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Abstract. In an article presented at FDTC 2018, Arribas, De Cnudde,
and Šijačić prove under mild conditions that threshold implementations
(TIs) are secure against fault sensitivity analysis (FSA). Later in 2018,
in the PhD thesis of De Cnudde, additional assumptions were imposed to
provably withstand FSA, thereby increasing the required number of ran-
dom bits. We point out that even under the latter, stronger conditions,
the proof is incorrect.
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1 Introduction

Even for a cryptographic algorithm that is unbreakable in a purely mathematical
sense, its implementation on an electronic device might be vulnerable to physi-
cal attacks. Measurable physical quantities leaked by a device, such as its power
consumption and its electromagnetic emissions, depend on the secret intermedi-
ate variables that are being processed. To impede secrets from being retrieved
through such side channels, masking schemes randomize computations such that
leaked physical signals are independent of internal secrets up to a certain sta-
tistical moment, which is referred to as the order. Threshold implementations
(TIs) [4,17] are a popular masking method as few assumptions about the under-
lying hardware are made in their security proofs.

Unfortunately, an attacker is not limited to being a passive observer and
might actively induce faults into a computation, e.g., by manipulating the clock
signal or the supply voltage. As faulty algorithm outputs are exploitable through,
e.g., a differential fault analysis (DFA) [3], ciphers are often implemented in a
redundant way such that faulty outputs can be detected and subsequently sup-
pressed. In its simplest form, the algorithm is run twice; different outcomes imply
that a fault must have occurred. Sadly, several types of fault attacks, including
a statistical ineffective fault attack (SIFA) [8] and a fault sensitivity analysis
(FSA) [13], do not necessarily require faulty outputs; correct outputs and/or
knowledge of whether the outputs are correct or faulty might suffice. Ironically,
redundant implementations with output suppression conveniently provide the
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latter one bit of correctness information to the attacker. In an attempt to fill
two needs with one deed, Arribas et al. [2] prove that TIs, which were previously
known to only resist side-channel analysis, also resist FSA. One coauthor, De
Cnudde [7], later imposed additional conditions for the proof to hold, thereby
significantly increasing a TI’s intake of random bits.

1.1 Contribution

We argue that the FSA-resistance proof, both in its original form by Arribas et
al. [2] and in its revised from by De Cnudde [7], contains a fatal mathematical
error. To strengthen our claim, we specify instances of TIs that succumb to
FSA. We also point out that both versions of the proof are built on questionable
abstractions of physical phenomena that occur in static complementary metal–
oxide–semiconductor (CMOS) logic, i.e., several abstractions that are acceptable
for the original side-channel-resistance proof cause anomalies in the case of FSA.

1.2 Structure

The remainder of this article is structured as follows. Section 2 provides pre-
liminaries. Section 3 refutes the FSA-resistance proof. Section 4 concludes this
work.

2 Preliminaries

Section 2.1 introduces the notation. Section 2.2 and Section 2.3 introduce the
fundamentals of FSA and TIs respectively. Section 2.4 recapitulates the FSA-
resistance proof.

2.1 Notation

Variables and constants are denoted by characters from the Latin and Greek
alphabets respectively. A random variable is denoted by an uppercase character,
e.g., X. Binary vectors are denoted by a bold-faced, lowercase character, e.g., x.
The all-zeros vector is denoted by 0; the all-ones vector is denoted by 1. The set
of all λ-bit vectors is denoted by {0, 1}λ. Functions are printed in a sans-serif
font, e.g., G.

2.2 Fault Sensitivity Analysis

The propagation delay D of a function G implemented as combinational logic
depends on the value of its input data. Li et al. [14] illustrate this data depen-
dency for the three types of two-input gates shown in Fig. 1, while assuming
that gate propagation delays can accurately be described by a single constant δ.
Input B arrives later than input A due to, for example, an additional inverter. If
for the AND gate, A = 0, the output quickly settles to C = 0, whereas for A = 1,
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more time is needed until the output C = B is determined. This difference is
formalized in Eq. (1), and similarly for the OR gate. The XOR gate does not
exhibit any data dependency: the delay is a constant D = δNOT + δXOR.

B

C

A

(a) AND gate.

B

C

A

(b) OR gate.

B

C

A

(c) XOR gate.

Fig. 1: AND and OR gates induce data-dependent delays; XOR gates do not.

D =

{
δAND , if A = 0

δNOT + δAND , otherwise,
D =

{
δOR , if A = 1

δNOT + δOR , otherwise.
(1)

Also for larger circuits, such as a substition box (S-box) G : X → Y of a
symmetric-key cipher where the input X and the output Y are stored in regis-
ters, the propagation delay D for settling Y depends on X. Consequentially, the
register that stores Y has a sensitivity to setup-time violations that depends on
X. In the original FSA by Li et al. [14], this sensitivity is measured by fixing
X to a constant value and repeatedly evaluating G such that the fault inten-
sity, i.e., the intensity level of a fault injection tool, is gradually increased until
Y becomes erroneous. For example, an attacker can progressively decrease the
time difference Tclk between two consecutive rising edges of the clock signal.
Alternatively, the clock signal is unmodified, but propagation delays D are pro-
gressively increased, either by increasing the temperature or by decreasing the
supply voltage [19]. Faulty outputs Y are not necessarily required for the attack
to succeed, but can significantly improve its spatial locality. For example, for a
layer of parallel S-boxes in the last round of an encryption function that is sub-
jected to a global fault injection method such as under-powering, the correctness
of individual S-box outputs Y can be assessed rather than the correctness of the
complete ciphertext.

In its original form by Li et al. [14], FSA requires a mathematical model
of the data-dependent fault sensitivity, i.e., knowledge of the circuit or even
the layout is required. Several variations of FSA, which we subdivide into two
categories, avoid this burden. The first category of variations as initiated by Li
et al. [12] exploits that for an S-box-like subcircuit that receives two identical
inputs in subsequent clock cycles, the propagation delay is zero in the second
clock cycle, i.e., occurrences of this exceptionally low fault sensitivity are easy to
spot. Similarly, Mischke et al. [15] exploit that for certain S-box implementations,
the pair (X,Y ) = (0,0) evaluates with an exceptionally low propagation delay.
For a second category of variations proposed by Li et al. [13] and Moradi et
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al. [16], it suffices that identical subcircuits, e.g., two S-boxes, have similar data-
dependent fault sensitivities such that subkey relations can be established by
finding collisions.

FSA is not to be confused with differential fault intensity analysis (DFIA) [11].
Both techniques require changes of the fault intensity, but the interval of inter-
est differs: FSA exploits the boundary between correct and faulty outputs Y ,
whereas DFIA exploits boundaries between faulty outputs Y having 1, 2, 3, · · ·
erroneous bits. Another, implied difference is that DFIA requires knowledge of
Y , whereas FSA might not.

2.3 Threshold Implementations

In additive Boolean masking schemes, secrets x ∈ {0, 1}λ are randomly and
uniformly split into σ shares according to Definition 1, thereby achieving the
provable property given in Lemma 1 [17]. One way to meet Definition 1 is to
first select (σ−1) masks m randomly, uniformly, and independently from {0, 1}λ,
followed by the computation in Eq. (3).

Definition 1 (Uniformity). A secret x ∈ {0, 1}λ is randomly and uniformly
split into σ shares, i.e., x1,x2, · · · ,xσ ∈ {0, 1}λ, if and only if the probability
mass function (PMF) of (X1, X2, · · · , Xσ) given X is given in (2).

P
(
(X1, X2, · · · , Xσ) = (x1,x2, · · · ,xσ) | X = x

)
={

2−λ(σ−1) , if x1 ⊕ x2 ⊕ · · · ⊕ xσ = x

0 , otherwise.

(2)

Lemma 1 (Subset of Shares). For a secret X that is randomly and uniformly
split into σ shares according to Definition 1, it holds that any tuple of at most
σ − 1 shares is independent of X.

x1 = m1,x2 = m2, · · · ,xσ−1 = mσ−1,xσ = x⊕m1 ⊕m2 ⊕ · · · ⊕mσ−1. (3)

For a function of the form G : {0, 1}λ → {0, 1}η, a TI [4, 17] of G transforms
σin shares of G’s input x into σout shares of G’s output y , G(x), and consists of
σout component functions Gi : {0, 1}λ×{0, 1}λ×· · ·×{0, 1}λ → {0, 1}η such that
the correctness and γth-order incompleteness requirements in Definition 2 and
Definition 3 respectively are met. A TI where γ = 1 and σin = σout = 3, which
Arribas et al. [2,7] use as an example to develop their FSA-resistance proof, may
involve computations y1 , G1(x2,x3), y2 , G2(x1,x3), and y3 , G3(x1,x2) as
shown in Fig. 2. As implied by Theorem 1, such a TI is only guaranteed to
exist if G’s algebraic degree τ ≤ 2. For affine functions G, i.e., τ = 1, TIs are
trivially constructed by setting σin = σout = 2 and letting G1(x1) , G(x1) and
G2(x2) , G(x2).
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Definition 2 (Correctness). The list of component functions, i.e., G1,G2, · · · ,
Gσout

, is correct if and only if it holds for all tuples of shares (x1,x2, · · · ,xσin
) ∈

{0, 1}λ×{0, 1}λ×· · ·×{0, 1}λ that G1(x1,x2, · · · ,xσin)⊕G2(x1,x2, · · · ,xσin)⊕
· · · ⊕ Gσout(x1,x2, · · · ,xσin) = G(x1 ⊕ x2 ⊕ · · · ⊕ xσin) = G(x).

Definition 3 (Incompleteness). The list of component functions, i.e., G1,G2,
· · · ,Gσout

, is incomplete to the γth order if and only if any out of
(
σout

γ

)
combina-

tions of component functions Gi does not depend on at least one input share Xi.

G1

G2

G3

x1

x2

x3

y1

y2

y3

Fig. 2: A first-order TI.

Theorem 1 (Number of shares). For any function G having algebraic degree
τ ∈ N0 and for any security order γ ∈ N0, there exist a TI having σin ≥ τ γ + 1
input shares and σout ≥

(
σin

τ

)
output shares.

To resist side-channel attacks of a certain nature, e.g., electromagnetic emis-
sions, it is crucial that the corresponding physical leakages LGi of each component
function Gi independently contribute to the total leakage L. For a TI where the
Gi’s are evaluated in parallel, as previously shown in Fig. 2, the total leakage
L observed by the attacker then becomes linear in the componentwise leakages
LGi , thereby allowing Theorem 2 to be proven [4,17]. In practice, the assumption
of independent leakages might only be approximately correct [5]: electric wires
belonging to different Gi’s can exhibit capacitive or inductive couplings, for ex-
ample. Nevertheless, compared to preexisting masking schemes, in which similar
independency assumptions are made, TIs have the advantage of not imposing
constraints on the internals of each individual Gi. Most notably, the scheme tol-
erates glitches [19], i.e., imbalanced propagation delays may cause circuit nodes
to exhibit multiple transitions in a single clock cycle before settling to the correct
logic level.

Theorem 2 (Security of a TI with parallel components). For a TI having
order γ ∈ N0 and operating on a secret X that is randomly and uniformly split
into σin shares, it holds for any physically leaked variable of the form L = LG1

+
LG2

+ · · ·+ LGσout
that the γth statistical moment of L is independent of X.
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For a composition of two functions, G ◦ F, TIs of G and F cannot simply be
put in series. First, a register layer should separate both TIs [17, 18] to avoid
violating the incompleteness requirement given in Definition 3. Second, to ensure
that Theorem 2 applies to the TI of G, the output shares of the TI of F should be
uniform according to Definition 1. This requirement can be met either through
imposing additional design constraints on the component functions Fi [17, 18]
or through a form of remasking [6]. Such measures are indispensable for block
ciphers, which can be understood as a composition of identical round functions,
i.e., G ◦ G ◦ . . . ◦ G.

2.4 FSA-Resistance Proof

The original and the revised version of the FSA-resistance proof are recapitulated
below.

Original Version Despite a demonstration by Moradi et al. [16] that several
masking schemes are vulnerable to FSA, Arribas et al. [2] argue that TIs are
provably secure thanks to their incompleteness property. The proof further con-
siders an isolated TI, given that standard rules for function composition still ap-
ply. The correctness/faultiness of the chip’s output is assumed to solely depend
on this isolated TI, i.e., control logic and other faultable hardware components
are made abstraction of. Assuming all TI-inherent requirements are met, which
includes uniformity of the input shares but excludes uniformity of the output
shares, Assumption 1 and Assumption 2 are made to resist FSA. Assumption 1
is supplemented with a summary of the original FSA by Li et al. [14] where the
fault intensity is gradually increased until an erroneous output appears.

Assumption 1 FSA relies on the measurement of propagation delays.

Assumption 2 The component functions G1,G2, · · · ,Gσ operate in parallel and
independently of one another, as depicted in Fig. 2.

The security proof is elaborated for a TI of order γ = 1 that operates on
σin = σout = 3 shares, but can trivially be generalized to cover other parameter
values. Arribas et al. [2] adopt the same view of data-dependent propagation
delays as Li et al. [14], which was illustrated in Eq. (1), and let DG1(X2, X3, Y1),
DG2

(X1, X3, Y2), and DG3
(X1, X2, Y3) denote the largest propagation delays in

their respective component functions Gi for given input shares (X1, X2, X3) and
given output shares (Y1, Y2, Y3). In this notation, the authors implicitly assume
that (i) the register storing (X1, X2, X3) has previously been reset to a known
constant, e.g., (χ1,χ2,χ3) , (0,0,0), and (ii) the output shares (Y1, Y2, Y3)
are the result of evaluating this constant, i.e., Y1 , G1(χ2,χ3), given that the
inclusion of Y1 , G1(X2, X3) would be redundant, and similarly for Y2 and Y3.
Without loss of generality, Arribas et al. [2] assume that DG1

≥ DG2
≥ DG3

.
In this case, G1 is the first component function to produce an erroneous output
share, and G2 and G3 supposedly do not affect the fault sensitivity of the TI as
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a whole. Stated otherwise, the attacker knows whether or not G1 failed, but it
cannot be measured or inferred whether or not G2 and G3 failed as well. As G1

is independent of input share X1, Lemma 1 implies that the attacker obtains
no information about the unmasked secret X = X1 ⊕X2 ⊕X3, which ends the
proof.

Revised Version In the revised version of the proof, De Cnudde [7] addi-
tionally imposes Assumption 3 and Assumption 4, using block-cipher terminol-
ogy. A specifically mentioned scenario satisfying Assumption 3 is redundancy-
based fault detection with output suppression, which is a typical countermeasure
against DFA. In this scenario, an attacker only learns whether the output is cor-
rect or not. Assumption 4 is made to preclude the aforementioned FSA variation
by Mischke et al. [15] where identical inputs in subsequent clock cycles are spot-
ted. The proof itself remains the same, except for notational differences that
make DG1 , DG2 , and DG3 dependent on the randomly selected reset value. The
exact nature of this dependency is underspecified.

Assumption 3 The attacker does not exploit faulty ciphertexts.

Assumption 4 Before every encryption, the state is set to a value that is se-
lected uniformly at random.

3 Analysis of FSA-Resistance Proof

Our analysis of the FSA-resistance proof escalates as follows. Section 3.1 argues
that the attacker model is ill-defined and physically implausible. Section 3.2
points out that the proof makes abstraction of three physical phenomena that
can only justifiably be made abstraction of in the original side-channel-resistance
setting. Section 3.3 identifies a fatal mathematical error in the reasoning behind
the proof. Section 3.4 provides examples of TIs that succumb to FSA.

3.1 Ill-Defined and Physically Implausible Attacker Model

The attacker model, which underlies the proof, is ill-defined. Our main concern is
that many variations of FSA exist [12–16,20], and it is unclear which variations
are covered by the proof. Arribas et al. [2,7] supplemented Assumption 1 with a
summary of the original FSA by Li et al. [14], but vaguely tag it as an “explana-
tion of the validity of Assumption 1”. Therefore, the reader cannot distinguish
whether it concerns either an example of a covered FSA or the one and only
covered FSA. When we forwarded an initial draft of our article to Arribas, De
Cnudde, and Šijačić on April 9, 2020, Šijačić stated that the proof solely covers
the original FSA by Li et al. [14], and reiterated this point in his PhD thesis in
October 2020 [21]. The provided evidence is that Arribas et al. [2] only simu-
late the FSA by Li et al. [14] in their experiments, albeit in an implicitly and
drastically altered form. We consider this evidence as inconclusive: apart from
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the alteration, by default, experiments in a paper comprise a small subset of the
infinitely large set of all possible test cases. Also if numerous FSA variations are
covered, it would be impractical to test them all. Furthermore, a few editorial
clues suggest that several FSA variations are intended to be covered:

– Arribas et al. [2,7] explicitly use the term “FSA” to refer to several variations
of the attack [14–16] and claim resistance to “FSA” in key places such as the
Title, the Abstract, the Introduction, and the Conclusion, without imposing
any constraint. Hence, if the scope of the term “FSA” remains consistent
across the text, the proposed defence has a wide coverage.

– Arribas et al. [2,7] motivate their work by describing how Moradi et al. [16]
successfully attack non-glitch-resistant masking schemes, which do not meet
the incompleteness requirement in Definition 3, and then suggest that TIs
provide a solution. Based on this motivation, one would expect the FSA by
Moradi et al. [16] to be covered.

– De Cnudde [7] explicitly states that the FSA by Mischke et al. [15] is covered,
without changing the supplement to Assumption 1. Hence, the supplement
does not restrict the attacker model to the original FSA by Li et al. [14].

More important than the above editorial inconsistencies is that the attacker
model becomes physically implausible: the original FSA by Li et al. [14], which
is the only covered FSA variation according to Šijačić [21], was developed for
unmasked implementations and cannot readily be applied to TIs. This type of
FSA assumes that the fault sensitivity is constant for a given algorithm input
such that repeated evaluations can be used to precisely measure the fault sensi-
tivity. For TIs, however, the fault sensitivity changes with every evaluation due
to the random masks Mi. It would thus be pointless for an attacker to gradually
increase the fault intensity until an erroneous output appears, i.e., the physical
quantity that the attacker is trying the measure continuously changes while it is
being measured. A cryptosystem is, obviously and by default, secure against an
inapplicable attack; no security proof is needed to confirm this. Hence, the proof
based on incompleteness lacks existential motivation. To draw an analogy: just
like no paper is needed to prove that a cryptosystem with an immutable key is
secure against related-key attacks, no paper is needed to prove that TIs are secure
against the original FSA by Li et al. [14]. Moreover, non-glitch-resistant mask-
ing schemes also exhibit ever-changing fault sensitivities, thereby rendering the
original FSA by Li et al. [14] equally inapplicable. Hence, the suggested notion
that TIs are superior to non-glitch-resistant masking schemes is unsupported.

Arribas et al. [2,7] do not acknowledge that the original FSA by Li et al. [14] is
inapplicable to TIs and other masking schemes. In fact, the opposite is suggested.
In their experiments, Arribas et al. [2] are able to (unsuccessfully) attack TIs
using a simulated version of the FSA by Li et al. [14]. This simulated version is
mentioned to be unrealistically in favor of the attacker, who receives exact, noise-
less values of the maximum propagation delay D(G1,G2,G3) , max(DG1

, DG2
, DG3

)
for given input shares (X1, X2, X3) rather than noisy estimates. The part about
omitting noise is reasonable: the only drawback of noise is typically that more
measurements are needed for an identical attack to succeed. However, arguably
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the most unrealistic aspect is unacknowledged: in actual, real-world attacks, not
even a noisy estimate of D(G1,G2,G3) could be obtained owing to the ever-changing
fault sensitivities. For given input shares (X1, X2, X3), only the binary outcome
of a single comparison D(G1,G2,G3) ≶ D′, where D′ relates to the fault intensity,
is obtainable. Given that Arribas et al. [2] drastically alter the physical reality
of the FSA by Li et al. [14], the attacker model of Šijačić [21] becomes hard to
grasp: it is counterintuitive to implicitly cover an artificial, physics-defying alter-
ation but at the same time exclude less disruptive FSA variations [12,13,15,16]
that abide physical laws.

In our analysis, we try to work around the above problem. Initially, in Sec-
tions 3.2 to 3.3, the only FSA variation we consider to be covered is the original
one by Li et al. [14], even though applying this technique to TIs is physically im-
possible. Upon pointing out a fatal mathematical error in the proof and providing
an example of a TI that succumbs to FSA within this physically impossible con-
text, we consider the proof to be officially refuted. Stated otherwise, by following
the implicit, physics-defying alteration of Arribas et al. [2] where an attacker is
not bothered by the ever-changing masks Mi, TIs that were inherently secure
against the FSA by Li et al. [14] are demonstrated to become insecure. After-
wards, in Section 3.4, we examine FSA variations of which the application to TIs
is physically plausible [12, 15]. Even though the capabilities of an attacker are
weakened, i.e., the single-bit outcome of a comparison D(G1,G2,G3) ≶ D′ is less
informative than the complete value D(G1,G2,G3), the mathematical error contin-
ues to exist and examples of TIs that succumb to FSA are once again provided.
According to Šijačić [21], the attacks in Section 3.4 were not meant to be cov-
ered, but we provide them anyway: in our estimation, members of academia and
industry are primarily interested in attacks that have implications to the real
world. It should be noted that all the aforementioned FSA variations [12–16] are
approximately equally difficult to perform from a technological perspective, i.e.,
differences lie in query strategies and the data processing rather than in the cost
of the equipment. Therefore, any proposed FSA countermeasure should provide
a broad coverage in order to be adequate for industrial adoption. Our analysis
shows that TIs are unpromising in this regard.

Lastly, we identify one ambiguity for each assumption made in Section 2.4.
In contrast to the previous complications regarding physical plausibility, all four
ambiguities can easily be mitigated by making a conservative assumption. For
Assumption 1, the notion of propagation delays D being “measured” is open
to interpretation. Through fault-injection methods such as heating and under-
powering, propagation delays D are not only measured but also increased in
possibly complex, non-linear ways. To be conservative, we further only consider
reductions of the clock period Tclk, as D then remains unaltered. For Assump-
tion 2, it is unclear whether the suggested notion of parallelism is in conflict
with local fault-injection methods. Schellenberg et al. [20] previously performed
FSA using a laser, for example. Again, we are conservative by only consider-
ing reductions of the clock period Tclk, i.e., a global fault-injection method.
For Assumption 3, De Cnudde [7] does not comment on undetectable faults.
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Hence, the consequences of, for example, identical faults in a duplicated cipher
implementation are unclear. Depending on the chosen comparison method, the
same concern applies to fault injections that result in erroneous output shares
(y1 ⊕ e1,y2 ⊕ e2,y3 ⊕ e3) such that e1 ⊕ e2 ⊕ e3 = 0. To be conservative, we
consider every single bit flip as detectable. For Assumption 4, it is unspecified
whether the randomly selected value is secret or not. To be conservative, we
consider it a secret.

3.2 Deficiencies of The Physical Model

As mentioned earlier-on, the strength of TIs is that few assumptions about the
underlying hardware are made: physical phenomena such as glitches, noise, and
data-dependent propagation delays can easily be made abstraction of when prov-
ing resistance to side-channel attacks [4,17] as claimed in Theorem 2. Arribas et
al. [2,7] continue this tradition by making almost equally strong abstractions in
their FSA-resistance proof, but the result is less convincing. For static CMOS
logic in particular, we argue that basic physical properties of gate propagation
delays cause anomalies in the proof. First of all, we show that the component-
wise delay functions DGi as defined in Section 2.4 should be redefined in order
to capture unforeseen data dependencies. Subsequently, we point out that in
the presence of glitches and noise, the constraint DG1 ≥ DG2 ≥ DG3 does not
preclude DG2 and DG3 from being measured. Hence, the independence of input
share X1 cannot be enforced. To avoid three-share dependencies, a collaborat-
ing attacker is required, which is not usually how such a person or organization
behaves in the real world. Although the described anomalies will be overshad-
owed in Section 3.3 by an unrelated, purely mathematical flaw that refutes the
proof single-handedly, we still forewarn potential follow-up works that physical
abstractions are not without pitfalls.

Data-Dependent Propagation Delays Are Everywhere The problem of
data-dependent propagation delays is more severe than Li et al. [14] and Arribas
et al. [2] assume. In addition to data dependencies caused by an unbalanced
network of gates, as discussed in Section 2.2, data dependencies also arise within
a single, isolated gate, given that gate propagation delays cannot accurately be
described by a single parameter δ. For static CMOS logic, the latter dependencies
are unforgiving. Consider, for example, a two-input NAND gate, of which the
circuit and a resistor–capacitor (RC) model are shown in Fig. 3. Simulation
results of Rabaey et al. [19, Chapter 6], which are repeated here in Table 1,
show that all six possible transitions that invert the value of the output C
are characterized by distinct propagation delays. These delay differences are
significant and thus measurable: most notably, the largest delay is approximately
twice as large as the smallest delay. The transition in row four is particularly fast
because the load capacitor Cload is charged through two parallel paths, having
an equivalent resistance Req = Rpmos/2. The transition in row five is particularly
slow because an uncharged internal capacitor Cint adds to the load. Note that
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although inputs A and B are interchangeable on a functional level, this symmetry
does not hold on the circuit level: the order of the serialized nMOS transistors
matters. For all ten possible transitions where the value of the output C remains
unchanged, propagation delay D = 0.

VDD

A B

A

B

C

(a) Circuit.

Rpmos

A

Rpmos

B

VDD

C

CloadRnmos

A

Rnmos

B

Cint

(b) RC model.

Fig. 3: A two-input NAND gate in static CMOS technology [19, Chapter 6]. (a)
The circuit, which consists of two nMOS transistors in series and two pMOS
transistors in parallel. (b) An RC model, where the load capacitance Cload com-
prises an aggregate of all gates driven by the NAND gate.

The above RC model demonstrates that the common distinction between
insecure AND/NAND/OR/NOR gates and secure XOR/XNOR gates [2,10,13]
is over-simplistic. All gates, including NOT gates, have data-dependent propa-
gation delays. Note also that the data dependencies given in Eq. (1) are semi-
accurate at best: if the output of the AND/OR gate remains unchanged, D = 0
irrespective of the value of input A. For the FSA-resistance proof of Arribas
et al. [2], the following problem emerges: the componentwise delay functions
DG1

(X2, X3, Y1), DG2
(X1, X3, Y2), and DG3

(X1, X2, Y3) cannot capture all pos-
sible delay dependencies. As component functions Gi are usually non-injective,
distinct reset values (χ2,χ3) can map to the same Y1 , G1(χ2,χ3), yet result
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Table 1: Data-dependent propagation delays of the two-input NAND gate shown
in Fig. 3, as simulated by Rabaey et al. [19, Chapter 6] for CMOS transistors
having a channel length of 0.25 µm. Although this technology is now obsolete, the
delay differences originate from unavoidable circuit asymmetries and, therefore,
still exist today in similar proportions.

Input A Input B Output C Delay D

0→ 1 0→ 1 1→ 0 69 ps
1 0→ 1 1→ 0 62 ps

0→ 1 1 1→ 0 50 ps
1→ 0 1→ 0 0→ 1 35 ps

1 1→ 0 0→ 1 76 ps
1→ 0 1 0→ 1 57 ps

in different charges on the internal circuit nodes and thus different propagation
delays DG1

, and similarly for G2 and G3. To solve this problem, we redefine the
componentwise delay functions in Eq. (4), where superscripts (1) and (2) refer
to previously and newly stored values by the input registers respectively. For the
revised proof of De Cnudde [7], it suffices to alter Eq. (4) such that the reset
value is uniformly distributed rather than constant.

DG1

(
X

(1)
2 , X

(1)
3 , X

(2)
2 , X

(2)
3

)
,

DG2

(
X

(1)
1 , X

(1)
3 , X

(2)
1 , X

(2)
3

)
,

DG3

(
X

(1)
1 , X

(1)
2 , X

(2)
1 , X

(2)
2

)
,

where
(
X

(1)
1 , X

(1)
2 , X

(1)
3

)
, (χ1,χ2,χ3). (4)

The Danger of Glitches Consider a three-share TI with single-bit outputs Yi
that respond to a given transition of the input shares Xi as shown in Fig. 4a.
As assumed in the FSA-resistance proof, DG1

≥ DG2
≥ DG3

. For simplicity,
we chose DG3

= 0 and do not further consider the corresponding output node.
More importantly, the output node of component function G1 exhibits a glitch
consisting of two transitions such that the output Y1 is correct in an interval
around DG2 . Hence, the attacker can measure not only DG1 but also DG2 , thereby
utilizing a three-share dependency that potentially reveals information on the
unshared secret X , X1 ⊕ X2 ⊕ X3. This is under the implicit assumption of
Arribas et al. [2,7] that an attacker is not bothered by the ever-changing masks
Mi, which was argued to be physically impossible in Section 3.1.

An attacker who is kind enough to execute the original FSA by Li et al. [14]
such that the clock period T ′clk is decreased in (infinitely) small steps starting
from the nominal value Tclk, evidently, only obtains DG1

. Note that in a more ef-
ficient binary search for DG1

, an attacker might accidentally overshoot the glitch
of Y1 and end up with a measurement of DG2

. Even more problematic, a real-
world attacker does not make gestures of goodwill and would measure both DG1

and DG2 on purpose. Forsaking support for glitches is not a satisfactory solu-
tion to this problem: TIs are specifically advertised as a glitch-resistant masking
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0 DG1 Tclk

0

1

T ′clk

Y1

0 DG2 Tclk

0

1

T ′clk

Y2

0 Tclk
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1

T ′clk

Y3

(a) Glitches.

0 DG1 Tclk

0

1

T ′clk

P(Y1 = 1)

0 DG2 Tclk

0

1

T ′clk

P(Y2 = 1)

0 Tclk

0

1

T ′clk

P(Y3 = 1)

(b) Noise.

Fig. 4: A three-share TI with (a) glitches or (b) noise.

scheme [4, 17] and thus lose their competitive edge over other masking schemes
for logic that is devoid of glitches. Also remark that for FSA variations in which
the fault intensity is not gradually increased, in case these are covered as pre-
viously discussed in Section 3.1, propagation delays cannot unambiguously be
defined using a single variable D. For an output node that exhibits a glitch, not
only the last transition but also one or more earlier transitions then impact the
security, and the meaning of the proof becomes unclear. This ambiguity becomes
increasingly unsustainable with an increasing number of edges that constitute
the glitch.

Noise and Time-Variant Fault Sensitivity Unfortunately, electronic cir-
cuits are subject to noise [19], which we define as irreproducible deviations from
the nominal behavior caused by randomly moving particles. For example, the
resistive elements in Fig. 3b exhibit Johnson–Nyquist noise, which is the thermal
agitation of charge carriers. Hence, electrical signals such as currents and volt-
ages as a function of time are not deterministic but stochastic in nature. On gate
level, these noisy signals manifest as the following two phenomena, both of which
result in a time-variant fault sensitivity. First, for a combinatorial circuit that
responds to a given input transition X(1) → X(2), the propagation delay D of an
output node is more accurately described by a Gaussian-like distribution than
by constant. Second, if the setup and/or hold time of a flip-flop that samples an
output bit Y is violated, it enters a metastable state that eventually resolves to
either 0 or 1 depending on noise sources within this flip-flop.

For the FSA-resistance proof, the lack of a clear-cut threshold DGi separating
correct and faulty outputs results in the following anomaly. Consider a three-
share TI with single-bit outputs Yi that respond to a given transition of the input
shares Xi as shown in Fig. 4b. Again, DG1

≥ DG2
≥ DG3

and DG3
= 0. For the

first two output nodes, the probability of registering a 1 has sloped edges due
to noise. For simplicity, these slopes are drawn as straight lines; more accurate
curves [19] do not change the following worrisome fact. An attacker is not pre-
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cluded from measuring the probability of sampling a correct output (Y1, Y2, Y3),

i.e., Pcorrect,G1,G2,G3 ,
∏3
i=1 Pcorrect,Gi , which results in a three-share dependency

for some intervals of the reduced clock period T ′clk. Again, cooperation from the
attacker is required to resist the original FSA by Li et al. [14], under the im-
plicit assumption of Arribas et al. [2,7] that the ever-changing masks Mi are not
a problem. Furthermore, due to the slopes, propagation delays D are hard to
define using a single variable. Hence, the meaning of the proof becomes unclear
when noise is taken into consideration.

3.3 The Incompleteness Fallacy

We now disregard the physical deficiencies in Section 3.2, i.e., we follow Arribas
et al. [2, 7] by making abstraction of glitches and noise, and assess the FSA-
resistance proof from a purely mathematical perspective. A first peculiarity of the
proof is that the made assumptions are not explicitly incorporated. For example,
Assumption 4 stipulates that the initial state value should be selected uniformly
at random, but this particular probability distribution never comes back in the
actual proof, e.g., through a formal derivation making use of probability theory.
Not surprisingly for a proof in which such formalizations are missing as a stepping
stone, a fatal flaw arises.

For now, we still assume that an attacker can obtain the exact value of a
TI’s propagation delay D(G1,G2,G3) for any given transition of the input shares
(X1, X2, X3). As argued in Section 3.1, this is physically impossible, but it com-
plies with the experiments of Arribas et al. [2] and the reasoning behind their
proof. The backbone of the proof is that the correctness of the output (Y1, Y2, Y3)
supposedly only depends on one component function Gi, thereby preserving the
secrecy of the input X through the incompleteness property. This reasoning is
wrong: the maximum propagation delay D(G1,G2,G3) , max(DG1 , DG2 , DG3) de-
pends on all three input shares and thus also reveals information on all three in-
put shares. Even though the value of D(G1,G2,G3) is taken from a single component
function Gi, e.g., D(G1,G2,G3) = DG1

if DG1
≥ DG2

≥ DG3
, the three-share depen-

dency remains present. For componentwise delays as defined in Eq. (4), it can be
seen in Eq. (5) that constraints involving all three input shares Xi are implied,
thereby possibly revealing information on the unshared secret X , X1⊕X2⊕X3.

D(G1,G2,G3) = α =⇒
DG1

(
X

(1)
2 , X

(1)
3 , X

(2)
2 , X

(2)
3

)
∈ [0, α],

DG2

(
X

(1)
1 , X

(1)
3 , X

(2)
1 , X

(2)
3

)
∈ [0, α],

DG3

(
X

(1)
1 , X

(1)
2 , X

(2)
1 , X

(2)
2

)
∈ [0, α].

(5)

Consider, for example, a Hamming weight (HW) model of the componentwise
delays DGi as specified in Eq. (6). We let the input shares Xi initially be zero,
which is a typical reset value for registers. The unit of measurement of the DGi ’s
is arbitrary and is, therefore, omitted. Also the function G(X) and its associated
component functions G1(X2, X3), G2(X1, X3), and G3(X1, X2) are arbitrary and
thus unspecified. As it turns out, the expected value E[D(G1,G2,G3)] depends on

the unmasked characteristic HW(X(2)). For a nibble size λ = 2, it holds that
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E[D(G1,G2,G3)] equals 2.625, 2.5625, and 2.5 if HW(X(2)) equals 0, 1, and 2 respec-

tively. These numbers can be derived by exhaustively evaluating all 2σ λ = 64
possible input transitions, as shown in the Python script in Appendix A. Note
that in a proof-of-concept of the original FSA by Li et al. [14], a similar HW
exploit is used. Also remark that this refutation can be made applicable to the
revised proof of De Cnudde [7] by removing the constraint on the reset value in
Eq. (6).

DG1

(
X

(1)
2 , X

(1)
3 , X

(2)
2 , X

(2)
3

)
, HW

(
X

(2)
2

)
+ HW

(
X

(2)
3

)
,

DG2

(
X

(1)
1 , X

(1)
3 , X

(2)
1 , X

(2)
3

)
, HW

(
X

(2)
1

)
+ HW

(
X

(2)
3

)
,

DG3

(
X

(1)
1 , X

(1)
2 , X

(2)
1 , X

(2)
2

)
, HW

(
X

(2)
1

)
+ HW

(
X

(2)
2

)
,

where

X
(1)
1 , X

(1)
2 ,

X
(1)
3 , 0.

(6)

3.4 Physically Plausible Attacks

We now consider the FSA-resistance proof [2, 7] in the context of physically
plausible attacks [12,15]. Although such attacks were not intended to be covered
by the proof according to a post-refutation statement by Šijačić [21], we solidify
that the proof provides no security guarantees even for a weaker attacker who is
bothered by the ever-changing masks Mi. First, we show that the incompleteness
fallacy from Section 3.3 still applies to this weaker attacker model. Subsequently,
we specify an instance of the componentwise delays DGi in Eq. (4) that succumbs
to FSA, both for the original proof by Arribas et al. [2] and for the hardened
proof by De Cnudde [7], in which Assumption 4 respectively does not and does
exist. As noise and glitches cannot adequately be captured by Eq. (4), as argued
in Section 3.2, we still make abstraction of these phenomena just like Arribas et
al. [2, 7].

The Incompleteness Flaw Revisited Recall from Section 3.1 that for any
given transition of the input shares (X1, X2, X3) in a physically plausible FSA,
only the binary outcome of a single comparison D(G1,G2,G3) ≶ D′ can be observed,
where D′ relates to the fault intensity. Although the single-bit result of this
comparison is less informative than the complete value D(G1,G2,G3), the three-
share dependency remains present. Consider the set Xtrans of all possible shared
input transitions. For Arribas et al. [2], the cardinality |Xtrans| = 2σ λ; for De
Cnudde [7], |Xtrans| = 4σ λ. As illustrated in Fig. 5, for any given fault-sensitivity
threshold D′, the set Xtrans can be partitioned into the two subsets that are
defined in Eq. (7). For each evaluation, the attacker knows in which of the two
sets the actual transition resides. Hence, unless the condition in Eq. (8) is true,
which is unlikely to be the case in practice, the TI is vulnerable to FSA. Note
that if Eq. (8) is true, a similar condition for Xtrans,faulty(D′) is also true.
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Xtrans,correct(D
′) ,

{(
X

(1)
1 , X

(1)
2 , X

(1)
3 , X

(2)
1 , X

(2)
2 , X

(2)
3

)
∈ Xtrans |(

DG1

(
X

(1)
2 , X

(1)
3 , X

(2)
2 , X

(2)
3

)
< D′

)
∧
(
DG2

(
X

(1)
1 , X

(1)
3 , X

(2)
1 , X

(2)
3

)
< D′

)
∧(

DG3

(
X

(1)
1 , X

(1)
2 , X

(2)
1 , X

(2)
2

)
< D′

)}
,

Xtrans,faulty(D′) , Xtrans \ Xtrans,correct(D
′).

(7)

∀D′ ∈ [0, Tclk],∀X ∈ {0, 1}λ,∣∣{(X(1)
1 , X

(1)
2 , X

(1)
3 , X

(2)
1 , X

(2)
2 , X

(2)
3

)
∈ Xtrans,correct(D

′) |

X
(2)
1 ⊕X(2)

2 ⊕X(2)
3 = X

}∣∣ =
∣∣Xtrans,correct(D

′)
∣∣/2λ. (8)

G1 G2 G3

Component

D
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ay
D

faulty

(a) 2D view.

1 2 3 4 · · · |Xtrans|
Transition

D
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ay
D
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faulty faulty correct faulty correct

(b) 3D view.

Fig. 5: The longest propagation delay D in each component function Gi. (a) The
static, two-dimensional view of Arribas et al. [2, 7]. (b) A more dynamic, three-
dimensional view. A fault sensitivity threshold D′, which relates to the fault
intensity, is represented by the red dotted line.

Counterexample Excluding Assumption 4 Consider an arbitrary invert-
ible, quadratic function G : {0, 1}λ → {0, 1}λ, which can be thought of as an
S-box. For its arbitrary TI, let the componentwise delays DG1

, DG2
, and DG3

be
zero if the respective function outputs remain unchanged, as specified in Eq. (9).
This behavior is consistent with static CMOS logic, as previously discussed for
the NAND gate in Fig. 3. If the output of a Gi changes, let the delay be equal
to an arbitrary strictly positive constant. In practice, this condition is approx-
imately true for TIs where each Gi is realized as a lookup table (LUT). Such
realizations require a total of 3 · 2λ λ hardwired bits and are thus area-inefficient
for typical values of λ, e.g., λ ∈ {4, 8}, but we are free to adopt any piece of
hardware that complies with the terms of the proof.
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DG1
,

{
0 , if G1

(
X

(2)
2 , X

(2)
3

)
= G1(0,0)

3 , otherwise,

DG2 ,

{
0 , if G2

(
X

(2)
1 , X

(2)
3

)
= G2(0,0)

3 , otherwise,

DG3 ,

{
0 , if G3

(
X

(2)
1 , X

(2)
2

)
= G3(0,0)

3 , otherwise,

where X
(1)
1 , X

(1)
2 , X

(1)
3 , 0.

(9)

Due to the independency of component functions,D(G1,G2,G3) , max(DG1
, DG2

, DG3
).

Hence, we obtain Eq. (10) from Eq. (9).

D(G1,G2,G3) =

{
0 , if

(
X

(2)
1 , X

(2)
2 , X

(2)
3

)
∈ D0

3 , otherwise,

where D0 =
{

(X1, X2, X3) |
(
G1(X2, X3) = G1(0,0)

)
∧
(
G2(X1, X3) = G2(0,0)

)
∧
(
G3(X1, X2) = G3(0,0)

)}
.

(10)

A necessary but insufficient condition forD(G1,G2,G3) = 0 is derived in Eq. (11).
The last step, Eq. (11d), holds because G is assumed to be invertible. From the
condition X(2) = 0, it follows that |D0| ≤ 2λ(σ−1). As (0,0,0) ∈ D0, it also holds
that |D0| ≥ 1. The exact value of |D0| ∈ [1, 2λ(σ−1)] can easily be computed for a
given TI. If the output shares Yi are uniform according to Definition 1, it holds
that |D0| = 1, given that the TI then realizes a permutation of the set {0, 1}λσ.

(
X

(2)
1 , X

(2)
2 , X

(2)
3

)
∈ D0 (11a)

=⇒ G1

(
X

(2)
2 , X

(2)
3

)
⊕ G2

(
X

(2)
1 , X

(2)
3

)
⊕ G3

(
X

(2)
1 , X

(2)
2

)
(11b)

= G1(0,0)⊕ G2(0,0)⊕ G3(0,0) (11c)

=⇒ G
(
X(2)

)
= G(0) =⇒ X(2) = 0. (11d)

If the attacker reduces the clock period Tclk such that D(G1,G2,G3) = 2 is
the threshold between a correct and a faulty computation, the data-dependent
statistic in Eq. (12) arises. The constant 2 is to be understood as an arbitrary
value in the open interval (0, 3). A correct output implies that X(2) = 0, i.e., a
secret value is revealed in its entirety. Observe that the presented attack is sim-
ilar to the aforementioned FSA variation where identical inputs in subsequent
clock cycles are spotted [12, 15]; the difference lies in the additional complexity
of component functions Gi being non-injective. Note also that the specification
of the componentwise delays in Eq. (9) can be relaxed to accommodate a more
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realistic attack. For the ‘otherwise’ cases in Eq. (9), DGi is not necessarily con-
stant and may depend on noise, process variations, and both shares of X(2) as
long as all DGi ’s exceed a predefined threshold.

P
(
D(G1,G2,G3) < 2

)
=

{
|D0|/2λ (σ−1) , if X(2) = 0

0 , otherwise.
(12)

To further quantify the practicality of the above attack, we simulate the
timing behavior of a TI of a quadratic, invertible, 4× 4 S-box that is mapped to
a Xilinx Spartan-6 field-programmable gate array (FPGA) with a 1 ps resolution.
Specifications of the original function G(X) and the first component function of
its TI, G1(X2, X3), are taken from Poschmann et al. [18] and are repeated here
in Eq. (13) and Eq. (14) respectively. Similarly, G2(X1, X3) , G1(X3, X1) and
G3(X1, X2) , G1(X1, X2). In Xilinx Integrated Synthesis Environment (ISE),
we created a test bench that applies all 2λ and 23λ possible input transitions to
G and its TI respectively, where 0 is the reset value. By feeding a post-place &
route model into ISE Simulator (ISim), all respective propagation delays DG and
D(G1,G2,G3) are obtained. Except for the 0 → 0 transition, all delays are in the
6 ns to 8 ns interval; no glitches are observed. In Fig. 6a, we plot the difference of
probabilities P

(
(DG ≤ D)|X

)
−P(DG ≤ D) as a function of D for all X ∈ {0, 1}λ,

and similarly for D(G1,G2,G3) in Fig. 6b. Instead of 2λ = 16 coinciding curves, as
in the FSA-secure case, substantially differing curves appear in each plot. The
0 → 0 transition in the 0 ns to 6 ns interval is the most easily exploitable as
neither a precise delay model nor precise control over the reduced clock period
T ′clk nor a noiseless environment is required to succeed, yet the whole 6 ns to 8 ns
interval is worrisome as well.

y3 , x2 ⊕ x1 ⊕ x0 ⊕ x3 x0,
y2 , x3 ⊕ x1 x0,
y1 , x2 ⊕ x1 ⊕ x3 x0,
y0 , x1 ⊕ x2 x0.

(13)

y3,1 , x2,2 ⊕ x1,2 ⊕ x0,2 ⊕ x3,2 x0,2 ⊕ x3,2 x0,3 ⊕ x3,3 x0,2,
y2,1 , x3,2 ⊕ x1,2 x0,2 ⊕ x1,2 x0,3 ⊕ x1,3 x0,2,
y1,1 , x2,2 ⊕ x1,2 ⊕ x3,2 x0,2 ⊕ x3,2 x0,3 ⊕ x3,3 x0,2,
y0,1 , x1,2 ⊕ x2,2 x0,2 ⊕ x2,2 x0,3 ⊕ x2,3 x0,2.

(14)

Counterexample Including Assumption 4 Consider an arbitrary invertible,
affine function G : {0, 1}λ → {0, 1}λ. Its TI operates on σin = σout = 2 shares
and is constructed as follows: G1(x1) , G(x1) and G2(x2) , G(x2). The compo-
nentwise delays DGi are given in Eq. (15), where the initial value of the state is
drawn uniformly at random for each evaluation. As G1 and G2 are identical, we
assume that DG1

and DG2
are identical as well. As G , G1 , G2 is injective, it
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(a) Unmasked implementation.
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Fig. 6: Simulated delay characteristics of the 4× 4 S-box in Eq. (13) mapped to
a Xilinx Spartan-6 FPGA. To be FSA-secure, all 24 = 16 curves should coincide
with the horizontal axis, i.e., a constant zero.

is reasonable to assume that DGi = 0 if and only if input share Xi remains un-
changed. Furthermore, for one particular nonvoid transition, the strictly positive
delay is particularly small.

DG1 ,


0 , if X

(1)
1 = X

(2)
1

1 , if X
(1)
1 = 1 and X

(2)
1 = 0

3 , otherwise,

DG2
,


0 , if X

(1)
2 = X

(2)
2

1 , if X
(1)
2 = 1 and X

(2)
2 = 0

3 , otherwise.

(15)

Due to the independency of component functions, D(G1,G2) , max(DG1 , DG2).
Again, the attacker reduces the clock period Tclk such that D(G1,G2) = 2 is the
threshold between a correct and a faulty computation. Through the tree diagram
in Fig. 7, we obtain the compromising statistic in Eq. (16), i.e., the probability
that the output is correct is slightly higher if X(2) = 0. To independently verify
the correctness of Eq. (16), for all λ ∈ [1, 6], we let a Python script given in
Appendix A evaluate Eq. (15) and D(G1,G2) for all 4σ λ possible input transitions.

P
(
D(G1,G2) < 2

)
=

{
2−λσ

(
1 + 3 · 2−λ (σ−1)) , if X(2) = 0

2−λσ
(
1 + 2 · 2−λ (σ−1)) , otherwise.

(16)

Admittedly, Eq. (16) is solely a theoretical refutation, i.e., the attack is not
as practically viable as for the original proof in Eq. (12). Nevertheless, we showed
that increasing a TI’s intake of random bits is not necessarily worth its associ-
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Fig. 7: Tree diagram representing the distribution of D(G1,G2) , max(DG1
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),
where DG1

and DG2
are defined in Eq. (15). Note that σ = 2.
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ated cost, and suggest spending precious resources on countermeasures against
physical attacks that are supported by a correct security proof.

4 Concluding Remarks

After we shared our refutation of the FSA-resistance proof with Arribas, De
Cnudde, and Šijačić on April 9, 2020 and held a discussion that ended on April
27, 2020, the proof was disseminated twice more in a practically unchanged form.
First in the PhD thesis of Arribas [1] in May 2020, and subsequently in PhD
thesis of Šijačić [21] in October 2020. The latter PhD thesis cites our findings and
acknowledges that the physically plausible attacks in Section 3.4 are valid. The
author still claims, however, that the security proof is both correct and relevant
when applied to the original FSA by Li et al. [14]. More precisely, there is no
mentioning of our argument in Section 3.1 that this type of FSA is inapplicable
to TIs due to the ever-changing masks, which removes the need for a proof. It is
also unacknowledged that when the FSA by Li et al. [14] is made more powerful
by disregarding the reality of ever-changing masks, as implicitly assumed in
the proof and the experiments of Arribas et al. [2], that the fatal three-share
dependency in Section 3.3 arises. Šijačić also rejects that noise sources (and
glitches) pose a security problem, as argued in Section 3.2.

To conclude this article, we set forth three best practices for future work.
First, mathematical proofs should be formal in order to protect oneself from
wishful thinking. If Arribas et al. [2, 7] would try to complement the informal
proof in Section 2.4 with equations, they would run into the fatal three-share
dependency in Eq. (5) themselves, and they would probably be more open to
the fact that there is an actual problem. Second, attacker/fault models should
be explicitly specified, preferably in a dedicated section of the paper. This way,
discussions as in Section 3.1 are avoided. Third, physical abstractions should not
be taken for granted. Several FSA countermeasures that rely on the balancing of
gate depth levels [9,10,13] are seemingly insecure in light of the data-dependent
gate propagation delays in Section 3.2; the case D = 0 is particularly worrisome.
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A Python Code

Listing 1.1: Proof refutation using Eq. (6).

def hamming_weight(x):

return bin(x). count("1")

def delay_G1(x2 ,x3):

return hamming_weight(x2) + hamming_weight(x3)

def delay_G2(x1 ,x3):

return hamming_weight(x1) + hamming_weight(x3)

def delay_G3(x1 ,x2):

return hamming_weight(x1) + hamming_weight(x2)

def delay_G1_G2_G3(x1 ,x2 ,x3):

delays = [delay_G1(x2 ,x3), delay_G2(x1 ,x3), \

delay_G3(x1,x2)]

return max(delays)

nibble_size = 2

hamming_weight_x = []

expected_delays = []

for x in range (0,2** nibble_size ):

hamming_weight_x.append(hamming_weight(x))

expected_delay = 0

for x1 in range (0,2** nibble_size ):

for x2 in range (0,2** nibble_size ):

x3 = x1 ^ x2 ^ x

expected_delay += delay_G1_G2_G3(x1 ,x2 ,x3)
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expected_delay /= 4** nibble_size

expected_delays.append(expected_delay)

print(hamming_weight_x)

print(expected_delays)

# Output:

# [0, 1, 1, 2]

# [2.625 , 2.5625 , 2.5625 , 2.5]

Listing 1.2: Proof refutation using Eq. (15).

nibble_size = 2 # or 1 or 3 or 4 or 5 or 6

a = 4** nibble_size

b = 2** nibble_size

probability0 = (1 + 3/b)/a

probability1 = (1 + 2/b)/a

def delay_G1(x11 ,x12):

if x11 == x12:

return 0

elif x11 == 2** nibble_size - 1 and x12 == 0:

return 1

else:

return 3

def delay_G2(x21 ,x22):

return delay_G1(x21 ,x22)

def delay_G1_G2(x11 ,x12 ,x21 ,x22):

return max(delay_G1(x11 ,x12), delay_G2(x21 ,x22))

probabilities = []

for x2 in range (0,2** nibble_size ):

probability = 0

for x11 in range (0,2** nibble_size ):

for x21 in range (0,2** nibble_size ):

for x12 in range (0,2** nibble_size ):

x22 = x12 ^ x2

if delay_G1_G2(x11 ,x12 ,x21 ,x22) < 2:

probability += 1

probability /= 8** nibble_size

probabilities.append(probability)

print(probability0)

print(probability1)

print(probabilities)

# Output:

# 0.109375

# 0.09375

# [0.109375 , 0.09375 , 0.09375 , 0.09375]
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