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Abstract—Optimistic responsiveness was introduced to shorten
the latency of a synchronous Byzantine consensus protocol that
is inherently lower bounded by the pessimistic bound on the
network delay ∆. It states that a protocol makes a decision
with latency on the order of actual network delay δ if the
number of actual faults is significantly smaller than f , which
is the worst-case allowed. In this paper, we investigate if a
Byzantine consensus can simultaneously achieve (i) optimistic
responsiveness, and (ii) optimal latency of ∆ + O(δ) in the
presence of f faults. To do this, we provide a tight upper bound on
the number of actual faults by showing matching feasibility and
infeasibility results. Furthermore, we present a simple leader-
based Byzantine fault-tolerant (BFT) replication protocol as a
practical application. Even while being able to rotate leaders
after every decision, our protocol simultaneously achieves average
latency of (i) 3δ under optimistic condition and (ii) 1.5∆ +O(δ)
(or 3∆ +O(δ)) in the presence of f faults, which is more than a
factor of two better than current state-of-the-art rotating-leader
BFT protocols.

Index Terms—BFT, broadcast, Byzantine consensus, optimistic
responsiveness

I. INTRODUCTION

Byzantine consensus1 is a fundamental building block
of fault-tolerant distributed systems and cryptography [1].
Roughly speaking, Byzantine consensus is a problem of n
parties agreeing on a value in the presence of up to f (called
resilience) parties that behave arbitrarily (called Byzantine
faults). Byzantine consensus in a synchronous network model
has inherently higher resilience than in an asynchronous or
partial synchronous model, which has a well-known upper
bound of f < n/3 [2], [3]. However, under f ≥ n/3, the
latency is lower bounded by the upper bound on the network
delay ∆ known a priori. That means reaching an agreement
with latency on the order of the actual network delay δ
unknown to the parties – the property is called responsiveness
– is impossible [4], [5]. This drawback hinders synchronous
protocols from making a fast decision even if the actual
network delay is smaller than a prior estimation. To make
matters worse, ∆ is often overestimated in practice, making
the latency significantly long.

To circumvent this bound, Thunderella [6] introduced
optimistic responsiveness, which states that if the number

1We use the term “consensus” to refer to all variants of consensus problems.
Specifically, we focus on broadcast and replication.

of actual faults is significantly small (less than (n − f)/2),
then it is possible to reach an agreement responsively even
with f ≥ n/3. For example, if f < n/2, then the protocol
can make a decision responsively if the number of actual
faults is less than n/4. However, in the presence of f faults,
the protocol incurs O(κ∆) (κ is a security parameter) or
O(f∆) latency, which is far from optimal. To provide strong
availability, the latency should also be as short as possible in
the presence of f faults. Without optimistic responsiveness,
some protocols incur latency that is close to optimal ∆+O(δ)
[7] or nearly optimal 2∆ + O(δ) [5]. Thus, the following
question naturally arises:

Can a Byzantine consensus protocol simultaneously achieve
optimistic responsiveness as well as optimal ∆+O(δ) latency
in the presence of f faults?

In this paper, we answer this question in the affirmative.
Note that δ is significantly smaller than ∆ in general.
Based on this premise, when we consider the latency of
O(∆) + O(δ), we ignore the O(δ) part in this paper. Thus,
∆ +O(δ) is the optimal latency in the presence of f faults.

(1) Theoretical bound (infeasibility). Before introducing the
possible solutions, we first look at a negative aspect. Here,
we provide the result for broadcast, a well-known single-
shot consensus primitive that allows a designated party called
sender to multicast a value in a consistent manner. For the
infeasibility, we show the result for the easiest variant of
broadcast primitive called Byzantine consistent broadcast. Our
first result is an upper bound on the number of actual faults to
achieve optimistic responsiveness while achieving an optimal
∆ +O(δ) latency in the presence of f faults. Specifically, we
provide the following result:

Theorem 1 (Optimistic Resilience Upper Bound for Optimal
Synchronous Latency – Informal). There does not exist a
Byzantine consistent broadcast protocol that simultaneously
achieves (i) O(δ) latency in the presence of n− 2f faults and
(ii) ∆ +O(δ) latency in the presence of f faults.

The upper bound n− 2f is always smaller than (n− f)/2
when f ≥ n/3. Thus, if we allow the largest possible number



of actual faults, i.e., less than (n−f)/2, to achieve optimistic
responsiveness, then the latency in the presence of f faults is
lower bounded by α∆ + O(δ) with α > 1. This implies that
there is an inherent trade-off between latency and resilience.

(2) Theoretical bound (feasibility). As a second result, we
provide the tightness of the bound described above. Note that,
on the feasibility, we show the results for the hardest variant
of broadcast primitive called Byzantine broadcast.

Theorem 2 (Byzantine Broadcast with Optimal Synchronous
Latency – Informal). There exists a Byzantine broadcast
protocol that simultaneously achieves (i) O(δ) latency in the
presence of less than n− 2f faults and (ii) ∆ +O(δ) latency
in the presence of f faults.

The key idea behind the solution is a “hybrid decision path,”
i.e., two decision paths corresponding to the responsive and
synchronous decisions run concurrently. The hybrid decision
path allows the protocol to make a decision with optimal
∆ + O(δ) latency even when the responsive decision path
fails. The consistency between the two paths is provided by
a novel quorum intersection argument. Roughly speaking, the
two decision paths do not make conflicting decisions unless a
non-faulty party votes for two conflicting values, which cannot
occur.

We also show that there is a protocol with a nearly optimal
2∆ + O(δ) latency in the presence of f faults allowing the
largest possible number of actual faults, i.e., less than (n −
f)/2, to achieve optimistic responsiveness.

Theorem 3 (Byzantine Broadcast with Optimal Optimistic
Resilience – Informal). There exists a Byzantine broadcast
protocol that simultaneously achieves (i) O(δ) latency in the
presence of less than (n − f)/2 faults and (ii) 2∆ + O(δ)
latency in the presence of f faults.

The quorum intersection argument in the solution to
Theorem 2 does not hold here. Instead, an extra ∆ time-out
helps detect inconsistent values relying on synchronous
communication.

Fast termination. Both protocols above can not only
decide but also terminate with the desired latency. The
challenge here is how to guarantee eventual consistent
decisions by parties left behind in the absence of some
parties terminated earlier. Note that Byzantine broadcast
requires liveness, i.e., all non-faulty parties must decide
and terminate eventually. To this end, when a party fails
to make a decision within a certain time, it runs another
protocol called fallback agreement protocol, which is similar
to a Byzantine agreement protocol with slight modifications.
This fallback process guarantees eventual consistent decisions
while achieving fast termination when the sender is non-faulty.

(3) BFT replication with immediate leader-rotation. As
a practical application, we utilize the core technique in the
broadcast protocol to construct a Byzantine fault-tolerant

replication (BFT for short) protocol. At a high level, a BFT
protocol provides a way for parties to agree on a sequence
of client requests [8], [9]. Intuitively, it is achieved by
running multiple instances of the broadcast protocol with
each different sender (who act as a leader). Naturally, the
minimum latency necessary to decide on a request is O(δ)
under optimistic condition as well as optimal ∆ + O(δ)
or nearly optimal 2∆ + O(δ) in the presence of f faults.
However, the major bottleneck of such a leader-full BFT
protocol is the leader-rotation process (or view-change),
which often incurs additional rounds of communication or
synchronous O(∆) time-outs, making the average latency
longer. One way to circumvent the latency overhead from
the leader-rotation is to have a stable leader that is changed
only if it is faulty and other parties fail to make decisions.
However, such a stable-leader protocol is not favorable
in terms of fairness and censorship resistance. We address
this problem with a novel “immediate” leader-rotation
process. Using this process, each party can change leader
immediately upon making a decision without any additional
communication rounds under non-faulty leaders. This process
naturally makes the leader-rotation optimistically responsive.
Moreover, even more surprisingly, the leader-rotation is also
immediate even in the presence of f faults. Indeed, some
previous synchronous BFT protocols suffer from O(∆)
overhead for the leader-rotation process in the presence of f
faults [5], [7], [10]. Our immediate leader-rotation makes the
rotating-leader protocol, i.e., changing leader every broadcast
instance, practical under synchronous model. Our protocol
achieves, on average, 3δ latency in the optimistic case and
1.5∆ + O(δ) (or 3∆ + O(δ)) latency in the presence of f
faults, which is more than a factor of two better than current
state-of-the-art rotating-leader BFT protocols [10], [11]. We
also give an experimental evaluation that shows better latency
than Hotstuff [11] and Sync Hotstuff [5]. Our protocol can
potentially be used in certain cases, such as replicated service
in a data center or consortium blockchain [12], [13].

Summary of contributions. In this paper, we provide the
following contributions:

1) An upper bound n− 2f on the number of actual faults
to achieve optimistic responsiveness while achieving an
optimal ∆ +O(δ) latency in the presence of f faults.

2) A Byzantine broadcast protocol that simultaneously
achieves (i) O(δ) latency in the presence of less than
n− 2f faults, and (ii) optimal ∆ +O(δ) latency in the
presence of f faults.

3) A Byzantine broadcast protocol that simultaneously
achieves (i) O(δ) latency in the presence of less than
(n−f)/2 faults (optimal for optimistic responsiveness),
and (ii) nearly optimal 2∆+O(δ) latency in the presence
of f faults.

4) A rotating-leader BFT replication protocol with (i) 3δ
latency in optimistic cases, and (ii) 1.5∆+O(δ) (or 3∆+
O(δ)) latency in the presence of f faults, on average.



Organization. The rest of the paper is organized as follows.
In Section II, we introduce some definitions and notations.
In Section III, we provide the upper bound on the number
of actual faults to achieve both optimistic responsiveness as
well as optimal synchronous latency. In Section IV, we present
a Byzantine broadcast protocol that achieves both optimistic
responsiveness and optimal or nearly optimal synchronous
latency. In Section V, we extend the broadcast protocol
into a practical rotating-leader BFT replication protocol. In
Section VI, we present an experimental evaluation of our BFT
protocol. Finally, we introduce some related works in Section
VII, and conclude with a summary and a future direction in
Section VIII.

II. PRELIMINARIES

A. Execution Model

We define a protocol as an algorithm for a set of parties.
Each protocol execution proceeds in an atomic time step.
There are n parties, out of which at most f < n are Byzantine
faulty. As in other Byzantine consensus protocols, we assume
f = Ω(n). We assume adaptive corruption and parties can be
corrupted into being faulty at any time during execution. A
party that is not faulty throughout the execution is considered
to be honest and faithfully executes the protocol. Later in
this paper, we also deal with a crash fault. A crashing party
stops execution and leaves the network permanently, i.e., it
also stops all computations and communications. Note that f
does not include the number of crashing parties. Except when
explicitly mentioned, we assume there are no crashing parties.
Communications between parties are synchronous. If an honest
party r sends a message x to another party r′ at time t, r′

receives x by time t+ δ if r′ is honest. The delay parameter δ
is upper bounded by ∆. The upper bound ∆ is known, but δ is
unknown, to all parties. Thus, δ can be regarded as an actual
delay in the real-world network, while ∆ is an estimated bound
on the delay selected by the protocol designer. We assume the
use of a cryptographic hash function H , digital signatures,
and a public-key infrastructure (PKI). We use 〈x〉r to denote
a message x signed by a party r. For simplicity, we assume
that the signature scheme provides an ideal function such that
all signatures cannot be forged by other parties.

B. Broadcast and Replication

Broadcast is a problem for a party to multicast a value
in a consistent manner [14]. More formally, there is a party
designated as a sender denoted by rs with an input value vin,
and all honest parties try to decide vin. The broadcast prob-
lem has three variants with ordered difficulties. The hardest
variant is called Byzantine Broadcast (BB), which requires
every honest party to make a decision even if the sender is
faulty. A slightly weaker variant is called Byzantine Reliable
Broadcast (BRB), which requires every honest party to make a
decision only when some honest parties have made decisions.
The weakest variant is called Byzantine Consistent Broadcast
(BCB), which allows the case where some parties make a

decision but others do not. In this paper, we use BCB to show
infeasibility results and use BB to show feasibility results. The
formal requirements of BCB and BB are as follows.

Definition 1 (Byzantine Consistent Broadcast (BCB)). A
Byzantine consistent broadcast protocol must provide the
following properties for all executions.

1) Consistency. If two honest parties decide v and v′,
respectively, then v = v′.

2) Validity. If the sender rs is honest, then every honest
party decides the input value vin and terminates.

Definition 2 (Byzantine Broadcast (BB)). A Byzantine broad-
cast protocol must provide the following properties for all
executions.

1) Consistency. Same as in BCB.
2) Validity. Same as in BCB.
3) Liveness. Every honest party eventually decides a value

and terminates.

Here, we briefly review a consensus variant called Byzan-
tine agreement. In the Byzantine agreement, every party has
an input value and agree on the same value following the
requirements below. Later in this paper, we introduce a similar
primitive to get our main results. However, we note that our
results are on broadcast and replication, and BA is not the
focus of this paper.

Definition 3 (Byzantine Agreement (BA)). A Byzantine agree-
ment protocol must provide the following properties for all
executions.

1) Consistency. Same as in BB.
2) Liveness. Same as in BB.
3) Validity. If all honest parties have the same input value

v, then every honest party eventually decides v.

A broadcast protocol is often utilized to achieve a more
practical primitive called replication. A replication protocol
achieves replicated state machine that helps build a fault-
tolerant service. In a replication protocol, clients send requests
to all parties, and all honest parties agree on a totally-ordered
sequence of requests called a log. Replication in a Byzantine
fault model is called Byzantine fault-tolerant replication (BFT
for short). The formal requirements of BFT are described
below. Note that broadcast protocols need to not only decide
but also to terminate, while BFT does not terminate and thus
runs indefinitely.

Definition 4 (Byzantine Fault-Tolerant Replication (BFT)). A
Byzantine fault-tolerant replication protocol must provide the
following properties for all executions.

1) Safety. If two requests c and c′ are decided in the same
log position, then c = c′.

2) Liveness. All requests are eventually decided by all
honest parties.

III. THEORETICAL BOUND ON THE INFEASIBILITY

In this section, we show an upper bound on the number
of actual faults to achieve optimistic responsiveness as well



as an optimal ∆ + O(δ) latency in the presence of f faults,
simultaneously.

A. Definitions

Before discussing the results, we formally define optimistic
responsiveness of a broadcast protocol. We first define two
latency metrics of a broadcast protocol – one for the normal
case, i.e., in the presence of f faults, and another for the
optimistic case. Note that the latency we define is “good-
case latency” [5], [7], i.e., the latency when the sender is
honest. The “worst-case latency,” which is also known as
round complexity in the literature, is the maximum latency
even when the sender is faulty and is often used as a latency
metric in the literature. However, our central focus is the
shortest possible latency, and thus the worst-case latency is
out of the scope of our interest.

Definition 5 (Synchronous Latency). The synchronous latency
of a broadcast protocol is T if the following condition holds:
if the sender rs is honest, then every honest party decides the
input value vin and terminates by time T .

Definition 6 (Optimistic Latency). The fopt-optimistic latency
of a broadcast protocol is T if the following condition holds:
if the sender rs is honest and the number of actual faults is up
to fopt > 0, then every honest party decides the input value
vin and terminates by time T .

We call fopt optimistic resilience to distinguish it from
resilience f . Next, we define the optimistic responsiveness of
a broadcast protocol. In the definition of optimistic responsive-
ness in [6], the optimistic latency is described by a polynomial
for versatility. However, most responsive protocols [9], [11]
have latency of some constant factor of δ, and thus we follow
this definition for simplicity and practicality.

Definition 7 (Optimistic Responsiveness). A broadcast pro-
tocol is fopt-optimistically responsive if its fopt-optimistic
latency is expressed by O(δ).

B. Trade-off between Latency and Resilience

We now show the infeasibility result. It was shown in [6]
that it is possible to achieve fopt-optimistic responsiveness if
and only if fopt < (n− f)/2 ( [6] proved it in the context of
replication, but it is trivially extended for broadcast). However,
we show that there is an inherent smaller upper bound on
fopt to achieve optimal synchronous latency ∆ + O(δ) and
fopt-optimistic responsiveness simultaneously. Thus, our result
implies that there is an inherent trade-off between latency and
resilience, which we will show formally in Theorem 4.

Remark on termination. Note that although the definition of
latency requires honest parties to not only decide but also to
terminate, we show the infeasibility in a strong sense, i.e., the
result holds even if honest parties are allowed to not terminate.

Theorem 4 (Optimistic Resilience Upper Bound for Optimal
Synchronous Latency). For all fopt ≥ n− 2f , there does not

exist a Byzantine consistent broadcast protocol that simulta-
neously achieves synchronous latency expressed by ∆ +O(δ)
and fopt-optimistic responsiveness.

Proof. Suppose for the sake of contradiction that there exists
a protocol that simultaneously achieves synchronous latency
expressed by ∆ +C1 · δ and fopt-optimistic latency expressed
by C2 · δ for some constant C1, C2 and fopt ≥ n− 2f . Then,
there exist values δ1, δ2 ≤ ∆ that satisfy δ1 < C1 · δ1 < δ2 <
C2 · δ2 < ∆ < ∆ + δ1 < ∆ +C1 · δ1 < ∆ + δ2. We consider
three executions where each honest party runs the protocol to
decide a value. In each execution, there are three sets of parties
P,Q, and R with size |P | = f, |Q| = n− f − fopt ≤ f , and
|R| = fopt. A sender rs belongs to Q.

In the first execution (W1), only P is faulty and δ = δ1.
The sender rs has an input value v1. P executes honestly by
time δ2 except that it ignores all messages from Q, and stops
execution after δ2. From the assumption, R decides v1 at time
t = ∆ + C1 · δ1.

In the second execution (W2), only R is faulty and δ = δ2.
The sender rs has an input value v2. R does not send any
message. From the assumption, P decides v2 at time t =
C2 · δ2.

In the third execution (W3), only Q is faulty. Messages are
delivered with delay δ1 between Q and R, with δ2 between
Q and P , and with ∆ between P and R (thus, δ = ∆). Q
communicates with R and P as in W1 and W2, respectively.
Then, before ∆+C1 ·δ1 < ∆+δ2, R cannot receive messages
that P sends after the time when P receives the first message
from Q (i.e., t = δ2). Thus, R cannot distinguish W1 and W3
and decides v1 at ∆ + C1 · δ1. On the other hand, P cannot
receive any messages from R before C2 · δ2 < ∆. Thus, P
cannot distinguish W2 and W3 before C2 · δ2 and decides v2
at C2 ·δ2. Therefore, P and R decide different values, violating
the consistency, which is a contradiction.

Summarizing the theorems above, we can see, as in Figure
1, the inherent gap between the optimal fopt to achieve
optimistic responsiveness (the green line), and the optimal fopt
to achieve optimistic responsiveness and optimal ∆ + O(δ)
synchronous latency (the yellow line). We can also see as
a corollary that optimal synchronous latency and optimistic
resilience can be achieved only when f = n/3. Therefore,
when we assume f > n/3 and optimal optimistic resilience,
the optimal synchronous latency is α∆ + O(δ) for α > 1.
Furthermore, it can be seen that it is impossible to achieve
optimistic responsiveness and optimal synchronous latency
when f ≥ (n− 1)/2.

IV. THEORETICAL BOUND ON THE FEASIBILITY

In the previous section, we provided the upper bound on
fopt to achieve optimal synchronous latency ∆ + O(δ) and
fopt-optimistic responsiveness, simultaneously. In this section,
we will show that this bound is tight, i.e., there exists a broad-
cast protocol that achieves both properties with fopt < n−2f
as formally argued in Theorem 5. We show the results with



Fig. 1. The upper bound on each optimistic resilience fopt. The green line
is the optimal resilience to achieve optimistic responsiveness, and the yellow
line is the optimal resilience to achieve optimistic responsiveness and optimal
synchronous latency.

Byzantine broadcast (BB), which is the hardest among the
broadcast primitives.

Theorem 5 (Byzantine Broadcast with Optimal Synchronous
Latency). Assuming n/3 ≤ f < (n − 1)/2 and 0 < fopt <
n − 2f , there exists a Byzantine broadcast protocol with
synchronous latency expressed by ∆+O(δ) and fopt-optimistic
responsiveness.

As shown in the previous section, when we assume f > n/3
and optimal fopt < (n − f)/2 to achieve optimistic respon-
siveness, the optimal synchronous latency is α∆ + O(δ) for
α > 1. We show that the nearly optimal synchronous latency
2∆ +O(δ) is possible, as formally argued in Theorem 6.

Theorem 6 (Byzantine Broadcast with Optimal Optimistic
Resilience). Assuming n/3 ≤ f < n/2 and 0 < fopt <
(n−f)/2, there exists a Byzantine broadcast protocol with syn-
chronous latency expressed by 2∆ +O(δ) and fopt-optimistic
responsiveness.

To complete these theorems, we construct two BB protocols
that favor latency (for Theorem 5) and resilience (for Theorem
6), respectively. These two protocols are special cases of a
unified protocol in which the differences are all absorbed into
the protocol parameters. We introduce the unified BB protocol
BB, parameterized by a constant α, optimistic resilience
fopt, and resilience f . The constant α directly determines
the synchronous latency of BB, that is, it has α∆ + O(δ)
synchronous latency. The protocol description is in detail in
Figure 2.

Overview of the unified protocol (BB). The key idea be-
hind the protocol is to have a “hybrid decision path” that
concurrently runs a (i) responsive decision path, which can

decide a value with latency of O(δ) if the number of actual
faults is up to fopt (Responsive phase in the description), and
a (ii) synchronous decision path, which can decide a value
with latency of α∆ + O(δ) if the number of actual faults is
larger than fopt (Synchronous phase). Thus, if the number of
actual faults is greater than fopt and the responsive decision
path fails to make a decision, then the synchronous decision
path makes a decision as an automatic fallback with minimum
latency. We briefly give an overview of both decision paths.

At the start of the protocol, the sender rs multicasts propose
for an input value v. Upon receiving the proposal, each party
runs two concurrent decision paths. In the Responsive phase,
a party multicasts resp-vote for v. If the number of actual
faults is up to fopt and rs is honest, then at least n − fopt
resp-vote for the value v should be sent. We call a set of
n − fopt resp-vote for a value v as certificate for a value
v, denoted by C(v). In the Synchronous phase, a party waits
for α∆ and then multicasts sync-vote for v. Since there is
up to f faults, at least n − f sync-vote for the value v
should be sent. Again we call it certificate for a value v
and denoted by C(v). A certificate plays an important role in
achieving consistency — two conflicting certificates C(v) and
C(v′) cannot be created. Then, upon receiving the first C(v)
by time 3∆, the party multicasts the certificate and decide
for v and then decides v (in the Decide phase), which means
no conflicting decision will be made by any other party. To
prevent two conflicting certificates from being created, upon
receiving two proposals for different values from rs, which
is a clear Byzantine behavior often called equivocation, the
party immediately stops voting in both the Responsive and
Synchronous phases (in the Equivocation phase). Note that
all of these processes are non-blocking, i.e., they concurrently
run upon each event without waiting for execution results from
other phases.

We now introduce two parameter settings (α, fopt, f) = (i)
(1, n−2f−1, f) — latency-favoring, and (ii) (2, dn−f2 −1e, f)
— resilience-favoring, which correspond to Theorems 5 and 6,
respectively. Here, the remaining challenge is how to prevent
two concurrent decision paths from producing conflicting
certificates. We will explain how the two parameter settings
described above solve the challenge.

Latency-favoring setting. We first introduce the latency-
favoring setting (α, fopt, f) = (1, n − 2f − 1, f) which
achieves optimal synchronous latency ∆ + O(δ) and fopt-
optimistic responsiveness with matching limit fopt < n − 2f
given in the previous section. This setting gives quorum
intersection at one honest party, which is a powerful guarantee
often utilized in the literature. We have two types of quorum,
i.e., number of votes, to make a certificate, namely, (i) n−fopt
to make a certificate from resp-vote, and (ii) n− f to make a
certificate from sync-vote. Suppose we have two certificates
for different values produced by two types of quorum. Let S
and S′ be a set of parties that made resp-vote and sync-vote,
respectively. Then, the intersection of S ∩ S′ includes more
than f parties given that (n − f) + (n − fopt) − n > f , at



BB(α, fopt, f)� �
Let rs be the designated sender and r be a party. C(v) is (i) a set of n − f sync-vote for a value v, or (ii) a set of
n − fopt resp-vote for a value v. Sender rs multicasts the input value v in the form of 〈propose, v〉rs . Party r executes
the following processes:

1) Responsive. Upon receiving 〈propose, v〉rs , multicast 〈resp-vote, v〉r.
2) Synchronous. Upon receiving 〈propose, v〉rs , multicast it, wait for α∆, and multicast 〈sync-vote, v〉r.
3) Decide. Upon receiving the first C(v) by time 3∆, multicast it and 〈decide, v〉r, and then decide v.
4) Equivocation. Upon receiving two proposals for different values from rs, multicast them and stop voting.

At time 4∆, if r has not terminated, then r stops all processes above and starts executing FA(f), where the input value
of FA is a certified value (if there is no certificate, the input is the empty value ⊥). When FA(f) decides a value v, r
decides v and multicasts 〈decide, v〉r. At any time, upon receiving more than f 〈decide, v〉∗, r multicasts them, decides
v, and terminates (stops FA).� �

Fig. 2. Byzantine broadcast with fopt-optimistic responsiveness and α∆ synchronous latency that tolerates up to f Byzantine faults.

least one of them is honest. This implies that an honest party
votes for different values, which cannot occur.

Resilience-favoring setting. We now introduce the resilience-
favoring setting (α, fopt, f) = (2, dn−f2 − 1e, f). We cannot
rely on the quorum intersection here because the fopt < n−2f
in the latency-favoring setting is the upper limit that guarantees
quorum intersection at an honest party. Therefore, we need
another way to detect sender’s equivocation before voting. A
natural way to detect equivocation is to rely on the network
synchrony, which introduces another ∆ waiting time in the
Synchronous phase. The 2∆ waiting time allows honest
parties to detect equivocation interactively. Suppose an honest
party r receives a value v at time t and starts waiting for
2∆ in the synchronous decision path. If another honest party
r′ in a responsive decision path votes for a different value
v′, then we can consider two cases: r′ votes before or after
t + ∆. Considering the former case, v′ is received by r
before t + 2∆, preventing r from voting for v. The latter
case cannot occur because v should be received by r′ before
t + ∆, preventing r′ from voting for v′. Thus, in both cases
either r or r′ does not vote.

Liveness and early stopping. So far, we have introduced
the way to achieve consistency and validity. However, another
remaining concern that we need to solve is liveness. A naive
solution to guarantee liveness is to run a Byzantine agreement
(BA) protocol [15], [16] with a certificate C(v) as its input
after 4∆ (the time required for every honest party to make
a decision if the sender is honest). The liveness of BB
is achieved in a straightforward manner by the liveness of
BA. Moreover, if an honest party decides a value v before
running BA, then every honest party receives C(v). Therefore,
every honest party decides v by the validity of BA, and the
consistency of the protocol is also maintained. However, such a
solution cannot achieve fast latency because every honest party

cannot terminate until BA stops. Recall that the optimistic
and synchronous latency requires honest parties to not only
decide but also to terminate. In other words, BB needs to
achieve early stopping [17]. In BB, upon deciding a value
v, a party multicasts decide for v. Then, at any time during
execution, upon receiving more than f decide for v, the party
multicasts it and terminates. Thus, even if an honest party
terminates and does not participate in the execution after 4∆,
every honest party eventually receives more than f decide for
v, decides v, and terminates. The challenge here is maintaining
the consistency of the protocol.

To this end, we introduce a primitive called fallback agree-
ment similar to BA. Intuitively, in a fallback agreement proto-
col, a set of honest parties agrees on a value under the situation
where the honest parties have the same input value or empty
input at the beginning and honest parties can adaptively crash.
We first define the fault model. During execution, at most f
parties can adaptively be corrupted into being a Byzantine fault
and at most n parties can adaptively crash. A party that crashes
once can no longer rejoin and participate in the execution. A
party that is neither Byzantine fault nor crash fault at time t is
said to be so-far-honest at time t. A party that is so-far-honest
at all time in the execution is said to be forever-honest. Next,
we define the problem. At the beginning of execution, there
is an input value vin such that every so-far-honest party r has
the input vr ∈ {vin,⊥}. The empty value ⊥ means the party
has no input. Then, every so-far-honest party tries to make a
decision following the requirements below.

Definition 8 (Fallback Agreement). A fallback agreement
protocol provides the following properties for all executions.

1) Consistency. If so-far-honest parties r and r′ decide
values v and v′ at time t and t′, respectively, then v = v′.

2) Validity. If every so-far-honest party r at the beginning
of execution has an input value vr = vin, for all time
t every so-far-honest party r′ at t does not decide a



different value v′ 6= vin.
3) Liveness. If there are no crash parties throughout the

execution, then every forever-honest party decides a
value and terminates.

At time 4∆, parties start running a fallback agreement
protocol FA(f) with the same resilience f . A party sets its
input to a certified value v if it observes C(v), otherwise,
no input. Since there is no conflicting certificate C(v′), each
party can set its input to the same value or no input, which
satisfies the assumption of the fallback agreement. Intuitively,
the crashing party in FA corresponds to the honest party in
BB that terminates before or during the execution of FA. If
an honest party decides a value v before running FA, then
it must have received C(v) by 3∆ and multicasts it. Then,
every honest party who has not yet terminated at 4∆ sets the
input of FA to v. Thus, by the validity of FA, every honest
party cannot decide a different value v′, which guarantees the
consistency. Moreover, if all honest parties could not decide
a value before 4∆, then they run FA. Thus, by the liveness
and consistency of FA, all honest parties eventually decide the
same value and terminate. The concrete construction of FA is
described in Appendix A.

A. Correctness of the Protocol
We prove the correctness of the protocol BB for the two

parameter settings described above.

Latency-favoring protocol. We first show that, assuming
n/3 ≤ f < (n − 1)/2, the protocol BB(1, n − 2f − 1, f)
satisfies consistency, validity, and liveness. The validity is
trivial, and thus we do not show the proof in detail.

Lemma 1 (Certified without Equivocation). If two certificates
C(v) and C(v′) are created, then v = v′.

Proof. Suppose a certificate is created, we can consider two
cases: the certificate is from (i) sync-vote or (ii) resp-vote.
Thus, we consider four cases consisting of the two cases for v
and v′. We prove by contradiction supposing each case occurs.

Case (1) — (i) for both v and v′. If a certificate for a value is
created, then at least one honest party must vote for the value.
Let t and t′ be the time when the first honest party r and r′

votes for v and v′, respectively. Without loss of generality, we
assume t ≤ t′. Since honest parties wait for ∆ before voting,
r must have received the value v and multicast it at t − ∆.
Thus, r′ must have received v by t ≤ t′. This would prevent
r′ from voting for v′ at t′, which is a contradiction.

Case (2) — (i) for v and (ii) for v′. Let S and S′ be a set of
parties who did sync-vote for v and resp-vote for v′ to make
C(v) and C(v′), respectively. Then, at least one honest party
must have voted for both v and v′ because the intersection of
the two sets S ∩S′ contains more than f parties (|S|+ |S′| −
n ≤ (n − f) + (n − fopt) − n > f ), at least one of them is
honest. This is a contradiction. Here, Case (3) — (ii) for v
and (i) for v′, is proved in the same way.

Case (4) — (ii) for both v and v′. Let S and S′ be a set
of parties who did resp-vote for v and v′ to make C(v) and

C(v′), respectively. Here, the number of resp-vote to make a
certificate is greater than the number of sync-vote. Thus, the
same argument as in Case (2) holds, which is a contradiction.

Considering the four cases above, two certificates for dif-
ferent values v and v′ cannot be created.

Here, we say a party directly decides a value v if it decides
v by (i) receiving C(v) by time 3∆ or (ii) deciding the value
v in FA. On the other hand, we say a party indirectly decides
a value v if it decides v by receiving more than f decide for
v.

Theorem 7 (Consistency). If two honest parties decide v and
v′, respectively, then v = v′.

Proof. Suppose an honest party directly decides a value v,
then there are two cases: (i) it receives C(v) by time 3∆ or
(ii) it decides the value v in FA. Let us first consider case
(i). By Lemma 1, any certificate C(v′) for a different value
v′ cannot be created. Moreover, every honest party who has
not terminated receives the certificate C(v) by 4∆ and sets the
input of FA to v. Thus, by the validity of FA, every honest
party does not directly decide a different value v′.

We now consider case (ii). Suppose an honest party decides
the value v in FA. Then, by the consistency of FA, every honest
party does not decide a different value v′ in FA. Furthermore,
every honest party could not have decided a different value v′

by receiving C(v′) by time 3∆. Thus, every honest party does
not directly decide a different value v′.

Suppose an honest party indirectly decides a value v, then
at least one honest party must have directly decided the value
v. Therefore, every honest party does not directly decide a
different value v′. If every honest party does not directly decide
a value v′, then more than f decide for v′ cannot be sent. Thus,
every honest party does not decide a different value v′ either
directly or indirectly.

Theorem 8 (Liveness). Every honest party eventually decides
a value and terminates.

Proof. Suppose an honest party terminates, then it must have
received more than f decide for a value v and multicast
them. Then, every honest party receives them, decides v, and
terminates. Thus, if an honest party fails to terminate per-
manently, then every honest party must also fail to terminate
permanently. Suppose for the sake of contradiction that if all
honest parties fail to terminate permanently, then they all run
FA. By the liveness and consistency of FA, all honest parties
decide the same value v and multicast decide for v. Thus,
every honest party receives more than f decide for a value v
and terminates, which is a contradiction.

Finally, we show that the protocol BB(1, n − 2f − 1, f)
achieves both optimal synchronous latency ∆+O(δ) and fopt-
optimistic responsiveness.

Theorem 9 (Latency). The synchronous latency is ∆ + 3δ,
and the optimistic latency is 3δ.



Proof. If the sender rs is honest, then it multicasts propose
for the input value v. Then, every honest party receives n− f
sync-vote for v, decides v, and multicasts decide for v. Thus,
every honest party terminates by ∆+3δ. Moreover, if at most
fopt parties are faulty, then every honest party receives n−fopt
resp-vote for v, decides v, and multicasts decide for v. Thus,
every honest party terminates by 3δ.

Resilience-favoring protocol. We show that assuming n/3 ≤
f < n/2, the protocol BB(2, dn−f2 − 1e, f) satisfies consis-
tency, validity, and liveness. Here, validity and liveness can be
proven in a straightforward manner as in the latency-favoring
protocol. Thus, we do not show the proofs in detail. For the
proof of consistency, Theorem 7 can be easily extended by
applying Lemma 2 which has the same argument as Lemma
1.

Lemma 2 (Certified without Equivocation). If two certificates
C(v) and C(v′) are created, then v = v′.

Proof. Suppose a certificate is created, we can consider two
cases: the certificate is from (i) sync-vote or (ii) resp-vote.
Thus, we consider four cases consisting of the two cases for v
and v′. We prove by contradiction supposing each case occurs.

Case (1) — (i) for v and (ii) for v′. If a certificate for
a value is created, then at least one honest party must vote
for the value. Let t and t′ be the time when the first honest
party r and r′ votes for v and v′, respectively. Then, r must
have received propose for v at t − 2∆. Suppose r′ voted for
v′ before t−∆, then r must have received v′ before t. That
would prevent r from voting for v. On the other hand, r′ could
not have voted for v′ after t−∆ because r′ must have received
v by t −∆. Thus, in either case r′ could not have voted for
v′, which is a contradiction. Here, Case (2) — (ii) for v and
(i) for v′, is proved in the same way.

The remaining cases, Case (3) — (i) for both v and v′, and
Case (4) — (ii) for both v and v′, are proved in the same
way as in Lemma 1. Considering the four cases above, two
certificates for different values v and v′ cannot be created.

Finally, we show that the protocol BB(2, dn−f2 − 1e, f)
achieves both nearly optimal synchronous latency 2∆ +O(δ)
and fopt-optimistic responsiveness.

Theorem 10 (Latency). The synchronous latency is 2∆ + 3δ,
and the optimistic latency is 3δ.

Proof. This is similar to the latency-favoring setting except
for an additional waiting time of ∆ in the Synchronous phase.
Thus, if the sender is honest, then every honest party decides
the input value and terminates by 2∆ + 3δ. If at most fopt
parties are faulty, then every honest party terminates by 3δ.

V. BFT REPLICATION WITH IMMEDIATE
LEADER-ROTATION

In the previous section, we introduced the core technique
to construct a “single-shot” broadcast protocol that achieves
both optimistic responsiveness and optimal or nearly optimal

synchronous latency. In this section, towards a more practical
application, we extend this technique to construct a BFT repli-
cation protocol with the same latency level. Our protocol has
“leader-full” construction. At a high level, a party selected as a
leader proposes a set of client requests to append to the current
log, and all parties agree on the new log. Thus, the technique
used in the broadcast protocol is naturally applied when the
leader replaces the sender. However, BFT replication is multi-
shot, i.e., it needs to decide client requests sequentially. This
means our protocol runs multiple instances of the broadcast
protocol. Here, to consider fairness and censorship resistance,
the leader should be rotated among the parties. However,
leader-rotation generally includes a complicated mechanism to
guarantee consistency across multiple instances of a broadcast
protocol, making it a bottleneck for a fast decision. Thus, the
challenge we tackle in this section is how to change leaders
fast while maintaining the consistency.

A. Latency Metrics

Before describing the protocol, we define two latency
metrics, namely, synchronous latency and optimistic latency.
The definition of latency for a broadcast protocol relies on
the condition that the sender is honest. Thus, we naturally
define the latency of a BFT protocol using the condition
that the leaders are honest. Note that the notion of leader is
not included in the definition of BFT replication. However,
because the leader-full construction is a mainstream in BFT
protocols and we do not compare our protocol with “leader-
less” protocols in this paper, we use the notion of leader to
make the definition simple and intuitive. The synchronous
latency, optimistic latency, and optimistic responsiveness are
defined below. Here, the latency to decide a client request is
the time lag from the point when all honest parties receive the
request to the point when the request is decided by all honest
parties.

Definition 9 (Synchronous Latency). The synchronous latency
of a BFT protocol is [Tmin, Tmax] if the following condition
holds: the latency T to decide a client request is Tmin ≤ T ≤
Tmax if leaders are honest.

Definition 10 (Optimistic Latency). The fopt-optimistic la-
tency of a BFT protocol is [Tmin, Tmax] if the following
condition holds: the latency T to decide a client request is
Tmin ≤ T ≤ Tmax if leaders are honest and the number of
actual faults is up to fopt > 0.

Definition 11 (Optimistic Responsiveness). A BFT protocol
is fopt-optimistically responsive if its fopt-optimistic latency
is expressed by O(δ).

The difference between the minimum latency Tmin and the
maximum latency Tmax is an important metric to measure the
speed of leader-rotation. When a request is received by the
leader just before the leader proposes a new log, the request
is decided with the minimum latency Tmin. However, when
a request is received by the leader just after the proposal,
the request needs to wait for the next leader to be decided.



BFT(α, fopt, f).steady-state� �
At the beginning of execution, the first leader L1 multicasts 〈propose, B1, C0(B0), 1〉L1

. Each party r starts timer1. Upon
receiving the first proposal, r executes Steady-State(B1).

Steady-State(Bk):
1) Responsive. At the beginning of view i, multicast 〈resp-vote, Bk, i〉r
2) Synchronous. At the beginning of view i, wait for α∆ and then multicast 〈sync-vote, Bk, i〉r.
3) Decide. Upon receiving Ci(Bk), multicast it and then decide Bk and all its ancestors.
4) Equivocation. Upon receiving two different proposals from Li, multicast them and stop voting in view i.� �
Fig. 3. BFT replication with fopt-optimistic responsiveness and α∆ synchronous latency that tolerates up to f Byzantine faults (steady-state).

BFT(α, fopt, f).view-change� �
Let i be the current view number, and Li be the leader of view i. Let timerj be a timer in view j initialized with 0 and
counts up every single time after starting. At the beginning of execution, party r executes the following three processes:

Normal-Path: Upon receiving Cj(Bk) for j ≥ i, set the current view i to j + 1 and start the following view-change
process of view j.

1) Lock. Multicast Cj(Bk), stop Steady-State of view l ≤ j, set lockl,r of all views l ≤ j that have not been set to
Cj(Bk), send lockj,r to Lj+1, and start timerj+1.

2) Propose. After timerj+1 starts, Lj+1 multicasts 〈propose, Bk+1, Cj(Bk), j+1〉Lj+1
, where Bk+1 = (bk+1, H(Bk))

and bk+1 is a batch of client requests.
3) New-View. Upon receiving a first valid proposal 〈propose, Bk+1, Cj(Bk), j + 1〉Lj+1

of view j + 1, multicast it
and then start Steady-State(Bk+1) of view j + 1.

Fallback-Path: Upon receiving B(j) for j ≥ i, set the current view i to j+1 and start the following view-change process
of view j.

1) Lock. Multicast B(j), stop Steady-State of view l ≤ j, wait for 2∆ (4∆ if r = Lj+1), set lockl,r of all views l ≤ j
that have not been set to a highest certificate, and send lockj,r to Lj+1. Wait for ∆ (0 if r = Lj+1) and then start
timerj+1.

2) Propose. After timerj+1 starts, Lj+1 multicasts 〈propose, Bk+1, Cl(Bk), j + 1〉Lj+1
, where Cl(Bk) is a highest

certificate, Bk+1 = (bk+1, H(Bk)), and bk+1 is a batch of client requests.
3) New-View. Upon receiving a first valid proposal 〈propose, Bk+1, Cl(Bk), j + 1〉Lj+1 of view j + 1, where Cl(Bk)

is as high as lockj,r, multicast it and then start Steady-State(Bk+1) of view j + 1.
Blame:

1) Timeout. When timerj for j ≥ i reaches (7 + α)∆, stop all timerl for l ≤ j, multicast 〈blame, j〉r, and stop
Steady-State of view j.� �

Fig. 4. BFT replication with fopt-optimistic responsiveness and α∆ synchronous latency that tolerates up to f Byzantine faults (view-change).

Therefore, Tmax should be 2Tmin + Trot, where Trot is the
extra time for leader-rotation. In general, the parties receive
client requests at each time uniformly at random. Therefore,
the average latency should be (Tmin +Tmax)/2, which is also
affected by Trot.

B. Protocol Description

We introduce our BFT protocol BFT which is parameterized
by a constant α that determines synchronous latency,
optimistic resilience fopt, and resilience f . The protocol
description is in Figures 3 and 4. Following mainstream

BFT protocols, BFT has bi-modal construction consisting
of steady-state and view-change. Parties decide the new log
proposed by the leader in the steady-state, and the leader is
replaced in the view-change. BFT proceeds in iterations of
these two processes.

Definitions and notations. The reign of the leader is called
view. Each view is identified by an increasing number i ≥ 1.
The leader of each view is selected in a round-robin manner.
The leader of a view i is denoted by Li. At the beginning of
each view, the leader proposes a block of requests. In addition



to a set of client requests, a block contains a hash of another
block, which works as a reference to the block. The references
with a common end, which is called a genesis-block that is
hard-coded in the protocol, construct a chain of blocks or a
so called blockchain. A height of a block is the number of
ancestors in the chain. A block of height k is denoted by
Bk = (bk, hk−1), which consists of a batch of client requests
bk that are totally-ordered, and a hash hk−1 = H(Bk−1) of
the parent block Bk−1. The genesis-block is denoted by B0 =
(⊥,⊥). Thus, the log is naturally determined by first following
the total-order of blocks starting from the genesis-block and
then the total-order of requests defined within each block. We
say a block B extends B′ if B = B′ or B is a descendant of
B′. If two blocks B and B′ do not extend one another, we say
B and B′ conflict with each other. We say a block Bk is valid
if the parent block Bk−1 is valid, or Bk is the genesis-block.

As in the broadcast protocol, the key artifact used to agree
on a block is a certificate for a block. A certificate Ci(Bk)
for a block Bk in a view i is (i) a set of n − f sync-vote
for Bk in the view i or (ii) a set of n − fopt resp-vote for
Bk in the view i. We say a block Bk is certified in a view
i if there is a certificate Ci(Bk). The genesis-block B0 is
certified from the beginning and the certificate C0(B0) is
shared in advance. A certificate is ranked by its view number.
For example, Ci+1(B) is higher than Ci(B′). We use B(i) to
denote a set of f + 1 blame messages for i, which is used
to trigger view-change. We say 〈propose, Bk+1, Cl(Bk), i〉Li

is valid if both Bk+1 and Bk are valid, and Bk+1 refers to Bk.

Operations under honest leaders. Let us first consider the
operations when leaders are honest. In this case, the operations
are simple. Each party r, upon receiving a propose for a
block Bk from the leader Li, starts the steady-state of view
i by running Steady-State(Bk). The operations in the steady-
state are almost identical to those in BB (before 4∆). Party
r concurrently runs both responsive and synchronous decision
paths and decides Bk upon receiving a certificate Ci(Bk).

Next, upon making a decision, r starts a leader-rotation
process in Normal-Path. The leader Li+1 of the next view
i+ 1 immediately multicasts propose for the next block Bk+1

referring to Bk. And then, upon receiving the proposal, r
starts the steady-state of the view i + 1 by running Steady-
State(Bk+1). To summarize simply, the protocol proceeds in
iterations of just two rounds of communication: (i) upon
receiving a certificate Ci(Bk), the next leader Li+1 proposes a
block Bk+1 referring to the block Bk, and (ii) parties vote for
Bk to make the next certificate Ci+1(Bk+1) that triggers the
next proposal. These simple operations make leader-rotation
“immediate”, i.e., Trot = 0. That is, the protocol changes
leaders without any additional rounds of communication in the
leader-rotation. This naturally means that the leader-rotation
is also optimistically responsive, i.e., multiple leaders are
changed within O(δ) time if up to fopt parties are faulty.
Furthermore, the leader-rotation is also immediate even when
f parties are faulty and steady-state necessarily incurs Tmin =
O(∆) latency. Most previous synchronous BFT protocols in

literature, even those that achieve optimistically responsive
leader-rotation [10], incur Trot = O(∆) time for a leader-
rotation in the presence of f faults [5], [7].

Why is immediate leader-rotation possible? First, the com-
plicated leader-rotation mechanism comes from the locking
mechanism, which is commonly used in BFT protocols to
maintain consistency across different views [11], [18], [19].
Roughly speaking, each party r “locks” on the highest block
B that may have been decided by other honest parties by
using certificates as clues at the end of each view. Consider
a typical example where r locks on the highest certified
block [5], [7]. In latter views, r does not vote for any block
conflicting with B if it refers to a certified block lower than
B. Therefore, if all blocks conflicting with a decided block
cannot be certified in the same view, then conflicting decisions
cannot be made across different views. However, in some
BFT protocols, a leader can propose multiple blocks in the
same view. Moreover, some protocols allow two conflicting
certificates to be created in the same view [5], [20] when the
leader is faulty. Therefore, at the end of each view, honest
parties need to synchronize to learn which is the highest block
to lock on. Such a synchronization phase introduces additional
rounds of communication or synchronous O(∆) waiting.

In contrast, our protocol allows a leader to propose only
one block in a view. Furthermore, even if the leader is faulty,
conflicting certificates cannot be created in the same view.
Thus, when a party receives a certificate Ci(B) in a view i, it
knows that B is the highest block to lock on. Therefore, the
additional synchronization is no longer needed, which makes
it possible to enter the next view immediately.

Operations under a faulty leader. When a leader is faulty
and honest parties fail to make a decision, honest parties do
not know which block to lock on. In this case, each party
r changes the view through Fallback-Path, which is a typical
synchronous locking mechanism. Fallback-Path is triggered by
time-out. In both the Normal-path and Fallback-Path of each
view i, a counting-up timer of the next view i+ 1 denoted by
timeri+1 is started. When the timer timeri of view i expires,
r multicasts blame for the view i and stops steady-state of the
view i (in Blame). Upon receiving f + 1 blame for the view
i, denoted by B(i), r starts Fallback-Path of the view i.

Upon entering Fallback-Path of a view i by receiving B(i),
r waits for 2∆ to collect certified blocks. Then, r locks on
the highest certificate Cj(Bk) by setting a variable locki,r to
the certificate. After waiting for additional ∆, upon receiving
a first valid proposal of view i + 1, r starts the steady-state
of view i + 1. Here, r does not start the steady-state if the
proposed block B refers to a certificate lower in rank than
locki,r. Moreover, if an honest party decides a block in view
i, r locks on the block or its descendant due to the 3∆ waiting
(See V-C for details). Therefore, if a faulty leader of a latter
view proposes a block conflicting with a decided block, then
every honest party does not start the steady-state and the block
cannot be decided. This guarantees the consistency across



different views.

Latency. As in the broadcast protocol, our protocol has two
parameter settings: (i) latency-favoring: BFT(1, n−2f −1, f)
and (ii) resilience-favoring: BFT(2, dn−f2 − 1e, f). We show
the latency of both settings below.

If leaders are honest, then every honest party makes a
decision in the steady-state of every view and rotates leaders
in the Normal-path. Thus, a client request is decided by all
honest parties within two views. Therefore, the synchronous
latency is [∆+2δ, 2∆+4δ] for (i) and [2∆+2δ, 4∆+4δ] for
(ii), and the optimistic latency is [2δ, 4δ] for both (i) and (ii).
On average, the synchronous latency is 1.5∆+3δ (or 3∆+3δ)
and the optimistic latency is 3δ. The average latency of our
protocol is better than that of state-of-the-art rotating-leader
BFT protocols, such as Hotstuff (7δ latency) and OptSync (7δ
optimistic latency and 5.5∆ + O(δ) synchronous latency). A
detailed comparison of the protocols is in Section VII.

C. Correctness of our Protocol

We prove the safety and liveness of BFT. We provide the
proof for the latency-favoring protocol BFT(1, n−2f −1, f),
assuming n/3 ≤ f < (n− 1)/2. The proof is easily extended
to the resilience-favoring protocol BFT(2, dn−f2 − 1e, f), as-
suming n/3 ≤ f < n/2.

Lemma 3 (Certified without Equivocation). If two certificates
Ci(B) and Ci(B′) are created in the same view i, then B = B′.

Proof. The proof is a straightforward extension of that of the
Byzantine broadcast protocol (Lemma 1).

Here, we say an honest party r directly decides a block B
in view i if r has not decided its descendants at the time r
decides B.

Lemma 4. If an honest party r directly decides a block Bk

in view i, then for all views j ≥ i, if a block B is certified in
view j, then B extends Bk.

Proof. We prove it by induction on the view number. The
base case (j = i) is clear from Lemma 3. Before proving
for the inductive step, we first prove another lemma: every
honest party h locks on a certificate Cj(Bk′) in view i, i.e.
locki,h = Cj(Bk′), where Bk′ extends Bk and j ≥ i. Let t be
the time when r directly decides the block Bk in view i. Then,
all honest parties must have received Ci(Bk) by time t+∆. If
an honest party p sets locki,p in view i, there are two possible
cases: p sets its lock in the Normal-Path or the Fallback-Path.
(i) – If p sets its lock in the Normal-Path, then it must have
received a certificate for a block B in view i (denoted by
Ci(B)). Since there is no conflicting certificate in the same
view, B = Bk. (ii) – If p sets its lock in the Fallback-Path,
then it must have set its lock after t + ∆. Otherwise, p must
have received and multicast B(i), i.e., f + 1 blame for view i,
before t−∆, and all honest parties must have received it before
t and stopped all processes in the steady-state of view i. That
would prevent r from deciding Bk. Therefore, locki,p must be

as high as Ci(Bk). Let t′ be the time p sets locki,p. Suppose
for the sake of contradiction that locki,p is a certificate for a
block Bk′′ in view j > i conflicting with Bk. Then, at least
an honest party must have voted for Bk′′ in view j > i. That
means there are two blocks Bk0

and Bk1
certified in views

j0 and j1 (j0 < i < j1), respectively, Bk′′ extends Bk1
, and

Bk1 refers to Bk0 . Then, at least an honest party h1 must
have started the steady-state of view j1 through the Fallback-
Path before t′. Then, h1 must have received B(j1 − 1) before
t′ − 3∆, and p must have received it before t′ − 2∆ and set
locki,p before t′, which is a contradiction.

Next, we prove for the inductive step (i.e., view j + 1).
The inductive hypothesis is that there is no certificate Cj′(B′′)
in view i ≤ j′ ≤ j conflicting with Bk. Since all honest
parties lock on a block extending Bk in view i, the inductive
hypothesis implies they still lock on a block extending Bk in
view j. Thus, for all honest parties, the rank of lockj, is not
less than i. Suppose for the sake of contradiction that there is a
certificate Cj+1(B) conflicting with Bk, then at least an honest
party must have voted for B in view j + 1. By the inductive
hypothesis, the certificate of the previous block of B denoted
by Cj′′(B−1) must be lower than i. Then, all honest parties
could not have voted for B because Cj′′(B−1) is lower than
lockj,, which is a contradiction.

Theorem 11 (Safety). If two requests c and c′ are decided in
the same log position, then c = c′.

Proof. We first prove that if two blocks Bk and B′k are decided
at the same height k, then Bk = B′k. Suppose these are the
results of direct decisions of Bl and Bl′ . Without loss of
generality, we assume l ≤ l′. Note that all directly decided
blocks are certified. Then, by Lemma 4, Bl′ extends Bl.
Therefore, Bk = B′k.

Since all requests in a block are totally-ordered, two differ-
ent requests cannot be decided in the same log position.

Lemma 5. If a leader Li of view i is honest, then all honest
parties decide a block in view i.

Proof. In each view i, every honest party either (i) receives a
certificate Ci(B) or (ii) incurs time-out, multicasts blame, and
receives B(i). In both cases, a party starts view-change of view
i + 1. Thus, every honest party permanently proceeds views
without being stacked. Moreover, all honest parties enter into
either Normal-Path or Fallback-Path with maximum time lag
of ∆ because every honest party multicasts Ci(B) and B(i)
when it receives them. Let t be the time when the first honest
party enters into Normal-Path or Fallback-Path in view i− 1.
Let N and F denote a set of honest parties that enters into
Normal-Path and Fallback-Path, respectively. There are two
cases to be considered: the leader Li enters into (a) Normal-
Path or (b) Fallback-Path in view i− 1.

Suppose Li enters into Normal-Path. Then, Li proposes a
block Bk+1 extending Bk by t+∆. All parties in N receive the
proposal and start the steady-state of view i within [t, t+2∆].
All parties in F enter into Fallback-Path within [t, t+∆], wait



for 3∆, and receive the proposal. Since the proposal extends a
highest certificate Ci−1(Bk), all parties in F start the steady-
state of view i within [t+3∆, t+4∆]. Thus, all honest parties
can decide a block Bk+1 in view i by time t + 6∆ without
time-out.

Suppose Li enters into Fallback-Path. Then, Li proposes a
block B within [t + 4∆, t + 5∆]. Since all parties in F set
their lock and send it to Li within [t + 2∆, t + 3∆], and all
parties in N send Ci−1(Bk) within [t, t+ ∆], Li sets its lock
to a certificate as high as every honest party’s lock before
proposing B. Then, every honest party starts the steady-state
of view i by t + 6∆. Thus, all honest parties can decide the
block B by time t+ 8∆ without time-out.

Therefore, in both cases, every honest party decides a block
in view i.

Theorem 12 (Liveness). All requests are eventually decided
by all honest parties.

Proof. Suppose all honest parties receive a request in view i.
Since at most f parties are faulty, at least in view i + f , the
honest leader Li+f proposes a block containing the request.
By Lemma 5, all honest parties decide the block.

VI. EXPERIMENTAL EVALUATION

We implemented our BFT protocol and compared its latency
with Hotstuff [11] and Sync Hotstuff [5]. Our implementa-
tion is based on the open-source implementation of Hotstuff
and Sync Hotstuff that share the same code base. We use
secp256k1 for digital signatures and a certificate consists of
an array of signatures. We conducted the experiment with
Amazon EC2 t2.large instances. Each party and client has
2vCPUs with 8GB memory. The network bandwidth is up to
5Gbps. A client continuously sends commands with zero-byte
payload to all parties. We measured the latency from the client
with multiple values of f . We used the latency-favoring setup
and the network size of n = 5f/2 (i.e., up to 40% faults),
and thus fopt = n/5 − 1. Note that we used n = 3f + 1 for
Hotstuff and n = 2f + 1 for Sync Hotstuff. Figure 5 shows
the average latency of each protocol.

Comparison with Sync Hotstuff. We first compare our
protocol with Sync Hotstuff, a non-responsive synchronous
BFT protocol with average latency of 2∆ + O(δ). We used
∆ = 50ms, and thus, the latency of Sync Hotstuff is greater
than 100ms. In contrast, our protocol shows significantly
better latency than Sync Hotstuff due to the optimistic respon-
siveness. Note that Sync Hotstuff is a stable-leader protocol,
while our protocol is a rotating-leader protocol. Nonetheless,
the latency of our protocol is better due to the immediate
leader-rotation. If Sync Hotstuff takes a rotating-leader policy,
then it should incur a much longer latency.

Comparison with Hotstuff. Next, we compare our protocol
with Hotstuff, a current state-of-the-art rotating-leader BFT
protocol under a partial synchronous model. Our protocol

shows better latency than Hotstuff when f = 2 and 4. This
is because the latency of Hotstuff is 7δ (see Section VII for
details) while the latency of our protocol is 3δ. However,
when f = 8, the latency of our protocol exceeds that of
Hotstuff. We consider that this is due to the communication
overhead of certificates. In our protocol, in every view, each
party multicasts a certificate that consists of a linear num-
ber of signatures. As a result, our protocol incurs quadratic
communication for each party and lacks scalability. To verify
our consideration, we evaluate the latency of our protocol and
Hotstuff using a dummy signature scheme for both protocols.
Here, a certificate has the same size as an individual signature.
Figure 6 shows the latency comparison of our protocol and
Hotstuff. Compared with Figure 5, Hotstuff shows almost the
same results, while our protocol shows better scalability as
expected. In practice, we expect that our protocol can enjoy
the same level of scalability as in Figure 6 by using a threshold
signature scheme for certificates [11], [15], [21]. A threshold
signature scheme can combine a set of signatures for the same
message into one signature with the same size as an individual
signature [22], [23].

VII. RELATED WORKS

The responsiveness property, which was first formalized in
Hybrid Consensus [4] to improve the latency of the Nakamoto
Consensus [24]–[26], allows a protocol to make a decision
with the actual network speed. It is also shown in [4] that
responsiveness can be achieved if and only if f < n/3, which
is the same bound for asynchronous or partial synchronous
protocol. This implies that the latency of a synchronous
protocol naturally tolerating f ≥ n/3 is inherently lower
bounded by the pessimistic delay bound ∆. To enjoy both
higher resilience and lower latency, a number of works have
studied optimistic responsiveness. We will briefly review
these works and compare them with our work.

Thunderella. Thunderella [6] introduced optimistic respon-
siveness and showed that a protocol can make a decision
responsively if and only if the number of actual faults is
less than (n − f)/2. Thunderella presented a stable-leader
BFT protocol with optimistic responsiveness that achieves 2δ
minimum optimistic latency by running multiple instances of
a broadcast protocol with a stable leader. Since the leader is
not rotated every decision, the stable leader proposes a new
log upon receiving a client request without waiting for the
decision on the previous log. Thus, the average optimistic
latency is also 2δ. However, the stable-leader protocol is not
favorable in terms of fairness. On the other hand, in the
presence of f faults, the underlying Nakamoto Consensus or
classical Dolev-Strong protocol [27] detect failure and make
decisions as a fallback. Thus, Thunderella incurs O(κ∆) or
O(f∆) synchronous latency, which is far from optimal.

PiLi. PiLi [20] presented a rotating-leader BFT protocol with
optimistic responsiveness. The protocol proceeds in “epochs,”
and a leader of each epoch proposes a block. The protocol



Fig. 5. The latency with varying resilience f . Fig. 6. The latency without signatures.

decides 5 blocks after 13 blocks of consecutive epochs are cer-
tified (“notarized” in the paper). Therefore, optimistic latency
is 16δ at the minimum. On the other hand, in the presence
of f faults, each epoch lasts for 5∆. Thus, the synchronous
latency is at least 40∆. Moreover, the protocol cannot decide
a block with the minimum latency when at least one of the
leaders of these 13 epochs is faulty. In contrast, our protocol
decides a block within a single view and achieves significantly
better latency in both optimistic and synchronous cases.

Sync Hotstuff. Sync Hotstuff [5] presented a stable-leader
BFT protocol with nearly optimal 2∆ + O(δ) synchronous
latency. The protocol also has a responsive mode. However,
in each view, at least one block must be decided with syn-
chronous latency to switch to the responsive path, which is
not responsive in essence. On the other hand, our protocol
responsively decides a block immediately after entering a
new view. Moreover, Sync Hotstuff cannot decide a block
synchronously in each view once it switches to the responsive
mode. Therefore, Sync Hotstuff cannot decide blocks in a view
if the number of actual faults is f but the faulty parties first
behave honestly until the protocol switches to the responsive
mode and crash after that. In contrast, our protocol can decide
blocks even in the presence of f faults with optimal or nearly
optimal latency, while being optimistically responsive at the
same time.

OptSync. A concurrent and independent work called OptSync
[10] presented a similar theoretical bound in the context of
Byzantine broadcast on the infeasibility. OptSync presents a
stable-leader BFT protocol on the feasibility, but our results
are stronger because our BB protocol also achieves fast termi-
nation. The BFT protocol of OptSync uses a similar approach
to our BB protocol and thus it naturally achieves 3δ optimistic
latency and 2∆ + O(δ) synchronous latency, on average.
However, the stable leader approach is not favorable in terms
of fairness and censorship resistance. OptSync also shows a
rotating-leader protocol that achieves optimistically responsive
view-change. However, the view-change is complicated and

requires additional communication rounds or O(∆) waiting
time. As a result, the optimistic latency is [3δ, 11δ] and the
synchronous latency is [3∆ + O(δ), 8∆ + O(δ)]. Thus, on
average, the optimistic latency is 7δ and the synchronous
latency is 5.5∆ + O(δ). In contrast, our protocol achieves
3δ optimistic latency and 1.5∆ + O(δ) (or 3∆ + O(δ))
synchronous latency. Lastly, OptSync also presents a protocol
with optimal ∆ +O(δ) minimum synchronous latency, but it
is optimistically responsive only when all parties are honest.
On the other hand, our protocol achieves ∆ +O(δ) minimum
synchronous latency while achieving optimistic responsiveness
even in the presence of a certain fraction (less than n − 2f )
of faults.

Hotstuff. Hotstuff [11], [28] presented a rotating-leader BFT
replication protocol with optimistic responsiveness. The proto-
col assumes a partial synchronous model, and thus tolerates up
to f < n/3 faults. The optimistic case always holds in terms
of the number of faults (See Figure 1), and thus the protocol
is always responsive when leaders are honest. In contrast, our
protocol tolerates up to f < n/2 faults. In Hotstuff, a leader
of each view proposes a block, and a block is decided after 3
blocks of consecutive views are certified. Each view consists of
2 rounds of communication. As a result, the latency is [6δ, 8δ]
and the average latency is 7δ. In contrast, our protocol achieves
3δ average latency in the optimistic case, which is more than
a factor of two faster than Hotstuff.

VIII. CONCLUSION

In this work, we provided a tight upper bound of n−2f on
the number of actual faults to achieve optimistic responsive-
ness as well as optimal ∆+O(δ) synchronous latency, simul-
taneously. On the feasibility, we also showed that optimistic
responsiveness in the presence of less than (n−f)/2 faults and
nearly optimal 2∆+O(δ) synchronous latency can be achieved
simultaneously. As a practical application, we presented a
simple rotating-leader BFT replication protocol with optimistic
responsiveness. Our protocol achieves on average 3δ optimistic
latency and 1.5∆+O(δ) (or 3∆+O(δ)) synchronous latency,



which is more than a factor of two better than current state-
of-the-art rotating-leader BFT protocols. Our protocol assumes
strong network synchrony that requires every honest party to
be online. As future work, we will investigate solutions under
weaker synchrony that still achieve short latency.
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APPENDIX A
FALLBACK AGREEMENT PROTOCOL

In this section, we provide the concrete construction of the
fallback agreement protocol FA.

A. Protocol Description

We now introduce the protocol FA, which is described
in detail in Figure 7. FA proceeds in iterations identified
by an increasing number i ≥ 1. Each iteration consists of
five lockstep rounds. A round t in an iteration i is the time
[(5(i − 1) + t − 1)∆, (5(i − 1) + t)∆] in the execution. In
lockstep execution, at the beginning of each round, each so-
far-honest party does its local computation according to all
messages it received and then sends messages. Thus, if a so-
far-honest party at the beginning of round t sends a message
x, a so-far-honest recipient at the beginning of the next round
t + 1 receives x. In each round i, a party Li is selected as
a leader. The leader selection is performed in a round-robin
manner. As in other protocols in this paper, FA has a leader-
full construction. At a high level, in each round i, the leader Li

proposes a value consistent with the decisions in the iterations
before i, and each non-leader party safely votes for the value.
Here, a set of n− f vote for a value v is called a certificate
for v in iteration i and is denoted by Ci(v). We say a value
v is certified in iteration i if there is Ci(v). All certificates
are ranked by their iteration number. For example, Ci+1(v) is
higher than Ci(v′). An empty value ⊥ is certified from the
beginning and has the lowest rank 0. Each party processes the
leader’s proposal in rounds 2 and 3 if the proposal is valid. A
proposal 〈propose, v, P, i〉Li

from the leader Li is valid if (i)
P =⊥, or (ii) P = Cj(v) in an iteration j.



FA(f)� �
Let Li be the leader of iteration i and r be a party. Ci(v) is a set of n − f vote for a value v in iteration i. Let
vr ∈ {vin,⊥} be the input value of r. At the beginning of execution, r sets lock0,r to ⊥. Party r executes the following
processes for iteration 1 ≤ i ≤ n and terminates:

– Round 1 (Propose). Li multicasts 〈propose, v, locki−1,Li
, i〉Li

. Here, v is selected following the validity conditions
below.

a) If locki−1,Li
=⊥ and vr =⊥, pick freely.

b) Else if locki−1,Li
=⊥, v = vin.

c) Else v is the value of locki−1,Li .
– Round 2 (Echo). If r receives a valid proposal from Li, then r multicasts it.
– Round 3 (Vote). If r echoed only one valid 〈propose, v, P, i〉Li

in round 2, and P is as high as locki−1,r and
satisfies the two conditions below, then r multicasts 〈vote, v〉r.

a) P 6=⊥.
b) vr =⊥ or v = vin, if P =⊥.

– Round 4 (Decide). If r receives Ci(v), then r multicasts it and decides v.
– Round 5 (Lock). r sets locki,r to the highest Cj(v), and sends it to the next leader Li+1.

At the end of round 5, the next leader Li+1 sets locki,Li+1 to the highest Cj(v).� �
Fig. 7. Fallback agreement protocol that tolerates up to f Byzantine faults.

B. Correctness of the Protocol

We prove the correctness of the protocol FA(f) for f <
n/2.

Lemma 6. If Ci(v) and Ci(v′) are created in the same iteration
i, then v = v′.

Proof. Suppose Ci(v) is created in iteration i, then at least
an honest party must have multicast vote for v in round 3 in
iteration i. Then, the party must have received propose for v
by the beginning of round 2 in iteration i and multicasts it.
Thus, every so-far-honest honest party must have received the
propose for v by the beginning of round 3 in iteration i. Then,
every party that is not a Byzantine fault does not send vote
for a different value v′. Therefore, Ci(v′) for a different value
v′ cannot be created in the same iteration i.

Lemma 7. If a so-far-honest party decides a value v in
iteration i, then for all iterations j ≥ i, Cj(v′) for a different
value v′ cannot be created.

Proof. We prove by induction on the iteration number. The
base case (j = i) is clear from Lemma 6. Here, we prove
that every so-far-honest party r at the beginning (if r = Li+1,
at the end of) round 5 in the iteration i sets locki,r to Ci(v).
Suppose a so-far-honest party decides a value v in iteration
i, then it must have multicast Ci(v) in round 4 in iteration i.
Thus, every so-far-honest party must have received Ci(v) by
the beginning of round 5 and set its locki,r to Ci(v).

Next, we prove for the inductive step (the iteration j +
1). The inductive hypothesis is that there is no Cj′(v′) for a
different value v′ in iteration i ≤ j′ ≤ j. Since all so-far-
honest parties lock on Ci(v) in iteration i, they still lock on

Cj′(v) if they remain so-far-honest. Suppose for the sake of
contradiction that Cj+1(v′) for a different value v′ is created,
then at least a so-far-honest party (say p) must have sent vote
for v′ in iteration j + 1. Then, the propose for v′ in iteration
j + 1 must include P = Cl(v′) where l ≥ i, since otherwise,
P is lower than lockj,p. However, it contradicts the inductive
hypothesis.

Theorem 13 (Consistency). If so-far-honest parties r and r′

decide values v and v′ at time t and t′, respectively, then
v = v′.

Proof. Suppose r and r′ who are so-far-honest at time t and
t′ decide values v and v′ at the time in views i and i′,
respectively. Then, r and r′ must have received Ci(v) and
Ci′(v′), respectively. Without loss of generality, we assume
i ≤ i′. Then, by Lemma 7, v = v′.

Theorem 14 (Liveness). If there are no crash parties through-
out the execution, then every forever-honest party decides a
value and terminates.

Proof. Suppose all forever-honest parties have ⊥ as input
value, and a leader Li of an iteration i is forever-honest.
Since every forever-honest party r sets locki−1,r to a highest
certificate in round 5 in the previous iteration i−1 and sends it
to Li, Li receives it by the end of round 5 in iteration i−1 and
sets locki−1,Li to a certificate as high as every forever-honest
party’s locki−1,. Thus, every forever-honest party can vote for
the value v proposed by Li in iteration i. Since there are at
least n− f forever-honest parties, Ci(v) is created and every
forever-honest party decides v. Suppose there is a forever-
honest party p such that its input value vp is vin. Since all



honest parties have ⊥ or vin as input value, if p is a leader
of an iteration i, then p proposes vin and every forever-honest
party votes for vin and decides the value in iteration i. Since
all parties, thus including p, are assigned to an iteration as
a leader, every forever-honest party decides the value vin.
Finally, every forever-honest party terminates after the final
iteration n.

Theorem 15 (Validity). If every so-far-honest party r at the
beginning of execution has an input value vr = vin, for all
time t every so-far-honest party r′ at t does not decide a
different value v′ 6= vin.

Proof. We first prove that a certificate Cj(v′) cannot be created
in all iterations 1 ≤ j ≤ n by induction on the iteration num-
ber. For the base case, suppose for the sake of contradiction
that C1(v′) is created. Then, at least a so-far-honest party (say
p) must have received a valid proposal 〈propose, v′,⊥, 1〉L1

and voted for v′. This cannot occur because v′ 6= vin = vp,
which is a contradiction.

Next, we prove for the inductive step (iteration j + 1).
Suppose for the sake of contradiction that Cj+1(v′) is created.
Then, at least a so-far-honest party (say p′) must have received
a valid proposal 〈propose, v′, P, j + 1〉Lj+1

and voted for v′.
By the inductive hypothesis, P =⊥. This cannot occur because
v′ 6= vin = vp′ , which is a contradiction.

Since a certificate Cj(v′) cannot be created in all iterations
1 ≤ j ≤ n, every so-far-honest party cannot decide a different
value v′.


