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Supersingular Isogeny Key Encapsulation (SIKE)
Round 2 on ARM Cortex-M4

Hwajeong Seo, Mila Anastasova, Amir Jalali, and Reza Azarderakhsh

Abstract—We present the first practical software implementation of Supersingular Isogeny Key Encapsulation (SIKE) round 2,
targeting NIST’s 1, 2, 3, and 5 security levels on 32-bit ARM Cortex-M4 microcontrollers. The proposed library introduces a new
speed record of all SIKE Round 2 protocols with reasonable memory consumption on the low-end target platform. We achieved this
record by adopting several state-of-the-art engineering techniques as well as highly-optimized hand-crafted assembly implementation
of finite field arithmetic. In particular, we carefully redesign the previous optimized implementations of finite field arithmetic on the
32-bit ARM Cortex-M4 platform and propose a set of novel techniques which are explicitly suitable for SIKE primes. The benchmark
result on STM32F4 Discovery board equipped with 32-bit ARM Cortex-M4 microcontrollers shows that entire key encapsulation and
decapsultation over SIKEp434 take about 184 million clock cycles (i.e. 1.09 seconds @168MHz). In contrast to the previous optimized
implementation of the isogeny-based key exchange on low-end 32-bit ARM Cortex-M4, our performance evaluation shows feasibility of
using SIKE mechanism on the target platform. In comparison to the most of the post-quantum candidates, SIKE requires an excessive
number of arithmetic operations, resulting in significantly slower timings. However, its small key size makes this scheme as a
promising candidate on low-end microcontrollers in the quantum era by ensuring the lower energy consumption for key transmission
than other schemes.

Index Terms—ARM assembly, finite field, isogeny-based cryptosystems, key encapsulation mechanism, post-quantum cryptography.
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1 Introduction
The hard problems of traditional PKC (e.g. RSA and ECC)
can be easily solved by using Shor’s algorithm [30] and its vari-
ant on a quantum computer. The traditional PKC approaches
cannot be secure anymore against quantum attacks. A number
of post-quantum cryptography algorithms have been proposed
in order to resolve this problem. Among them, Supersin-
gular Isogeny Diffie-Hellman key exchange (SIDH) protocol
proposed by Jao and De Feo is considered as a premier
candidate for post-quantum cryptosystems [21]. Its security
is believed to be secure even for quantum computers. SIDH
is the basis of the Supersingular Isogeny Key Encapsulation
(SIKE) protocol [3], which is currently under consideration by
the National Institute of Standards and Technology (NIST)
for inclusion in a future standard for post-quantum cryptog-
raphy [31]. One of the attractive features of SIDH and SIKE
is their relatively small public keys which are, to date, the
most compact ones among well-established quantum-resistant
algorithms. In spite of this prominent advantage, the “slow”
speed of these protocols has been a sticking point which
hinders them from acting like the post-quantum cryptogra-
phy. Therefore, speeding up SIDH and SIKE has become a
critical issue as it judges the practicality of these isogeny-
based cryptographic schemes. In CANS’16, Koziel et al. pre-
sented first SIDH implementations on 32-bit ARM Cortex-
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A processors [26]. In 2017, Jalali et al. presented first SIDH
implementations on 64-bit ARM Cortex-A processors [20]. In
SPACE’18, Jalali et al. suggested SIKE implementations on
32-bit ARM Cortex-A processor [19]. In CHES’18, Seo et al.
improved previous SIDH and SIKE implementations on high-
end 32/64-bit ARM Cortex-A processors [29]. At the same
time, the implementations of SIDH on Intel and FPGA are
also successfully evaluated [11], [4], [23], [25]. Afterward, in
2018, first implementation of SIDH on low-end 32-bit ARM
Cortex-M4 micro-controller was suggested [24]. The paper
shows that an ephemeral key exchange (i.e. SIDHp751) on
a 32-bit ARM Cortex-M4@120MHz requires 18.833 seconds
to perform - too slow to use on low-end micro-controllers.

In this work, we challenge to the practicality of SIKE
round 2 protocols for NIST PQC competition (i.e. SIKEp434,
SIKEp503, SIKEp610, and SIKEp751) on low-end microcon-
trollers. We present new optimized implementation of modu-
lar arithmetic for the case of low-end 32-bit ARM Cortex-M4
microcontroller. The proposed modular arithmetic, which is
implemented on top of the SIKE round 2 reference implemen-
tation [2], demonstrates that the supersingular isogeny-based
protocols are practical on 32-bit ARM Cortex-M4 microcon-
trollers.

2 SIDH and SIKE
In this section, we briefly review the SIDH protocol and
the required steps for Alice and Bob to generate a shared
secret. Furthermore, we describe the SIKE, a post-quantum
key encapsulation mechanism from isogenies of supersingular
elliptic curves, which was submitted to NIST’s PQC standard-
ization competition. We refer the readers to [21], [3] for further
details.



2.1 SIDH key exchange
In 2011, Jao and De Feo [21] proposed the SIDH, a quantum
resistant key exchange protocol from isogenies of supersin-
gular elliptic curves. Similar to classical Diffie-Hellman key
exchange, SIDH protocol is constructed over some public
parameters which are agreed upon by communication parties
prior to key exchange.

2.1.1 Public parameters
Fix a prime p of the form p = `eA

A
· `eBB · f ± 1 where `A and

`B are small primes, eA and eB are positive integers, and f is
a very small cofactor. We define a based supersingular elliptic
curve E over Fp2 with cardinality #E = (`eA

A
· `eBB · f ∓1)2, and

base points {PA,QA} and {PB,QB} from the torsion subgroups
E[`eA

A
] and E[`eBB ] respectively, such that 〈PA,QA〉 = E[`eA

A
]

and 〈PB,QB〉 = E[`eBB ].

Public parameters
A prime p = `eA

A
`eBB f ± 1,

A supersingular elliptic curve over E over Fp2,
Base points 〈PA,QA〉 = E0[`

eA
A
] and 〈PB,QB〉 = E0[`

eB
B ]

Alice

KeyGen

1. skA : mA,nA ∈ Z/`
eA
A
Z

2. φA : E0 → EA with
ker φA = 〈[mA]PA + [nA]QA〉

3. pkA = [EA, φA(PB), φA(QB)]

Bob

KeyGen

1. skB : mB,nB ∈ Z/`
eB
B Z

2. φB : E0 → EB with
ker φB = 〈[mB]PB + [nB]QB〉

3. pkB = [EB, φB(PA), φB(QA)]

Shared Key

1. φ′A : EB → EAB with
ker φ′A = 〈[mA]φB(PA) + [nA]φB(QA)〉

2. K = j(EAB)

Shared Key

1. φ′B : EA→ EBA with
ker φ′B = 〈[mB]φA(PB) + [nB]φA(QB)〉

2. K = j(EBA)

pkA

pkB

Fig. 1: SIDH key exchange protocol.

2.1.2 Key exchange protocol
Alice randomly chooses two integers mA,nA ∈ Z/`

eA
A
Z, not

both divisible by `A as her secret key and computes an isogeny
φA : E → EA using kernel RA := 〈[mA]PA + [nA]QA〉. Alice
also computes the image points {φA(PB), φA(QB)} ⊂ EA by
applying her secret isogeny φA to the public basis PB and
QB. She sends φA(PB), φA(QB) and EA to Bob as her public
key. Bob also selects random elements mB,nB ∈ Z/`

eB
B Z, not

both divisible by `B and computes a secret isogeny φB : E →
EB from kernel RB := 〈[mB]PB + [nB]QB〉, along with image
points {φB(PA), φB(QA)} ⊂ EB. He sends his public key, i.e.,
φB(PA), φB(QA) and EB to Alice.

In the second round of key exchange, Alice uses Bob’s
public key (φB(PA), φB(QA),EB) and computes an isogeny φ′A :
EB → EAB from kernel equal to 〈[mA]φB(PA) + [nA]φB(QA)〉;
Similarly, Bob computes an isogeny φ′B : EA → EBA having
kernel 〈[mB]φA(PB) + [nB]φA(QB)〉 using Alice’s public key.
Since the common j-invariant of EAB and EBA are equal, they
use this value to form a secret shared key. The entire SIDH
key exchange protocol is illustrated in Figure 1.

2.2 SIKE mechanism
SIKE mechanism is constructed by applying a transformation
of Hofheinz, Hövelmanns, and Kiltz [16] to the supersingular
isogeny Public Key Encryption (PKE) scheme described in
[21]. It is an actively secure key encapsulation mechanism
(IND-CCA KEM) which addresses the static key vulnerability
of SIDH due to active attacks in [13].

Public parameters
A prime p = 2eA3eB − 1,

An elliptic curve E0/Fp2 : y2 = x3 + x,
Base points 〈PA,QA〉 = E0[2eA ] and 〈PB,QB〉 = E0[3eB ]

Alice

KeyGen

1. skA ∈R Z/2eAZ
2. φA : E0 → EA with

ker φA = 〈PA + [skA]QA〉

3. pkA = [EA, φA(PB), φA(QB)]

4. s ∈R {0,1}t

Bob

Encaps

1. message m ∈R {0,1}t

2. r = H1(m ‖ pkA) mod 3eB

3. φB : E0 → EB with
ker φB = 〈PB + [r]QB〉

4. pkB(r) = [EB, φB(PA), φB(QA)]

5. φ′B : EA→ EBA with
ker φ′B = 〈φA(PB) + [r]φA(QB)〉

6. c = (c0, c1) = (pkB(r),H2( j(EBA)) ⊕ m)

7. Shared Secret: K = H3(m ‖ c)

Decaps

1. φ′A : EB → EAB with
ker φ′A = 〈φB(PA) + [skA]φB(QA)〉

2. m′ = c1 ⊕ H2( j(EAB))

3. r ′ = H1(m′ ‖ pkA) mod 3eB

4. φ′′B : E0 → EB′ with
ker φ′′B = 〈PB + [r ′]QB〉

5. pkB(r ′) = [(EB′), φ
′′
B(PA), φ

′′
B(QA)]

6. If pkB(r ′) = c0 then K = H3(m′ ‖ c)

Else K = H3(s ‖ c)

pkA

c = (c0, c1)

Fig. 2: SIKE mechanism.

2.2.1 Public parameters

Similar to SIDH, SIKE can be defined over a prime of the
form p = `eA

A
· `eBB · f ± 1. However, for efficiency reasons,

`A = 2, `B = 3, and f = 1 are fixed, thus the SIKE prime
has the form of p = 2eA · 3eB − 1. The starting supersingular
elliptic curve E0/Fp2 : y2 = x3 + x with cardinality equal to
(2eA · 3eB )2, along with base points 〈PA,QA〉 = E0[2eA] and
〈PB,QB〉 = E0[3eB ] are defined as public parameters.

2.2.2 Key encapsulation mechanism

The key encapsulation mechanism can be divided into three
main operations: Alice’s key generation, Bob’s key encap-
sulation, and Alice’s key decapsulation. We describe each
operation in the following. Figure 2 presents the entire key
encapsulation mechanism in a nutshell.

2.2.2.1 Key generation.: Alice randomly chooses an
integer skA ∈ Z/2eAZ and by applying an isogeny φA :
E0 → EA with kernel RA := 〈PA + [skA]QA〉 to the
base points {PB,QB}, computes her public key pkA =

[EA, φA(PB), φA(QB)]. Moreover, she generates an t-bit1 ran-
dom sequence s ∈R {0,1}t .

2.2.2.2 Encapsulation.: Bob generates an t-bit ran-
dom message m ∈R {0,1}t , concatenates it with Alice’s
public key pkA and computes an (eB log2 3)-bit hash value
r using cSHAKE256 hash function H1, taking m ‖ pkA as
the input. Using r, he applies a secret isogeny φB : E0 →
EB to the base points {PA,QA} and forms his public key
pkB(r) = [EB, φB(PA), φB(QA)]. Bob also computes the com-
mon j-invariant of curve EBA by applying another isogeny
φ′B : EA → EBA using Alice’s public key. Bob forms a
ciphertext c = (c0, c1), such that:

c = (c0, c1) = (pkB(r),H2( j(EBA)) ⊕ m),

where H2 is a cSHAKE256 hash with a custom length output
and a defined initialization parameter. Finally, Bob computes
the shared secret as K = H3(m ‖ c) and sends c to Alice.

1. The value of t is defined by the implementation parameters.
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2.2.2.3 Decapsulation.: Upon receipt of c, Alice com-
putes the common j-invariant of EAB by applying her secret
isogeny to EB. She computes m′ = c1 ⊕ H2( j(EAB)) and
r ′ = H1(m ‖ pkA). Finally, she validates Bob’s public key by
computing pkB(r ′) and comparing it with c0. She generates
the same shared secret K = H3(m′ ‖ c) if the public key is
valid, otherwise she outputs a random value K = H3(s ‖ c) to
be resistant against active attacks.

3 ARM Cortex-M4 Architecture

With over 100 billion ARM-based chips shipped worldwide
as of 2017 [1], ARM is the most popular instruction set
architecture (ISA), in terms of quantity. In this work, we
target the popular low-end 32-bit ARM Cortex-M4 micro-
controllers, which belong to the “microcontroller” profile
implemented by cores from the Cortex-M series. The ARM
Cortex-M architecture is a reduced instruction set computer
(RISC) using a load-store architecture. The ARM Cortex-M4
microcontrollers support a three-stage pipeline, and memory
accesses involving 1 register and n registers take 2 cycles and
n + 1 cycles, respectively.

As other traditional 32-bit ARM architectures, the ARM
Cortex-M4 ISA is equipped with 16 32-bit registers (R0∼R15),
from which 15 (R0∼R12, R13 (SP), R14 (LR)) are avail-
able. R13, R14, and R15 registers are reserved for stack pointer,
link register, and program counter, respectively. The R13 and
R14 registers can be freed up by saving it in slower memory
and retrieving it after the register has been used.

Since the maximum capacity of the 15 registers is of only
480 bits (32×15), efficient use of the available registers to min-
imize the number of memory accesses is a critical strategy for
optimized implementations of multi-precision multiplications
(i.e. 512-bit and 768-bit). The ARM Cortex-M4 provides an
instruction set supporting 32-bit operations or, in the case of
Thumb and Thumb2, a mix of 16- and 32-bit operations. The
instruction set is comprised of standard instructions for basic
arithmetic (i.e. addition and addition with carry operations)
and logic operations. However, in contrast to other lower pro-
cessor classes, the ARM Cortex-M4 supports for the so-called
DSP instructions, which include unsigned multiplication with
double accumulation UMAAL instruction.

The UMAAL instruction performs a 32 × 32-bit multiplica-
tion followed by accumulations with two 32-bit values. This
instruction achieves the same latency (i.e. 1 clock cycle) and
throughput of the unsigned multiplication instruction, which
means that accumulation (i.e. two 32-bit addition operations)
is virtually executed for free. The detailed descriptions of
multiplication operations are as follows:

• UMULL (unsigned multiplication):
UMULL R0, R1, R2, R3 computes (R1 ‖ R0) ← R2 ×
R3.

• UMLAL (unsigned multiplication with accumulation):
UMLAL R0, R1, R2, R3 computes (R1 ‖ R0) ← (R1 ‖
R0) + R2 × R3.

• UMAAL (unsigned multiplication with double accumula-
tion):
UMAAL R0, R1, R2, R3 computes (R1 ‖ R0) ← R1 +
R0 + R2 × R3.

The popularity of ARM Cortex-M4 microcontrollers in
different applications introduced a post-quantum cryptog-
raphy software library (pqm4) which targets this family of
micro-controllers [22]. The pqm4 library provides a framework
for benchmarking and testing, started as a result of the
PQCRYPTO project funded by the European Commission in
the H2020 program. The library currently contains implemen-
tations of 10 post-quantum key-encapsulation mechanisms
and 3 post-quantum signature schemes targeting the ARM
Cortex-M4 family of microcontrollers. In particular, pqm4
targets the STM32F4 Discovery board, featuring an ARM
Cortex-M4 CPU@168MHz, 1MB of Flash, and 192KB of
RAM. The library offers a simple build system that generates
an individual static library for each implementation for each
scheme. After compilation, the library provides automated
benchmarking for speed and stack usage. As a result, we chose
to evaluate the performance of our proposed library with pqm4
framework to provide a fair and valid comparison with other
PQC schemes.

In the following Section, we describe the proposed engi-
neering techniques for designing highly-optimized arithmetic
libraries, targeting different security levels of SIKE schemes
on 32-bit ARM Cortex-M4 microcontrollers.

4 Optimized SIKE on ARM Cortex–M4
4.1 Multi-precision Multiplication
In this work, we describe the multi-precision multiplication
method in multiplication structure and rhombus form.

Figure 3, 4, and 5 illustrate different strategies for im-
plementing 256-bit multiplication on 32-bit ARM Cortex-M4
micro-controller. Let A and B be operands of length m bits
each. Each operand is written as A = (A[n − 1], ..., A[1], A[0])
and B = (B[n − 1], ...,B[1], B[0]), where n = dm/we is the
number of words to represent operands, and w is the computer
word size (i.e. 32-bit). The result C = A · B is represented as
C = (C[2n − 1], ...,C[1],C[0]). In the rhombus form, the lowest
indices (i, j = 0) of the product appear at the rightmost
corner, whereas the highest indices (i, j = n − 1) appear
at the leftmost corner. A black arrow over a point indicates
the processing of a partial product. The lowermost points
represent the results C[i] from the rightmost corner (i = 0)
to the leftmost corner (i = 2n − 1).

There are several works in the literature that studied the
use of UMAAL instructions to implement multi-precision mul-
tiplication or modular multiplication on 32-bit ARM Cortex-
M4 microcontrollers [9], [10], [12], [27], [24], [15]. Among them,
Fujii et al. [12], Haase et al. [15], and Koppermann et al. [24]
provided the most relevant optimized implementations to this
work, targeting Curve25519 and SIDHp751 by using optimal
modular multiplication and squaring methods.

In [12], authors combine the UMAAL instruction with (Con-
secutive) Operand Caching (OC) method for Curve25519 (i.e.
256-bit multiplication). The UMAAL instruction handles the
carry propagation without additional costs in the Multiplica-
tion ACcumulation (MAC) routine. The detailed descriptions
are given in Figure 3. The size of operand caching is 3, which
needs three rows (3 = d8/3e) for 256-bit multiplication on 32-
bit ARM Cortex-M4. The multiplication starts from initial
block and performs rows 1 and 2, sequentially. The inner loop
follows column-wise (i.e. Product-Scanning) multiplication.
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Fig. 3: 256-bit Operand Caching multiplication at the word-
level where e is 3 on ARM Cortex-M4 [12], Init© : initial block;
1©→ 2©: order of rows.

A[7]B[0]

A[0]B[7]

A[7]B[7]

C[0]C[7]C[14]

A[0]B[0]

C[0]C[14]

A[7]B[0]

A[0]B[7]

A[7]B[7]

C[0]C[7]C[14]

A[0]B[0]

A[7]B[0]

A[0]B[7]

A[7]B[7]

C[0]C[7]C[14]

A[0]B[0]

2

C[0]C[14]

Init

1

Init

1

2

C[0]C[14]

1

2

3
4

5

Q[0]M[7]

Q[0]M[15]

Q[15]M[15]

Q[15]M[7]

T[7]T[22]T[30]

T[7]T[30]

1

2

3

4

1

Init

1-F

1-R
1-L

1-B

Init

1
I-FI-B

1

2

4

3

5

1-F

1-M
1-B

1

2-F

2-M
2-B

2

3-F

3-M
3-B

3

4-F

4-M
4-B

4

Fig. 4: 256-bit Operand Scanning multiplication at the word-
level on ARM Cortex-M4 [15], 1© → 2© → 3© → 4© → 5© :
order of rows.

In [15], a highly-optimized usage of registers and the par-
tial products are performed with the Operand Scanning (OS)
method, targeting Curve25519 (i.e. 256-bit multiplication).
The detailed descriptions are given in Figure 4. In partic-
ular, the order of partial products has an irregular pattern
which only works for the target operand length (i.e. 256-bit
multiplication) due to the extremely compact utilization of
available registers in each partial product. However, for a
larger length integer multiplication, this greedy approach is
not suitable since the number of register is not enough to
cache sufficient operands and intermediate results to achieve
the optimal performance.

In [24], authors proposed an implementation of 1-level
additive Karatsuba multiplication with Comba method (i.e.
Product Scanning) as the underlying multiplication strat-
egy, targeting 768-bit multiplication. They integrated their
arithmetic library into SIDHp751 and reported the first op-
timized implementation of SIDH on ARM Cortex-M4 micro-
controllers. However, the product scanning is inefficient with
the UMAAL instruction, since all the intermediate results for
long integer multiplication cannot be stored into the small
number of available registers. In order to improve their results,
we studied the performance evaluation of 448/512/640/768-
bit multiplication by replacing the Comba method with OC
method, using the 1-level additive/subtractive Karatsuba
multiplication. However, we realized that the Karatsuba ap-
proach is slower than original OC method with UMAAL instruc-
tion for large integer multiplication on Cortex-M4, due to the
excessive number of number of addition, subtraction, bit-wise
exclusive-or, and loading/storing intermediate results inside
Karatsuba method. Furthermore, 32-bit ARM Cortex-M4 mi-

TABLE 1: Comparison of multiplication methods, in terms
of memory-access complexity. The parameter d defines the
number of rows within a processed block.

Method Load Store
Operand Scanning 2n2 + n n2 + n

Product Scanning [6] 2n2 2n
Hybrid Scanning [14] 2dn2/de 2n
Operand Caching [18] 2dn2/ee dn2/ee + n

Refined Operand Caching (This work) 2dn2/(e + 1)e + 3(bn/(e + 1)c) dn2/(e + 1)e + n

crocontroller provides same latency (i.e. 1 clock cycle) for both
32-bit wise unsigned multiplication with double accumulation
(i.e. UMAAL) and 32-bit wise unsigned addition (i.e. ADD).

We acknowledge that on low-end devices, such as 8-
bit AVR microcontrollers, Karatsuba method is one of the
most efficient approaches for multi-precision multiplication. In
these platforms, the MAC routine requires at least 5 clock cy-
cles [17]. This significant overhead is efficiently replaced with
relatively cheaper 8-bit addition/subtraction operation (i.e. 1
clock cycle). However, UMAAL instruction in ARM Cortex-M4
microcontroller can perform the MAC routine within 1 clock
cycle. For this reason, it is hard to find a reasonable trade-
off between MAC (i.e. 1 clock cycle) and addition/subtraction
(i.e. 1 clock cycle) on the ARM Cortex-M4 microcontroller.
Following the above analysis, we adopted the OC method for
implementing multiplication in our proposed implementation.
Moreover, in order to achieve the most efficient implementa-
tion of SIKE protocol on ARM Cortex-M4, we proposed three
distinguished improvements to the original method which
result in significant performance improvement compared to
previous works. We describe these techniques in the following.

4.1.1 Efficient register utilization
The OC method follows the product-scanning approach for
inner loop but it divides the calculation (i.e. outer loop)
into several rows [18]. The number of rows directly affects
the overall performance, since the OC method requires to
load the operands and load/store the intermediate results
by the number of rows2. Table 1 presents the comparison
of memory access complexity depending on the multiplica-
tion techniques. Our optimized implementation (i.e. Refined
Operand Caching) is based on the original OC method but we
optimized the available registers and increased the operand
caching size from e to e + 1. In the equation, the number of
memory load by 3(bn/(e + 1)c) indicates the operand pointer
access in each row.

Moreover, larger bit-length multiplication requires more
memory access operations. Table 2 presents the number of
memory access operations in OC method for different multi-
precision multiplication size. In this table, our proposed R-OC
method requires the least number memory access for differ-
ent length multiplication. In particular, in comparison with
original OC implementation, our proposed implementation
reduces the total number of memory accesses by 19.8 %, 19.7
%, 20.6 %, and 21 % for 448-bit, 512-bit, 640-bit, and 768-bit,
respectively3. The performance enhancements increase as the

2. The number of rows is r = bn/ec, where the number of needed
words (n = dm/we), the word size of the processor (w) (i.e. 32-bit),
the bit-length of operand (m), and operand caching size (e) are given.

3. Compared with original OC implementation, we reduce the
number of row by 1 (4 → 3), 2 (5 → 3), 2 (6 → 4), and 2 (7 → 5)
for 448-bit, 512-bit, 640-bit, and 768-bit, respectively.
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TABLE 2: Comparison of multiplication methods for different
Integer sizes, in terms of the number of memory access on 32-
bit ARM Cortex-M4 microcontroller. The parameters d and e
are set to 2 and 3, respectively.

Method
448-bit 512-bit 640-bit 768-bit

Load Store Total Load Store Total Load Store Total Load Store Total

OS 406 210 616 528 272 800 820 420 1240 1176 600 1776
PS 392 28 420 512 32 544 800 40 840 1152 48 1200
HS 196 28 224 256 32 288 400 40 440 576 48 624
OC 132 80 212 172 102 274 268 154 422 384 216 600
R-OC 107 63 170 140 80 220 215 120 335 306 168 474

TABLE 3: Comparison of register utilization of the proposed
method with previous works.

Registers Fujii et al. [12] Haase et al. [15] This work
R0 Result pointer Temporal pointer Temporal pointer
R1 Operand A pointer Operand A #1 Temporal register #1
R2 Operand B pointer Operand B #1 Operand A #1
R3 Result #1 Operand B #2 Operand A #2
R4 Result #2 Operand B #3 Operand A #3
R5 Result #3 Operand B #4 Operand A #4
R6 Operand A #1 Operand B #5 Operand B #1
R7 Operand A #2 Result #1 Operand B #2
R8 Operand A #3 Result #2 Operand B #3
R9 Operand B #1 Result #3 Operand B #4
R10 Operand B #2 Result #4 Result #1
R11 Operand B #3 Result #5 Result #2
R12 Temporal register #1 Temporal register #1 Result #3

R13; SP Stack pointer Stack pointer Stack pointer
R14; LR Temporal register #2 Temporal register #2 Result #4
R15; PC Program counter Program counter Program counter

operand length is getting longer.
In order to increase the size of operand caching (i.e. e)

by 1, we need at least 3 more registers to retain two 32-
bit operand limbs and one 32-bit intermediate result value.
To this end, we redefine the register assignments inside our
implementation. We saved one register for the result pointer
by storing the intermediate results into stack. Moreover, we
observed that in the OC method, both operand pointers are
not used at the same time in the row. Therefore, we don’t need
to maintain both operand pointers in the registers during the
computations. Instead, we store them to the stack and load
one by one on demand. In total, we used 2n + 3 bytes of stack
for implementation.

Using the above techniques, we saved three available regis-
ters and utilized them to increase the size of operand caching
by 1. In particular, three registers are used for operand A,
operand B, and intermediate result, respectively. We state
that our utilization technique imposes an overhead in memory
access for operand pointers. However, since in each row, only
three memory accesses are required, the overall overhead is
negligible to the obtained performance benefit. We provide a
detailed comparison of register assignments of this work with
previous implementations in Table 3.

4.1.2 Optimized front parts
As it is illustrated in Figure 5, our R-OC method starts from
an initialization block (Init section). In the Init section,
both operands are loaded from memory to registers and the
partial products are computed. From the row1, only one
operand pointer is required in each column. The front part
(i.e. I-F and 1-F) requires partial products by increasing the
length of column to 4.
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Fig. 5: Proposed 256-bit Refined Operand Caching multipli-
cation at the word-level where e is 4 on ARM Cortex-M4, Init© :
initial block; 1©: order of rows; F©: front part; R©: middle right
part; L©: middle left part; B©: back part.
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Fig. 6: 3-word integers with the product scanning approach
using the UMLAL and UMAAL instructions for front part of OC
method [12].

Fujii et al. [12] implemented the front parts using carry-
less MAC routines. In their approach, they initialized up to
two registers to store the intermediate results in each column.
Figure 6 illustrates their approach. Since the UMLAL and UMAAL
instructions need to update current values inside the registers,
the initialized registers are required.

In order to optimize the explicit register initialization, we
redesign the front part with product scanning. In contrast to
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Fig. 7: 4-word integers with the product scanning approach
using the UMULL and UMAAL instructions for front part of OC
method.

Fujii’s approach, we used UMULL and UMAAL instructions. As
a result, the register initialization is performed together with
unsigned multiplication (i.e. UMULL). This technique improves
the overall clock cycles since each instruction directly assigns
the results to the target registers. In particular, we are able
to remove all the register initialization routines, which is 9
clock cycles for each front part compared to [12]. Moreover,
the intermediate results are efficiently handled with carry-
less MAC routines by using the UMAAL instructions. Figure
7 presents our 4-word strategy in further details.

4.1.3 Efficient instruction ordering

ARM Cortex-M4 microcontrollers are equipped with 3-stage
pipeline in which the instruction fetch, decode, and execution
are performed in order. As a result, any data dependency
between consecutive instructions imposes pipeline stalls and
degrades the overall performance considerably. In addition to
the previous optimizations, we reordered the MAC routine
instructions in a way which removes data dependency between
instructions, resulting in minimum pipeline stalls. The pro-
posed approach is presented in Figure 7 (1-R section). In this
Figure, the operand and intermediate result are loaded from

TABLE 4: Comparison results of 256-bit multiplication on
ARM Cortex-M4 microcontrollers.

Methods Timings [cc] Scalability Bit length
Fujii et al. [12] 239 3 256
Haase et al. [15] 212 7 256

This work 196 3 256

memory and partial products are performed column-wise as
follows:

...
LDR R6, [R0,#4 ∗ 4] //Loading operand B[4] from memory

LDR R1, [SP,#4 ∗ 4] //Loading result C[4] from memory

UMAAL R14,R10,R5,R7 //Partial product (B[1]*A[3])

UMAAL R14,R11,R4,R8 //Partial product (B[2]*A[2])

UMAAL R14,R12,R3,R9 //Partial product (B[3]*A[1])

UMAAL R1,R14,R2,R6 //Partial product (B[4]*A[0])
...

The intermediate result (C[4]) is loaded to the R1 register. At
this point, updating R1 register in the next instruction results
in pipeline stall. To avoid this situation, first, we updated the
intermediate results into other registers (R10, R11, R12,
R14), while R1 register was updated during the last step of
MAC. We followed a similar approach in 1-L section, where
operand (A) pointer is loaded to a temporary register, and
then the column-wise multiplications are performed with the
operands (A[4], A[5], A[6], and A[7]). In the back part (i.e.
1-B), the remaining partial products are performed without
operand loading. This is efficiently performed without carry
propagation by using the UMAAL instructions.

To compare the efficiency of our proposed techniques with
previous works, we evaluated the performance of our 256-
bit multiplication with the most relevant works on Cortex-
M4 platform. To obtain a fair and uniform comparison, we
benchmarked the proposed implementations in [12], [15]4 ,5
with our implementation on our development environment.

Table 4 presents the performance comparison of our li-
brary with previous works in terms of clock cycles. We observe
that our proposed multiplication implementation method is
faster than previous optimized implementation on the same
platform. Furthermore, in contrast to the compact imple-
mentation of 256-bit multiplication in [15], our approach
provides scalability to larger integer multiplication without
any significant overhead.

In Figure 8, the detailed descriptions of proposed multipli-
cation for SIKEp434, SIKEp503, SIKEp610, and SIKEp751
are given. The multiplications for SIKEp434, SIKEp503,
SIKEp610, and SIKEp751 consists of 4, 4, 5, and 6 rows,
respectively. The width of row (e) is set to 4. Only the row1 of
multiplication for SIKEp434 is set to 2.

4.2 Multiprecision Squaring
Most of the optimized implementations of cryptography li-
braries use optimized multiplication for computing the square
of an element. However, squaring can be implemented more ef-
ficiently since using one operand reduces the overall number of

4. Fujii et al. https://github.com/hayatofujii/
curve25519-cortex-m4

5. Haase et al. https://github.com/BjoernMHaase/fe25519
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Fig. 8: Proposed multiplication for (a) SIKEp434, (b)
SIKEp503, (c) SIKEp610, (d) SIKEp751, respectively.

memory accesses by half, while many redundant partial prod-
ucts can be removed (i.e. A[i]×A[ j]+A[ j]×A[i] = 2×A[i]×A[ j]).

Similar to multiplication, squaring implementation con-
sists of partial products of the input operand limbs. These
products can be divided into two parts: the products which
have two operands with the same value and the ones in
which two different values are multiplied. Computing the
first group is straightforward and it is only computed once
for each limb of operand. However, computing the latter
products with different values and doubling the result can be
performed in two different ways: doubled-result and doubled-
operand. In doubled-result technique, partial products are

A[0]A[0]A[7]A[7]

C[0]C[7]C[14]

A[0]A[0]A[7]A[7]

C[0]C[7]C[14]

A[0]A[0]A[7]A[7]

C[0]C[7]C[14]

C[0]

Init

1

2
C[14]

C[0]C[14]

Init

1

C[0]C[14]

1

2

3

Init

12

Init

1

1
23

Fig. 9: 256-bit Sliding Block Doubling squaring at the word-
level on ARM Cortex-M4, Init© : initial block; 1©: order of rows
[12].
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Fig. 10: 256-bit Operand Scanning squaring at the word-level
on ARM Cortex-M4, 1©→ 2©→ 3©: order of rows [15].

computed first and the result is doubled afterwards (A[i] ×
A[ j] → 2 × A[i] × A[ j]), while in doubled-operand, one of the
operands is doubled and then multiplied to the other value
(2 × A[i] → 2 × A[i] × A[ j]).

In the previous works [12], [15], authors adopted the
doubled-result technique inside squaring implementation. Fig-
ure 9 and 10 show their techniques for implementing opti-
mized squaring on Cortex-M4 platform. The red parts in the
figures present the partial products where the input values are
the same and the black dots with gray background represent
the doubled-result products.

Figure 9 demonstrates Sliding Block Doubling (SBD)
based squaring method in [12]. This method is based on the
product scanning approach. The squaring consists of two rou-
tines: initialization and row1 computation. The intermediate
results are doubled column-wise as the row1 computations are
performed.

Figure 10 presents the Operand Scanning (OS) based
squaring method in [15]. In contrast to previous method, com-
putations are performed row-wise. However, the intermediate
results are doubled in each column. Note that in this method,
the order of computation is designed explicitly for 256-bit
operand to maximize the operand caching. Similar to their
multiplication implementation, the proposed method does not
provide scalability to larger bit-length multiplications.

In this work, we proposed a hybrid approach for im-
plementing a highly-optimized squaring operation which is
explicitly suitable for SIKE protocols. In general, doubling
operation may result in one bit overflow which requires an
extra word to retain. However, in the SIKE settings, moduli
are smaller than multiple of 32-bit word (434-bit, 503-bit, 610-
bit, and 751-bit) which provide an advantage for optimized
arithmetic design. Taking advantage of this fact, we designed
our squaring implementation based on doubled-operand ap-
proach. We divided our implementation into three parts:
one sub-multiplication and two sub-squaring operations. We
used R-OC for sub-multiplication and SBD for sub-squaring
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Fig. 11: 255-bit proposed squaring at the word-level on ARM
Cortex-M4, Init© : initial block; 1©→ 2©: order of rows.

TABLE 5: Comparison results of 255/256-bit squaring on
ARM Cortex-M4 micro-controllers.

Methods Timings [cc] Scalability Bit length
Fujii et al. [12] 218 3 256
Haase et al. [15] 141 7 256

This work 136 3 255

operations. Figure 11 illustrates our hybrid method in detail.
First, the input operand is doubled and stored into the stack
memory. Taking advantage of doubled-operand technique, we
perform the initialization part by using R-OC method.

Second, the remaining rows 1 and 2 are computed based
on SBD methods. In contrast to previous SBD method, all
the doubling operations on intermediate results are removed
during MAC routines. This saves several registers to double
the intermediate results since doubled-results have been al-
ready computed. Furthermore, our proposed method is fully
scalable and can be simply adopted to larger integer squaring.

In order to verify the performance improvement of our
proposed approach, we benchmarked our 255-bit squaring
implementation with the most optimized available implemen-
tations in the literature. Table 5 presents the performance
comparison of our method with previous implementations on
our target platform.

Our hybrid method outperforms previous implementa-
tions of 256-bit squaring, while in contrast to [15], it is scalable
to larger parameter sets. In particular, it enabled us to imple-
ment the same strategy for computing SIKE arithmetic over
larger finite fields.

In Figure 12, detailed descriptions of proposed squar-
ing implementations for SIKEp434, SIKEp503, SIKEp610,
and SIKEp751 are described. The initial blocks of
SIKEp434/SIKEp503 are 1© and 2©, which are performed in
beginning. Afterward, the remaining blocks including 3© and
4© are performed. For cases of SIKEp610 and SIKEp751, the
initial blocks ( 1© and 2©) are performed. In particular, the
initial blocks are formed in a special shape to cover doubled
product areas. Afterward, the remaining blocks including 3©,
4©, and 5© are performed.

4.3 Modular Reduction
Modular multiplication is a performance-critical building
block in SIKE protocols. One of the most well-known tech-
niques used for its implementation is Montgomery reduc-
tion [28]. We adapt the implementation techniques described
in sections 4.1 and 4.2 to implement modular multiplication
and squaring operations. Specifically, we target the parameter
sets based on the primes SIKEp434, SIKEp503, SIKEp610,
and SIKEp751 for SIKE round 2 protocol [7], [2]. Montgomery
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Fig. 12: Proposed squaring for (a) SIKEp434, (b) SIKEp503,
(c) SIKEp610, (d) SIKEp751, respectively.

multiplication can be efficiently exploited and further simpli-
fied by taking advantage of so-called “Montgomery-friendly”
modulus, which admits efficient computations, such as all-zero
words for lower part of the modulus.

The efficient optimizations for the modulus were first
pointed out by Costello et al. [7] in the setting of SIDH when
using modulus of the form 2x · 3y − 1 (referred to as “SIDH-
friendly” primes) are exploited by the SIDH library [8].

In CHES’18, Seo et al. suggested the variant of Hybrid-
Scanning (HS) for “SIDH-friendly” Montgomery reduction
on ARM Cortex-A15 [29]. Similar to OC method, the HS
method also changes the operand pointer when the row is
changed. By using the register utilization described in Section
4.1, we increase the parameter d by 1 (3 → 4. Moreover,
the initial block is also optimized to avoid explicit register
initialization and the MAC routine is implemented in the
pipeline-friendly approach. Compared with integer multipli-
cation, the Montgomery reduction requires fewer number of
registers to be reserved. Since the intermediate result pointer
and operand Q pointer are identical value (i.e. stack), we
only need to maintain one address pointer to access both
values. Furthermore, the modulus for SIKE (i.e. operand M;
SIKEp434, SIKEp503, SIKEp610, and SIKEp751) is a static
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Fig. 13: 503-bit “SIDH-friendly” Montgomery reduction at the
word-level, where d is 4 on ARM Cortex-M4, 1© → 2© →

3© → 4©: order of rows; F©: front part; M©: middle part; B©:
back part; where M, R, T , and Q are modulus, Montgomery
radix, intermediate results, and quotient (Q← T ·M ′ mod R).

value. As a result, instead of obtaining values from memory,
we assign the direct values to the registers. This step can be
performed with the two instructions, such as MOVW and MOVT.
The detailed 32-bit value assignment (e.g. 0x87654321) to
register R1 is given as follows:

...
MOVW R1,#0x4321 //R1 = #0x4321
MOVT R1,#0x8765 //R1 = #0x8765 � 16 | R1
...

In Figure 13, the 503-bit “SIDH-friendly” Montgomery
reduction on ARM Cortex-M4 microcontroller is described.
The Montgomery reduction starts from row 1, 2, 3, to 4.

In the front of row 1 (i.e. 1-F), the operand Q is loaded
from memory and the operand M is directly assigned using a
constant value. The multiplication accumulates the interme-
diate results from memory using the operand Q pointer and
stored them into the same memory address. In the middle of
row 1 (i.e. 1-M), the operand Q is loaded and the intermediate
results are also loaded and stored, sequentially. In the back of
row 1 (i.e. 1-B), the remaining partial products are computed.
Furthermore, the intermediate carry values are stored into
stack and used in the following rows.

Using the above techniques, we are able to reduce the
number of row by 1 (5 → 4), 2 (6 → 4), 2 (7 → 6),
and 2 (8 → 6) for 448-bit, 512-bit, 640-bit, and 768-bit, re-
spectively, compared to original implementation of HS based
Montgomery reduction.

The back part is further optimized to handle the carry bit.
Unlike front and middle parts, the back part generates carry
bit when multiplication results (T ← A× B) and intermediate
results (R← M×Q) are added. This carry bit can be maintain
in the register but it is quite waste of 31-bit out of 32-bit. We
maintain the carry bit in the status register, which is only
updated when the instruction is ended with (S) symbol. After
1-B part, 2-I and 2-M parts should be performed before 2-B
part. In order to maintain the carry bit in the status register,
we removed all instructions, which influence the status regis-
ter. With this approach, we optimized one register and many
additions for carry bit accumulation. The detailed flows are
given in Figure 14. In the beginning, we cleared the carry bit
by adding two zeros. Afterward, carry bit is propagated from
T[16] to T[31] with ADCS instruction.
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Fig. 14: Back part optimization for 503-bit “SIDH-friendly”
Montgomery reduction on ARM Cortex-M4,

The Montgomery multiplication consists of multiplication
and Montgomery reduction operations. In the engineering
view, multiplication and reduction are implemented in sep-
arated functions. Current SIDH 3.2 library and Koppermann
et al.’s work [24] implement the Montgomery reduction in this
way. In the finite field multiplication function, multiplication
and reduction functions are called in order. However, this
approach requires three function calls. We implemented Mont-
gomery multiplication in an integrated way, which requires
only one function call. The loading and storing the interme-
diate result are also finely scheduled to reduce the number
of memory access. The detailed descriptions of SIKEp503
Montgomery multiplication are given in Figure 15. The mul-
tiplication results (T[0] ∼ T[30]) are stored into the 1024-bit
stack. Afterward, the results are loaded in the reduction. The
rows 5 and 6 load and store the intermediate results to the
stack. The front part of row 7 (green area; T[16] ∼ T[18])
loads the intermediate result from stack and stores the results
directly to the output memory address. Whole area of row 8
loads the intermediate result from stack and stores the results
directly to the output memory address.

Recently, Bos et al. [5] and Koppermann et al. [24]
proposed highly optimized techniques for implementation of
modular multiplication. They utilized the product-scanning
methods for modular reduction. However, our proposed
method outperforms both implementations in terms of clock
cycles. In particular, our proposed method provides much
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Fig. 15: 503-bit “SIDH-friendly” Montgomery multiplication
at the word-level on ARM Cortex-M4,

TABLE 6: Comparison results of modular multiplication and
squaring for SIKE on 32-bit ARM Cortex-M4 microcon-
trollers.

Methods Timings [cc] Modulus Processor
Fp mul Fp sqr reduction

SIDH v3.2 [8] 19757 – – 2216 · 3137 − 1 ARM Cortex-M4This work 1011 889 –
SIDH v3.2 [8] 25395 – – 2250 · 3159 − 1 ARM Cortex-M4This work 1254 1060 –
SIDH v3.2 [8] 38855 – – 2305 · 3192 − 1 ARM Cortex-M4This work 1898 1573 –
Bos et al. [5] – – 3738

2372 · 3239 − 1

ARM Cortex-A8
SIDH v3.2 [8] 55202 – –

ARM Cortex-M4Koppermann et al. [24] 7573 – 3254 ARM Cortex-M4
This work 2617 2115 –

faster result compared to Bos et al. [5], while the benchmark
results in [5] were obtained on the high-end ARMv7 Cortex-
A8 processors which is equipped with 15 pipeline stages and
is dual-issue super-scalar. Table 6 shows the detailed perfor-
mance comparison of multiplication, squaring, and reduction
over SIKE primes in terms of clock cycles. We state that, the
benchmark results for [8] are based on optimized C implemen-
tation and they are presented solely as a comparison reference
between portable and target-specific implementations.

In Figure 16, the implementations of proposed modular re-
duction for SIKEp434, SIKEp503, SIKEp610, and SIKEp751
are given. The width of row is set to 4. Only the last row of
SIKEp434 is set to 2.

4.4 Modular Addition and Subtraction
Modular addition operation is performed as a long integer
addition operation followed by a subtraction from the prime.
To have a fully constant-time arithmetic implementation, the
final reduction is performed using a masked bit. In this case,
even if the addition result is inside the field, a redundant sub-
traction is performed, so the secret values cannot be retrieved
using power and timing attacks. The detailed operations are
presented in the following:
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Fig. 16: Proposed modular reduction for (a) SIKEp434, (b)
SIKEp503, (c) SIKEp610, (d) SIKEp751, respectively.

TABLE 7: Comparison results of modular addition and sub-
traction for SIKE on ARM Cortex-M4 microcontrollers.

Methods Timings [cc] Modulus Processor
Fp add Fp sub

SIDH v3.2 [8] 947 650 2216 · 3137 − 1 ARM Cortex-M4This work 253 207
SIDH v3.2 [8] 1077 739

2250 · 3159 − 1 ARM Cortex-M4Seo et al. [29] 326 236
This work 274 227

SIDH v3.2 [8] 1336 915 2305 · 3192 − 1 ARM Cortex-M4This work 331 272
SIDH v3.2 [8] 1,596 1,091

2372 · 3239 − 1 ARM Cortex-M4Koppermann et al. [24] 559 419
Seo et al. [29] 466 333
This work 387 318
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Fig. 17: Initial part of step 1© in 512-bit modular addition on
ARM Cortex-M4 (i.e. A[0∼7]+B[0∼7]-P[0∼7]).

• Modular addition: (A+B) mod P
1© C←A+B
2© {M,C}←C-P
3© C←C+(P&M).

• Modular subtraction: (A-B) mod P
1© {M,C}←A-B
2© C←C+(P&M).

Previous optimized implementations of modular addition
on Cortex-M4 [29], [24], provided the simple masked technique
using hand-crafted assembly. However, in this work, we opti-
mized this approach further by introducing three techniques:

• Proposed modular addition: (A+B) mod P
1© {M,C}←A+B-P 2© C←C+(P&M).

First, we take advantage of the special shape of
SIDH-friendly primes which have multiple words equal to
0xFFFFFFFF. Since this value is the same for multiple limbs,
we load it once inside a register and use it for multiple
single-precision subtraction. This operand re-using technique
reduces the number of memory access by n and n

2 for mod-
ular addition and modular subtraction, where the number of
needed words (n = dm/we), the word size of the processor
(w) (i.e. 32-bit), and the bit-length of operand (m) are given,
respectively.

Second, we combine Step 1© (addition) and 2© (subtrac-
tion) into one operation ({M,C}←A+B-P). In order to combine
both steps, we catch both intermediate carry and borrow,
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Fig. 18: Initial part of of step 2© in 512-bit modular
addition/subtraction on ARM Cortex-M4 (i.e.
C[0∼(n-1)/2]+(P[0∼(n-1)/2]&M)).

while we perform the combined addition and subtraction
operation.

Figure 17 illustrates the proposed technique in details. In
this Figure, first, 4-word addition operations (A[0 ∼ 3]+B[0 ∼
3]) compute the addition result. Subsequently, a single register
is set to constant (i.e. 0xFFFFFFFF), which is used for the carry
catching step. In Figure 17, this step is shown in the last row of
fourth column. When the carry overflow happens from fourth
word addition (i.e. A[3] + B[3] + CARRY), the carry catcher
register is set to 232 − 1 (i.e. 0xFFFFFFFF ← 0xFFFFFFFF
+ 0xFFFFFFFF + 0x00000001) by using the constant (i.e.
0xFFFFFFFF) in last row of fourth column (Constant +
Constant + Carry). Otherwise, the carry catcher register is
set to 232 − 2 (i.e. 0xFFFFFFFE← 0xFFFFFFFF + 0xFFFFFFFF
+ 0x00000000).

This addition operation stores the carry bit to the first
bit of carry catcher register. The carry value in carry catcher
register is used for the following addition steps (second column
in the Figure 17).

The stored carry in the first bit is shifted to the
32nd bit by using the barrel-shifter module. Afterward, the
value is added to the constant (i.e. 0xFFFFFFFF). If the
first bit of carry catcher is set, the carry happens (i.e.
0x00000001�31 + 0xFFFFFFFF). Otherwise, no carry hap-
pens (i.e. 0x00000000�31 + 0xFFFFFFFF).

Similarly, we obtained the borrow bit. The results of 4-
word addition operations (A[0 ∼ 3] + B[0 ∼ 3]) are subtracted
by modulus (P[0 ∼ 3]) in the third column. When the borrow
happens from fourth word subtraction (i.e. A[3] + B[3] −
P[3] − BORROW), the borrow catcher register is set to 232 − 1
(i.e. 0xFFFFFFFF ← 0x00000000 - 0x00000001) in last row
of third column (Zero - Borrow). Otherwise, the borrow
catcher register is set to 0 (i.e. 0x00000000 ← 0x00000000
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- 0x00000000). The borrow bit in borrow catcher register is
used for the following subtraction steps. To obtain the borrow
bit, the zero constant is subtracted by the borrow catcher
register. For one constant register optimization, we used the
address pointer instead of zero constant.

Since the address pointer of 32-bit ARM Cortex-M4
micro-controller is aligned by 4-byte (i.e. 32-bit), the ad-
dress is always ranging from 0 (i.e. 0x00000000) to 232 − 4
(0xFFFFFFFC). When the borrow catcher register is set, we
can get the borrow bit through subtraction (e.g. Pointer -
0xFFFFFFFF where pointer is ranging from 0 to 232 − 4). Oth-
erwise, no borrow happens. The combined modular addition
routine reduces the number of memory access by 2n since we
can avoid both loading and storing the intermediate results.

In addition to the above techniques, the masked addi-
tion routine is also optimized. This is shown as Step 2©
of modular addition and subtraction. When the mask value
is set to 0xFFFFFFFF, the lower part of SIDH modulus is
also 0xFFFFFFFF. Otherwise, both values are set to zero.
We optimized the modulus setting (MOVW/MOVT) and masking
operation (AND) for lower part of SIDH modulus. The detailed
descriptions for initial part of step 2© in 512-bit modular
addition/subtraction are given in Figure 18.

Using the above optimization techniques, we are able to
reduce the number of memory access for modular addition
and subtraction by 3n (9n → 6n) and n/2 (6n → 11n/2),
respectively.

We benchmarked the proposed optimized addition and
subtraction implementations on our target platform. We pro-
vide the performance evaluation of this work and previous
works over different security levels in Table 7. Compared
to previous works, the proposed method improved the per-
formance by 15.9 % and 4.5 % for modular addition and
subtraction, respectively. The other big integer addition and
subtraction operations are also optimized in assembly lan-
guage.

5 Performance Evaluation
In this section, we present the performance evaluation of
our proposed SIKE implementations on 32-bit ARM Cortex-
M4 microcontrollers. We implemented highly-optimized arith-
metic, targeting SIKE round 2 primes adapting our optimized
techniques for multiplication, squaring, reduction, and ad-
dition/subtraction. We integrate our arithmetic libraries to
the SIKE round 2 reference implementation [2] to evaluate
the feasibility of adopting this scheme on low-end Cortex-M4
microcontrollers.

All the arithmetic is implemented in ARM assembly and
the libraries are compiled with GCC with optimization flag set
to -O3. The timing is measured in two frequencies (i.e. 24MHz
and 168MHz). Since the timing under 24MHz setting reduces
the impact of memory delay, the execution timing is slightly
lower than 168MHz setting.

Table 8 presents the comparison of our proposed library
with highly optimized implementations in the literature over
different security levels. The optimized C implementation
timings by Costello et al. [8] and the reference C imple-
mentation of SIKE [2] illustrate the importance of target-
specific implementations of SIKE low-end microcontrollers
such as 32-bit ARM Cortex-M4. In particular, compared to

optimized C Comba based implementation in SIDH v3.2, the
proposed modular multiplication for 434-bit, 503-bit, 610-bit,
and 751-bit provide 19.54x and 20.25x, 20.47x, and 21.09x
improvements, respectively.

The significant achieved performance improvement in this
work is the result of our highly-optimized arithmetic library.
Specifically, our tailored modular multiplication/squaring
minimize pipeline stalls on ARM Cortex-M4 3-stage pipeline,
resulting in remarkable timing improvement compared to
previous works.

Moreover, the proposed implementation achieved 184, 257,
493, and 770 million clock cycles for total key encapsula-
tion and decapsulation of SIKEp434, SIKEp503, SIKEp610,
and SIKEp751, respectively. The results are improved by
13.20x, 14.23x, 15.05x, and 15.93x for SIKEp434, SIKEp503,
SIKEp610 and SIKEp751, respectively.

The memory consumption is also important metric under
low-end microcontrollers. Target microcontroller equips 1MB
of FLASH memory and 192KB RAM. The RAM should be
considered more than FLASH memory. In the analysis, we
focused on the peak consumption of RAM. The peak is ob-
served in decapsulation parts. The percentage of consumption
for target processor is described in last column of Table 8.
The percentage of consumption is 3.57%, 3.89%, 5.80%, and
6.54% for SIKEp434, SIKEp503, SIKEp610, and SIKEp751,
respectively. This amount of RAM consumption is reasonable
for practical implementation.

The real world timing can be calculated with operating
frequency and required clock cycles. In the middle of Table 8,
the comparison of SIKE round 2 protocols on ARM Cortex-
M4 is given. The slow frequency (24MHz) achieved 7.54, 10.45,
20.19, and 31.51 seconds for SIKEp434, SIKEp503, SIKEp610,
and SIKEp751, respectively. This can be useful for low-power
processors. The fast frequency (168MHz) achieved 1.09, 1.53,
2.94, and 4.58 seconds for SIKEp434, SIKEp503, SIKEp610,
and SIKEp751, respectively. These results show that SIKE is
practically fast enough under limited resources.

Finally, prior to this work, supersingular isogeny-based
cryptography was assumed to be unsuitable to use on low-end
devices due to the nonviable performance evaluations [24]6.
However, in contrast to benchmark results in [24], our SIKE
implementations for NIST’s 1, 2, 3, and 5 security levels are
practical and can be used in real world cryptography. The pro-
posed implementation of SIKEp434 only requires 1.09 second,
which shows that the quantum-resistant key encapsulation
and decapsulation from isogeny of supersingular elliptic curve
is a practical solution on low-power microcontrollers.

6 Conclusion
In this work, we presented highly optimized implementa-
tions of SIKE protocols on low-end 32-bit ARM Cortex-M4
microcontrollers. We proposed a new set of implementation
techniques, taking advantage of Cortex-M4 capabilities. In
particular, we proposed a new implementation method for
finite field arithmetic implementation.

We integrated the proposed modular arithmetic imple-
mentations into SIKE reference implementations, targeting
NIST’s 1, 2, 3, and 5 security levels. Our library significantly

6. Authors reported 18 seconds to key exchange on the ARM
Cortex-M4 @120 MHz processor
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TABLE 8: Comparison of SIKE round 2 protocols on ARM Cortex-M4 microcontrollers. Timings are reported in terms of
clock cycles and seconds. Total includes encapsulation and decapsulation. Memory consumption is reported in terms of bytes.
Koppermann et al. [24] does not provide results on SIKE implementations.

Implementation Security Level Language Timings [cc] Timings [cc × 106] Timings [sec] Memory [bytes]
Fp add Fp sub Fp mul Fp sqr KeyGen Encaps Decaps Total KeyGen Encaps Decaps Total KeyGen Encaps Decaps Target (%)

SIKEp434@24MHz
SIDH v3.2 [8] 1 (AES-128) C 947 650 19663 19663 713 1168 1246 2414 29.73 48.66 51.92 100.58 6580 6916 7260 3.78
This work 1 (AES-128) ASM 253 207 1011 889 54 87 94 181 2.23 3.64 3.90 7.54 6188 6516 6860 3.57
SIKEp503@24MHz
SIDH v3.2 [8] 2 (SHA3-256) C 1077 739 25302 25302 1072 1766 1878 3644 44.65 73.59 78.25 151.84 6204 6588 6972 3.63
This work 2 (SHA3-256) ASM 274 227 1221 1024 74 121 129 251 3.08 5.06 5.39 10.45 6700 7084 7468 3.89
SIKEp610@24MHz
SIDH v3.2 [8] 3 (AES-192) C 1336 915 38753 38753 2004 3688 3710 7398 83.51 153.68 154.58 308.26 9628 10052 10524 5.48
This work 3 (AES-192) ASM 331 272 1869 1535 131 241 243 484 5.48 10.06 10.13 20.19 10244 10668 11140 5.80
SIKEp751@24MHz
SIDH v3.2 [8] 5 (AES-256) C 1596 1091 55096 55096 3637 5900 6337 12236 151.56 245.83 264.02 509.85 11116 11260 11852 6.17
This work 5 (AES-256) ASM 387 318 2577 2066 225 365 392 756 9.38 15.19 16.32 31.51 11852 11996 12564 6.54

SIKEp434@168MHz
SIDH v3.2 [8] 1 (AES-128) C 947 650 19757 19757 718 1175 1254 2429 4.27 6.99 7.46 14.46 6580 6916 7260 3.78
This work 1 (AES-128) ASM 253 207 1011 889 54 89 95 184 0.32 0.53 0.56 1.09 6188 6516 6860 3.57
SIKEp503@168MHz
SIDH v3.2 [8] 2 (SHA3-256) C 1077 739 25395 25395 1076 1773 1886 3659 6.40 10.56 11.22 21.78 6204 6588 6972 3.63
This work 2 (SHA3-256) ASM 274 227 1254 1060 76 125 133 257 0.45 0.74 0.79 1.53 6700 7084 7468 3.89
SIKEp610@168MHz
SIDH v3.2 [8] 3 (AES-192) C 1336 915 38855 38855 2011 3701 3722 7423 11.97 22.03 22.16 44.18 9628 10052 10524 5.48
This work 3 (AES-192) ASM 331 272 1898 1573 134 246 248 493 0.80 1.46 1.47 2.94 10244 10668 11140 5.80
SIKEp751@168MHz
SIDH v3.2 [8] 5 (AES-256) C 1596 1091 55202 55202 3647 5915 6353 12267 21.71 35.21 37.81 73.02 11116 11260 11852 6.17
This work 5 (AES-256) ASM 387 318 2617 2115 229 371 399 770 1.36 2.21 2.37 4.58 11852 11996 12564 6.54

outperforms the previous state-of-the-art implementations of
integer arithmetic on our target platform, providing faster
results compared to the only available optimized implemen-
tation of SIDHp751 on Cortex-M4 in the literature.

We hope the proposed implementation techniques moti-
vate more engineering efforts on the optimized implementa-
tion of SIKE mechanism on different embedded platforms. We
plan to adopt the same strategy in designing efficient software
libraries, targeting different families of microcontrollers in the
future.
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