further present several new sigma proof pro-
tocols for relations across Pedersen commitments, ElGamal encryptions, and Camenisch-Shoup
encryptions that we use in our main construction, for which we develop new batching techniques
to reduce communication.

We implement and evaluate the efficiency of our protocol and show that we can achieve
communication cost that is only 4 − 5× greater than the most efficient semi-honest protocol.
When measuring monetary cost of executing the protocol in the cloud, our protocol is 25× more
expensive than the semi-honest protocol. Our construction also allows for different parameter
regimes that enable trade-offs between communication and computation.

1 Introduction

Private Set Intersection. A private set intersection (PSI) protocol enables two parties, each
with a private input set, to compute the intersection of the two sets while revealing nothing
more than the intersection itself. Despite the simplicity of the functionality, PSI has found many
applications in privacy-preserving location sharing [NTL+11], testing of fully sequenced human
genomes [BBDC+11], collaborative botnet detection [NMH+10], data mining [ARF+10], social net-
works [LCYL11, NDCD+13], online gaming [BHLB11], measuring ads conversion rates [IKN+17],

∗Part of work done while interning at Google LLC.

1

and so on. Due to its importance and wide applications, PSI has been extensively studied in a long
sequence of works [HFH99, FNP04, DSMRY09, DCKT10, HEK12, DCW13, SFF14, PSZ14, PSSZ15,
EFG+15,DD15,Lam16,KKRT16,RR17a,RR17b,FNO18,PSWW18,PRTY19].

Enhanced Functionality. While the PSI functionality models successfully the confidentiality re-
quirements in several application scenarios, there are information-sharing settings where revealing
the whole intersection is unacceptable and instead a more fine-grained privacy preserving compu-
tation is needed. In particular different aggregated computations over the intersection set model a
wide range of applications with restricted privacy leakage. PSI-cardinality is one example of such
an aggregated functionality that limits the two parties to learning only the cardinality (or size) of
the intersection [HFH99,AES03,FNP04,KS05,VC05,NAA+09,DCGT12].

The private intersection-sum functionality introduced by Ion et al. [IKN+17] is another example
of an aggregate functionality where one of the input sets has integer values associated with the
elements in the set and the two parties compute the cardinality of the intersection as well as the
aggregate of the integer values associated with the intersection set. This primitive models many
applications in practice. These include settings where one party holds private statistics about a set
of people and another party has information about the membership of the people in a particular
group, and the two parties want to compute an aggregate of the statistics over the members of
the set. A particular instantiation of this scenario was consider by Nagu et al. [NDCD+13] in the
context of social networks where a user has knowledge of weights associated with each of her friends
and wants to compute the total (or average) weight of the friends that she has in common with
another user. In measuring ads conversion rates [IKN+17], an advertiser may know the purchase
amount for every customer, and the advertiser and an ads publisher can jointly compute the total
number and total purchase amount of the customers who have seen the ads from the publisher and
end up buying the product.

Existing solutions for private intersection-sum [IKN+17] provide security only in the semi-
honest case where each party is assumed to follow the protocol honestly. While this level of
security might be sufficient in settings where the interacting parties have external incentives (e.g.
legal agreements) to follow the protocol, this level of security is not sufficient for a broad set
of scenarios where the adversary could deviate arbitrarily from the protocol. In the setting of
malicious security we have protocols that achieve only the PSI functionality, however, constructions
with competitive efficiency [FHNP16,RR17a,RR17b] have a major shortcoming that they support
only one-sided output, where in many settings both parties need to obtains the output of the
computation. Upgrading these protocols to achieve two-sided output in a non-trivial task. For
example, as explained by Rindal et al. [RR17b], the output recipient from the one-sided protocol
will need to prove that it executed the last step of the protocol honestly. We do not have tailored
constructions for this task and applying generic approaches comes with a high price.

In this work we consider the problem of private intersection sum with cardinality in the malicious
setting which provides protection against such adversaries. We require that either both parties
receive the output of the computation or they abort. Our focus is on optimizing the communication
efficiency of the protocol since as discussed in the work of Ion et al. [IKN+17] this is the most
significant cost in practice.

Our Contributions. We present a new protocol for private intersection-sum with cardinality
which achieves malicious security with abort, which guarantees that both parties receive the in-

2

tersection sum if the protocol does not abort. Our protocol provides two-sided output, which is
already an improvement even if we restrict our attention only to the PSI functionality since existing
malicious PSI protocols [FHNP16,RR17a,RR17b] are restricted to a single output recipient.

Our construction is the first construction for private intersection-sum with cardinality with
malicious security to achieve linear communication and computation overhead in the size n of the
sets. This improves significantly over the only other existing approach [HEK12] that can be used
to solve this problem, which uses existing generic MPC techniques with malicious security, and as
we discuss in the related work, incurs at least a factor of λ log n multiplicative overhead assuming
a security parameter λ. As can be seen in Table 6, these generic techniques incur 250× higher
communication and 65× higher monetary cost than our protocol on inputs of size 220.

Our construction can also be instantiated such that the overhead required to achieve malicious
security over the semi-honest version requires sublinear communication O(

√
n) with computation

O(n log n), which would be advantageous in setting where communication is much more expensive
that computation.

Our construction adopts the general approach from the work of Ion et al. [IKN+17], which
leverages an oblivious pseudorandom function (PRF) with a shared key, which can be evaluated
in a distributed way to permute and map the input set values to a pseudorandom space that
enables the computation of the intersection, and homomorphic encryption, which allows to pair the
associated values during the PRF evaluation and then evaluate the intersection sum. In order to
upgrade this general approach to malicious security we develop several new techniques, which can
be of independent interest.

New Distributed OPRF. A central building block for our solution is a distributed oblivious PRF
with malicious security. In order to achieve distributed oblivious evaluation with malicious security
we leverage a PRF construction due to Dodis and Yampolskiy [DY05], for which we can construct
proofs for honest evaluation with respect to a committed PRF key. An issue that we need to deal
with is the fact that this PRF was proven secure only for polynomial domains. To circumvent this
problem we introduce a weaker selective security notion for the PRF, which is is satisfied by the
construction with exponential domain, and we show that this property suffices for our PSI-sum
with cardinality protocol.

Verifiable Parameter Generation. We construct a distributed PRF evaluation protocol, which
uses several times evaluations on committed and encrypted values. Thus, in order to achieve mali-
cious security for this protocol we use proofs for relations among encrypted and committed values,
which crucially rely on the assumption that the parameters for these schemes were generated hon-
estly. Since we do not want to assume any trusted setup, we present protocols for verifiable gen-
eration of parameters for Pedersen commitments, Camenish-Shoup (CS) and ElGamal encryption
with shared key.

Range Proofs with Slack. The final extension to the distributed OPRF is to enable a shuffle of the
oblivious evaluations on multiple inputs that are executed in parallel, which hides the mapping to
the original inputs and is required in order to hide what elements are in the intersection. In order to
enable that we develop a proof protocol for shuffle decryption of Camenisch-Shoup encryptions. We
leverage the Bayer-Groth shuffle proof [BG12], which allows to prove that two sets of cipheretexts
encrypt the same set of plaintexts up to a permutation. In order to enable proving knowledge of
exponents in this step, the prover needs to switch from Camenisch-Shoup encryption to ElGamal
encryption, which have different domains. We introduce a proof technique for consistency of values
encrypted under CS and ElGamal encryptions that uses range proofs with a slack.

3

Our construction leverages heavily sigma proof protocols [Dam02] in several places including the
proofs for evaluation of the DOPRF, the re-encryption step for shuffling, the re-randomization for
intersection-sum.

Batching for Range Proofs. We introduce new batching techniques for range proofs based
on sigma protocols. While existing efficient batch proofs that do not work with the bit level
representation of the values operate in a group of unknown order [Bou00,CS03], batching techniques
for sigma protocols have been constructed only in the case of a known order group [GLSY04]. We
show how to batch range proof over groups of unknown order while avoiding a large blowup in the
slack of the range proof which is incurred if we adapt directly the batching approach for known
group order to hidden order by providing sufficient space to avoid the need for modulus reduction.

Batching Proofs for CS and ElGamal Encryptions. We also use batching techniques for com-
mitments and develop batching approaches for Camenisch-Shoup encryptions. We leverage multi-
exponentiation arguments from the work of Bayer and Groth [BG12] in a new way to batch proofs
for relations among ElGamal ciphertexts for which prover does not know the encryption random-
ness. Since we need an additively homomorphic encryption scheme that has a provable threshold
decryption, we use exponential ElGamal to encrypt associated values. This means that our con-
struction supports evaluations for which the final intersection-sum is within a polynomial domain
where discrete log can be computed for decryption.

Implementation and Evaluation. We implemented our malicious secure private intersection-sum
protocol and evaluated its performance on large-scale datasets. Our experiments show that, when
we set parameters to minimize communication overhead, our protocol performs with communication
cost approximately 4× greater than the most communication-efficient semi-honest protocol based on
DDH. A less aggressive choice of parameters leads to about 7× expansion over the semi-honest DDH-
based protocol, with a much improved computational efficiency. We also estimate the monetary
cost of running our protocols using the pricing for Google Cloud and obtain that executing our
PSI-Sum protocols on inputs of size 220 costs 13 cents. The monetary cost is about 25× more
than that of the semihonest protocol, which we believe is a reasonable cost for the much stronger
security guarantees. We present our experimental measurements in Section 6. Our costs give a
large improvement in monetary cost over existing generic approaches for private intersection sum
with cardinality. Our monetary costs are also within a factor of 2 of the most efficient protocols for
Malicious PSI [RR17b], which we note only provide one-sided output and are not compatible with
computing functions on the intersection.

Related Work. Before presenting the technical overview of our construction, we overview ex-
isting PSI solutions in the malicious setting [KS05, HL08, DSMRY09, CZ09, CKRS09, JL09, HN10,
DCKT10, FHNP16, RR17a, RR17b] and discuss the challenges in extending the approaches from
these works to the private intersection-sum problem. We restrict our discussion to constructions
that provide linear communication complexity as our major goal is communication efficiency.

The work of De Cristofaro et al. [DCKT10] presents a PSI protocol, where only one party (P2)
learns the PSI output and nothing is revealed to the other party (P1). Our goal is to obtain a
protocol where both parties receive the output, and next we explain the challenges for achieving
this functionality here. At a high level the protocol works as follows. First, the two parties jointly
evaluate an oblivious pseudorandom function (OPRF) on every element of P2 where P1 holds the
OPRF key k and only P2 obtains the OPRF values. Second, P1 computes the OPRF values on its
own elements using the key k and sends to P2. Finally, P2 computes the intersection of the OPRF

4

values and the corresponding set intersection. The protocol used an OPRF defined as Fk(x) =
H2(x||H1(x)||H1(x)k), where H1(·), H2(·) are hash functions modeled as random oracles [BR93]. In
the OPRF protocol, P2 learns H1(x)k without revealing any information about x to P1, and finally
computes H2(x||H1(x)||H1(x)k). Since we want both parties to learn the PSI output, one natural
idea is to let P2 send back its OPRF values to P1, but P2 has to prove that H2(·) is computed
correctly on desired inputs without revealing any information about x, which is a challenge. Another
idea is to run the protocol twice with alternative roles, where the parties have to prove input
consistency during the two executions. In other words, P1 should prove in zero knowledge that
its inputs to Fk(·) in the first execution are consistent with its inputs to the OPRF in the second
execution, which is also challenging. More importantly, it is hard to extend this protocol to PSI-
cardinality or private intersection-sum. In the last step of their OPRF protocol, P2 computes H2 on
x||H1(x)||H1(x)k for each of its element x. It is crucial that P2 knows the inputs to H2 to compute
the OPRF value. Therefore, the elements in the intersection must be known to P2, making it hard
to extend the protocol to even PSI-cardinality.

The PSI protocol of Jarecki and Liu [JL09] is also based on an OPRF protocol similarly as above,
but the parties can prove consistency of their inputs to the OPRF with previously committed values.
Therefore, the two parties can first commit to their inputs and then run the above protocol in both
directions so that both parties learn the PSI output. However, the protocol has some limitations.
First, their security proof requires the domain of the elements to be restricted to polynomial in
the security parameter. Besides, the protocol requires a Common Reference String (CRS), where
the CRS includes a safe RSA modulus that must be generated by a trusted third party, which is
something we would like to avoid. To extend this protocol to PSI-cardinality, the receiver (P2) of
the OPRF protocol should learn the OPRF values without learning the correspondence between
its elements {x}x∈X and OPRF values {Fk(x)}x∈X , which requires shuffling techniques that we
develop in this work. More ingredients and techniques are needed for extending the protocol to
private intersection-sum as well as removing the above restrictions.

The idea in the protocol of Freedman et al. [FHNP16] to achieve malicious security is to require
one party (P1) to redo the other party’s (P2’s) computation on the elements in the intersection and
verify consistency. This is achieved as follows: P1 generates a polynomial Q(·) of degree m, with
roots set to the m elements of P1’s set, and sends the homomorphically encrypted coefficients of
Q(·) to P2. Then for each element x in P2’s set, P2 replies with an encryption of r · Q(x) + s for
random r and s. Importantly, the randomness used in this computation is taken from H(s) where
H(·) is a hash function modeled as a random oracle. If x is in the intersection, then P1 can learn
s and verify P2’s computation on x; otherwise nothing about x is revealed to P1. This protocol
crucially needs P1 to learn the elements in the intersection, therefore extending the protocol to even
PSI-cardinality seems to require innovative ideas. Moreover, the techniques of hashing into bins are
leveraged in the protocol for achieving linear computational complexity. Computing PSI for each
bin is sufficient for the PSI problem, however revealing intersection-cardinality or intersection-sum
for each bin compromises security in the problem of PSI-cardinality or private intersection-sum.

Another option for constructing a private intersection-sum protocol with malicious security is
to apply directly malicious two-party computation protocols to our functionality. Such protocols
use the circuit representation of the evaluated functionality. The most efficient way to compute
the intersection of two sets of size O(n) uses oblivious sorting which reduces the number of needed
comparisons from O(n2) to O(n log n). In our construction, in contrast, we aim for linear depen-
dence on the number of inputs. Further, circuit solutions are bound to incur additional security

5

factor multiplicative overhead since they need to operate with the bit-level representation of the
set values. In the case of garbled circuit-based solutions this is inherent in the constructions, and
in the case of solutions using arithmetic circuits the need for using the bit representation comes
from the fact that we will be computing comparisons over these values and the most efficient way
to do this is using the binary representation of the values. The recent circuit-based PSI proto-
cols [PSSZ15, CO18, PSTY19, FNO19] only provide security in the semi-honest setting and it is
nontrivial to extend them to the malicious setting due to their use of specific primitives such as
Cuckoo hashing. Moreover, their protocols require super-linear communication. The work of Pinkas
et al. [PSTY19] presents a semi-honest circuit-based PSI construction that achieves linear commu-
nication, however, this construction achieves only linear number of comparison in the circuit by
using oblivious programmable PRF techniques [KMP+17] and Cuckoo hashing [PR04]. Generaliz-
ing these techniques to the malicious setting presents many challenges. Our construction presents
an approach to obtain oblivious PRF evaluation in the malicious setting.

2 Technical Overview

In this section we give a technical overview of our malicious secure private intersection-sum protocol.
Our starting point is the semi-honest private intersection-sum protocol [IKN+17]. We identify the
technical challenges to obtain malicious security from the semi-honest version and then present our
approach to addressing them.

Semi-Honest Private Intersection-Sum. The semi-honest protocol of Ion et al. [IKN+17]
leverages a cryptographic primitive called distributed oblivious pseudorandom function (DOPRF),
which enables the following functionality. The key k of a DOPRF is shared between two parties,
where each party can generate independently their share. The DOPRF has an oblivious evaluation
functionality, which is a 2-party computation protocol, which the two parties jointly evaluate the
PRF F , under key k, on an input x, held by one of the parties who receives the PRF output Fk(x)
and nothing more is revealed to either party.

The DOPRF functionality suffices to construct a PSI protocol as follows. First, the two parties
generate independently key shares of the DOPRF key. Then, they use the oblivious evaluation
protocol to evaluate the DOPRF on each of P1’s input elements xi, from which P2 learns Fk(xi)
and then sends it back to P1. Similarly, they evaluate the DOPRF on P2’s input elements yj to
obtain Fk(yj). Computing the intersection of the resulting two sets of PRF values enables both
parties to compute the PSI since each party has the mapping from the intersecting PRF values to
their corresponding input elements.

The above PSI protocol can be extended to obtain PSI-cardinality and private intersection-sum
protocols. To achieve PSI-cardinality, it suffices to construct a shuffled DOPRF protocol, which
allows n parallel executions of the oblivious PRF evaluation where the PRF value that one of the
parties receives are randomly shuffled with a permutation selected by the other party. The party
who receives the PRF values can still compute the intersection between the two sets of PRF values
but no longer has a mapping between the intersecting PRF values and the inputs to which they
correspond. Thus, the only thing this party can learn is the cardinality of the intersection. We
can extend this idea to further obtain private intersection-sum in the setting where one party (say
P1) has associated integer values with its set elements. In this setting, the two parties first run the
shuffled DOPRF for P2’s input set. For P1’s input set, the two parties evaluate the DOPRF on

6

each of P1’s inputs xi. In addition, P1 attaches an encryption of xi’s associated integer vi under
re-randomizable additive-homomorphic encryption for which P1 holds the secret key. This allows
P2 to learn an (Fk(xi), Encpk(vi))-pair for each xi, so it can compute the set intersection from
the two sets of PRF values and then homomorphically add up the corresponding ciphertexts. The
resulting ciphertext is then re-randomized and sent back to P1, who has the decryption key to
recover the intersection-sum.

The primitives and protocols described above are only secure against semi-honest adversaries.
In order to construct a private intersection-sum protocol that provides malicious security, we design
malicious counterparts of these tools.

Malicious DOPRF. The semi-honest intersection-sum protocol of Ion et al. [IKN+17] uses the
following Diffie-Hellman-based PRF construction, which is defined as Fk(x) = H(x)k, where the
hash function H(·) is modeled as a random oracle [BR93]. It can be instantiated as a DOPRF
by sharing the PRF key as k = k1k2. Specifically, the two parties can independently generate key
shares k1 and k2. To evaluate the DOPRF on P1’s input x, P1 sends y = H(x)k1 to P2 and then
P2 can compute the PRF output z = yk2 . When we switch to the malicious setting, a malicious
P1 may send ỹ = H(x)r·k1 to P2 for an arbitrary r and obtain z̃ = H(x)r·k1k2 , from which P2 can
learn the PRF output by raising z̃ to the power r−1. In order to upgrade this DOPRF protocol
to the malicious setting especially with simulation-based security, P1 needs to prove that the hash
function H(·) was properly applied or equivalently prove the knowledge of a preimage for a hash
value, which is a challenge.

In view of the above difficulties associated with the use of the DH-based DOPRF in the malicious
setting, we choose to use a different PRF as a starting point for a new DOPRF construction, for

which correct evaluation can be proven. We use the function Fk(x) = g
1

k+x , which is defined on a
group 〈g〉 of prime order. This function was originally introduced as a weak signature in the work
of Boneh-Boyen [BB04], and subsequently was proven to be a pseudorandom function under the
decisional q-Diffie Hellman Inversion (q-DHI) assumption [MSK02] by Dodis-Yampolskiy [DY05].
We combine ideas from Belenkiy et al. [BCC+09] and Jarecki-Liu [JL09] to construct a distributed
oblivious evaluation protocol for this PRF and prove its security in the malicious setting.

We start with a description of a distributed evaluation protocol for the above PRF that provides
semi-honest security. We refer to the two parties as a sender and a receiver, where the party holding
the input x is called the sender and the party obtaining the PRF output is called the receiver. For
the distributed key generation the two parties randomly pick secret key shares ks and kr such that
the PRF key k is set as k = ks+kr. The starting point for our distributed evaluation protocol is the
following idea. The receiver encrypts its key share kr using an additive-homomorphic public-key
encryption scheme for which it holds the secret key, and sends the encryption Encpk(kr) to the
sender. The sender then homomorphically computes Encpk(ks + kr + x) and sends it back to the
receiver. The receiver can decrypt the ciphertext to obtain ks+kr+x and compute the PRF output

g
1

ks+kr+x .
In the above protocol the receiver learns information beyond the PRF output, which consists of

the value ks + kr + x. To remove this leakage we introduce a random multiplicative mask a on the
sender’s side. That is, the encrypted value that the receiver obtains is a(ks + kr + x). We remove
this mask during exponentiation by having the sender also send ga to the receiver and letting the

receiver compute (ga)
1

a(ks+kr+x) . In fact, this randomization does not suffice for a simulation proof.
Since a(ks+kr+x) is homomorphically computed by the sender who cannot take modulo operation

7

under the homomorphic encryption, the value a(ks + kr + x) learned by the receiver may still leak
information about ks+kr+x. That is why we further modify the randomization to a(ks+kr+x)+bq
where b is random and q is the order of the group 〈g〉. This randomization guarantees that the
value obtained by the receiver is simulatable and at the same time correct since the order of the
group is q.

To obtain malicious security in the above protocol, the sender needs to prove the correctness of
the homomorphic encryption and the consistency of a in the new ciphertext and in ga. To achieve
this we use Camenisch-Shoup encryption [CS03], for which we can use sigma protocols to provide
zero-knowledge proofs for these operations.

Exponential Domain for Dodis-Yampolskiy PRF. The work of Dodis and Yampolsky [DY05]
proved adaptive security for the PRF construction that we discussed above but only in the setting
of polynomial size domains. However, this is not true for the inputs used in many real-world appli-
cations. Therefore, we revisit the security proof for this construction and show that for exponential
size domains the PRF satisfies a weaker notion of selective security, where the inputs to the PRF
are chosen by the adversary in advance in the security game, under the q-DHI assumption. Further-
more, this level of security for the PRF is sufficient for the security of our private intersection-sum
protocol for the following reason. At a high level, we make the two parties first commit to their own
input along with a zero-knowledge proof of knowledge and then jointly decide the PRF parameters.
In the simulation-based proof, the simulator can first extract the adversary’s input and then reduce
to the security game of the PRF, where selective security suffices for our purpose.

Malicious PSI. As we discussed for the semi-honest setting, a secure DOPRF protocol suffices
for a PSI protocol. In the malicious setting, to construct a malicious PSI protocol from the above
malicious DOPRF protocol, the receiver should send back the PRF values to the sender and prove

correctness of its computation (ga)
1

a(ks+kr+x)+bq with respect to ga and the ciphertext Encpk(a(ks +
kr + x) + bq), in a zero-knowledge fashion. This can also be achieved by sigma protocols.

Malicious Shuffled DOPRF. To extend the malicious PSI protocol to malicious PSI-cardinality,
we need to additionally enable the shuffled DOPRF functionality that provides all the PRF outputs
to the sender in a randomly shuffled (permuted) order determined by the receiver. While our ma-
licious DOPRF protocol provides the receiver with the leverage to shuffle the PRF outputs before
sending back to the sender, we still need a way to prove the correctness of the shuffle.

While it is possible to try to leverage generic zero-knowledge protocols to prove directly the
correctness of the shuffled outputs, we choose to use a shuffle-and-decrypt protocol by Bayer-
Groth [BG12], which can efficiently prove in zero-knowledge that given a set of ciphertexts and a
set of plaintexts, the plaintexts correspond to the decryption of some permutation of the ciphertexts.
To incorporate this shuffle proof in our protocol, the receiver no longer just sends the PRF outputs
back to the sender after the DOPRF evaluation, but rather sends encryptions of these outputs

together with proofs that each of them encrypts the correctly computed value (ga)
1

a(ks+kr+x)+bq . In
addition to this the receiver sends the PRF outputs in the clear in a shuffled order together with
a Bayer-Groth shuffle proof that they are consistent with the decryption of the above ciphertexts
in some permuted order.

In the above construction which we design in order to leverage an efficient shuffle proof, let
β := a(ks + kr +x) + bq. The prover needs to switch from Camenisch-Shoup encryption to ElGaml

8

encryption because β was encrypted in Camenisch-Shoup encryption while the value to encrypt
in this step is σ = (ga)β

−1
and what the prover needs to prove knowledge about is β−1

i instead
of σ. Encrypting σ using ElGamal in the group 〈g〉 enables proof of knowledge in the exponent.
However, the prover needs to provide a proof that the Camenish-Shoup ciphertext, which has
plaintext domain ZN , and the ElGamal cipheretext, which has plaintext domain Zq where q � N ,
encrypt consistent values β and β−1. To achieve this we observe that it suffices to prove the
consistency of the two encrypted values in their respective domains (i.e., x mod N = x′ mod q)
and in addition to this prove that x′ < q. For the later since q � N , it suffices to use range proofs
that have slack for sigma protocols, which can only guarantee that x′ < q · r. This completes a
malicious DOPRF protocol with randomly shuffled PRF outputs.

From Shuffled DOPRF to Intersection-Sum. The shuffled DOPRF protocol suffices to ob-
tain PSI-cardinality in the semi-honest setting by running two shuffled DOPRF with the same key,
where in one protocol P1 holds the input and acts as the sender while in the other protocol their
roles are reversed. In the malicious setting when the two protocols are executed in parallel, we have
to additionally make sure the two parties are using consistent DOPRF key shares. Each party will
first commit to their DOPRF key shares and then prove consistency of their key shares used in the
two protocols, which can be done using sigma protocols.

To further achieve private intersection-sum, similar to the semi-honest setting, we encrypt
the integer values associated with one of the sets using additive homomorphic encryption. The
secret key for this encryption is now shared between the two parties, which will be important for
preserving the secrecy guarantees of the shuffle proof. The sender appends these encryptions to the
corresponding inputs in the malicious shuffled DOPRF evaluation. Now the receiver that applies the
shuffle in this protocol additionally needs to re-randomize the encryptions of the associated values
and provides a proof that the shuffle applied to these encryptions is the same as the shuffle on the
PRF values. This can be achieved in the Bayer-Groth shuffle proof because in their protocol the
prover commits to the permutation and we can use the same commitment through the two shuffle
proofs. Different from the semi-honest setting, now both parties can compute the intersection of the
two sets of PRF values and homomorphically add up the corresponding re-randomized ciphertexts.
To jointly decrypt the resulting ciphertext, each party partially decrypts the ciphertext using their
own key share and sends to the other party. They also have to prove the correctness of their partial
decryption, again by sigma protocols.

Batching Protocol Components. In our construction outlined above we use sigma style pro-
tocols to provide proofs for the correctness of DOPRF evaluation, re-encryption for shuffling, and
re-randomization for intersection-sum. In order to optimize the communication efficiency of such
protocols, we utilize various techniques to batch components of the protocol. At a high level there
are three types of batching we use: batching Pedersen commitments, batching Camenisch-Shoup
encryptions, and batching sigma protocols.

These batching techniques are described in Section 5. Further care needs to be taken to ensure
the compatibility between different batching techniques. We describe the detailed composition of
these techniques in Appendix C.

We believe that these batching techniques may be of independent interest. For example, our
batched sigma protocols include tighter bounds on proofs of ranges than known techniques, and our
batched Camenisch-Shoup encryption enables batched proofs of decryption, which brings asymp-

9

totic efficiency gains.

Organization. We introduce our notations, security assumptions, important definitions and
cryptographic schemes in Section 3 and present our private intersection-sum protocol in Section 4.
We prove the selective security of the PRF used in our protocol in Appendix A and prove the
malicious security of our protocol in Appendix B. Our batching techniques are described in Section
5 and the concrete sigma protocols are presented in Appendix C.

3 Preliminaries

3.1 Notation

We use λ to denote the security parameter. Let Zn be the set {0, 1, 2, . . . , n− 1}. Z∗n is defined as
Z∗n := {x ∈ Zn| gcd(x, n) = 1}. We use [n] to denote the set {1, 2, . . . , n}. We use ord(G) to denote
the order of a group G. By negl(λ) we denote a negligible function, i.e., a function f such that
f(λ) < 1/p(λ) holds for any polynomial p(·) and sufficiently large λ.

3.2 Computational Assumptions

Decisional q-Diffie-Hellman Inversion (q-DHI) Assumption [MSK02]. The computa-
tional q-DHI problem in a group G with generator g and order p is to compute g1/α given the
tuple (g, gα, . . . , gα

q
) for random α in Z∗p. We define the hardness of the decisional version of this

problem for any fixed constant q as follows. Let gGen be an algorithm which on input a security
parameter 1λ picks a modulus p and a generator g of a multiplicative group G of order p. We say
that the Decisional q-DHI Assumption holds on group (family) G if for every efficient algorithm
A, ∣∣∣∣Pr

[
A(g, gα, . . . , gα

q
, g1/α) = 1

∣∣∣(g, p)← gGen(1λ);α← Z∗p
]

− Pr
[
A(g, gα, . . . , gα

q
, h) = 1

∣∣∣(g, p)← gGen(1λ);α← Z∗p;h← G
] ∣∣∣∣ ≤ negl(λ).

Strong RSA Assumption [BP97, FO97]. The strong RSA assumption states that given an
RSA modulus N of unknown factorization and a random element g ∈ Z∗N , it is computationally
hard to find any pair of h ∈ Z∗N and e > 1 such that he = g mod N .

3.3 Cryptographic Tools

Pedersen Commitment. The Pedersen commitment [Ped91] is a commitment scheme based
the hardness of discrete logarithm which provides perfect hiding and computational binding. The
parameters for the Pedersen commitment are group generators g, h ∈ G where logg h is hard to
compute. The commitment of a value x, denoted as comg,h(x), is computed as c = gx · hr for

some random r
$← ord(G). The decommitment of c is (x, r). The commitment scheme is additively

homomorphic, namely, comg,h(x1) · comg,h(x2) = comg,h(x1 + x2).
Note that the Pedersen commitment scheme is perfectly hiding as long as g and h are indeed

generators or more weakly, if g is in the subgroup generated by h. This perfectly hiding property

10

holds even if the receiving party knows all the secret information about g, h and G. In our protocol
we need to prove that the Pedersen parameters are generated correctly (i.e., that g ∈ 〈h〉) by sigma
protocols.

In the more general case the Pedersen commitment scheme can be used to commit to vectors.
The parameters for a vector commitment are group generators g1, . . . , gn, h ∈ G (loggi h is hard to
compute for each i). The commitment to a vector ~x = (x1, . . . , xn) is c =

∏n
i=1 g

xi
i · hr where r is

selected at random r
$← ord(G). The decommitment of c consists of x1, . . . , xn and r. The vector

commitment is component-wise additively homomorphic, namely, com(~x1)·com(~x2) = com(~x1+~x2).

Camenisch-Shoup Encryption. In our protocol we will use the Camenisch-Shoup encryption
scheme [CS03] which is additively homomorphic and supports verifiable encryption and decryption.
The key generation algorithm CS Gen samples a random RSA modulus N = pq, where p = 2p′ +
1, q = 2q′ + 1, and p′, q′ are uniformly distributed over all `-bit primes for some ` = `(λ) such
that p, q are also primes and p 6= q. Then it chooses a 2N -th residue g = r2N mod N2 for a
random r ∈ ZN2 and sets y = gx mod N2 for a random x ∈ ZbN/4c. The public key is pk =
(N, g, y) and the secret key is sk = x. The encryption CS Enc of a message m ∈ ZN is ct =(
gr mod N2, (1 +N)m · yr mod N2

)
where r

$← ZbN/4c. The decryption CS Dec of a ciphertext

ct = (u, e) given the secret key is m =
(e
ux
−1) mod N2

N . This encryption scheme slightly differs
from [CS03] in that we drop the last component from the ciphertext since they further achieve
non-malleability which is not needed in our setting.

In our protocol we have to prove that N is a product of two large safe primes (a safe prime p is
a prime number of the form 2p′ + 1 where p′ is also a prime), which is needed for the soundness of
sigma protocols we use related to g and y. In particular, we make use of the fact that there exists
a large subgroup of order p′q′ modulo N2. See [GMR98,CM99] for details on how N can be proved
to be a safe prime product. We also need to additionally prove that the Camenisch-Shoup public
key is properly generated. In particular, the party generating the key must show that g is a random
2N -th residue mod N2, and furthermore that there exists some x such that y = gx mod N2. The
former can be proved by using r equal to some fixed value (e.g. r = 2). Then, assuming N is a safe
prime product, with high probability, r2N will generate a large subgroup of order p′q′ mod N2. To
show y = gx mod N2 for a hidden x, one can use a standard sigma protocol.

ElGamal Encryption. The ElGamal encryption scheme [ElG85] is an multiplicatively homo-
morphic encryption scheme that is used in the shuffle proof [BG12]. For a cyclic group G of order

q with generator g, the key generation algorithm EG Gen samples a random integer x
$← Zq and

computes h = gx. The public key is pk = h and the secret key is sk = x. The encryption EG Enc
of a message m ∈ G is ct = (gy, hy · m). The decryption EG Dec of a ciphertext ct = (u, e)
given the secret key is m = e

ux . Note that a ciphertext ct = (u, e) can easily be re-randomized as
ct′ = (u · gr, e · hr).

2-out-of-2 Threshold Encryption. We use the exponential ElGamal encryption scheme that
is additively homomorphic as the 2-out-of-2 threshold encryption scheme for encrypting the integer
values in our protocol. In the key generation procedure, each party Pb (b = 1, 2) can use EG Gen
for the ElGamal encryption scheme to generate a public key share tpkb and a secret key share tskb,
where tpkb = gtskb . The public key for the threshold encryption scheme is tpk = tpk1 · tpk2 and the

11

secret key is tsk = tsk1+tsk2. The encryption Exp EG Enc of a message m ∈ Zq is ct = (gy, tpky ·gm).

To decrypt a ciphertext ct = (u, e), one party (say P1) half-decrypts it to be ct′ =
(
u, e′ = e

utpk1

)
and the other party (P2) half-decrypts ct′ to obtain m = logg

e′

utpk2
. In our protocol each party

needs to provide proofs that their half-decryption is done correctly, which can be done by sigma
protocols.

Zero-Knowledge Argument of Knowledge. We use the notation introduced in [CS97] for the
various zero-knowledge argument of knowledge of discrete logarithms and arguments of the validity
of statements about discrete logarithms. The following example is taken verbatim from [CS03].

ZK-AoK{(a, b, c) : y = gahb ∧ y = gahc ∧ (v < a < u)}

denotes a “zero-knowledge argument of knowledge of integers a, b, and c such that y = gahb and
y = gahc hold, where v < a < u,” in which y, g, h, y, g, h are elements of some groups G = 〈g〉 = 〈h〉
and G = 〈g〉 = 〈h〉. The convention is that the elements listed in the round brackets denote
quantities the knowledge of which is being proved (and are in general not known to the verifier),
while all other parameters are known to the verifier. Using this notation, a proof-protocol can be
described by just pointing out its aim while hiding all details.

We use similar notations for zero-knowledge proofs. As an example,

ZK{∃x : h = gx}

denotes a zero-knowledge proof that there exists x such that h = gx.
In our protocol we instantiate this form of zero-knowledge arguments of knowledge and zero-

knowledge proofs by sigma protocols. We elaborate how this can be done and how batching tech-
niques work for sigma protocols in Section 5. The concrete sigma protocols used in our construction
are presented in Appendix C.

Fiat-Shamir Heuristic. All the sigma protocols presented in Appendix C are interactive and
public-coin, where the messages from the verifier are all chosen uniformly at random and indepen-
dently of the messages sent by the prover. We only prove they are honest-verifier zero-knowledge.
By the Fiat-Shamir heuristic [FS86], these protocols can be turned into a non-interactive proof or
argument where the prover computes the public-coin challenges with a cryptographic hash func-
tion instead of interacting with a verifier, which reduces rounds of communication as well as total
communication cost. Furthermore, the resulting non-interactive protocol can be proved malicious
secure in the random oracle model.

Shuffle Proof. Bayer-Groth [BG12] proposed a zero-knowledge argument of knowledge for the
correctness of re-randomized and shuffled of homomorphic encryptions, which achieves sublinear
communication complexity. More specifically, given the public key pk of the homomorphic encryp-
tion, original ciphertexts {cti}i∈[n], a permutation π over [n], re-randomized and shuffled ciphertexts
{ct′π(i)}i∈[n] where ct′π(i) = cti · Encpk(1; ri). The following ZK-AOK

ZK-AoK
{

(π, {ri}i∈[n]) : cti · Encpk(1; ri) ∀i ∈ [n]
}

can be prove with communication complexity O(
√
n). In addition, two statements can be proved to

use the same permutation π. The protocol is interactive with public-coins, hence it can be turned
into a non-interactive malicious secure one using the Fiat-Shamir heuristic.

12

3.4 Security Model

We define security of a private intersection-sum protocol against malicious adversaries in the ide-
al/real world paradigm. The definition compares the output of a real-world execution to the output
of an ideal-world execution involving a trusted third party, which we call an ideal functionality.
The ideal functionality F , defined in Figure 1, receives the two parties’ inputs, computes the
intersection-sum and returns the output to both parties. Loosely speaking, the protocol Π is secure
if the output of the adversary in the real-world execution is computationally indistinguishable from
the output of the adversary in the ideal-world execution, which means that a real-world execution
of the protocol does not leak any more information than the ideal-world execution. Hence, the
parties can only learn what they can infer from their inputs and the output.

Public Parameters: P1’s set size n1 and P2’s set size n2.

Inputs: Party P1 inputs a set of identifiers along with associated integer values (X,V) =
{(xi, vi)}i∈[n1], Party P2 inputs a set of identifiers Y = {yi}i∈[n2].

Output: Upon receiving the inputs from both parties, the ideal functionality F computes the
intersection I = X∩Y and intersection-sum S =

∑
i:xi∈I vi and outputs the intersection-cardinality

|I| and intersection-sum S first to the corrupted party, then to the honest party.

Corrupted Party: The corrupted party may deviate from its input, may abort the procedure at
any time by sending abort to the ideal functionality, and may decide the time of message delivery.

Figure 1: Ideal functionality of malicious secure private intersection-sum.

Formally, we say a private intersection-sum protocol is secure against malicious adversaries if
for every PPT adversary A in the real world, there exists a PPT adversary S in the ideal world
such that for any input (X,V) and Y ,

RealΠ,A((X,V), Y)
c
≈ IdealF ,S((X,V), Y),

where RealΠ,A((X,V), Y) denotes the output of A in the real-world execution of protocol Π, and
IdealF ,S((X,V), Y) denotes the output of S in the ideal-world execution.

4 Protocol Description

Our constructions consists of two phases. The first one is an offline setup where the two parties
jointly decide parameters for the cryptographic primitives, which will be used in the online com-
putation. Note that we do not assume trusted setup for any of the primitives and provide secure
two party computation protocols for those. The second phase is the online computation that is
dependent on the input sets and uses the parameters from the setup. The main building block
for our online phase is a shuffled distributed oblivious PRF (DOPRF) construction, which is a
primitive of independent interest and other potential applications. Thus, we present the shuffled
DOPRF construction separately.

Offline Setup. In our malicious secure private intersection-sum protocol, the two parties first
run a (one-time) offline setup to generate the parameters for encryption and commitment schemes.
The two parties first agree on a group G where max(n1, n2)-DHI assumption holds. This group will

13

0. P1 and P2 agree on a group G of order q with a generator g̃ for which the max(n1, n2)-DHI
assumption holds.

1. Each party Pb generates (pkb, skb) ← CS Gen(1λ) where gb = (rb)
2N for a random element

rb ∈ ZN2 , pkb = (Nb, rb, gb, yb) and Nb ≥ 23λq2, skb = xb. Party Pb sends pkb to the other
party along with a ZK-proof that Nb is a product of two large safe primes and that yb is
correctly formed:

ZK
{
∃xb : yb = (gb)

xb mod N2
b

}
.

2. Each party Pb generates Pedersen commitment parameters (gb, hb) for the large subgroup of
Z∗Nb and sends (gb, hb) to the other party together with a zero-knowledge proof that gb ∈ 〈hb〉:

ZK-AoK {∃rb : gb = (hb)
rb} .

3. Each party Pb generates (tpkb, tskb) ← EG Gen(1λ) for the 2-out-of-2 threshold encryption
scheme on the group G with generator g̃ and sends tpkb to the other party along with a
ZK-AOK of tskb:

ZK-AoK{tskb : tpkb = (g̃)tskb}.

Both parties compute the public key tpk = tpk1 · tpk2.

4. Each party Pb generates an ElGamal key pair (pkb, skb) for the group G with generator g̃ and
sends pkb to the other party with a proof:

Figure 2: One-time offline setup of the malicious secure private intersection-sum protocol.

be the group where they compute DOPRF on. Each party generates parameters for Camenisch-
Shoup encryption, ElGamal encryption and Pedersen commitments, and sends the public parts to
the other party with corresponding proofs for correct generation (which is done as discussed in
Section 3.3 and Appendix C). The two parties generate parameters for the 2-out-of-2 threshold
ElGamal encryption, which can be done by each party generating locally ElGamal parameters
and setting the shared secret key to be the sum of the two local secret keys, and computing the
corresponding public key. The detailed protocol is described in Figure 2.

Online Phase. After the one-time offline setup, for each private intersection-sum instance, the
two parties run an online protocol described in Figure 3. The inputs for the two parties are as
follows: P1 has an input set of elements X = {xi}i∈[n1] with associated integer values V = {vi}i∈[n1],
while P2 has only a set of elements Y = {yi}i∈[n2]. The output of the protocol is that either both
parties abort, or both parties obtain the intersection sum

∑
i:xi∈Y vi.

At a high level this protocol uses the shuffled DOPRF to enable both parties to obtain shuffled
PRF evaluations for the values in X and Y , where the PRF values from X are paired with ElGamal
encryptions of the corresponding integer values from V , which are encrypted under the 2-out-of-2
threshold ElGamal. Afterwards, the two parties compute independently the ElGamal encryption
of the intersection sum since they can compute the intersection on the PRF values and then sum
the encryptions of the integer values. At that point, the two ciphertexts held by the parties should
be identical. Now each party verifiably half-decrypts the ciphertexts it has obtained and sends the

14

1. Each party Pb samples a random PRF key share kb
$← [q].

2. P1 computes Cxi ← comg2,h2(xi) for all i ∈ [n1], sends Cxi with ZK-AOK to P2:

ZK-AoK {(xi, ri) : Cxi = (g2)xi · (h2)ri} .

P2 computes Cyi ← comg1,h1(yi) for all i ∈ [n2], sends Cyi with ZK-AOK to P1:

ZK-AoK {(yi, si) : Cyi = (g1)yi · (h1)si} .

3. P1 and P2 jointly decide on a random generator g for the group G.

4. P1 and P2 run two shuffled DOPRF protocols described in Figure 4 in parallel, one with P1

holding the input and the other with P2 holding the input:

• Shuffled DOPRF 1: P1 and P2 perform the shuffled DOPRF protocol on P1’s input
X = {xi}i∈[n1]. The output PRF values are denoted as {σπ(i)}i∈[n1]. In parallel to this
protocol, they do the following:

– Round 2: P1 computes ctvi ← Exp EG Enctpk(vi) for each i ∈ [n1] and sends
{ctvi}i∈[n1] to P2.

– Round 3: P2 re-randomizes {ctvi}i∈[n1] to obtain {ct′vi}i∈[n1], and then uses the per-
mutation π (same as in the shuffled DOPRF protocol) to shuffle the re-randomized

ciphertexts to obtain
{

ct′vπ(i)

}
i∈[n1]

. P2 sends
{

ct′vπ(i)

}
i∈[n1]

to P1 along with a

ZK-AOK:

ZK-AoK
{

(π, {ri}i∈[n1
) : ct′vπ(i) = ctvi · Exp EG Enctpk(1; ri) ∀i ∈ [n1]

}
• Shuffled DOPRF 2: P1 and P2 perform the shuffled DOPRF protocol, with roles

reversed, on P2’s input Y = {yi}i∈[n2]. We denote the set of PRF values as Fk(Y).

5. Each party Pb determines the intersection set I := {t : σt ∈ Fk(Y)} and computes ctS =∏
t∈I ct′vt . Pb verifiably half-decrypts ctS using tskb and sends to the other party.

6. Each party half-decrypts the ciphertext half-decrypted by the other party, and outputs the
intersection sum S.

Figure 3: Online phase of the malicious secure private intersection-sum protocol.

resulting verifiable partial decryption to the other party. Then both parties can half-decrypt the
partial decryption they received to obtain the output.

Shuffled DOPRF Protocol. We describe our malicious secure shuffled DOPRF construction
as a stand-alone primitive in Figure 4. For the purposes of the following discussion P1 is the
party that holds input elements {xi}i∈[n1], and P1 and P2 jointly evaluate the shuffled DOPRF
on these elements. First, P2 commits to its PRF key share k2 and also sends a Camenisch-Shoup

15

Round 1. Party P2 computes ctk2 ← CS Encpk2(k2) and Ck2 ← comg1,h1
(k2). Recall that pk2 = (N2, g2, y2).

P2 sends ctk2 = (u, e) and Ck2 to P1 along with a ZK-AOK

ZK-AoK
{

(k2, r1, r2) : u = gr12 ∧ e = (1 +N2)k2 · yr12 ∧

Ck2 = (g1)k2 · (h1)r2 ∧ k2 ≤ q · 22λ+1
}
.

Round 2. For each input xi where i ∈ [n1], party P1 does the following:

(a) Choose a random ai
$← [q] and bi

$← [q · 2λ]. Compute gi = gai .

(b) Compute αi = ai · (k1 + xi) and commitments Cai ← comg2,h2
(ai), Cbi ← comg2,h2

(bi), Cαi =
comg2,h2

(αi).

(c) Let βi = ai · (k1 + k2 + xi) + bi · q = ai · k2 + αi + bi · q and compute ctβi ← (ctk2)ai · CS Encpk2(αi) ·
(CS Encpk2(bi))

q.

(d) Send (Cai ,Cbi ,Cαi , ctβi , gi) to P2, together with a ZK-AOK

ZK-AoK
{

(ai, bi, αi, r1, r2, r3, r4, r5, r6) :

Cai = (g2)ai · (h2)r1 ∧ ai ≤ q · 22λ+1 ∧
Cbi = (g2)bi · (h2)r2 ∧ bi ≤ q · 23λ+1 ∧
Cαi = (g2)αi · (h2)r3 ∧ Cαi = (Ck1 · Cxi)ai · (h2)r4 ∧ αi ≤ q · 22λ+1 ∧
ctβi = (ctk2)ai · CS Encpk2(αi; r5) · (CS Encpk2(bi; r6))q∧
gi = gai

}
.

Note that Cxi was sent by P1 in Step 2 of the online phase, and Ck1 was sent by P1 in Round 1 of the
other shuffled DOPRF protocol where P2 holds the input.

Round 3. Party P2 does the following:
(a) Verify all the ZK-AOKs received from P1; otherwise abort.

(b) For each i ∈ [n1], compute βi ← CS Decsk2(ctβi) and Cβi ← comg1,h1
(βi). Compute γi = β−1i mod q

and σi = gγii . Compute ctσi ← EG Encpk2(σi).

(c) Verify that {σi}i∈[n1] are all distinct; otherwise abort.

(d) For each i ∈ [n1], send (Cβi , ctσi) to P2 together with a ZK-AOK

ZK-AoK
{

(sk2, βi, r1, r2) : βi = CS Decsk2(ctβi) ∧

Cβi = (g1)βi · (h1)r1 ∧ βi ≤ q2 · 23λ+1 ∧

ctσi = EG Encpk2

(
(gi)

β−1
i ; r2

)}
.

(e) Re-randomize {ctσi}i∈[n1] to obtain {ct′σi}i∈[n1] with randomness 0. Pick a random permutation π

over [n1] and send
{
ct′σπ(i)

}
i∈[n1]

to P1 together with a ZK-AOK:

ZK-AoK
{

(π, {ri}i∈[n1
) : ct′σπ(i)

= ctσi · EG Encpk2(1; ri) ∀i ∈ [n1]
}
.

As
{
ct′σπ(i)

}
i∈[n1]

has randomness 0, P1 obtains
{
σπ(i)

}
i∈[n1]

.

Output. P1 verifies all the ZK-AOKs received from P2 and aborts otherwise. Both parties obtain
{σπ(i)}i∈[n1].

Figure 4: Malicious secure shuffled DOPRF protocol where P1 holds the input.
16

encryption of it under its own key to P1 together with a proof that the encrypted and the committed
values are the same. P1 can then homomorphically compute CS Encpk2(k1 + k2 + xi) for each of
its element xi. To mask the value k1 + k2 + xi, P1 chooses randomizing values ai and bi and
compute ctβi = CS Encpk2(ai · (k1 + k2 + xi) + bi · q) and gi = gai . P1 also commits to the values
ai, bi, αi = ai ·(k1 +xi) together with proofs that these commitments and encryptions use consistent
values. P2 verifies the correctness of the proofs, decrypts ctβi to obtain βi = ai·(k1+k2+xi)+bi·q and

computes the PRF evaluation σi = g
β−1
i
i = g

1
k1+k2+xi . Then, P2 computes an ElGamal encryption

EG Encpk2(σi) and a commitment Cβi and sends them to P1 together with a proof that these values
encrypt and commit to the decryption of ctβi , which P1 verifies. In addition P2 re-randomizes
and shuffles values ctσi with output {ct′σπ(i)}i∈[n1], and sends these values together with a proof of
shuffling. Finally, σπ(i) are revealed to P1 if P2 re-randomizes the ciphertexts using randomness
0. P1 verifies the proofs and accepts the values σπ(i) as its output PRF values. In this step, P2

switches from Camenisch-Shoup encryption to ElGaml encryption because the value to encrypt is

σi = g
β−1
i
i and what P2 needs to prove knowledge about is β−1

i instead of σi. Encrypting σi using
ElGamal in the group G enables this proof of knowledge. If the verification of any of the proofs
during the execution so the protocol fails, then the parties abort.

Additionally, during the execution of the DOPRF on the inputs of P1, the parties run the
following additional steps in parallel with the DOPRF evaluation in order to facilitate keeping the
values vi paired with the appropriate PRF evaluations. In Round 2 of the DOPRF protocol, P1

encrypts the vi values using the ElGamal encryption parameters where the secret key is shared
between the two parties. P1 sends these encryptions paired with the partial PRF evaluations on
its elements xi. When P2 returns the completed DOPRF evaluations in a permuted order, it also
sends the re-randomized encryptions of the values vi permuted in the same order along with a proof
that these two sets were shuffled with the same permutation.

Enabling Batching. So far we described our shuffled DOPRF construction for each element
xi and the ZK-AOKs in the protocol are all sigma protocols for single statements. To reduce
communication of the protocol we utilize various batching techniques which we describe in Section 5.
The concrete instantiation of our private intersection-sum protocol does not use the shuffled DOPRF
in a completely non-black box way, which we discuss in the following.

In Step 2 of the online phase, P1 will commit implicitly to its inputs by committing to the values
ai and αi = ai(k1 + xi) and P2 will implicitly commit to its inputs similarly. These values can be
batched and the sigma protocols for the batched commitments can also be batched. In addition
each party will commit to their DOPRF key share in this step. This change does not affect our
security guarantee because the commitments of ai and αi suffice to extract the set elements in the
simulation proofs before the PRF parameters are generated and hence security can still be reduced
to the weaker selective security notion for the underlying PRF. Looking ahead, the commitments of
ai, αi and kb will be used directly later in Round 2 of the DOPRF protocol for further computation
avoiding the need to prove the consistency of xi, ai and αi in batched Cxi and batched Cαi , which
would have been the case if the parties commit only to their elements before the PRF parameter
generation.

To enable batching the first component of the Camenisch-Shoup ciphertexts, every batched
Camenisch-Shoup ciphertext has t slots. In Round 1 of the DOPRF protocol, P2 will encrypt t
copies of k2, where the i-th copy of k2 is encrypted in the i-th slot and the other slots are all 0.
These encryptions will be used later in Round 2 of the shuffled DOPRF protocol to enable batching

17

Camenisch-Shoup encryptions of βi.
Finally, in Round 2 of the DOPRF protocol, P1 can make use of previously committed ai, αi, k1

along with encryption of k2 to batch Camenisch-Shoup encryptions and Pedersen commitments
of βi. The sigma protocols in this step can also be batched. The details of batching each sigma
protocol are presented in Appendix C.

5 Batching Techniques

In this section we discuss batching techniques in various parts of our protocol. These techniques
have a significant effect on our protocol’s communication cost and may be of independent interest.

5.1 Batching Pedersen Commitments

As mentioned in Section 3.3, Pedersen commitments can be genenralized to allow committing to
vectors of values. For batched commitments of vectors of length t, the parameters are group
generators g1, . . . , gt, h ∈ G such that loggi h is hard to compute for each i, and loggi gj is hard to

compute for any pair i, j. The commitment to a vector ~x = (x1, . . . , xt) is c =
∏t
i=1 g

xi
i · hr where

r is selected at random r
$← ord(G).

Batched Pedersen commitments are also compatible with sigma protocols of the knowledge and
equality of exponents. To do so, the prover simply proves knowledge of all exponents simultneously.
Furthermore, if the group G is one in which the Strong RSA assumption holds, then the following
generalization of Theorem 3 from [CS03] holds: given randomly chosen g1, . . . , gt, h ∈ G, it is hard
to find w ∈ G and (a1, ..., at, b, c) such that

wc =
t∏
i=1

gaii · h
b

Unless c | ai for all i ∈ [t], and also c | b. The proof of this generalization closely follows from the
proofs of Theorems 2 and 3 from [CS03].

Given these properties, we can replace most commitments in our protocols with batched com-
mitments, that is, we commit to t values together. To enable this, each of our sigma protocols will
commit to and prove statements about t messages simultaneously. Note that this reduces the num-
ber of commitments we send by a factor of t, but we still need to send one element per committed
value in the last step of each sigma protocol. At first this does not seem to lead to a significant gain
in efficiency. However, sigma protocols for batched commitments can also be batched, enabling the
prover to send a single set of t elements in the last step to verify ` sigma protocols simultaneously.
Combining the two forms of batching by setting t and ` to approximately

√
n, we can reduce the

overall communication cost of the sigma protocols to be sublinear. We will discuss how to batch
sigma protocols in Section 5.3, and we refer the reader to Appendix C.4 for a concrete example of
batching sigma protocols for batched commitments.

5.2 Batching Camenisch-Shoup Encryption

We notice that Camenisch Shoup encryption introduces a 4× expansion in the ciphertext as com-
pared to the plaintext. This is due to the fact that a ciphertext contains 2 elements mod N2 of

18

total length 4n bits (where n = logN), while the ciphertext can only hold a message of |n| bits.
This causes a significant constant expansion to our protocol messages.

We describe various types of batching that enable reducing the expansion of Camenisch-Shoup
encryption to be as close to 1× as desired.

5.2.1 Computing mod N s+1

Analogous to the Damg̊ard-Jurik extension to the Paillier cryptosystem [DJ01], one can generalize
the Camenisch-Shoup cryptosystem to compute modulo N s+1. In more detail, the public key in
this generalization consists of (N, g, y, s) where N is generated same as before, g is a random 2N s-th
residue modulo N s+1, and y = gx mod N s+1 for a random x ∈ ZbN/4c, and x is the secret key.

Similarly to the Damg̊ard-Jurik extension, this generalization of Camenisch-Shoup encryption
enables encrypting messages of size up to N s. Concretely, given m ∈ ZNs , it would be encrypted

as ct = (gr mod N s+1, (1 + N)myr mod N s+1), where r
$← ZbN/4c. Decryption is slightly more

involved. To decrypt ct = (u, e), one must compute e/(ux) mod N s+1 and then perform a recursive
decoding to recover m, exactly as described in Section 3 of [DJ01].

Additionally, similar to the proof of Theorem 1 in [DJ01], the security of the generalized
Camenisch-Shoup scheme follows from the Decisional Composite Residuousity Assumption.

We note that, with this generalization, one can encrypt a message of length n · s using a
ciphertext of size 2 · n · (s+ 1), meaning that the expansion factor is reduced from 4× to 2(s+1)

s ×,
which becomes arbitrarily close to 2× as s grows.

5.2.2 Sharing the first ciphertext component

A remaining source of ciphertext expansion is that each ciphertext has 2 components, (u, e). One
way to reduce this type of expansion is to have multiple components e that all share the first
component u.

More concretely, we modify the scheme so that the public key consists of (N, g, {yi}ti=1), where
yi = gxi mod N2 for random xi ∈ ZbN/4c. The secret key becomes {xi}ti=1.

This scheme allows encrypting t messages by t+1 components. Specifically, to encrypt messages

{mi}ti=1, one computes u = gr mod N2 for r
$← ZbN/4c, and ei = (1 + N)mi · yri mod N2 for each

i ∈ [t], and sets ct = (u, {ei}ti=1). To decrypt a particular ciphertext, one simply decrypts each

piece, computing mi =
(ei
uxi
−1) mod N2

N .
This scheme is also entry-wise additively homomorphic. Given ct = (u, {ei}ti=1) encrypting

{mi}ti=1 and ct′ = (u′, {e′i}ti=1) encrypting {m′i}ti=1, the ciphertext ctsum = (u · u′ mod N2, {e ·
e′i mod N2}ti=1) is an encryption of {mi +m′i mod N}ti=1. One can also homomorphically multiply
each underlying mi with a single scalar a by computing cta = (ua mod N2, {(ei)a mod N2}ti=1),
which is an encryption of {a ·mi mod N}ti=1.

This optimization enables t messages of size n bits to be encrypted using a ciphertext of size
(t+ 1) · 2n bits, which corresponds to an expansion factor of 2(t+1)

t .
The two optimizations can be combined, meaning that for any choice s and t, we can encrypt

t messages each of size n · s bits using a ciphertext of size (s + 1) · (t + 1) · n bits. This means

the ciphertext has an expansion of (s+1)·(t+1)
s·t ×. As t and s grow, this means we can make the

ciphertext expansion as close to 1 as we like.

19

5.2.3 Encrypting multiple messages in a single ciphertext

Utilizing the batching techniques in the previous two subsections, one can reduce the ciphertext
expansion of the Camenisch-Shoup encryption scheme, but the plaintext space becomes as large as
N s. We now describe how the plaintext space can be decomposed into slots of size B each. More
concretely, each ciphertext can be viewed as having t · s′ “slots” of messages ≤ B, where s′ = bNs

B c.
Recall that t comes from the fact that we encrypt t messages each of size up to N s with shared
first component. The s′ component comes from the fact that the message space N s is now divided
into s′ slots of size B each. Specifically, given t · s′ messages {mi,j}i∈[t],j∈[s′] in ZB, we compute

mi =
∑s′

j=1mi,j · Bj−1 for each i ∈ [t] and then encrypt the t messages {mi}ti=1. (Note that each
mi ≤ N s.) Given a public key (g, {yi}i∈[t]) the ciphertext is computed as follows:

ct =



u = (g)r

e1 = (1 +N)
∑s′
j=1m1,j ·Bj−1

· (h1)r

...

ei = (1 +N)
∑s′
j=1mi,j ·Bj−1

· (hi)r
...

et = (1 +N)
∑s′
j=1mt,j ·Bj−1

· (ht)r

We observe that the resulting encryption is slot-wise additively homomorphic as long as the
sum in each slot never exceeds B. In addition, all the slots can be homomorphically multiplied by
a single scalar simultaneously as long as the resulting value in each slot does not exceed B.

These slotted encryptions are compatible with all the other pieces of our protocol. In particular
the following needed properties of the Camenisch-Shoup encryption scheme can be extended to the
slotted encryptions (including in combination):

1. Proof that the value encrypted in a ciphertext is identical to the value underlying another
commitment.

2. Proof that a ciphertext decrypts to a value underlying another commitment.

3. Proof that a ciphertext was produced by homomorphically adding a committed value to
another ciphertext, and rerandomizing.

4. Proof that a ciphertext was produced by homomorphically scalar-multiplying a committed
value to another ciphertext and rerandomizing.

5.2.4 Batching commitments of decrypted values

In our protocol (see Appendix C.7 for the specific step), we need to commit to a set of values
{βi} that are decrypted from the batched Camenisch-Shoup ciphertexts and prove consistency
between the committed values and decrypted values. We can batch the commitments as described
in Section 5.1, and prove consistency between batched commitments with batched decryption. The
high-level idea is the following. Given a set of commitments and ciphertexts, the verifier first picks
a set of random coefficients {ci}. Then both parties can compute a single commitment and a single

20

1. Prover samples x̃
$← [q] and sends ỹ = gx̃ to Verifier.

2. Verifier chooses random challenges ci
$← {0, 1}λ for i ∈ [`], and sends to Prover.

3. Prover computes x̂ = x̃+
∑`

i=1 ci · xi mod q, and sends x̂ to Verifier.

4. Verifier verifies that gx̂ = ỹ ·
∏`
i=1(yi)

ci .

Figure 5: Example for batching sigma protocols.

encryption of a random linear combination of the underlying values, namely
∑
ciβi. After that, the

prover simply proves consistency between the resulting commitment and encryption. Our batched
proof for this step has sublinear communication complexity.

5.3 Batching Sigma Protocols

In certain circumstances, it is possible to batch a set of ` sigma protocols that prove similar state-
ments, such that the batched protocol has communication cost similar to a single sigma protocol.
Batching sigma protocols is well-known in the literature [GLSY04, Gro09]. In this section we de-
scribe a variant that is compatible with range proofs, and in particular, induces much less slack in
the range-proof bound.

We describe the technique by an example. Let g be a generator of a group G of order q, and let
{yi = gxi}i∈[`], where each xi ∈ [q]. We give a batched sigma protocol in Figure 5 for the following
ZK-AOK:

ZK-AoK
{
{xi}i∈[`] : yi = gxi ∀i ∈ [`]

}
.

We can see in the figure that the prover sends a single group element in its first message (as
opposed to ` group elements in an unbatched execution) and a single element in its response to the
verifier (as opposed to ` elements in an unbatched execution). The verifier sends ` challenges instead
of one, but the communication cost of these can be ignored if we use the Fiat-Shamir heuristic to
make the protocol non-interactive. This means that the communication cost is essentially the same
as a single unbatched sigma-protocol execution. Completeness of the protocol is straightforward.
Next we prove its soundness and zero-knowledge property.

Soundness and Extraction. We construct a PPT extractor that interacts with a cheating
prover and extracts valid witnesses {xi}i∈[`]. The extractor first executes the protocol honestly

with the prover and obtains a transcript (ỹ, {ci}i∈[`], x̂) such that gx̂ = ỹ ·
∏`
i=1 y

ci
i .

Now the extractor rewinds the protocol to Step 2 and sends a different random challenge c′1
while keeping all the other challenges the same, and obtains x̂′ such that gx̂

′
= ỹ · (y1)c

′
1
∏`
i=2(yi)

ci .
Combining the two equations, the extractor gets g∆x̂ = y∆c

1 where ∆x̂ = x̂− x̂′ and ∆c = c1 − c′1.
Now the extractor can compute x1 = ∆x̂ ·(∆c)−1 mod q. This process can be repeated for all i ∈ [`]
to extract all xi.

Zero-knowledge. We prove this protocol is honest-verifier zero-knowledge by constructing a

PPT simulator that does the following. First it samples ci
$← {0, 1}λ for all i ∈ [`] and x̂

$← [q], and

21

then computes ỹ = gx̂/
∏`
i=1(yi)

ci . Finally it outputs the transcript (x̃, {ci}i∈[`], x̂). The simulated
transcript is statistically identical to the real protocol.

This batching technique extends naturally to more complex sigma protocols that prove relations
between multiple elements and consistency between exponents. Concrete examples of the batched
sigma protocols we use in our protocol can be found in Appendix C.

Effect of batching on range proofs. Batching has a small effect on the slack of range proofs
that we consider. Recall that the size bound on a particular exponent x is related to the size of
x̂, that is, the part of the prover’s response related to that element. Batching ` sigma protocols
increases the size of each element of the prover’s response by a factor of `. This is because the value
needs to be big enough to statistically mask

∑`
i=1 ci ·xi, which is ` times larger than the unbatched

case. Therefore, batching introduces an additional factor of ` to the proved range.

5.4 Multi-exponentiation Argument

In our protocol (see Appendix C.7 for the specific step), we will need to batch a set of arguments
that an ElGamal ciphertext ct′i is a re-randomization of another ciphertext cti raised to a hidden
committed value βi. Our idea is to first take a random linear combination of these equations and
then prove an ElGamal ciphertext c̃t is the product of a set of known ciphertexts

{
c̃ti
}

raised to a set
of hidden committed values {βi}, where the commitments are batched as described in Section 5.1.
We notice that this can be achieved by a multi-exponentiation argument from the work of Bayer
and Groth [BG12], which has sublinear communication complexity. One subtlety is that the values
{βi} are committed in the group of the Camenisch-Shoup encryption for proving consistency with
the decrypted values, but to the apply multi-exponentiation argument, they must be committed
in the group of the ElGamal encryption. Therefore, we commit to {βi} in both groups and prove
consistency between the commitments. Since all the commitments and sigma protocols can be
batched, the overall communication complexity is sublinear.

6 Communication, Computation and Monetary Costs

In this section, we present the communication, computation and monetary costs of our protocol.
The offline phase for generating parameters for the different primitive we will use has a fixed cost,
which includes four ZK-AoK of exponent per party plus one proof that a modulus N is a product
of safe primes [CM99], which requires O(κ2 logN) communication and computation where κ is the
security parameter for the soundness of the last proof.

For our online phase, we have several batching optimizations described in Section 5 that allow
us to achieve different trade-offs between communication and computation. Thus, we state our
efficiency estimates parameterized with the different batching parameters presented in Table 1 that
we apply for the commitments and encryptions. Our shuffled DOPRF has 3 rounds, each of which
has an associated sigma protocol. Wherever the sigma protocols can be batched, we batch them
into a single execution, and this is reflected in the costs. The specifics of the batching can be seen
in Appendix C.

In Table 2 we present the computation and communication cost estimates for the different
phases of out protocol. There are three different types of computational operations we perform
in the protocol, namely group operations in G, exponentiations mod N (for commitments), and

22

Notation Parameter Meaning

n number of inputs in each set
G group for OPRF
sizeG size of elements in G
N RSA modulus
λ security parameter for sigma protocol soundness and hiding
scam modulus parameter for CS encryptions, their modulus will be N scam+1

s′cam number of plaintexts that fit in the message space N scam+1

tcam number of components ei per CS encryption that share the first component u
Ncam total number of CS ciphertexts (dn/(s′cam · tcam)e)
sped number of values committed in a Pedersen vector commitment in DOPRF round 2
nped number of Pedersen vector commitments in DOPRF round 2 (dn/spede)
n′cam number of batched CS ciphertexts per batched Pedersen commitment dsped/(s′cam · tcam)e
mmultiexp dimension m to use in the multiexponentation proof from Bayer et al [BG12] in DOPRF Round 3.

Table 1: Parameter notation

exponentiations mod N scam+1 for Camenisch-Shoup encryption. There are also 4 types of elements
we communicate: group elements in G, elements modulo N , elements modulo N s+1, and sigma
protocol response messages from the prover. The entries of Table 2 reflect counts of each of these
types of operations and elements transferred.

Computation Communication

DOPRF Round 1

Messages 2 exp mod N +tcam · (tcam + 1) exp mod N scam+1 |N | · (1 + tcam · (tcam + 1) · (scam + 1))

Sigma Protocol 5 exp mod N +3tcam · (tcam + 1) exp mod N scam+1 |N | · (tcam + 3 + tcam · (tcam + 1) · (scam + 1))

DOPRF Round 2

Messages (n+ ncam) · (tcam + 1) exp mod N scam+1 (ncam · (tcam + 1)(scam + 1) · |N |))
+(3n+ 3nped) exp mod N + n exp in G +n · sizeG + 3nped · |N |

Sigma Protocol 2 · (ncam + sped) · nsig(tcam + 1) exp mod N scam+1 |N | · n′cam((scam + 1) · (tcam+1) + log nped + k)
(10sped + 10) + 5nped exp mod N + (2sped + n) exp in G +(5sped + 8) · |N | + sped · sizeG

DOPRF Round 3

Messages n/s′cam exp mod N scam+1 + (n+ nped) exp mod N (3n+ nped) · sizeG + nped|N |
+4n+ nped exp in G

Sigma Protocol 1 (2 + nped) · (ncam + 1) · (tcam + 1) exp mod N scam+1 (ncam + 1) · (scam + 1) · (tcam + 1)|N |
+2(sped + 1) + nped exp mod N +(|N |+ k)tcam

+2(sped + 1) + nped exp in G +sped · (3k + 2sizeG)

Sigma Protocol 2 2n(mmultiexp + 6 · dn mmultiexpe + exp in G (5mmultiexp + dn mmultiexpe+ 10) · sizeG

Table 2: Counts of various operations performed in each step of the DOPRF protocol, and corre-
sponding communication cost.

We will compare our protocol’s cost against the baseline, namely the semi-honest Diffie-Hellman
based intersection-sum protocol [IKN+17]. In our concerete instantiation, we use safe RSA moduli
of length 1536 bits. We use NIST curve prime256v1 as our group G.

To minimize communication costs, in the first and seconds rounds of the shuffled DOPRF
protocol, we set sped =

√
n and batch

√
n sigma protocols together. We further set tcam = 8.

scam = 4, s′cam = 8 and mmultiexp = 8. We compare costs with the DDH-based shuffled DOPRF
with semi-honest security. The measurements appear in Table 3.

We briefly discuss how we choose our parameters. First we discuss our choice of sped. In Round
2 of the DOPRF, batching Pedersen commitments allows us to send 1 element mod N instead of

23

Our Protocol DDH-based

Input size Comm. (KB) Comp. (s) Comm. (KB) Comp. (s) Comm. Expansion

212 1,287 1,150 256 0.71 5.03 ×
216 17,716 17,865 4,096 11.39 4.325 ×
220 275,675 284,075 65,536 182.29 4.21 ×

Table 3: Comparison of communication and computation costs between our shuffled DOPRF pro-
tocol with parameters set to minimize communication, and the baseline protocol, namely the semi-
honest DDH-based shuffled DOPRF.

sped elements in the Round 2 messages. However, each sigma protocol statement in this round
now also grows to be of length sped, since we must prove knowledge of all values contained in a
commitment together. Since each sigma protocol is of size sped individually, the batched sigma
protocol is also be of length sped. In order to minimize both the number of commitments sent and
the size of the batched sigma protocol, we set sped =

√
n, and bsig =

√
n.

We note that generating the messages of the DOPRF Round 2 constitutes the computation
bottleneck of the protocol. In this round, for each entry in the Receiver’s set, the Receiver has to
perform a homomorphic Camenisch-Shoup scalar multiplication with the encrypted key, and homo-
morphically add it to its encrypted and masked entry. In fact, the overall computation scales with
tcam, the number of components in the Camenisch-Shoup ciphertext. This means that if we increase
the number of components of the Camenisch-Shoup ciphertexts, we end up greatly increasing the
computation. Furthermore, when we increase the parameter scam, we are performing operations in
the substantially larger group nscam+1, which induces non-linearly increasing computation cost. In
Table 4, we attempt to minimize computation, by reducing tcam to 2, scam to 1 and s′cam to 2 . In
this case, communication cost increases by about 60%, but computation cost drops by about 90%.

Our Protocol DDH-based

Input size Comm(KB) Comp(s) Cost(c) Comm(KB) Comp(s) Cost(c) Cost Increase

212 1,893 141 0.053 256 0.71 0.002 24.9×
216 28,289 2,215 0.831 4,096 11.39 0.034 24.2×
220 436,719 35,583 13.1 65,536 182.29 0.551 24.00×

Table 4: Comparison of communication and computation costs between our shuffled DOPRF pro-
tocol when we set parameters to minimize computational cost. These parameters also minimize
monetary cost.

To compare monetary costs, we use the costs from Google Cloud Platform.1 The costs are given
in Table 5. For computation, we use the price for pre-emptible virtual CPUs, which correspond to
machines with an Intel Xeon E5 processor and 3.75 GB of memory, which matches the machines
we used for benchmarking. We consider pre-emptible computation to capture the offline batch-
processing scenario described by works that deploy PSI in practice [IKN+17]. We also use the
cheapest tier of network cost, considering the cost for internet egress, since that captures the
scenario of the two parties being in different datacenters or clouds. We note that, at the time of
publication, all the major cloud providers have costs that are within a tight range.

1See https://cloud.google.com/compute/network-pricing/ for the network cost and https://cloud.google.

24

https://cloud.google.com/compute/network-pricing/
https://cloud.google.com/compute/vm-instance-pricing
https://cloud.google.com/compute/vm-instance-pricing
https://cloud.google.com/compute/vm-instance-pricing

Network cost(USD per GB) Computational cost (USD per CPU-hour)

$0.08 0.01

Table 5: Costs for network and computation on Google Cloud Platform.

Input size 212 Input size 216 Input size 220

Comm Comp Cost Comm Comp Cost Comm Comp Cost

DDH-DOPRF (semihonest) 256 0.71 0.002 4096 11.39 0.034 65536 182.29 0.55

Sort-Compare-Shuffle [HEK12] 209920 0.61 1.60 4941824 12.65 37.7 108691456 235.3 829.3
EC-ROM (one-sided PSI) [RR17b] 4915.2 0.19 0.037 80896 0.94 0.61 1353728 12.6 10.3
DE-ROM (one-sided PSI) [RR17b] 3584 0.23 0.027 62464 1.3 0.47 1118208 18 8.53

Our SDOPRF (low comm.) 1287 1150 0.329 17716 17865 5.09 275675 284075 81.01
Our SDOPRF (low comp.) 1893 141 0.05 28289 2215 0.83 436719 35583 13.21

Table 6: Comparison of computation, communication and monetary costs of our protocols compared
to related works. Monetary costs use the values in Table 5. Communication cost is in KB, Time is
in seconds, and Cost is in cents (USD).

Comparison with existing works. In Table 6, we compare concrete costs of our protocol
against existing works that achieve security against malicious adversaries. The key comparison is
against the Sort-Compare-Shuffle (SCS) approach of Huang et al [HEK12], which is the only existing
work that is compatible with malicious security, two sided output, and computing a function on
associated values in the intersection. We note that both our SDOPRFs have significantly lower
communication, and crucially, lower concrete monetary cost. In particular, the “Low Computation”
variant of our SDOPRF has monetary cost 30× less for 212 entries, and 64× less for 220 entries. We
note that the SCS approach has lower computation costs and end-to-end running time, but that in
the batch-processing setting, the computation cost is less of a factor than concrete monetary costs,
since responses are not needed in real time.

We also compare against the most efficient one-sided malicious PSI works of Rindal et al.
[RR17b], and show that our protocols are in the same ballpark of total monetary cost. In partic-
ular, the “Low Computation” variant of our SDOPRF has monetary cost about 1.5× that of the
DE-ROM variant of [RR17b]. We note that [RR17b] do not easily support two sided output or
computing over the intersection. We believe the modest increased cost of our protocol is reasonable
in order to support these additional functionalities.2

References

[AES03] Rakesh Agrawal, Alexandre Evfimievski, and Ramakrishnan Srikant. Information
sharing across private databases. In Proceedings of the 2003 ACM SIGMOD Interna-
tional Conference on Management of Data, 2003.

[ARF+10] Benny Applebaum, Haakon Ringberg, Michael J Freedman, Matthew Caesar, and
Jennifer Rexford. Collaborative, privacy-preserving data aggregation at scale. In
Privacy Enhancing Technologies Symposium, 2010.

com/compute/vm-instance-pricing for the computation cost.
2Concurrent to our work, Pinkas at el. [PRTY20] present a new one-sided malicious PSI that achieves better

efficiency than [RR17b], but we note that their protocol also does not easily support our two-sided functionality.

25

https://cloud.google.com/compute/vm-instance-pricing
https://cloud.google.com/compute/vm-instance-pricing
https://cloud.google.com/compute/vm-instance-pricing
https://cloud.google.com/compute/vm-instance-pricing
https://cloud.google.com/compute/vm-instance-pricing
https://cloud.google.com/compute/vm-instance-pricing
https://cloud.google.com/compute/vm-instance-pricing
https://cloud.google.com/compute/vm-instance-pricing
https://cloud.google.com/compute/vm-instance-pricing
https://cloud.google.com/compute/vm-instance-pricing
https://cloud.google.com/compute/vm-instance-pricing
https://cloud.google.com/compute/vm-instance-pricing
https://cloud.google.com/compute/vm-instance-pricing
https://cloud.google.com/compute/vm-instance-pricing
https://cloud.google.com/compute/vm-instance-pricing
https://cloud.google.com/compute/vm-instance-pricing
https://cloud.google.com/compute/vm-instance-pricing
https://cloud.google.com/compute/vm-instance-pricing
https://cloud.google.com/compute/vm-instance-pricing
https://cloud.google.com/compute/vm-instance-pricing
https://cloud.google.com/compute/vm-instance-pricing
https://cloud.google.com/compute/vm-instance-pricing
https://cloud.google.com/compute/vm-instance-pricing
https://cloud.google.com/compute/vm-instance-pricing
https://cloud.google.com/compute/vm-instance-pricing
https://cloud.google.com/compute/vm-instance-pricing

[BB04] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In EURO-
CRYPT, 2004.

[BBDC+11] Pierre Baldi, Roberta Baronio, Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik.
Countering gattaca: efficient and secure testing of fully-sequenced human genomes.
In ACM CCS, 2011.

[BCC+09] Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya,
and Hovav Shacham. Randomizable proofs and delegatable anonymous credentials.
In CRYPTO. 2009.

[BG12] Stephanie Bayer and Jens Groth. Efficient zero-knowledge argument for correctness
of a shuffle. In EUROCRYPT, 2012.

[BHLB11] Elie Bursztein, Mike Hamburg, Jocelyn Lagarenne, and Dan Boneh. Openconflict:
Preventing real time map hacks in online games. In IEEE Symposium on Security and
Privacy, 2011.

[BMR10] Dan Boneh, Hart William Montgomery, and Ananth Raghunathan. Algebraic pseu-
dorandom functions with improved efficiency from the augmented cascade. In ACM
CCS, 2010.

[Bou00] Fabrice Boudot. Efficient proofs that a committed number lies in an interval. In
EUROCRYPT, 2000.

[BP97] Niko Barić and Birgit Pfitzmann. Collision-free accumulators and fail-stop signature
schemes without trees. In EUROCRYPT, 1997.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In ACM CCS, 1993.

[CKRS09] Jan Camenisch, Markulf Kohlweiss, Alfredo Rial, and Caroline Sheedy. Blind and
anonymous identity-based encryption and authorised private searches on public key
encrypted data. In PKC, 2009.

[CM99] Jan Camenisch and Markus Michels. Proving in zero-knowledge that a number is the
product of two safe primes. In EUROCRYPT, 1999.

[CO18] Michele Ciampi and Claudio Orlandi. Combining private set-intersection with secure
two-party computation. In SCN, 2018.

[CS97] Jan Camenisch and Markus Stadler. Efficient group signature schemes for large groups.
In CRYPTO, 1997.

[CS03] Jan Camenisch and Victor Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In CRYPTO, 2003.

[CZ09] Jan Camenisch and Gregory M Zaverucha. Private intersection of certified sets. In
Financial Cryptography and Data Security, 2009.

[Dam02] Ivan Damgard. On Σ-protocols. 2002. http://www.cs.au.dk/~ivan/Sigma.pdf.

26

http://www.cs.au.dk/~ivan/Sigma.pdf

[DCGT12] Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik. Fast and private computation
of cardinality of set intersection and union. In CANS, 2012.

[DCKT10] Emiliano De Cristofaro, Jihye Kim, and Gene Tsudik. Linear-complexity private set
intersection protocols secure in malicious model. In ASIACRYPT, 2010.

[DCW13] Changyu Dong, Liqun Chen, and Zikai Wen. When private set intersection meets big
data: an efficient and scalable protocol. In ACM CCS, 2013.

[DD15] Sumit Kumar Debnath and Ratna Dutta. Secure and efficient private set intersection
cardinality using bloom filter. In International Information Security Conference, 2015.

[DJ01] Ivan Damg̊ard and Mads Jurik. A generalisation, a simplification and some applica-
tions of paillier’s probabilistic public-key system. In PKC, 2001.

[DSMRY09] Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Moti Yung. Efficient robust
private set intersection. In ACNS, 2009.

[DY05] Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short
proofs and keys. In PKC, 2005.

[EFG+15] Rolf Egert, Marc Fischlin, David Gens, Sven Jacob, Matthias Senker, and Jörn Till-
manns. Privately computing set-union and set-intersection cardinality via bloom fil-
ters. In Australasian Conference on Information Security and Privacy, 2015.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE transactions on information theory, 1985.

[FHNP16] Michael J Freedman, Carmit Hazay, Kobbi Nissim, and Benny Pinkas. Efficient set
intersection with simulation-based security. J. of Cryptology, 2016.

[FNO18] Brett Hemenway Falk, Daniel Noble, and Rafail Ostrovsky. Private set intersection
with linear communication from general assumptions. 2018.

[FNO19] Brett Hemenway Falk, Daniel Noble, and Rafail Ostrovsky. Private set intersection
with linear communication from general assumptions. In WPES@CCS, 2019.

[FNP04] Michael J Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching and
set intersection. In EUROCRYPT, 2004.

[FO97] Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge protocols to prove
modular polynomial relations. In CRYPTO, 1997.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In EUROCRYPT, 1986.

[GLSY04] Rosario Gennaro, Darren Leigh, Ravi Sundaram, and William Yerazunis. Batching
schnorr identification scheme with applications to privacy-preserving authorization
and low-bandwidth communication devices. In ASIACRYPT, 2004.

27

[GMR98] Rosario Gennaro, Daniele Micciancio, and Tal Rabin. An efficient non-interactive
statistical zero-knowledge proof system for quasi-safe prime products. In ACM CCS,
1998.

[Gro09] Jens Groth. Linear algebra with sub-linear zero-knowledge arguments. In CRYPTO,
2009.

[HEK12] Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled
circuits better than custom protocols? In NDSS, 2012.

[HFH99] Bernardo A Huberman, Matt Franklin, and Tad Hogg. Enhancing privacy and trust
in electronic communities. In ACM conference on Electronic commerce, 1999.

[HL08] Carmit Hazay and Yehuda Lindell. Efficient protocols for set intersection and pattern
matching with security against malicious and covert adversaries. In TCC, 2008.

[HN10] Carmit Hazay and Kobbi Nissim. Efficient set operations in the presence of malicious
adversaries. In PKC, 2010.

[IKN+17] Mihaela Ion, Ben Kreuter, Erhan Nergiz, Sarvar Patel, Shobhit Saxena, Karn Seth,
David Shanahan, and Moti Yung. Private intersection-sum protocol with applications
to attributing aggregate ad conversions. Cryptology ePrint Archive, Report 2017/738,
2017. https://eprint.iacr.org/2017/738.

[JL09] Stanis law Jarecki and Xiaomin Liu. Efficient oblivious pseudorandom function with
applications to adaptive ot and secure computation of set intersection. In TCC, 2009.

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient
batched oblivious prf with applications to private set intersection. In ACM CCS,
2016.

[KMP+17] Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and Ni Trieu. Prac-
tical multi-party private set intersection from symmetric-key techniques. In ACM CCS,
2017.

[KS05] Lea Kissner and Dawn Song. Privacy-preserving set operations. In CRYPTO, 2005.

[Lam16] Mikkel Lambæk. Breaking and fixing private set intersection protocols. Cryptology
ePrint Archive, Report 2016/665, 2016. https://eprint.iacr.org/2016/665.

[LCYL11] Ming Li, Ning Cao, Shucheng Yu, and Wenjing Lou. Findu: Privacy-preserving per-
sonal profile matching in mobile social networks. In IEEE INFOCOM, 2011.

[MSK02] Shigeo Mitsunari, Ryuichi Sakai, and Masao Kasahara. A new traitor tracing. IEICE
transactions on fundamentals of electronics, communications and computer sciences,
2002.

[NAA+09] G Sathya Narayanan, T Aishwarya, Anugrah Agrawal, Arpita Patra, Ashish Choud-
hary, and C Pandu Rangan. Multi party distributed private matching, set disjointness
and cardinality of set intersection with information theoretic security. In CANS, 2009.

28

https://eprint.iacr.org/2017/738
https://eprint.iacr.org/2016/665

[NDCD+13] Marcin Nagy, Emiliano De Cristofaro, Alexandra Dmitrienko, N Asokan, and Ahmad-
Reza Sadeghi. Do i know you?: efficient and privacy-preserving common friend-finder
protocols and applications. In ACSAC, 2013.

[NMH+10] Shishir Nagaraja, Prateek Mittal, Chi-Yao Hong, Matthew Caesar, and Nikita Borisov.
Botgrep: Finding p2p bots with structured graph analysis. In USENIX Security, 2010.

[NTL+11] Arvind Narayanan, Narendran Thiagarajan, Mugdha Lakhani, Michael Hamburg, Dan
Boneh, et al. Location privacy via private proximity testing. In NDSS, volume 11,
2011.

[Ped91] Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In CRYPTO, 1991.

[PR04] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. J. Algorithms, 2004.

[PRTY19] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Spot-light: Lightweight
private set intersection from sparse ot extension. In CRYPTO, 2019.

[PRTY20] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. PSI from paxos: Fast,
malicious private set intersection. In EUROCRYPT, 2020.

[PSSZ15] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: private
set intersection using permutation-based hashing. In USENIX Security, 2015.

[PSTY19] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai. Efficient
circuit-based PSI with linear communication. In EUROCRYPT, 2019.

[PSWW18] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder. Efficient
circuit-based psi via cuckoo hashing. In EUROCRYPT, 2018.

[PSZ14] Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set intersection
based on ot extension. In USENIX Security, 2014.

[RR17a] Peter Rindal and Mike Rosulek. Improved private set intersection against malicious
adversaries. In EUROCRYPT, 2017.

[RR17b] Peter Rindal and Mike Rosulek. Malicious-secure private set intersection via dual
execution. In ACM CCS, 2017.

[SFF14] Aaron Segal, Bryan Ford, and Joan Feigenbaum. Catching bandits and only bandits:
Privacy-preserving intersection warrants for lawful surveillance. In FOCI, 2014.

[VC05] Jaideep Vaidya and Chris Clifton. Secure set intersection cardinality with application
to association rule mining. Journal of Computer Security, 2005.

29

A Selective Secure Pseudorandom Function

In this section we define and construct a selective secure pseudorandom function, where the inputs
to the PRF are chosen by the adversary in advance in the security game. This weaker definition
of PRF is sufficient for our private intersection-sum protocol. We prove our PRF construction is
selective secure under the decisional q-DHI assumption.3

The above security notion for the PRF suffices for our private intersection-sum protocol since
we make the two parties first commit to their own inputs along with a zero-knowledge proof of
knowledge and then jointly decide the PRF parameters. Thus, the selective security of the PRF
suffices for the simulation-based proof of the overall constructions since the simulator the private
intersection-sum can first parties’ inputs from the commitments and then rely on the selective
security of the PRF.

We state formally the selectively security PRF definition as follows:

Definition A.1 (Selectively Secure PRF). Let group G be a group of order p for which the decisional
q-DHI assumption holds. Let kGen be an algorithm which on input a security parameter 1λ generates
a public parameter pp and secret key k. We say that the function Fk : Z∗p → G is a q-selective
secure pseudorandom function (family) if∣∣∣∣∣Pr

[
A (Fk(x1), . . . , Fk(xq), Fk(xq+1)) = 1

∣∣∣∣ (x1, . . . , xq, xq+1)← A(1λ);
(pp, k)← kGen(1λ)

]

− Pr

[
A (Fk(x1), . . . , Fk(xq), y) = 1

∣∣∣∣ (x1, . . . , xq, xq+1)← A(1λ);

(pp, k)← kGen(1λ); y
$← G

] ∣∣∣∣∣ ≤ negl(λ).

A.1 Construction

We construct a PRF that satisfies the above definition as follows: let G be a group of order p where
the decisional q-DHI assumption holds, then our PRF is defined by the following algorithms:

• (pp, k) ← kGen(1λ): on input the security parameter λ, outputs public parameter pp and a

secret key k
$← Z∗p.

• σ ← Fk(x): on input x output PRF evaluation Fk(x) = g
1

k+x .

A.2 Security Proof

We prove that Fk is a q-selective secure PRF by showing that if there exists an adversary A that
breaks its selective security, then we can construct another adversary B that breaks the decisional
q-DHI assumption.

First, B is given elements (g, gα, . . . , gα
q
) along with h that could be g1/α or a random group

element. It is also given (x1, . . . , xq, xq+1) chosen by A.
Let β := α− xq+1. Define f(y) as a polynomial

f(y) =

q∏
i=1

(y − xq+1 + xi) =

q∏
i=1

(y − xq+1 + xi) =

q∑
i=0

ci · yi

3We note that [BMR10] consider a similar question, but their construction is not oblivious.

30

for some coefficients c0, c1, . . . , cq. Notice that f(α) =
∏q
i=1(β + xi). Then B can compute

g̃ = gf(α) = g
∑q
i=0 ci·α

i
=

q∏
i=0

(
gα

i
)ci

.

B implicitly sets the public parameter pp = g̃ and secret key k = β as the PRF key. Notice that g̃
and k are both uniformly distributed in G and Z∗p, respectively. To compute Fk(xi) for 1 ≤ i ≤ q,

Fk(xi) = g̃
1

β+xi = g
∏q
j=1,j 6=i(β+xj) = g

∑q−1
j=0 d

(i)
j ·α

j

=

q−1∏
j=0

(
gα

j
)d(i)j

.

For the q−1 coefficients d
(i)
j that result from viewing

∏q
j=1,j 6=i(β+xj) as a polynomial in α. Finally,

to compute Fk(xq+1),

Fk(xq+1) =g̃
1

β+xq+1 = g̃
1
α = gf(α)· 1

α = g
∑q
i=0 ci·α

i· 1
α

=g
∑q
i=1 ci·α

i−1+
c0
α =

q∏
i=1

(
gα

i−1
)ci
·
(
g

1
α

)c0
.

B computes

y =

q∏
i=1

(
gα

i−1
)ci
· hc0 ,

and gives (Fk(x1), . . . , Fk(xq), y) to A. Notice that if h = g1/α, then y = Fk(xq+1); otherwise y is a
random element in G. Therefore, if A breaks the selective security of the PRF, then B breaks the
decisional q-DHI assumption.

B Security Analysis

Correctness of the protocol for honest participants can be verified by inspection. Correctness holds
even when one of the parties is malicious, following from the fact that each party proves it performed
the computation each step honestly.

B.1 Security Against Malicious P1

We first prove security against malicious P1. Let RealΠ,A((X,V), Y) denote the output of the
adversary A (i.e., malicious P1) in the real-world execution of our protocol Π. We construct a PPT
simulator S such that

RealΠ,A((X,V), Y)
c
≈ IdealF ,S((X,V), Y),

where IdealF ,S((X,V), Y) denotes the output of S in the ideal-world execution.
We construct a simulator S in Figure 6. The simulator executes a simulated protocol with A

which we prove is indistinguishable from A’s view in a real-world protocol with an honest P2.

Theorem B.1. For any PPT adversaries A and input ((X,V), Y),

RealΠ,A((X,V), Y)
c
≈ IdealF ,S((X,V), Y).

31

Run the protocol with A behaving like P2 honestly expect the following:

One-time setup. Extract A’s secret key share tsk1 in Step 3 and compute tsk = tsk1 + tsk2.

Online phase.

• In Step 2, extract A’s input {xi}i∈[n1] from the ZK-AOKs. Commit to 0 instead of yi and
replace its ZK-AOKs with simulated ones.

• In Shuffled DOPRF 1 Round 2, decrypt ctvi by tsk to obtain vi. Send {xi, vi}i∈[n1] to F and
get back the intersection-cardinality |I| and intersection-sum S.

• In Shuffled DOPRF 2 Round 2, for each i ∈ [n2]:

(a) Sample σi
$← G, ri

$← [q2 · 2λ], and compute gi = σ
1/ri
i . Let R2 = {σi}i∈[n2

.

(b) Compute Cai ← comg1,h1(0), Cbi ← comg1,h1(0), Cαi ← comg1,h1(0), ctβi ←
CS Encpk1(ri).

(c) Send (Cai ,Cbi ,Cαi , ctβi , gi) to A together with a simulated ZK-AOK.

• In Shuffled DOPRF 1 Round 3, sample R1 = {σ′i}i∈[n1] such that |R1∩R2| = |I|. In Step (e),
send encryption of σ′i along with a simulated ZK-AOK.

• In Step 5, send a fresh encryption of S under tpk1 to A along with a simulated proof for
correct half decryption.

Finally, output whatever A outputs.

Figure 6: The simulator for malicious P1.

Proof. We prove the indistinguishability of A’s view in the simulated protocol and in a real-world
protocol via a hybrid argument.

Hyb0 A’s view of a real-world execution with P2.

Hyb1 Same as Hyb0 except that in Shuffled DOPRF 2 Round 2, P2 computes Cai ← comg1,h1(0),
Cbi ← comg1,h1(0), Cαi ← comg1,h1(0) for each i ∈ [n2] and sends to A together with simu-
lated ZK-AOKs. Hyb1 is computationally indistinguishable from Hyb0 because of the hiding
property of the commitment scheme and zero-knowledge property of the ZK-AOKs.

Hyb2 Same as Hyb1 except that P2 does the following:

– In Step 2 of the online phase, extract A’s input {xi}i∈[n1] from the ZK-AOKs.

– In Shuffled DOPRF 2 Round 1, extract k1 from the ZK-AOK.

– In Shuffled DOPRF 2 Round 2, compute σi = Fk1+k2(yi), sample ri
$← [q2 · 2λ−2], and

compute ctβi ← CS Encpk1(ri), gi = σ
1/ri
i for each i ∈ [n2]. Update the corresponding

simulated ZK-AOKs.

– In Shuffled DOPRF 1 Round 3, compute σ′i = Fk1+k2(xi) for all i ∈ [n1] and use those
with simulated ZK-AOKs.

32

Hyb2 and Hyb1 are computationally indistinguishable based on the zero-knowledge property
of the ZK-AOKs sent by P2 and soundness of the ZK-AOKs sent by A.

Hyb3 Same as Hyb2 but in Shuffled DOPRF 1 Round 1, P2 sends CS Encpk2(0) instead of ctk2
along with a simulated ZK-AOK. Note that while the encryption of k2 is changed to be to
0, P2 continues to use a randomly chosen k2 when computing Fk1+k2(·) in the remainder of
the protocol. Hyb3 and Hyb2 are computationally indistinguishable based on the semantic
security of ctk2 .

Hyb4 Same as Hyb3 except that P2 computes a random function F (x) in the protocol instead of
Fk1+k2(x) and updates the simulated ZK-AOKs correspondingly. Hyb4 and Hyb3 are compu-
tationally indistinguishable based on the selective security of the PRF. In particular, if A can
distinguish between Hyb4 and Hyb5, then we can construct a PPT adversary B that can break
the selective security of the PRF. The adversary B runs the protocol with A as in Hyb5 and
extracts all the inputs {xi}i∈[n1] of A. Then B feeds all the inputs to the security game of the
PRF and obtains the public parameters pp along with values {σi}i∈[n1], which could be PRF
values or random values. In Step 3 of the online phase when the two parties jointly decide on
a random generator g, B makes pp the generator. Later when P2 computes the PRF values,
B instead uses {σi}i∈[n1]. Since A can distinguish between Hyb4 and Hyb3, B can distinguish
whether σi’s are PRF values or truly random and break the selective secure PRF.

Hyb5 Same as Hyb4 except that P2 uses random elements sampled from G instead of computing
F (x). Hyb5 is statistically identical to Hyb4.

Hyb6 Same as Hyb5 but in Shuffled DOPRF 1 Round 1, P2 send CS Encpk2(k2) instead of CS Encpk2(0)
with updated simulated ZK-AOK. Hyb6 and Hyb5 are computationally indistinguishable based
on the semantic security of ctk2 .

Hyb7 Same as Hyb6 but in Step 2 of the online phase, P2 commits to 0 instead of yi’s and simulates
the ZK-AOKs. Hyb7 and Hyb6 are computationally indistinguishable because of the perfect
hiding property of the commitment scheme.

Hyb8 Same as Hyb7 except that P2 does the following:

– In Step 3 of the one-times setup, extract A’s secret key share tsk1 and compute tsk =
tsk1 + tsk2.

– In Shuffled DOPRF 1 Round 2, decrypt ctvi by tsk to obtain vi for all i ∈ [n1]. Compute
the intersection-sum S.

– In Step 5 of the online phase, send a fresh encryption of S under tpk1 to A along with
an updated simulated proof.

Hyb8 and Hyb7 are computationally indistinguishable by the hiding property of the 2-out-
of-2 threshold-encryption scheme together with the zero-knowledge property of the verifiable
half-decryption proof.

Hyb9 Same as Hyb8 but in Shuffled DOPRF 1 Round 3 Step (e), P2 sends randomly shuffled
encryption of σ′i with updated ZK-AOKs. Hyb9 is computationally indistinguishable from
Hyb8 because of the hiding property of the ElGamal encryption scheme and zero-knowledge
property of the ZK-AOKs.

33

Run the protocol with A behaving like P1 honestly expect the following:

Online phase.

• In Step 2, extract A’s input {yi}i∈[n2] from the ZK-AOKs. Commit to 0 instead of xi and
replace its ZK-AOKs with simulated ones. Send {yi}i∈[n2] to F and get back the intersection-
cardinality |I| and intersection-sum S.

• In Shuffled DOPRF 1 Round 2, for each i ∈ [n1]:

(a) Sample σi
$← G, ri

$← [q2 · 2λ], and compute gi = σ
1/ri
i . Let R1 = {σi}i∈[n1].

(b) Compute Cai ← comg2,h2(0), Cbi ← comg2,h2(0), Cαi ← comg2,h2(0), ctβi ←
CS Encpk2(ri).

(c) Send (Cai ,Cbi ,Cαi , ctβi , gi) to A together with a simulated ZK-AOK.

(d) Compute ctvi ← Exp EG Enctpk(0) and send to A.

• In Shuffled DOPRF 2 Round 3, sample R2 = {σ′i}i∈[n2] such that |R1∩R2| = |I|. In Step (e),
send encryption of σ′i along with a simulated ZK-AOK.

• In Step 5, send a fresh encryption of S under tpk2 to A along with a simulated proof for
correct half decryption.

Finally, output whatever A outputs.

Figure 7: The simulator for malicious P2.

Hyb10 Same as Hyb9 except that in Shuffled DOPRF 1 Round 3 Step (e), σ′i values are replaced with
random strings, such that there are exactly |I| repeated values in the two shuffled DOPRF
protocols. Hyb10 and Hyb9 are computationally indistinguishable based on the zero-knowledge
property of the shuffle proof.

Hyb11 A’s view in an ideal-world execution with S. Hyb11 and Hyb10 are identical.

B.2 Security Against Malicious P2

To prove security against malicious P2, we construct another simulator in Figure 7 and prove

RealΠ,A((X,V), Y)
c
≈ IdealF ,S((X,V), Y) by arguing the indistinguishability of A’s view in the

simulated protocol and in a real-world protocol.

Hyb0 A’s view of a real-world execution with P1.

Hyb1 Same as Hyb0 except that in Shuffled DOPRF 1 Round 2, P1 computes Cai ← comg2,h2(0),
Cbi ← comg2,h2(0), Cαi ← comg2,h2(0) for each i ∈ [n1] and sends to A together with simu-
lated ZK-AOKs. Hyb1 is computationally indistinguishable from Hyb0 because of the hiding
property of the commitment scheme and zero-knowledge property of the ZK-AOKs.

Hyb2 Same as Hyb1 except that P1 does the following:

34

– In Step 2 of the online phase, extract A’s input {yi}i∈[n2] from the ZK-AOKs.

– In Shuffled DOPRF 1 Round 1, extract k2 from the ZK-AOK.

– In Shuffled DOPRF 1 Round 2, compute σi = Fk1+k2(xi), sample ri
$← [q2 · 2λ−2], and

compute ctβi ← CS Encpk2(ri), gi = σ
1/ri
i for each i ∈ [n1]. Update the corresponding

simulated ZK-AOKs.

– In Shuffled DOPRF 2 Round 3, compute σ′i = Fk1+k2(yi) for all i ∈ [n2] and use those
with simulated ZK-AOKs.

Hyb2 and Hyb1 are computationally indistinguishable based on the zero-knowledge property
of the ZK-AOKs sent by P1 and soundness of the ZK-AOKs sent by A.

Hyb3 Same as Hyb2 but in Shuffled DOPRF 2 Round 1, P1 sends CS Encpk1(0) instead of ctk1 along
with a simulated ZK-AOK. Hyb3 and Hyb2 are computationally indistinguishable based on
the semantic security of ctk1 .

Hyb4 Same as Hyb3 except that P1 computes a random function F (x) in the protocol instead of
Fk1+k2(x) and updates the simulated ZK-AOKs correspondingly. Hyb4 and Hyb3 are compu-
tationally indistinguishable based on the selective security of the PRF.

Hyb5 Same as Hyb4 except that P1 uses random elements sampled from G instead of computing
F (x). Hyb5 is statistically identical to Hyb4.

Hyb6 Same as Hyb5 but in Shuffled DOPRF 2 Round 1, P1 send CS Encpk1(k1) instead of CS Encpk1(0)
with updated simulated ZK-AOK. Hyb6 and Hyb5 are computationally indistinguishable based
on the semantic security of ctk1 .

Hyb7 Same as Hyb6 but in Step 2 of the online phase, P2 commits to 0 instead of yi’s and simulates
the ZK-AOKs. Hyb7 and Hyb6 are computationally indistinguishable because of the perfect
hiding property of the commitment scheme.

Hyb8 Same as Hyb7 except that P1 does the following:

– In Shuffled DOPRF 1 Round 2, compute ctvi ← Exp EG Enctpk(0)for all i ∈ [n1] and
send to A with updated ZK-AOKs.

– In Step 5 of the online phase, compute the intersection-sum S and send a fresh encryption
of S under tpk2 to A along with an updated simulated proof.

Hyb8 and Hyb7 are computationally indistinguishable by the hiding property of the 2-out-
of-2 threshold-encryption scheme together with the zero-knowledge property of the verifiable
half-decryption proof.

Hyb9 Same as Hyb8 but in Shuffled DOPRF 2 Round 3 Step (e), P1 sends randomly shuffled σ′i
with updated ZK-AOKs. Hyb9 is computationally indistinguishable from Hyb8 because of
the hiding property of the ElGamal encryption scheme and zero-knowledge property of the
ZK-AOKs.

35

1. Prover samples x̃
$← [N/4 · 22λ] and sends ỹ = gx̃ mod N2 to Verifier.

2. Verifier chooses a random challenge c
$← {0, 1}λ and sends to Prover.

3. Prover computes x̂ = x · c+ ỹ and sends to Verifier.

4. Verifier verifies that gx̂ = yc · ỹ mod N2.

Figure 8: Sigma protocol for ZK
{
∃x : y = gx mod N2

}
.

Hyb10 Same as Hyb9 except that in Shuffled DOPRF 1 Round 3 Step (e), σ′i values are replaced with
random strings, such that there are exactly |I| repeated values in the two shuffled DOPRF
protocols. Hyb10 and Hyb9 are computationally indistinguishable based on the zero-knowledge
property of the shuffle proof.

Hyb11 A’s view in an ideal-world execution with S. Hyb11 and Hyb10 are identical.

C Sigma Protocols

In this section we describe all the sigma protocols used in our private intersection-sum protocol.
We utilize various batching techniques to reduce the communication cost.

C.1 Step 1 of Offline Setup

In Step 1 of the offline setup of our protocol (see Figure 2), each party generates a Camenisch-Shoup
encryption key pair (pk, sk) where pk = (N, r, g, y) and sk = x. Each party sends pk to the other
party along with a zero-knowledge proof that y is correctly formed:

ZK
{
∃x : y = gx mod N2

}
.

The sigma protocol for the zero-knowledge proof is shown in Figure 8. The completeness of the
proof is straightforward. Next we prove its soundness and zero-knowledge property.

Soundness. If y 6= gx mod N2 for any x, then for any ỹ, we have yc · ỹ 6= gx̂ for any x̂ with
overwhelming probability and therefore the proof can only pass with negligible probability.

Zero-knowledge. We prove this protocol is honest-verifier zero-knowledge by constructing a

PPT simulator that does the following. First it samples c
$← {0, 1}λ and x̂

$← [N/4 · 22λ], and
then computes ỹ = gx̂/yc. Finally it outputs the transcript (ỹ, c, x̂). The simulated transcript is
statistically identical to the real protocol except when x · c + x̃ > N/4 · 22λ, which happens with
negligible probability.

C.2 Step 2 of Offline Setup

In Step 2 of the offline setup of our protocol (see Figure 2), each party generates Pedersen com-
mitment parameters (g, h) for the large subgroup of Z∗N and prove in zero-knowledge that g ∈ 〈h〉.

36

1. Prover samples r̃
$← [N · 22λ] and sends g̃ = hr̃ to Verifier.

2. Verifier chooses a random challenge c
$← {0, 1}λ and sends to Prover.

3. Prover computes r̂ = r · c+ r̃ and sends to Verifier.

4. Verifier verifies that hr̂ = gc · g̃.

Figure 9: Sigma protocol for ZK {∃r : g = (h)r}.

Looking ahead, to enable batching Pedersen commitments via vector commitment, in the actual
protocol each party generates parameters (g1, g2, . . . , gt, h) for some t and prove in zero-knowledge
that gi ∈ 〈h〉 for each i ∈ [t].

The sigma protocol for the zero-knowledge proof ZK {∃r : g = (h)r} is shown in Figure 9. The
completeness of the proof is straightforward. Next we prove its soundness and zero-knowledge
property.

Soundness. If g /∈ 〈h〉, then for any g̃, we have gc · g̃ /∈ 〈h〉 with overwhelming probability and
therefore there does not exist r̂ such that hr̂ = gc · g̃. Hence the proof can only pass with negligible
probability.

Zero-knowledge. We prove this protocol is honest-verifier zero-knowledge by constructing a

PPT simulator that does the following. First it samples c
$← {0, 1}λ and r̂

$← [N · 22λ], and
then computes g̃ = hr̂/gc. Finally it outputs the transcript (g̃, c, r̂). The simulated transcript is
statistically identical to the real protocol except when r · c + r̃ > N · 22λ, which happens with
negligible probability.

C.3 Step 3 of Offline Setup

In Step 3 of the offline setup of our protocol (see Figure 2), each party generates (tpk, tsk) ←
EG Gen(1λ) for the 2-out-of-2 threshold encryption scheme on the group G with order q and gen-
erator g̃ and sends tpk to the other party along with a ZK-AOK of tsk:

ZK-AoK{tsk : tpk = (g̃)tsk}.

The sigma protocol for the ZK-AOK is shown in Figure 10. The completeness of the proof can
be easily verified. Next we prove its soundness and zero-knowledge property.

Soundness. We construct a PPT extractor that interacts with a cheating prover and extracts a
valid witness tsk. The extractor first executes the protocol honestly with the prover and obtains

a transcript (t̃pk, c1, t̂sk1) such that (g̃)t̂sk1 = tpkc1 · t̃pk. Now the extractor rewinds the protocol

to Step 2 and sends a different random challenge c2 and obtains (t̃pk, c2, t̂sk2) such that (g̃)t̂sk2 =

tpkc2 · t̃pk. Combining the two equations, the extractor gets (g̃)∆t̂sk = tpk∆c where ∆t̂sk = t̂sk1− t̂sk2

and ∆c = c1 − c2. Now the extractor can compute tsk = ∆t̂sk · (∆c)−1 mod q.

37

1. Prover samples t̃sk
$← [q] and sends t̃pk = (g̃)t̃sk to Verifier.

2. Verifier chooses a random challenge c
$← {0, 1}λ and sends to Prover.

3. Prover computes t̂sk = tsk · c+ t̃sk mod q and sends to Verifier.

4. Verifier verifies that (g̃)t̂sk = tpkc · t̃pk.

Figure 10: Sigma protocol for ZK-AoK{tsk : tpk = (g̃)tsk}.

Zero-knowledge. We prove this protocol is honest-verifier zero-knowledge by constructing a

PPT simulator that does the following. First it samples c
$← {0, 1}λ and t̂sk

$← [q], and then

computes t̃pk = (g̃)t̂sk/tpkc. Finally it outputs the transcript (t̃pk, c, t̂sk). The simulated transcript
is statistically identical to the real protocol.

C.4 Step 2 of Online Phase

In Step 2 of the online phase of our protocol (see Figure 3), each party commits to their input
elements {xi}i∈[n] on the other party’s Pedersen commitment parameters (g, h) on the big subgroup
of Z∗N and gives a ZK-AOK:

ZK-AoK {(xi, ri) : Cxi = gxi · hri} .

Recall that in order to enable batching Pedersen commitments later in the protocol, the Pedersen
commitment parameters are in fact (g1, . . . , gt, h). In order to enable batching sigma protocols
for batched commitments later in Round 2 of the shuffled DOPRF protocol (see Figure 4 and
Appendix C.6), we need to modify the protocol in this step.

Specifically, each party chooses a random ai
$← [q] and computes αi = ai · (k + xi) mod q

for each i ∈ [n], where k is this party’s PRF key share. Then it commits to k, ai, and αi, and
proves knowledge of these values to the other party. This change does not affect our security proof,
because the simulator can still extract k, ai, αi and deduce xi from those values. Later in Round 2
of the shuffled DOPRF protocol, this party will use the commitments of ai and αi in this step for
further computation (see Appendix C.6 for more details).

All the above commitments are batched in this step. In more detail, let ` = n/t, then the
commitments of {ai}i∈[n] are computed and batched as follows:

Ca:1 = (g1)a1 · (g2)a`+1 · · · (gt)a(t−1)`+1 · hrC:a:1
...

Ca:s = (g1)as · (g2)a`+s · · · (gt)a(t−1)`+i · hrC:a:s =
t∏

i=1

(gi)
a(i−1)`+s · hrC:a:s

...

Ca:` = (g1)a` · (g2)a2` · · · (gt)at` · hrC:a:`

38

Similarly, the commitments of {αi}i∈[n] are computed and batched as follows:

Cα:s =
t∏

i=1

(gi)
α(i−1)`+s · hrC:α:s ∀s ∈ [`]

The PRF key share k is committed to (g1, h), namely Ck = (g1)k · hrC:k .
Now we prove the following ZK-AOK:

ZK-AoK
{(
{ai, αi}i∈[n], {rC:a:s, rC:α:s}s∈[`], k, rC:k

)
:

Ca:s =

t∏
i=1

(gi)
a(i−1)`+s · hrC:a:s ∀s ∈ [`] ∧

Cα:s =
t∏

i=1

(gi)
α(i−1)`+s · hrC:α:s ∀s ∈ [`] ∧

Ck = (g1)k · hrC:k
}
.

(1)

The batched sigma protocol for the above in Figure 11. The completeness of the protocol can
be checked. We prove its soundness and zero-knowledge property.

Soundness. We construct a PPT extractor that interacts with a cheating prover and extracts
a valid witness

(
{ai, αi}i∈[n], {rC:a:s, rC:α:s}s∈[`], k, rC:k

)
. First we describe how to extract k and

rC:k. The extractor first executes the protocol honestly with the prover and obtains a transcript

that contains (C̃k, c1, k̂, r̂C:k) satisfying (g1)k̂ · hr̂C:k = (Ck)
c1 · C̃k. Now the extractor rewinds the

protocol to Step 2 and sends a challenge containing a different c′1 and obtains (k̂′, r̂′C:k) such that

(g1)k̂
′ ·hr̂′C:k = (Ck)

c′1 ·C̃k. Combining these two equations, the extractor gets (g1)∆k̂·h∆r̂C:k = (Ck)
∆c1 .

By the strong RSA assumption on Z∗N , we have ∆c1|∆k̂ and ∆c1|∆r̂C:k. Hence the extractor can

compute k = ∆k̂
∆c1

and rC:k = ∆r̂C:k
∆c1

.
To extract {a(i−1)`+1}i∈[t] and rC:a:1, The extractor first executes the protocol honestly with

the prover and obtains a transcript that contains (C̃a, {cs}s∈[`], {âi}i∈[t], r̂C:a) satisfying
∏t

i=1(gi)
âi ·

hr̂C:a =
∏`
s=1(Ca:s)

cs · C̃a Next the extractor rewinds the protocol to Step 2 and sends a challenge

containing a different c′1 and obtains ({â′i}i∈[t], r̂
′
C:a) satisfying

∏t
i=1(gi)

â′i · hr̂′C:a =
∏`
s=1(Ca:s)

c′s · C̃a.
Combining these two equations, the extractor gets

∏t
i=1(gi)

∆âi ·h∆r̂C:a = (Ca:1)∆c1 . By the extended
strong RSA assumption on Z∗N , we have ∆c1|∆âi for all i ∈ [t] and ∆c1|∆r̂C:a. Hence the extractor

can compute a(i−1)`+1 = ∆âi
∆c1

and rC:a:1 = ∆r̂C:a
∆c1

.

Similarly the extractor can extract all the
(
{ai, αi}i∈[n], {rC:a:s, rC:α:s}s∈[`]

)
.

Zero-knowledge. We prove this protocol is honest-verifier zero-knowledge by constructing a

PPT simulator that does the following. First it samples cs
$← {0, 1}λ for all s ∈ [`]. Then it

samples âi, α̂i
$← [q · ` · 22λ] for all i ∈ [t] and samples r̂C:a, r̂C:α

$← [N · ` · 22λ], k̂
$← [q · 22λ], and

r̂C:k
$← [N · 22λ]. Now the simulator can compute C̃a =

∏t
i=1(gi)

âi ·hr̂C:a∏`
s=1(Ca:s)cs

, C̃α =
∏t

i=1(gi)
α̂i ·hr̂C:α∏`

s=1(Cα:s)cs
, and

C̃k = (g1)k̂·hr̂C:k
(Ck)c1 . Finally it outputs the simulated transcript, which is statistically identical to the

real protocol except negligible probability.

39

1. Prover does the following:

(a) Sample ãi, α̃i
$← [q · ` · 22λ] for all i ∈ [t]. Sample r̃C:a, r̃C:α

$← [N · ` · 22λ], k̃
$← [q · 22λ],

and r̃C:k
$← [N · 22λ].

(b) Compute C̃a =
∏t

i=1(gi)
ai · hr̃C:a , C̃α =

∏t
i=1(gi)

αi · hr̃C:α , and C̃k = (g1)k̃ · hrC:k .

(c) Send (C̃a, C̃α, C̃k) to Verifier.

2. Verifier chooses random challenges cs
$← {0, 1}λ for all s ∈ [`] and sends {cs}s∈[`] to Prover.

3. Prover computes the following and sends to Verifier:

âi =
∑̀
s=1

(
cs · a(i−1)`+s

)
+ ãi ∀i ∈ [t]; r̂C:a =

∑̀
s=1

(cs · rC:a:s) + r̃C:a;

α̂i =
∑̀
s=1

(
cs · α(i−1)`+s

)
+ α̃i ∀i ∈ [t]; r̂C:α =

∑̀
s=1

(cs · rC:α:s) + r̃C:α;

k̂ = c1 · k + k̃; r̂C:k = c1 · rC:k + r̃C:k.

4. Verifier verifies the following:

t∏
i=1

(gi)
âi · hr̂C:a =

∏̀
s=1

(Ca:s)
cs · C̃a;

t∏
i=1

(gi)
α̂i · hr̂C:α =

∏̀
s=1

(Cα:s)
cs · C̃α

(g1)k̂ · hr̂C:k = (Ck)
c1 · C̃k.

Figure 11: Batched sigma protocol for ZK-AOK (1).

C.5 Round 1 of Shuffled DOPRF

In Round 1 of the shuffled DOPRF protocol where P1 holds the input (see Figure 4), party P2

computes ctk ← CS Encpk(k) and Ck ← comg,h(k), where k is P2’s PRF key share, pk is P2’s
Camenisch-Shoup public key on the big subgroup of Z∗N2

, and (g, h) are P1’s Pedersen commitment
parameters on the big subgroup of Z∗N1

. Recall that pk = (N2, g, y). P2 sends ctk = (u, e) and Ck
to P1 along with a ZK-AOK

ZK-AoK
{

(k, r1, r2) : u = gr1 ∧ e = (1 +N2)k · yr12 ∧

Ck = gk · hr2 ∧ k ≤ q · 22λ+1
}
.

In fact, to enable batching commitments, P1’s Pedersen commitment parameters are (g1, . . . , gt, h).
To enable batching the first component of the Camenisch-Shoup ciphertexts, P2’s Camenisch-Shoup
public key is in fact pk = (N2, g, y1, y2, . . . , yt). In order to enable batching sigma protocols for
batched commitments and Camenisch-Shoup encryptions later in Round 2 of the shuffled DOPRF
protocol (see Figure 4 and Appendix C.6), we need to modify the protocol in this step.

40

Recall that k was committed as Ck = (g1)k · hrC:k in the modified Step 2 of the online phase of
our protocol (see Appendix C.4).

To enable batching in the first component of Camenisch-Shoup encryption, in this step P2

encrypts t copies of k, where the i-th copy of k is encrypted in the i-th slot and the other slots
are all 0. In more detail, P2 computes ctk:i = (ui, ei,1, . . . , ei,t) for each i ∈ [t], where ui = gri ,
ei,i = (1 +N2)k · (yi)ri , and ei,j = (yj)

ri for all j ∈ [t] \ {i}.
Now we need to prove the following ZK-AOK:

ZK-AoK
{(
k, rC:k, {ri}i∈[t]

)
:

∀i ∈ [t], ui = gri , ei,i = (1 +N2)k · (yi)ri , ei,j = (yj)
ri ∀j ∈ [t] \ {i}

Ck = (g1)k · hrC:k ∧ k ≤ q · 22λ+1
}
.

(2)

1. Prover does the following:

(a) Sample k̃
$← [q · 22λ], r̃C:k

$← [N1 · 22λ], and r̃i
$← [N2 · 22λ] for all i ∈ [t].

(b) Compute C̃k = (g1)k̃ · hrC:k .

(c) For each i ∈ [t], compute c̃tk:i = (ũi, ẽi,1, . . . , ẽi,t), where ũi = gr̃i , ẽi,i = (1 + N2)k̃ · (yi)r̃i , and
ẽi,j = (yj)

r̃i for all j ∈ [t] \ {i}.

(d) Send
(

C̃k, {c̃tk:i}i∈[t]
)

to Verifier.

2. Verifier chooses a random challenge c
$← {0, 1}λ and sends to Prover.

3. Prover computes k̂ = c · k + k̃, r̂C:k = c · rC:k + r̃C:k, and r̂i = c · ri + r̃i for all i ∈ [t], and sends to
Verifier.

4. Verifier verifies the following:

gr̂i = (ui)
c · ũi ∀i ∈ [t];

(1 +N2)k̂ · (yi)r̂i = (ei,i)
c · ẽi,i ∀i ∈ [t];

(yj)
r̂i = (ei,j)

c · ẽi,j ∀i ∈ [t], j ∈ [t] \ {i};

(g1)k̂ · hr̂C:k = (Ck)c1 · C̃k;

k̂ ≤ q · 22λ

Figure 12: Sigma protocol for the ZK-AOK (2).

The sigma protocol is shown in Figure 12. The completeness of the protocol can be naturally
verified. The only subtlety is that k̂ > q · 22λ with negligible probability, hence the protocol
is complete with all but negligible probability. Next we prove its soundness and zero-knowledge
property.

Soundness. We construct a PPT extractor that interacts with a cheating prover and extracts a
valid witness

(
k, rC:k, {ri}i∈[t]

)
. We focus on the case to k and rC:k and the other extractions are

similar. The extraction of k is same as in Appendix C.4. In the extraction, since ∆k < q · 22λ+1,

41

we conclude that k ≤ q · 22λ+1. In addition, the extracted value k in the commitments is equal to
the extracted k from the Camenisch-Shoup encryptions. Since N2 is sufficiently large, this follows
from the fact that k = ∆k

∆c is a valid solution in all the extractions.

Zero-knowledge. Similarly as the previous sigma protocols, we prove this protocol is honest-

verifier zero-knowledge by constructing a PPT simulator that samples c
$← {0, 1}λ and k̂

$← [q ·
22λ], r̂C:k

$← [N1 · 22λ], and r̂i
$← [N2 · 22λ] for all i ∈ [t], and then computes the corresponding(

C̃k, {c̃tk:i}i∈[t]

)
and outputs the simulated transcript. The simulated transcript is statistically

indistinguishable to the real protocol.

C.6 Round 2 of Shuffled DOPRF

In Round 2 of the shuffled DOPRF protocol where P1 holds the input (see Figure 4), for each i ∈ [n1],

party P1 computes gi = gai for a random ai
$← [q] where g is the generator of the G with order q. P1

also computes Cai ← comg,h(ai), Cbi ← comg,h(bi) for a random bi
$← [q · 2λ], and Cαi = comg,h(αi)

for αi = ai · (k1 + xi), where (g, h) are P2’s Pedersen commitment parameters on Z∗N2
. In addition

it computes ctβi ← (ctk2)ai · CS Encpk2(αi) · (CS Encpk(bi))
q for βi = ai · (k1 + k2 + xi) + bi · q =

ai · k2 +αi + bi · q, where pk is P2’s Camenisch-Shoup public key on Z∗N2
. Note that Cxi was sent by

P1 in Step 2 of the online phase, and Ck1 was sent by P1 in Round 1 of the other shuffled DOPRF
protocol where P2 holds the input. In this round P1 proves the following ZK-AOK:

ZK-AoK
{

(ai, bi, αi, r1, r2, r3, r4, r5, r6) :

Cai = (g2)ai · (h2)r1 ∧ ai ≤ q · 22λ+1 ∧
Cbi = (g2)bi · (h2)r2 ∧ bi ≤ q · 23λ+1 ∧
Cαi = (g2)αi · (h2)r3 ∧ Cαi = (Ck1 · Cxi)ai · (h2)r4 ∧ αi ≤ q · 22λ+1 ∧
ctβi = (ctk2)ai · CS Encpk2(αi; r5) · (CS Encpk2(bi; r6))q∧
gi = gai

}
.

Recall that in order to enable batching, P2’s Pedersen commitment parameters are in fact
(g1, . . . , gt, h), and P2’s Camenisch-Shoup public key is in fact pk = (N2, g2, y1, y2, . . . , yt). We
discussed in Section 4 that in order to enable batching sigma protocols for batched commitments
and batched encryptions in this step, we need to modify our main protocol to make non-black-
box use of the DOPRF protocol. Specifically, we have modified Step 2 of the online phase of our
protocol (see Appendix C.4) and Round 1 of our shuffled DOPRF protocol (see Appendix C.5).
Next we elaborate how to batch commitments and encryptions in this round using commitments
and encryptions from previous steps and how to batch sigma protocols in this round.

First, recall that the commitments of {ai}i∈[n1] and {αi}i∈[n1] are computed in Step 2 of the
online phase of our protocol and batched as follows (see Appendix C.4):

Ca:s =
t∏

i=1

(gi)
a(i−1)`+s · hrC:a:s ∀s ∈ [`]

Cα:s =

t∏
i=1

(gi)
α(i−1)`+s · hrC:α:s ∀s ∈ [`]

42

The commitments of {bi}i∈[n1] can be computed and batched similarly in this round:

Cb:s =
t∏

i=1

(gi)
b(i−1)`+s · hrC:b:s ∀s ∈ [`]

Recall that in Round 1 of our shuffled DOPRF protocol (see Appendix C.5), P2 encrypts t
copies of k2, where the i-th copy of k2 is encrypted in the i-th slot and the other slots are all 0.
In more detail, P2 computes ctk2:i = (uk2:i, ek2:i,1, . . . , ek2:i,t) for each i ∈ [t], where uk2:i = (g2)rk2:i ,
ek2:i,i = (1 + N2)k2 · (yi)rk2:i , and ek2:i,j = (yj)

rk2:i for all j ∈ [t] \ {i}. In this round, (ctk2)ai can be
computed and batched as follows:

(ctk2)a:1 =



ua:1 = (uk2:1)a1 · (uk2:2)a`+1 · · · (uk2:t)
a(t−1)`+1

ea:1,1 = (ek2:1,1)a1 · (ek2:2,1)a`+1 · · · (ek2:t,1)a(t−1)`+1

...
ea:1,i = (ek2:1,i)

a1 · (ek2:2,i)
a`+1 · · · (ek2:t,i)

a(t−1)`+1

...
ea:1,t = (ek2:1,t)

a1 · (ek2:2,t)
a`+1 · · · (ek2:t,t)

a(t−1)`+1

...

(ctk2)a:s =

{
ua:s = (uk2:1)as · (uk2:2)a`+s · · · (uk2:t)

a(t−1)`+s =
∏t

j=1(uk2:j)
a(j−1)`+s

ea:s,i = (ek2:1,i)
as · (ek2:2,i)

a`+s · · · (ek2:t,i)
a(t−1)`+s =

∏t
j=1(ek2:2,i)

a(j−1)`+s ∀i ∈ [t]

...

(ctk2)a:` =



ua:` = (uk2:1)a` · (uk2:2)a2` · · · (uk2:t)
at`

ea:`,1 = (ek2:1,1)a` · (ek2:2,1)a2` · · · (ek2:t,1)at`

...
ea:`,j = (ek2:1,j)

a` · (ek2:2,j)
a2` · · · (ek2:t,j)

at`

...
ea:`,t = (ek2:1,t)

a` · (ek2:2,t)
a2` · · · (ek2:t,t)

at`

In this round, CS Encpk(αi) can be computed and batched as follows:

ctα:1 =



uα:1 = (g2)rct:α:1

eα:1,1 = (1 +N2)α1 · (h1)rct:α:1

...
eα:1,i = (1 +N2)α(i−1)`+1 · (hi)rct:α:1

...
eα:1,t = (1 +N2)α(t−1)`+1 · (ht)rct:α:1

...

ctα:s =

{
uα:s = (g2)rct:α:s

eα:s,i = (1 +N2)α(i−1)`+s · (hi)rct:α:s ∀i ∈ [t]

...

43

ctα:` =



uα:` = (g2)rct:α:`

eα:`,1 = (1 +N2)α` · (h1)rct:α:`

...
eα:`,i = (1 +N2)αi` · (hi)rct:α:`

...
eα:`,t = (1 +N2)αt` · (ht)rct:α:`

(CS Encpk(bi))
q can be computed and batched similarly as

∀s ∈ [`], ctb:s =

{
ub:s = (g2)rct:b:s

eb:s,i = ((1 +N2)q)b(i−1)`+s · (hi)rct:b:s ∀i ∈ [t]

Since βi = ai · (k1 + k2 + xi) + bi · q = ai · k2 + αi + bi · q, CS Encpk(βi) can be computed and
batched as follows: for ∀s ∈ [`],

ctβ:s =

{
uβ:s =

(∏t
j=1(uk2:j)

a(j−1)`+s
)
· (g2)rct:β:s

eβ:s,i =
(∏t

j=1(ek2:j,i)
a(j−1)`+s

)
· (1 +N2)α(i−1)`+s+q·b(i−1)`+s · (hi)rct:β:s ∀i ∈ [t]

where rct:β:s = rct:α:s + rct:b:s
Now the prover proves the following ZK-AOK:

ZK-AoK
{(
{ai, bi, αi}i∈[n1], {rC:a:s, rC:b:s, rC:α:s, rct:β:s}s∈[`]

)
:

Ca:s =

t∏
i=1

(gi)
a(i−1)`+s · hrC:a:s ∀s ∈ [`] ∧ ai ≤ q · ` · 22λ+1 ∀i ∈ [n1] ∧

Cb:s =
t∏

i=1

(gi)
b(i−1)`+s · hrC:b:s ∀s ∈ [`] ∧ bi ≤ q · ` · 23λ+1 ∀i ∈ [n1] ∧

Cα:s =
t∏

i=1

(gi)
α(i−1)`+s · hrC:α:s ∀s ∈ [`] ∧ αi ≤ q · ` · 22λ+1 ∀i ∈ [n1] ∧

uβ:s =

(
t∏

j=1

(uk2:j)
a(j−1)`+s

)
· (g2)rct:β:s ∀s ∈ [`] ∧

eβ:s,i =

(
t∏

j=1

(ek2:j,i)
a(j−1)`+s

)
· (1 +N2)α(i−1)`+s+q·b(i−1)`+s · (hi)rct:β:s ∀s ∈ [`], i ∈ [t]

gi = gai ∀i ∈ [n1]
}
.

(3)

The batched sigma protocol is presented in Figure 13. The completeness of the protocol holds
with all but negligible probability. Next we argue its soundness and zero-knowledge property.

Soundness. The way to extract {ai, bi, αi}i∈[n1] and the corresponding randomness from the pro-
tocol is the same as in Appendix C.4. The range proofs for these extracted values can be naturally
checked. In addition, the extracted values from the commitments are equal to the extracted values
from the encryptions because they can be deduced in the same way.

44

1. Prover does the following:

(a) Sample ãi, α̃i
$← [q ·`·22λ] and b̃i

$← [q ·`·23λ] for each i ∈ [t] and r̃C:a, r̃C:b, r̃C:α, r̃C:β
$← [N2 ·`·22λ].

(b) Compute the following and send to Verifier:

C̃a =

t∏
i=1

(gi)
ãi · hr̃C:a ; C̃α =

t∏
i=1

(gi)
α̃i · hr̃C:α ; C̃b =

t∏
i=1

(gi)
b̃i · hr̃C:b ;

ũβ =

(
t∏

j=1

(uk2:j)
ãj

)
· (g2)r̃ct:β ;

ẽβ:i =

(
t∏

j=1

(ek2:j,i)
ãj

)
· (1 +N2)α̃i+q·̃bi · (hi)r̃ct:β ∀i ∈ [t];

g̃i = gãi ∀i ∈ [t].

2. Verifier chooses random challenges c1, . . . , c`
$← {0, 1}λ and sends to Prover.

3. Prover computes the following and sends to Verifier:

âi =
∑̀
s=1

cs · a(i−1)`+s + ãi ∀i ∈ [t]; r̂C:a =
∑̀
s=1

cs · rC:a:s + r̃C:a;

b̂i =
∑̀
s=1

cs · b(i−1)`+s + b̃i ∀i ∈ [t]; r̂C:b =
∑̀
s=1

cs · rC:b:s + r̃C:b;

α̂i =
∑̀
s=1

cs · α(i−1)`+s + α̃i ∀i ∈ [t]; r̂C:α =
∑̀
s=1

cs · rC:α:s + r̃C:α;

r̂C:β =
∑̀
s=1

cs · rC:β:s + r̃C:β .

4. Verifier verifies the following:

t∏
i=1

(gi)
âi · hr̂C:a =

∏̀
s=1

(Ca:s)
cs · C̃a;

t∏
i=1

(gi)
α̂i · hr̂C:α =

∏̀
s=1

(Cα:s)
cs · C̃α;

t∏
i=1

(gi)
b̂i · hr̂C:b =

∏̀
s=1

(Cb:s)
cs · C̃b;

t∏
j=1

(uk2:j)
âj · (g2)r̂ct:β =

∏̀
s=1

(uβ:s)
cs · ũβ ;

t∏
j=1

(ek2:j,i)
âj · (1 +N2)α̂i+q·̂bi · (hi)r̂ct:β =

∏̀
s=1

(eβ:s,i)
cs · ẽβ:s,i ∀i ∈ [t];

gâi =
∏̀
s=1

(g(i−1)`+s)
cs · g̃i ∀i ∈ [t];

âi ≤ q · ` · 22λ; b̂i ≤ q · ` · 23λ; α̂i ≤ q · ` · 22λ.

Figure 13: Sigma protocol for the ZK-AOK (3).

45

Zero-knowledge. Similarly as previous sections, the simulator first samples random challenges in
Step 2 and Prover’s response in Step 3. Then it computes the corresponding messages in Step 1 and
finally outputs the simulated transcript. The simulated transcript is statistically indistinguishable
to the real protocol.

Damg̊ard-Jurik style batched encryption. The sigma protocol description above does not
incorporate the Damg̊ard-Jurik style batching we described in Sections 5.2.1 and 5.2.3, namely
extending the modulus to N s+1 and dividing the message space of size N s into slots of size B each,
and combining s′ = bN s/Bc messages {mi}i∈[s′] into a single large message m =

∑s′

i=1mi ·Bi−1 to
fully utilize the large plaintext space.

However, we observe that the sigma protocol in this section extends naturally to this type of
batching. Notice that the current sigma protocol proves that a component eβ:s,i encrypts the value
αi + q · bi for committed αi and bi. That is, the sigma protocol already proves that a ciphertext
contains a linear combination of committed values, and this is done by exponentiating (1 +N2) to
the power q, and using (1 +N2)q as the base relative to which we prove the sigma protocol.

We can extend the same technique, to show that eβ:s,i contains
∑s′

i=1(αi · Bi−1 + q · Bi−1 · bi)
for committed αi and bi. That is, we exponentiate the corresponding bases to the powers Bi−1

and q · Bi−1. We note that this technique relies on the range proof to guarantee that none of the
extracted values overflow into neighboring slots, and that the extracted sum does not wrap around
in the message space.

C.7 Round 3 of Shuffled DOPRF

In Round 3 of the shuffled DOPRF protocol where P1 holds the input (see Figure 4), for each
i ∈ [n1], party P2 computes βi ← CS Decsk(ctβi) where sk is P2’s Camenisch-Shoup secret key,
and Cβi ← comg,h(βi) where (g, h) are P1’s Pedersen commitment parameters. P2 also computes
γi = β−1

i mod q and σi = gγii . In addition it computes ctσi ← EG Encpk(σi) where pk is P2’s ElGamal
public key. In this round P2 proves the following ZK-AOK:

ZK-AoK
{

(sk2, βi, r1, r2) : βi = CS Decsk(ctβi) ∧

Cβi = gβi · hr1 ∧ βi ≤ q2 · 23λ+1 ∧

ctσi = EG Encpk

(
(gi)

β−1
i ; r2

)}
.

Note that gi can be viewed as an ElGamal encryption with randomness 0. If we let ctgi =
EG Encpk(gi; 0), then we want to prove ctgi = (ctσi)

βi · EG Encpk(1;−r2 · βi) for a committed βi.
To batch this proof, we can use the multi-exponentiation argument from the work of Bayer and
Groth [BG12]. However, it requires βi to be committed under the same group as the ElGamal
encryption, hence we will also commit to βi in the ElGamal group and prove consistency of the two
commitments of βi.

At a high level, our proof consists of three steps. In the first step, we generate the Pedersen
commitment parameters in the ElGamal group and prove correctness of the parameter generation.
Second, we commit to βi under both the Camenisch-Shoup encryption group and the ElGamal
encryption group, and prove they are both consistent with the Camenisch-Shoup decrypted values.
In the last step, we prove correctness of the ElGamal encryption via multi-exponentiation argument.

46

C.7.1 Generating Pedersen commitment parameters

In this step, the verifier generates Pedersen commitment parameters (g1, g2, . . . , gt, h) for the group
ElGamal group G of order q and sends to the prover , together with a proof that gi ∈< h >.

The format of this latter proof depends on the specific ElGamal group G. When G is an
appropriate elliptic curve, the prover can simply check that each gi is a curve point, and a separate
proof is not necessary. When G is the prime-order multiplicative group modulo a safe prime, the
verifier must show that each gi is a square.

C.7.2 Committing to βi

In this step, the prover commits to βi using both the parameters (g1, . . . , gt, h) and (g1, . . . , gt, h),
and proves both commitments are both consistent with the Camenisch-Shoup decrypted values.

We can batch the commitments of {βi}i∈[n1] as follows:

Cβ:1 = (g1)β1 · (g2)β`+1 · · · (gt)β(t−1)`+1 · hrC:β:1
...

Cβ:s = (g1)βs · (g2)β`+s · · · (gt)β(t−1)`+s · hrC:β:s =

t∏
i=1

(gi)
β(i−1)`+s · hrC:β:s

...

Cβ:` = (g1)β` · (g2)β2` · · · (gt)βt` · hrC:β:`

Similarly, commitments under parameters (g1, . . . , gt, h):

Cβ:s = (g1)βs · (g2)β`+s · · · (gt)β(t−1)`+s · hrC:β:s =
t∏

i=1

(gi)
β(i−1)`+s · hrC:β:s ∀s ∈ [`].

Recall that P2’s Camenisch-Shoup secret key is in fact sk = (sk1, sk2, . . . , skt). The encryptions
of {βi}i∈[n1] are batched in the previous round as ctβ:s = (uβ:s, eβ:s:1, . . . , eβ:s:t) for all s ∈ [`]. In
this round we want to prove

eβ:s:i = (1 +N2)β(i−1)`+s · (uβ:s)
ski ∀s ∈ [`], i ∈ [t].

We now prove the consistency of {βi}i∈[n1] between batched Camenisch-Shoup decryption and
batched commitments:

ZK-AoK
{(
{βi}i∈[n1], {rC:β:s, rC:β:s}s∈[`], {ski}i∈[t]

)
:

eβ:s:i = (1 +N2)β(i−1)`+s · (uβ:s)
ski ∀s ∈ [`], i ∈ [t] ∧

Cβ:s =
t∏

i=1

(gi)
β(i−1)`+s · hrC:β:s ∀s ∈ [`] ∧ βi ≤ q2 · ` · 23λ+1 ∧

Cβ:s =

t∏
i=1

(gi)
β(i−1)`+s · hrC:β:s ∀s ∈ [`]

}
.

(4)

The batched sigma protocol is shown in Figure 14. The protocol is complete with all but
negligible probability. Next we prove its soundness and zero-knowledge.

47

1. Prover does the following:

(a) Sample β̃i
$← [q2 · ` · 23λ] for all i ∈ [t] and r̃C:β

$← [N1 · ` · 22λ], r̃C:β
$← [q].

(b) Compute C̃β =
∏t

i=1(gi)
β̃i · hr̃C:β and C̃β =

∏t
i=1(gi)

β̃i · hr̃C:β .

(c) Compute a batched Camenisch-Shoup encryption of
{
β̃i

}
i∈[t]

. Let the encryption be

(ũβ , ẽβ:1, . . . , ẽβ:t), then

ẽβ:i = (1 +N2)β̃i · (ũβ)
ski ∀i ∈ [t].

(d) Send
(

C̃β , C̃β , (ũβ , ẽβ:1, . . . , ẽβ:t)
)

to Verifier.

2. Verifier chooses random c1, . . . , c`
$← {0, 1}λ and sends to Prover.

3. Prover does the following:

(a) Compute the following and send to Verifier:

β̂i =
∑
s∈[`]

cs · β(i−1)`+s + β̃i ∀i ∈ [t];

r̂C:β =
∑
s∈[`]

cs · rC:β:s + r̃C:β ; r̂C:β =
∑
s∈[`]

cs · rC:β:s + r̃C:β

(b) Let

uβ̂ = ũβ ·
∏
s∈[`]

(uβ:s)
cs ; eβ̂:i = ẽβ:i ·

∏
s∈[`]

(eβ:s:i)
cs ∀i ∈ [t].

Then (uβ̂ , eβ̂:1, . . . , eβ̂:t) is a batched Camenisch-Shoup encryption of
{
β̂i

}
i∈[t]

.

(c) Sample s̃ki
$← [N2 · 22λ] for all i ∈ [t] and send the following to Verifier:

ẽβ̂:i = (1 +N2)β̂i ·
(
uβ̂

)s̃ki
∀i ∈ [t].

4. Verifier chooses random challenges c
$← {0, 1}λ and sends to Prover.

5. Prover computes ŝki = c · ski + s̃ki for all i ∈ [t] and sends to Verifier.

6. Verifier verifies the following:

t∏
i=1

(gi)
β̂i · hr̂C:β = C̃β ·

∏
s∈[`]

(Cβ:s)
cs ;

t∏
i=1

(gi)
β̂i · hr̂C:β = C̃β ·

∏
s∈[`]

(Cβ:s)
cs ;

(1 +N2)β̂i·(c+1) ·
(
uβ̂

)ŝki
= ẽβ̂:i ·

(
eβ̂:i

)c
∀i ∈ [t];

β̂i ≤ q2 · ` · 23λ ∀i ∈ [t].

Figure 14: Sigma protocol for the ZK-AOK (4).

48

Soundness. Starting from Step 3c, the way to extract {ski}i∈[t] is the same as in Appendix C.4.
Given the extracted {ski}i∈[t], we can extract {βi}i∈[n1] and {rC:β:s, rC:β:s}s∈[`] in the same way as in
Appendix C.4. The range proofs for these extracted values can be easily checked. In addition, the
extracted values from the commitments are consistent to the extracted values from the decryptions
because they can be deduced in the same way.

Zero-knowledge. The simulator first samples random challenges in Step 2 and Prover’s response
in Step 3a, from which it can compute C̃β and C̃β in Step 1b similarly as in previous sections.

Then the simulator computes a batched Camenisch-Shoup encryption of
{
β̂i

}
i∈[t]

, denoted as

(u
β̂
, e
β̂:1
, . . . , e

β̂:t
), from which it can compute the messages in Step 1c. Afterwards, the simu-

lator samples the random challenge in Step 4 and Prover’s response in Step 5. Then it computes
the corresponding messages in Step 3c and finally outputs the simulated transcript. The simulated
transcript is statistically indistinguishable to the real protocol.

Damg̊ard-Jurik style batching. The sigma protocol described in Figure 14 proved that a
Camenisch-Shoup ciphertext component decrypts to a committed value. As for the batched sigma
protocol for Round 2, this protocol also can be extended naturally to proving that a Camenisch-
Shoup ciphertext component decrypts to a linear combination of committed values. The idea is
largely the same as described in the intuition for Round 2, and we omit the details. This extension
of the proof allows us to use Damg̊ard-Jurik style ciphertexts and better utilize a large plaintext
space of size N s.

C.7.3 Multi-exponentiation argument

Recall that we have ctσi = EG Encpk

(
(gi)

β−1
i ; ri

)
, ctgi = EG Encpk (gi; 0), hence

ctgi = EG Encpk(1;−βi · ri) · (ctσi)
βi . (5)

Note that from the previous step we have batched commitments of βi. Let ρi = −βi · ri, then we
want to prove the following:

ZK-AoK
{(
{βi}i∈[n1], {rC:β:i}i∈[t], {ρi}i∈[n1]

)
:

ctgi = EG Encpk(1; ρi) · (ctσi)
βi ∀i ∈ [n1] ∧

Cβ:s =

t∏
i=1

(gi)
β(i−1)`+s · hrC:β:s ∀s ∈ [`]

}
.

(6)

At a high level, the verifier first picks random coefficients (c1, . . . , cn1). If we raise Equation 5
to the power ci and multiply all the equations, we get

ct =
∏
i∈[n1]

(ctgi)
ci = EG Encpk

1;
∑
i∈[n1]

ciρi

 · ∏
i∈[n1]

(
ctciσi
)βi .

To prove knowledge of {βi}i∈[n1] and ρ =
∑

i∈[n1] ciρi in the above equation, we can use the multi-
exponentiation argument from the work of Bayer and Groth [BG12]:

ZK-AoK
{(
{βi}i∈[n1], {rC:β:i}i∈[t], ρ

)
:

49

ct = EG Encpk(1; ρ) ·
∏
i∈[n1]

(
ctciσi
)βi ∧

Cβ:s =

t∏
i=1

(gi)
β(i−1)`+s · hrC:β:s ∀s ∈ [`]

}
.

1. Verifier chooses random challenges c1, . . . , cn1

$← {0, 1}λ and sends to Prover.

2. Both parties compute ct =
∏
i∈[n1] (ctgi)

ci .

3. Parties run a multi-exponentiation argument:

ZK-AoK
{(
{βi}i∈[n1], {rC:β:i}i∈[t], ρ

)
:

ct = EG Encpk(1; ρ) ·
∏
i∈[n1]

(
ctciσi
)βi ∧

Cβ:s =
t∏

i=1

(gi)
β(i−1)`+s · hrC:β:s ∀s ∈ [`]

}
.

Figure 15: ZK-AOK protocol for (6).

The ZK-AOK protocol is presented in Figure 15. The completeness of the protocol holds with
all but negligible probability. Next we argue its soundness and zero-knowledge property.

Soundness. The extractor first picks random challenges c1, . . . , cn1

$← {0, 1}λ and then ex-
tract

(
{βi}i∈[n1], {rC:β:i}i∈[t], ρ

)
from the multi-exponentiation argument. To further extract ρ1,

the extractor re-runs the protocol with challenges c′1, c2, . . . , cn1 and extracts ρ′. We claim that
ρ1 = (c1 − c′1)−1(ρ− ρ′). Since

(ctg1)c
′
1 ·

n1∏
i=2

(ctgi)
ci = EG Encpk(1; ρ′) ·

(
ct
c′1
σ1

)β1
·
n1∏
i=2

(
ctciσi
)βi .

Combining the equation with the first run, the extractor gets

(ctg1)∆c1 = EG Encpk(1; ∆c1 · ρ1) ·
(
ctβ1σ1

)∆c1
.

Therefore ctg1 = EG Encpk(1; ρ1) · (ctσ1)β1 . Similarly we can extract all the {ρi}i∈[n1].

Zero-knowledge. The simulator first follows the first two steps honestly and then launch the
simulator for the multi-exponentiation argument.

50

	Introduction
	Technical Overview
	Preliminaries
	Notation
	Computational Assumptions
	Cryptographic Tools
	Security Model

	Protocol Description
	Batching Techniques
	Batching Pedersen Commitments
	Batching Camenisch-Shoup Encryption
	Computing mod Ns+1
	Sharing the first ciphertext component
	Encrypting multiple messages in a single ciphertext
	Batching commitments of decrypted values

	Batching Sigma Protocols
	Multi-exponentiation Argument

	Communication, Computation and Monetary Costs
	Selective Secure Pseudorandom Function
	Construction
	Security Proof

	Security Analysis
	Security Against Malicious P1
	Security Against Malicious P2

	Sigma Protocols
	Step 1 of Offline Setup
	Step 2 of Offline Setup
	Step 3 of Offline Setup
	Step 2 of Online Phase
	Round 1 of Shuffled DOPRF
	Round 2 of Shuffled DOPRF
	Round 3 of Shuffled DOPRF
	Generating Pedersen commitment parameters
	Committing to i
	Multi-exponentiation argument

