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Abstract

Quantum money allows a bank to mint quantum money states that
can later be verified and cannot be forged. Usually, this requires a
quantum communication infrastructure to transfer quantum states be-
tween the user and the bank. Gavinsky [Gav12] introduced the no-
tion of classically verifiable quantum money, which allows verification
through classical communication. In this work we introduce the notion
of classical minting, and combine it with classical verification to intro-
duce semi-quantum money. Semi-quantum money is the first type of
quantum money to allow transactions with completely classical com-
munication and an entirely classical bank. This work features con-
structions for both a public memory-dependent semi-quantum money
scheme and a private memoryless semi-quantum money scheme. The
public construction is based on the works of Zhandry [Zha19] and Co-
ladangelo [Col19], and the private construction is based on the notion
of Noisy Trapdoor Claw Free Functions (NTCF) introduced by Brak-
erski et al. [BCM+18].

In terms of technique, our main contribution is a perfect parallel
repetition theorem for NTCF.

1 Introduction
Introduced by Wiesner circa 1969, quantum money was the precursor to
what is now known as quantum cryptography [Wie83]. The motivation be-
hind quantum money is to design money that is physically impossible to
counterfeit, by using a variant of the (quantum) no-cloning theorem [WZ82,
Par70, Die82]. This notion of quantum money is in sharp contrast to our
current notions of bills and coins that, at least in principle, can be counter-
feited.

All quantum money schemes consist of three parts: key-gen, which gen-
erates a key, mint which uses the key to issue a new quantum money state,
and verify which tests whether an alleged money state is legitimate. There
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are two main categories of quantum money: private and public. In a private
setting, the key is required to run the verification. On the other hand, in a
public quantum money scheme, key-gen generates a secret/public key-pair,
where the secret key is used in mint and the public key is used in verify. In
this work we deal both with private and public schemes.

A variant of quantum money called classically verifiable quantum money
was introduced in [Gav12] (see also [PYJ+12, MVW13, GK15, BS16a, AA17,
AGKZ20]): the money is verified via an interactive protocol between the user
and the bank. This protocol requires a quantum computer for the user, a
classical computer for the bank, and classical communication between them.
In a classical verification, the banknote is always measured and destroyed.
This destructive measurement makes sure it cannot be reused1.

In this work, we introduce a new variant of classically verifiable quantum
money: semi-quantum money. In this setting, the minting also shares this
property, i.e., it is a protocol that involves both the bank and the user,
and requires only classical resources from the bank. In standard quantum
money, in contrast, minting is a quantum algorithm run by the bank, which
sends the output — the quantum money state — to the user, via a quantum
channel.

In semi-quantum money, the money state is generated by the user. This
concept seems somewhat counterintuitive; if banknotes are generated by the
user, could the user not create as many notes as he or she pleases? The key
point of the minting process is the protocol between the user and the bank:
the user is supposed to generate a superposition over two registers using
information provided by the bank, measure one of the registers, and report
the result back to the bank. If the user will try to repeat the same procedure,
the measurement outcome — as well as the post-measured state — will be
different with overwhelming probability. As far as the authors are aware, no
prior work considered classical minting.

The fact that semi-quantum money is also classically verifiable means
that instead of sending the quantum state to the bank for verification, the
user and the bank run a classical interactive verification protocol that tests
the validity of the money. Semi-quantum money got its name from the fact
that the minting and verification protocols require only classical resources
(communication and computation) from the bank.

This introduction of a quantum money scheme where the banks are clas-
sical perhaps raises the question whether the concept could be improved,
such that the bank would be quantum and the user classical. However, such
a setting is inherently flawed; if the user is classical, they could not hold
their own money, meaning the bank would have to hold the state of every

1This is not problematic; the bank would simply mint a new banknote and send it,
through a quantum channel, to the receiver. The concept of non-reusable money is not a
new one; in fact, an otherwise secure quantum money scheme could sometimes be broken
if banknotes are reused (see [NSBU16, Lut10, Aar09]).
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note of every user2. This makes the “quantumness” of the money redundant,
since it would be permanently kept within the bank in any case. Thus, it
would seem that the setting where the bank and communication is classical
and the user is quantum is the “least quantum” a quantum money scheme
could be.

In this work we introduce both a public construction and a private con-
struction for semi-quantum money. The public construction is based on an
existing public quantum money scheme which we combine with an exist-
ing tool that allows classical verification, so our public construction requires
little technical work. Our private scheme, on the other hand, is based on
NTCF — a tool which was designed for a different purpose entirely. Its
construction, therefore, entails a much greater technical challenge. For that
reason we address the public result first

Assumptions. Our results assume authenticated and noiseless classical
channels (which could be realized using standard classical error-correction
and authentication techniques), along with perfect quantum devices (quan-
tum memory, quantum computer and quantum communication channels).
Of course, such quantum devices are not currently available, and are not
predicted to be available in the short term (especially because of the long
term quantum memory inherently required for quantum money).

Prior Knowledge. Before we go any further, we discuss the accessibility
of this work. The reader is assumed to have a basic understanding of clas-
sical cryptography, and we follow the definitions and conventions of [Gol04]
and [KL14]. This work is aimed at readers who are familiar with quan-
tum computing, but is also accessible to other readers. For further reading,
consult [NC11] for general quantum computing, and [BS16b] for quantum
cryptography. The two major “quantum” facts that are crucial to under-
stand for this paper are the following: (i) A qubit is the quantum analog
of a bit. Unlike bits, qubits cannot be copied due to the no-cloning theo-
rem. (ii) To extract classical information from qubits, a measurement has
to be preformed. The measurement changes the quantum state. Crucially,
this process is not reversible. This is in contrast to classical systems, where
rewinding is possible.

Public semi-quantum money. In a public quantum money scheme, un-
like in a private scheme, any user can verify a banknote using the bank’s
public key without aid from the bank. There are several advantages for
a public scheme: it does not require three-party quantum communication
between the bank, the sender, and the receiver. The only requirement is

2We refer to such a scheme as “memory-dependent”, and explore its consequences in
Appendix E.
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a quantum channel between the sender and the receiver3. Public schemes
have a major advantage over private schemes also in terms of privacy: since
the bank is not involved in the transactions, the bank cannot track all trans-
actions of the note. However, it is much harder to construct a secure public
scheme — see the related works paragraph below.

We construct a public semi-quantum money scheme based on Zhandry’s
quantum lightning ([Zha19]), and the notion of bolt-to-certificate introduced
in Coladangelo’s follow-up work ([Col19]). Our classical verification based
on [Col19] is memory-dependent, meaning the bank has to keep a database
of spent notes. We leave it as an open question whether a memoryless public
semi-quantum money exists (we compare memory-dependent vs. memory-
less quantum money in Appendix E).

Our main public result is:

Theorem 1 (Public Semi-Quantum Money). Assuming the existence of
a secure Quantum Lightning scheme (Definitions 39 and 40) with bolt-to-
certificate capability (Definition 41), and the existence of a PQ-EU-CMA
digital signature scheme (Definitions 36 and 37), then a secure memory-
dependent (Definition 6) public semi-quantum money scheme exists (Defi-
nition 9).

Quantum lightning ([Zha19]) is a type of public quantum money such
that each quantum banknote (called a bolt) is unique: a “lightning bolt” is a
quantum state, and has a serial number that is a classical string. It is hard
for everyone, including the bank, to construct two valid bolts with the same
serial number. This can be thought of as if someone would “freeze” and
“capture” lightning bolts in a thunderstorm that have the same fingerprint
(in this case, the serial number).

The notion of bolt-to-certificate was introduced in [Col19], and it de-
scribes a process of turning a quantum lightning bolt into a classical cer-
tificate. The certificate proves a lightning bolt with a certain serial number
has been destroyed (the serial number is classical and thus survives the
destruction of the bolt itself).

In this work, we use quantum lightning with bolt-to-certificate capabil-
ity to construct a public semi-quantum scheme. In public semi-quantum
money we want to allow any user to verify banknotes without destroying
them, and classical verification with the bank (communication between two
users is still quantum). Therefore, we facilitate a quantum verification algo-
rithm to be used by the quantum users (that would preserve the banknote),
and a classical verification protocol to be used with the classical bank (that

3In our public semi-quantum money construction, the classical verification can only be
done with the bank; users still require quantum communication to transfer banknotes with-
out the bank. We leave it as an open question whether public semi-quantum money with
entirely classical communication can be made. A recent work of Amos et al. [AGKZ20]
exhibits completely classical communication between users, but in the oracle model.
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would destroy the banknote). The quantum verification is derived directly
from quantum lightning verification (since quantum lightning is already a
public money scheme), and the classical verification is derived from the
bolt-to-certificate capability — the bolt is exchanged for a classical certifi-
cate that is shown to the bank to prove the note has been spent. Moreover,
we introduce a slight alteration to the quantum lightning scheme such that
the banknotes become user-generated; instead of the bank producing the
bolt and sending it to the user, the user would generate the bolt and the
bank would sign its (classical) serial number. The resulting scheme requires
quantum communication between the quantum users and classical commu-
nication with the classical bank (banknotes could still be passed between
users with only classical communication by going through a bank, in the
same manner of a private scheme).

The security notion is as follows: no w > ` verifications can be made
using ` bolts. In our case this means that, besides the fact that the same
bolt cannot be used for two quantum or two classical verifications, the same
bolt cannot be used for both a quantum and a classical verification (while
the quantum verification does not destroy the note, it passes it to the other
user). Moreover, there is an additional security concern to be considered; the
idea of sabotage (introduced in the context of quantum lightning in [CS20],
and in the context of quantum money in [BS16a]). This notion captures
the possibility of paying a user with a “sabotaged” note such that it is
accepted by the receiving user (i.e., it passes the quantum verification) but
will not be later accepted by another user, or by the bank (i.e., will not
pass the classical verification with the bank). A quantum lightning scheme
that is secure against sabotage is enough to ensure such security for our
construction, and such a security proof was made in [CS20].

It should be stated that the current candidate constructions for quan-
tum lightning are problematic. There are currently three candidate con-
structions: two suggested in the original work ([Zha19]) and one that was
published roughly 7 years earlier in [FGH+12] but seems to be compatible
with quantum lightning (the connection is made in [CS20]). One of the
constructions in [Zha19] is based on “collision resistant non-collapsing hash
functions”, which currently do not have a candidate construction. The other
has been successfully attacked by Roberts [Rob19], though he ended on a
positive note with some ideas for modification to thwart the attack. The
construction in [FGH+12] seems to be a valid quantum lightning construc-
tion (it was introduced 7 years earlier and is yet unbroken), and can be used
to construct public quantum money with classical minting, but does not
feature bolt-to-certificate capability which is necessary for classical verifia-
bility, thus being unusable for a semi-quantum scheme. This means that our
scheme can be based on either of Zhandry’s original constructions. More-
over, only one of which (the one that is broken in some respects) was proven
to be secure against sabotage in [CS20] under the same assumption. There-
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fore, our construction for public semi-quantum money is on shaky ground.
Nevertheless, even if the existing constructions of quantum lightning do not
provide strong security guarantees, we believe the notion of a quantum light-
ning scheme, as well as that of bolt-to-certificate, to be plausible. In fact, a
new candidate, with hardness based on lattices, was recently announced in
an unpublished work by Peter Shor (see https://youtu.be/8fzLByTn8Xk).

Private semi-quantum money. In a private scheme, a banknote can be
verified only with a bank. A private semi-quantum money scheme requires
only classical communication with a classical bank.

Our main private result is:

Theorem 2 (Private Semi-Quantum Money). Assuming that the Learning
With Errors (LWE) problem with certain sets of parameters is hard for BQP,
then a secure private semi-quantum money scheme exists (Definition 23).

Our assumptions are stated in each theorem separately, and they all boil
down to our LWE assumptions. There are a number of variants of the LWE
problem, each one with different security parameters. We rely on different
constructions from LWE which use different variants — but both assump-
tions are LWE assumptions. Interestingly, while private quantum money
schemes can be secure without computational assumptions, they are required
for semi-quantum money. In fact, there can be no information-theoretic se-
cure quantum money scheme with classical minting (see Section 7).

The main technical tool through which to implement this scheme is the
quantum secure trapdoor claw-free function (TCF — Appendix D) recently
introduced in [BCM+18] (see also [Mah18a, Mah18b, GV19]). Informally,
a quantum secure TCF is a family of functions, where each function f :
{0, 1}w → {0, 1}w in the family (a) is classically efficiently computable, (b)
is 2-to-1, i.e., for every x there exists a unique x′ 6= x such that f(x) = f(x′),
and (c) has a trapdoor that, given y, can be used to find x and x′ such
that f(x) = f(x′) = y (when y is in the image of f), but without the
trapdoor a quantum polynomial adversary cannot find any pair x, x′ such
that f(x) = f(x′).

In addition, we will require the adaptive hardcore bit property of a TCF
that was introduced in [BCM+18], which is explained below. Using a quan-
tum computer, the state 1√

2(|x〉+ |x′〉), where x and x′ are two pre-images of
y, could be measured, and one pre-image of y could be found. Moreover, by
measuring the state in the Hadamard basis, a non-zero string d that satisfies
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d · (x⊕ x′) = 0 could be extracted:

H⊗w
1√
2

(|x〉+ |x′〉) = 1√
2w+1

∑
d∈{0,1}w

(−1)d·x + (−1)d·x′ |d〉

= 1√
2w−1

∑
d∈{0,1}w|d·(x⊕x′)=0

(−1)d·x|d〉 .
(1)

In our construction we use the following two tests: the pre-image test (pro-
viding a pre-image of y) and the equation test (providing a non-zero d that
satisfies the above condition). The adaptive hardcore bit property guar-
antees that, even though either test can be easily passed on its own, any
quantum polynomial time (QPT) adversary can successfully pass both tests
with probability at most 1

2 + negl(λ). Brakerski et al. used these tests
to construct a cryptographic test of quantumness (CTQ); our construction
can be seen as a reinterpretation of this protocol in the quantum money
setting, where the first part of the protocol can serve as the creation of a
quantum money state, and the second part can serve as the its verification.
The transition to quantum money introduces some challenges; mainly the
need for a parallel repetition theorem for our NTCF-based primitive, and
proving full-scheme security. Brakerski et al. showed a construction of a
noisy trapdoor claw-free function (NTCF) that holds this adaptive hard-
core property, based on the hardness of the Learning With Errors (LWE)
problem [BCM+18]. For the sake of clarity, we ignore the issues related to
the noisy property in this introduction.

A TCF on its own, however, is not hard enough to construct a money
scheme with; we do not want adversaries to be able to forge banknotes with
probability 1

2 . To that end, we would like to amplify the hardness using
some sort of a parallel repetition theorem (see Section 4.3). Luckily, we
can rephrase this setting using the framework of weakly verifiable puzzles
for which a perfect parallel repetition theorem is known [CHS05]. This
perfect parallel repetition guarantees that answering both tests for n puzzles
correctly is as hard as trying to answer them independently, i.e., at most(

1
2

)n
(up to negligible corrections), which is exactly our goal.

Next, we present the outline and analysis of our semi-quantum private
money scheme construction. The security notion of our money scheme is
rather straightforward: an adversary that receives ` banknotes, and can
attempt to pass verification (polynomially) many times, cannot pass more
than ` verifications. To show a construction that meets this notion, we
work our way through several weaker security notions; this makes proving
the security of our full scheme construction simpler. We first show how
to construct a semi-quantum money scheme (Section 5) that provides a
weaker level of security than a full scheme. Here, we wish to show that a
counterfeiter that receives 1 quantum money state cannot create two states
that will both pass verification with non-negligible probability. We call a
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scheme that satisfies this weaker notion of security a 2-of-2 mini-scheme —
see Definition 25.

We now describe the construction of a 2-of-2 mini-scheme, starting with
the (honest) minting protocol. The bank picks n functions f1, . . . , fn uni-
formly at random from the TCF family and sends them to the user, while
keeping the trapdoors t1, . . . , tn private. The user creates a superposition
of the form |ψ1〉 ⊗ . . .⊗ |ψn〉, where |ψi〉 = 1√

2w
∑
x∈{0,1}w |x〉 ⊗ |fi(x)〉. The

user measures all the r.h.s. registers (i.e., |fi(x)〉 ∀1 ≤ i ≤ n) and sends the
resulting y1, . . . , yn to the bank, who saves them to its database4. Note that
due to the measurement, the ith state collapses to |ψyi〉 = 1√

2(|xi〉 + |x′i〉),
where fi(xi) = fi(x′i) = yi.

For verification, the bank chooses a random challenge Ci ∈R {0, 1}
(which is either the pre-image or the equation challenge) for each of the
n registers. For the pre-image challenge, Ci = 0, the user must provide a
string xi such that fi(xi) = yi. The honest user can measure |ψyi〉 to find a
pre-image of yi to pass this test with certainty. In the equation challenge,
Ci = 1, the user must provide a non-zero string di ∈ {0, 1}w such that
di ·(xi⊕x′i) = 0. The bank can test whether the equation challenge holds by
using the trapdoor ti to calculate both xi and x′i. An honest user can gen-
erate such a string by measuring |ψyi〉 in the Hadamard basis, as described
in Eq. (1). The measured di will be non-zero (except with probability expo-
nentially small in w) which will allow the user to pass this test.

We emphasize that for both the minting and the verification protocols,
the bank only needs a classical computer.

We now outline the security argument. Suppose the user tries to pass
verification twice. Denote by C ∈ {0, 1}n the challenge vector in the first
attempt, denote by C ′ the challenge vector in the second attempt, and
denote by S the set of coordinates in which they differ: S = {i ∈ [n]|Ci 6=
C ′i}. With overwhelming probability, S 6= ∅, in which case for at least one
coordinate the user will have to pass both challenges, and cannot succeed
except with negligible probability.

The construction above is a semi-quantum 2-of-2 mini-scheme (rather
than a full blown scheme). There is a slightly stronger notion of security
(that is still weaker than a full blown scheme) called a mini-scheme (adapted
from Aaronson and Christiano [AC13]). In a mini-scheme, the counterfeiter
is given a single quantum money state and can attempt to pass verification
polynomially many times. The counterfeiter succeeds if at least two of these
verifications are accepted. We show in Section 5.2 that the scheme above
also achieves this stronger notion.

4We deviate here slightly from the formal definitions; Since the bank does not have
a “database”, verification should only use the key. This is handled by using a message
authentication code (MAC) and by returning to the user a tag for these values, and then
verifying that tag during the verification. For the sake of clarity, we omit this part in the
discussion — refer to Algorithm 4 to see how we work around this issue.
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In a full quantummoney scheme, the adversary can ask for tmoney states
and must pass at least t+ 1 verifications. Aaronson and Christiano [AC13]
defined the notion of a public money mini-scheme and showed how such
a mini-scheme can be lifted to a full-blown scheme. Ben-David and Sat-
tath [BS16a] showed a similar result that lifts a private money mini-scheme
to a full-blown scheme. In this work, we show how to lift an interactive
private money mini-scheme to a full-blown scheme. The goal of such a
mapping is to ensure that the scheme can support the issuance of multiple
money states without increasing the key-size. This is done by using an au-
thenticated encryption scheme for the mini-scheme keys and including that
authenticated ciphertext as part of the money. As part of the verification,
the bank can later decrypt the mini-scheme key, and use it to run the original
mini-scheme verification. It is important that the encryption scheme be au-
thenticated to prevent the adversary from altering that information (which
would be possible if, for example, the encryption scheme was malleable).

Related works. The security of private quantum money schemes is gener-
ally solid, [Wie83, MVW13, PYJ+12, TOI03, MS10, Gav12, GK15, JLS18].
Secure public quantum money is much harder to construct. The construc-
tions of Aaronson [Aar09] was broken in [LAF+10], and the construc-
tion of Aaronson-Christiano [AC13] was broken using several approaches
— see the most recent attack in Ref. [PDF+19] and references therein. In
Ref. [BS16a], a construction based on quantum-secure indistinguishability
obfuscation (IO) was presented, as well as a mechanism to provide classi-
cal verifiability. Zhandry later proved that the quantum money is indeed
secure [Zha19], though Zhandry’s proof does not lend itself to the classical
verifiability construction by Ben-David and Sattath. The only two con-
structions that are not known to be broken are by Farhi et al. [FGH+12]
(see also [Lut11]), which does not have a security proof, and three con-
structions by Zhandry [Zha19]: The two quantum lightning constructions
discussed above, and another one which proves the security of Aaronson-
Christiano based on quantum-secure IO. We note that the (classical) secu-
rity of indistinguishability obfuscation is still ongoing research (see, https:
//malb.io/are-graded-encoding-schemes-broken-yet.html for a list of
constructions and their security status). As far as the authors are aware,
no IO construction claims to be quantum-secure, which is required for
Zhandry’s scheme. To conclude, the security of public quantum money
leaves much to be desired.

The work of [HS20] is somewhat relevant to what we do here, but from
a device-independent point of view of private quantum money. There, the
bank provides a secret key to an untrusted mint, and the mint produces
the quantum banknote itself. An assumption is made on the mint regarding
the dimension of the state that it outputs. While [HS20] do not use the
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definition of a mini-scheme as we do here (Definition 25), their work features
a private quantum money construction with mini-scheme security while not
proving full scheme security (Definition 24). Their scheme is also classically
verifiable. To conclude, the main advantage of their scheme is that it is
unconditionally secure, while the main disadvantages are that the scheme
does not provide classical minting, there is an additional assumption on the
dimension of the output register, and there is no security proof as a full
quantum money scheme.

A very recent work of Amos et al. [AGKZ20] introduced a public quan-
tum money with completely classical communication. Their construction
allows users to transfer money using classical communication only, requir-
ing no interaction with a bank. However, the security is proved only with
respect to an oracle.

A recent work of [ACGH19] also shows a parallel repetition theorem,
though their result is slightly different, and their proof techniques are com-
pletely different.

Modes of Operation. To fully grasp the implications of semi-quantum
money, it is important to review how quantum money in its different flavors
can be used, and the communication requirements (classical or quantum)
of each mode of operation. In Section 2 we provide a detailed overview of
the different flavors of quantum money and their respective communication
requirements, showing the advantage of semi-quantum money: transactions
with purely classical communication.

Our contribution. Our contribution is twofold. The first is semi-quantum
money, both private and public: new models of quantum money that al-
low transactions with no quantum communication whatsoever (see Figs. 12
and 13), and only a classical bank. The main advantage of the new schemes
compared to previous quantum money schemes is that they could be used
without a quantum communication infrastructure. Classical communication
has several interesting benefits over quantum communication. The most ob-
vious one is that a classical communication infrastructure already exists;
a semi-quantum money scheme — unlike previous money schemes — will
not require a quantum communication infrastructure. Implementing such
an infrastructure on a global scale will be expensive and challenging, and
might be realized years after efficient quantum computers are commonly
used. There are other benefits to classical communication, even if quantum
communication infrastructure was readily available. First, due to the no-
cloning theorem, quantum information cannot be re-sent. In the context
of quantum money, data-loss is extremely problematic — data loss means
lost money. Quantum communication will naturally suffer more data-loss,
at least initially. Second, for classical communication we can keep a record
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(and even a signed record) which helps with matters of dispute resolution,
auditing and error-handling, whereas quantum communication cannot be
logged. The same argument can be made for the banks themselves; classical
banks could more easily keep records and be audited.

The second contribution is the parallel repetition theorem for 1-of-2 puz-
zles (described earlier in the introduction). Parallel repetition (the idea of
repeating a protocol polynomially many times in parallel to gain an expo-
nential increase in soundness) seems deceptively simple, while in reality, it
sometimes behaves in unexpected ways, and such proofs are usually challeng-
ing (see [Raz11] and references therein for the non-cryptographic setting);
[BIN97] present several cases where parallel repetition surprisingly does not
grant an exponential reduction in error rate in cryptographic-settings. The
parallel repetition theorem for 1-of-2 puzzles could be useful in other cryp-
tographic settings, as it builds on the TCF primitive to introduce a tool
with an exponentially small error rate (rather than the constant error rate
which is guaranteed in the original work).

Organization. Section 2 provides an overview on the different ways in
which different flavors of quantum money can be used, along with the com-
munication requirements of each mode of operation.

In Section 3 we deal with our proposed public semi-quantum money.
Section 3.1 contain the relevant definitions, and in Section 3.2 we construct
the public scheme and prove its security, proving our main public theorem,
namely, Theorem 1.

In Section 4, we deal with NTCF and 1-of-2 puzzles. In Section 4.1, we
define a 1-of-2 puzzle. In Section 4.2, we show a construction of a 1

2 -hard
1-of-2 puzzle based on an NTCF. We conclude Section 4 by showing, in
Section 4.3, a method for constructing a strong 1-of-2 puzzle using repetition
of weak 1-of-2 puzzles.

In Section 5, we deal with our proposed private semi-quantum money.
Section 5.1 contains the relevant definitions, which are adaptations of the
definitions from Section 3.1 to the private setting. In Section 5.2, we con-
struct a semi-quantum money mini-scheme and prove its security. In Sec-
tion 5.3, we present a full semi-quantum money scheme construction based
on any semi-quantum mini-scheme, and prove its security.

In Section 6 we combine the results of Sections 4 and 5 to prove our main
private result, namely, Theorem 2. A structural overview of our private
semi-quantum money result is shown in Fig. 1.

In Section 7 we show that a quantum money scheme with classical mint-
ing (and therefore any semi-quantum money scheme) cannot be information-
theoretically secure (i.e., it must rely on computational assumptions).

Appendix A is a nomenclature, a “cheat sheet” describing some of our
notations. Appendix B contains mainly the standard definitions of private-
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Learning With Errors (LWE) assumption

NTCF

1
2 − hard 1-of-2 puzzle

strong 1-of-2 puzzle A PQ-EU-CMA MAC (Definition 35)

Semi-quantum money 2-of-2 mini-scheme

Semi-quantum money mini-scheme A PQ-IND-CPA symmetric encryption (Definition 33)

Private Semi-quantum money

Brakerski et al. [BCM+18], see also Theorem 43

Algorithm 2, Theorem 13

Construction in Definition 14, Corollary 21

Algorithm 4, Propositions 27, 26

Algorithm 4, Proposition 28

Algorithm 5, Propositions 30, 29

Boneh and Zhandry [BZ13]

Gagliardoni et al. [GHS16]

Figure 1: Structure of our private scheme construction. The right-hand side
of the figure shows our assumptions. The arrows point to constructions that
make use of these assumptions.

key encryption and message authentication code (MAC), and can be safely
skipped by readers who are familiar with these notions. Appendix C, taken
almost verbatim from [CS20], comprises the definitions of quantum lightning
with bolt-to-certificate. Appendix D, taken almost verbatim from Brakerski
et al. [BCM+18], comprises a definition of NTCF. Appendix E comprises
a discussion of memoryless vs memory-dependent schemes. Appendix F is
a simplified overview of the parallel repetition of weakly verifiable puzzles
result from [CHS05] which is used for our parallel repetition of 1-of-2 puzzles
result. Appendix G comprises a series of figures illustrating the various
ways transactions can be performed with different flavors of quantum money
schemes (regular, classically-verifiable and semi-quantum) along with the
types of communication each method and flavor requires.
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2 Modes of Operation
This section discusses the different methods in which quantum money can
be used. When discussing a transaction, we are interested in three par-
ties: the payer P who has money; the receiver R who should receive P ’s
money by the end of the transaction; and the bank B, a trusted third party.
When discussing regular money, we can think of 2 different modes to exe-
cute a transaction: a direct transaction, or through the bank. Table 1 shows
the communication requirements for a direct transaction and a transaction
through the bank for regular (non-quantum) money.

One example of a direct transaction is online credit card payments (see
Fig. 2). In this case P transfers her credit card details to R. R then contacts
B with P ’s credit card details and B gives him the payment (after verifying
P ’s credit card details). This mode requires communication between P and
R and between R and B.

One example of a transaction through the bank is a wire transfer (see
Fig. 3). In this case P contacts the bank requesting to transfer money to
R. Bank then contacts R to complete the transaction (deducting money
from P ’s account and crediting R’s account with the payment) and sends a
message alerting R to the transaction. This mode requires communication
between P and B and between R and B.

Direct Through Bank

Regular Money (Fig. 2) (Fig. 3)

Table 1: Types of communication required for a direct transaction and a
transaction through the bank with regular (non-quantum) money. → de-
notes classical communication.

We make the observation that different transaction methods exist for
quantum money as well. In the quantum money setting this discussion
is much more delicate, since there are various flavors of quantum money,
and there is the question of which types of communication (classical or
quantum) are required between which parties for any transaction method.
An important distinction is that quantum money is held in the form of
quantum states on the user’s quantum computer rather than in an account
kept by the bank.

The straightforward way to think of a quantum money transaction is a
direct transfer in which P sends R the banknote directly. Afterwards, R
needs to verify the validity of the money, since P is not trusted. In a public
scheme this can be done locally on R’s computer, while in a private scheme
R must interact with B for this purpose.

There is another way to transfer quantum money: a transaction through
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the bank. In such a transaction, instead of sending the money directly to
R, P sends the money to B. B then validates the money, and proceeds to
send it to R (or mint a new banknote for him). This type of transaction
has the following advantage: in a direct transfer, when P sends her money
to R, R may claim that the money did not pass verification and refuse the
payment. In this scenario there is usually no way for P to prove that she
gave R valid money. This is not the case, however, when performing the
transaction through B; since the bank B is assumed to be trusted for the
money to function properly, any claim made by R that he did not receive
valid money can be refuted by B who took part in the transaction and made
sure the money was valid. Along with this advantage, transactions via B
offer different communications requirements which could prove beneficial.
These two benefits make it is interesting to review bank transactions even
in the setting of public quantum money.

When discussing transactions it is interesting to talk about traceability;
i.e., can any party learn any information regarding transactions that have
been made between other parties? Generally, quantum money comes in 2 fla-
vors regarding traceability: banknotes and coins. The difference is that while
quantum banknotes are unique (each banknote has a serial numbers), while
quantum coins are indistinguishable. Thus quantum banknotes are inher-
ently traceable, while the traceability of coins depend on how they are used
(see [AMR20] for a formal definition). Apart from the differences between
transaction methods discussed above, a direct transaction and a transaction
through the bank also behave differently when considering traceability of
quantum coins. In a direct transfer R learns the identity of the P and B
learns only the identity of R. In a transaction through the bank, however,
R does not learn the identity of P and B learns the identities of both P and
R. This difference gives further motivation to consider the different modes
of transaction.

Table 2 lists the communication requirements of transactions for each
flavor of quantum money, and Appendix G contains detailed figures illus-
trating how transactions can be made for each flavor of quantum money.
Quantum communication is denoted by ⇒, classical communication is de-
noted by →, and a two-sided arrow indicates two-sided communication is
required.

We can see that semi-quantum money allows transactions with purely
classical communication. It is an open question whether a variant of semi-
quantum money could be made that would allow to classically transfer
quantum money between users without the aid of the bank (i.e., make a
public direct transaction with classical communication alone). Amos et al.
[AGKZ20] showed a construction of semi-quantum money with completely
classical communication between users (one-shot signature), but in the ora-
cle model.
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Remark 3. In Table 2 we state that a direct transfer using classically verifi-
able or semi-quantum money requires only classical communication between
P and R. This is because R can initiate the verification protocol with the
bank, and then act as relay between P and B in order to verify P ’s ban-
knote. The bank then mints a new banknote for receiver to conclude the
transaction (see Figs. 6 and 12). Of course, it is still possible for the P to
send the banknote via quantum communication, but this way requires one
less quantum channel.
Remark 4. We use a stronger security notion than that used in Refs. [Gav12,
GK15]. In these previous works a quantum money scheme is defined to be
unforgeable if an adversary with ` banknotes cannot generate more than
` quantum states that would each pass the honest verification (with non-
negligible probability). In contrast, our unforgeability requirement (Defi-
nitions 8 and 24) states that an adversary with ` banknotes cannot pass
more than ` potentially malicious verifications. This is more general and
therefore stronger; in the existing definition the verification protocol is run
honestly, while our definition allows the adversary to act maliciously during
the verification protocol itself.

It is easy to see why the stronger definition is not used in the schemes
above. These schemes are designed to work in the direct mode of operation,
and they provide the ability to verify a banknote multiple times, meaning the
scheme does not meet the stronger security definition by design. Generally,
such schemes could not utilize their classical verification for a transaction
through the bank; since verification does not destroy the banknote, P would
have to send her banknote to B (through a quantum channel) so B could
be sure she no longer holds the banknote. This means that transactions
through the bank would require all-quantum communication.

Allowing multiple verifications is beneficial for the classical verification
setting, but irrelevant for the semi-quantum setting. For example, in Gavin-
sky’s scheme [Gav12], the banknote is designed to allow a (fixed) polynomial
number of verifications, after which the banknote would be sent back to the
bank to be verified and destroyed, and a new one would be minted instead.
If instead the banknote was destroyed after a single verification, the verifier
would need the bank to mint him a new banknote after every verification,
which would require quantum communication. Therefore, allowing multiple
verifications without the need to re-mint allows verification with no quantum
communication between R and B (most of the time). In the semi-quantum
setting, however, minting is also classical, so allowing banknotes to pass
verification without being destroyed does not give us an interesting benefit,
and we can use our stronger security notion. This also allows us to use the
through the bank mode of operation with only classical communication.
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Direct Through Bank

Standard (Fig. 4) (Fig. 5)

Classically verifiable (Fig. 6) (Fig. 7)

Private Reusable classically
verifiable5 (Fig. 8) (Fig. 9)

Classical minting6 (Fig. 10) (Fig. 11)

Semi-quantum (Fig. 12) (Fig. 13)

Standard (Fig. 14) (Fig. 5)

Classically verifiable7 (Fig. 14) (Fig. 7)

Public Reusable classically
verifiable (Fig. 14) (Fig. 9)

Classical minting8 (Fig. 14) (Fig. 11)

Semi-quantum (Fig. 14) (Fig. 13)

One-shot signature9 (Fig. 15) (Fig. 13)

Table 2: Types of communication required for each transaction method in
each flavor of quantum money. ⇒ denotes quantum communication and
→ denotes classical communication. A two-sided arrow indicates two-sided
communication. Note that public schemes can also use transactions methods
from private schemes.

5Some classically verifiable schemes [Gav12] allow to verify the same banknote multiple
times before it is destroyed. Schemes with this property behave a little differently.

6The authors are not aware of an instantiation of a private quantum money scheme
with classical minting that is not semi-quantum, but it is a valid setting to consider.

7The authors are not aware of any instantiation of a classically-verifiable public quan-
tum money scheme (that is not also semi-quantum), but it is a valid setting to consider.

8Quantum lightning [Zha19] can be seen as quantum money with classical minting
which is not necessarily classically verifiable — in Section 3 we construct public semi-
quantum quantum money from quantum lightning with bolt-to-certificate, but we can see
that classical minting is straightforward even without this quality.

9This is a construction from [AGKZ20] for public semi-quantum money which allows
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3 Quantum Lightning with Bolt-to-Certificate Im-
plies Public Semi-Quantum Money

In this section we construct a public memory-dependent semi-quantummoney
scheme using Zhandry’s quantum lightning from [Zha19] along with Co-
ladangelo’s Bolt-to-Certificate from [Col19] and its superseding work [CS20].

3.1 Definitions of Public Semi-Quantum Money

Definition 5 (Interactive public quantum money). An interactive public
quantum money scheme consists of a classical PPT key generation algorithm
key-gen and two-party interactive QPT protocols mint and verify. key-gen(1λ)
outputs a pair of keys (pk, sk) which are the public and private keys, respec-
tively. Both the minting protocol and the verification protocol are two-party
quantum protocols: mint involves an Acquirer A and a Bank B, whereas
verify involves a Payer P and a Receiver R (in verify either party can be ei-
ther a bank or a user). During both protocols, both parties receive the public
key pk as input, and the bank (if it participates) receives the private key sk
while users do not. At the end of the honest run of mint, the user holds a
quantum money state that, in general, could be a mixed state. In this work,
the protocols will end with a pure state, usually denoted |$〉. In the following
sections, for the sake of clarity, we work with the pure-state formalism. The
banknote that the P chooses to verify is denoted in this work as the input
of the verify protocol. At the end of the verification protocol, the Receiver
outputs a bit b that states whether the money was accepted or not.

Correctness. The scheme is correct if there exists a negligible function
negl(λ) such that:

Pr[(pk, sk)← key-gen(1λ); |$〉 ← mint(pk,sk)(1λ) :
verifypk(|$〉) = 1] = 1− negl(λ) .

Definition 6 (Memory-Dependent Quantum Money). A quantum money
scheme is memory-dependent if the bank is required to maintain a state it
uses throughout different runs of the quantum money protocols.

Definition 7 (Security against sabotage). An interactive public quantum
money scheme $ is secure against sabotage if for every QPT counterfeiter
A there exists a negligible function negl(λ) such that:

Pr[SABOTAGE-MONEYA,$(λ) = 1] ≤ negl(λ) .

The money sabotaging game SABOTAGE-MONEYA,$(λ):

to transfer banknotes between users using classical communication. However, the only
construction available requires an oracle.
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1. The challenger runs (pk, sk)← key-gen(1λ) and sends pk to A.

2. The adversary outputs a money state |$〉 and runs verify(|$〉) with the
challenger two consecutive times.

3. A wins if the first verification accepts and the second rejects, in which
case the result of the game is 1 (and otherwise it is 0).

Definition 8. We say that an interactive public quantum money scheme $
is secure if it is secure against sabotage (Definition 7) and if for every QPT
counterfeiter A there exists a negligible function negl(λ) such that:

Pr[COUNTERFEITA,$(λ) = 1] ≤ negl(λ) .

The money counterfeiting game COUNTERFEITA,$(λ):

1. The bank generates a key pair (pk, sk) ← key-gen(1λ) such that pk is
publicly known.

2. The bank and the counterfeiter interact. The counterfeiter can ask
the bank to run mintk(·) and verifyk(·) polynomially many times, in
any order the counterfeiter wishes. The counterfeiter is not bound to
following his side of the protocols honestly. The counterfeiter can keep
ancillary registers from earlier runs of these protocols and use them
in later steps. Let w be the number of successful verifications, ` the
number of times that mint was called by the counterfeiter and v the
number of times that verify was called by the counterfeiter.

3. The bank outputs (w, `, v).

The value of the game is 1 iff w > `. In this case we sometimes simply
say that the counterfeiter wins.

We state here again that this security definition is stronger than the one
previously used — this is further explained in Remark 4.

Public semi-quantum money has two types of verifications: the first is
a quantum verification algorithm we denote qverify that does not destroy
the banknote and can be performed between any two entities with quantum
computation and communication resources, and the second is a classical
verification protocol we denote cverify that destroys the money and can only
be performed with a bank. qverify allows money transfer between any two
users, which could be performed without the aid of a bank. cverify can be
thought of as depositing or spending the money with the bank — a quantum
user can destroy his banknote in a way that he can prove to the bank that
the note was destroyed. In the counterfeiting game above, the counterfeiter
can choose which type of verification to run each time. Note that if qverify
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is chosen, the bank must perform the verification; i.e., the adversary must
give the banknote to the bank (and the bank does not return it afterwards).

Note that the bank is no different to a user when participating in qverify,
since no secret information is used there — so if qverify is secure with a bank,
it is also secure with other users (i.e., any counterfeiting method that would
work against a user would also work against the bank). Therefore the above
definition of security ensures the scheme is secure even when considering
transactions between users, even though the security game is defined with
the bank.

Note that if two users wish to transfer a banknote but do not share a
quantum communication channel, they can do so via a bank: the Payer
would perform cverify with the bank, after which the bank will run mint
with the Receiver (see Fig. 13).

Definition 9 (Public semi-quantum money). We say that a protocol with
the bank has classical minting (resp. verification) if the bank is classical
in mint (resp. verify). We define public semi-quantum money as any se-
cure interactive public quantum money scheme that has classical minting
and two types of verification, denoted qverify and cverify, such that in the
end of qverify the banknote is not destroyed (meaning it could pass further
verifications), and that cverify is a classical verification which destroys the
banknote and can only be performed between a user and a bank. In qverify
no party receives the private key, and in cverify the bank receives the private
key while the user does not.

3.2 Construction of a Public Semi-Quantum Scheme

Following is an informal explanation of our public scheme construction,
which is defined formally in Algorithm 1. The construction uses a se-
cure quantum lightning scheme with bolt-to-certificate — a brief informal
overview of both is given in Section 1 below Theorem 1, and their formal def-
initions (taken almost verbatim from their respective papers) can be found
on Appendix C.

Let QL be a secure quantum lightning scheme with bolt-to-certificate (see
Definitions 39 to 41), and let DS be a PQ-EU-CMA digital signature scheme
(see Definitions 36 and 37). In key-gen the bank runs the QL setup algorithm
to randomly generate a set of algorithms that generate and verify bolts
and certificates, and runs DS.key-gen to generate a private and public key.
key-gen outputs the public digital signature key and the four QL algorithms
as the scheme’s public key, and the digital signature’s private key as the
scheme’s private key. For the minting process, the user generates a bolt |ψ〉
along with its serial key s using the generation algorithm gen-bolt (that is
part of the public key). He sends s to the bank, which sends back a signature
σ for it (using its private key). Each banknote |$〉 consists of the bolt |ψ〉, its
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serial number s, and its signature σ (without the signature any user could
generate by themselves notes that would pass verification).

In qverify the Payer sends to the Receiver his bolt along with its signed
serial number, and the receiver verifies both the bolt and the signature. In
cverify the user uses the bolt to generate a certificate and sends the certificate
to the bank along with the bolt’s signed serial number. The bank verifies the
certificate and the signature, and checks its database for the serial number.
If the serial number appears there then the certificate has been given before
and so verification will fail.

Note that according to Definition 9, in a general public semi-quantum
money scheme the bank uses the secret key sk in cverify, but in our scheme
the bank does not — meaning it is stronger in this respect. [BS16a] also have
classical verification with only a public key, so this is not the first instance
where cverify uses only the public key.

Proposition 10 (Correctness of $P ). Assuming QL is a secure quantum
lightning scheme with bolt-to-certificate (see Definitions 39 and 41) and DS
is a digital signature scheme with perfect completeness (see Definition 36),
$P , which is defined in Algorithm 1, is a correct (Definition 5) memory-
dependent (Definition 6) public semi-quantum money scheme (see Defini-
tion 9).

Proof. Let (gen-bolt, verify-bolt, gen-certificate, verify-certificate)← QL.setup(1λ)
and assume an honest run of |$〉 ← $P .mint(pk,sk)(). We need to prove cor-
rectness for both implementations of verify: we begin by proving the cor-
rectness of qverify. In an honest run of $P .qverify, the banknote sent on line
1 is |$〉 generated in mint. Recall that |$〉 := (|ψ〉, s, σ). From the perfect
completeness of DS we get:

Pr[DS.verifypkσ(s,DS.signskσ(s)) = 1] = 1 .

So the signature verification on line 2 passes since σ ← DS.signskσ(s) on
line 3 of $P .mint, meaning Pr[rσ = 1] = 1. From the definition of quantum
lightning (Definition 39) we get:

Pr[(gen-bolt, verify-bolt)← QL.setup(1λ); (|ψ〉, s)← gen-bolt() :
verify-bolt(|ψ〉, s) = 1]
= 1− negl(λ) .

So the bolt verification on line 3 passes except with negligible probability
since (|ψ〉, s) is a valid bolt generated on line 1 of $P .mint, meaning Pr[rb =
1] = 1− negl(λ). Therefore, from the union bound:

Pr[QL.qverifypk(|ψ〉) = 0] ≤ Pr[rσ = 0] + Pr[rb = 0]
= negl(λ)
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Algorithm 1 The Interactive Public Money Scheme $P
$P .key-gen(1λ)
1 : (gen-bolt, verify-bolt, gen-certificate, verify-certificate)← QL.setup(1λ)
2 : (pkσ, skσ)← DS.key-gen(1λ)
3 : pk ← (gen-bolt, verify-bolt, gen-certificate, verify-certificate, pkσ)
4 : sk ← skσ

5 : return (pk, sk)

$p.mint(pk,sk)

Acquirer Bank
1 : (|ψ〉, s)← QL.gen-bolt(1λ)

2 : s

3 : σ ← DS.signskσ (s)

4 : σ

5 : |$〉 ← (|ψ〉, s, σ)

$p.qverifypk(|$〉)
1 : interpret |$〉 as (|ψ〉, s, σ)
2 : rσ ← DS.verifypkσ (s, σ)
3 : rb ← QL.verify-bolt(|ψ〉, s)
4 : return rσ · rb

$p.cverifypk(|$〉)
. D ← ∅ before first run
Payer Bank
1 : interpret |$〉 as (|ψ〉, s, σ)
2 : c← QL.gen-certificate(|ψ〉, s)

3 : s, σ, c

4 : rσ ← DS.verifypkσ (s, σ)
5 : rc ← QL.verify-certificate(s, c)
6 : rd ← s /∈ D
7 : if rσ · rc · rd = 1 :
8 : D ← D ∪ {s}
9 : return rσ · rc · rd
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meaning Pr[QL.qverifypk(|ψ〉) = 1] = 1− negl(λ).
We now prove correctness of $P .cverify. Like with qverify, from the perfect

completeness of DS we get that the signature verification on line 4 passes,
meaning Pr[rσ = 1] = 1. From the definition of bolt-to-certificate (Defini-
tion 41) we get that the certificate verification on line 5 passes except with
negligible probability, since c was generated on line 2 using the valid bolt
(|ψ〉, s) that was generated in line 1 of $P .mint, meaning Pr[rc = 1] = 1 −
negl(λ). From the security of quantum lightning (Definition 40) we get that
for each s′ ∈ D, Pr[s = s′] is negligible10, meaning Pr[rd = 1] = 1− negl(λ)
assuming D is polynomial in λ. Therefore, from the union bound:

Pr[QL.cverifypk(|ψ〉) = 0] ≤ Pr[rσ = 0] + Pr[rc = 0] + Pr[rd = 0]
= negl(λ) .

�

Theorem 11 (Security of $P ). Assuming QL is a secure quantum lightning
scheme (Definitions 39 and 40) with bolt-to-certificate capability (Defini-
tion 41) and that DS is a PQ-EU-CMA digital signature scheme (Definitions
36 and 37), then $P , which is defined in Algorithm 1, is secure according
to Definition 8. If QL is secure against sabotage (Definition 7), $P is also
secure against sabotage.

Proof. In order to prove the security of the scheme, we need to prove that
no counterfeiter A can win the security game COUNTERFEITA,$P (λ) (Defi-
nition 8) with non-negligible probability. In the game, the counterfeiter has
access to a verification oracle, meaning that in our case the counterfeiter
can run either qverify or cverify a polynomial amount of times, and wins if
he manages to pass a total of more than ` qverify and cverify verifications
(when ` is the number of times mint was run).

We show that any adversary capable of breaking the security of $P must
break the underlying security of either QL, QL’s bolt-to-certificate capa-
bility, or DS. Assume a QPT counterfeiter A with non-negligible success
probability. Recall that w, ` and v are the numbers of successful verifica-
tions, runs of $P .mint and runs of $P .verify in the counterfeiting security
game, respectively (w and v include runs of qverify and of cverify). This
means that w > ` with non negligible probability. We assume w and v are
polynomial in λ, otherwise the counterfeiter would not be QPT. Denote by
|$j〉 = (|ψj〉, sj , σj) the banknote minted in the jth run of $P .mint11. Due

10If there is non-negligible probability that a generated bolt would have the same serial
number as one already in D, assuming D contains an amount of serial numbers polynomial
in λ, we could construct a bolt forger L that would generate |D| + 1 bolts and with
non-negligible probability end up with two bolts with the same serial number that pass
verify-bolt, winning the bolt forging security game (Definition 40).

11We arbitrarily number the runs of $P .mint according to the order they were initiated.
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to the unforgeability of DS (Definition 37), for every successful verification,
A either sent |$〉 = (|ψ〉, sj , σ) for some j ∈ [`], |ψ〉, σ on line 1 of qverify or
sj , σ, c for some j ∈ [`], σ, c on line 3 of cverify12. Denote by wj the amount of
successful verifications — either qverify or cverify — made with sj as input.
By the pigeonhole principle, since there are only ` sj ’s but w > ` successful
verifications, wi ≥ 2 for some i ∈ [`]. For that i, there are three possibilities:
either the two verifications were qverify, the two verifications were cverify,
or there was one of each.

Two successful cverify runs with the same si are not possible, since after
each successful run of cverify the bank adds si to D, and every subsequent
verifications with si ∈ D fails. One successful run of qverify and one suc-
cessful run of cverify are also not possible — if it were, we could construct a
certificate forger C with non-negligible probability: C will simulate the bank
and run A against it. With non-negligible probability, he will succeed both
on a run of qverify and on a run of cverify: meaning he possesses a quan-
tum state |ψ〉 such that QL.verify-bolt(|ψ〉, si) = 1 and a certificate c such
that QL.verify-certificate(si, c) = 1, in contradiction to the bolt-to-certificate
capability of QL (Definition 41).

The only option left is two successful runs of qverify: in which case A is in
possession of two quantum states |ψ1〉, |ψ2〉 such that QL.verify-bolt(|ψ1〉, sj) =
1 and QL.verify-bolt(|ψ2〉, sj) = 1 (he could not have passed the two verifica-
tions with the same quantum state since qverify entails sending the quantum
state to the bank — hence he necessarily possess two such states). We could
then construct a quantum lightning adversary L that simulates the bank
and runs A against it. With non-negligible probability, he will end up with
some |ψ1〉 and |ψ2〉 that pass QL.verify-bolt with the same serial number
si, and could use them to win FORGE-BOLTL,QL(λ) (see Definition 40), in
contradiction to the security of QL.

None of the three options are possible, meaning that any counterfeiter
A has negligible success probability, i.e., $P is secure.

Security against sabotage of QL directly implies security against sabotage
of $P . �

For convenience, we restate the main theorem of our public semi-quantum
money result:

12Suppose A passes with non-negligible probability a verification of some (|ψ〉, s, σ)
on qverify or a verification of s, σ, c on cverify such that s 6= sj ∀j ∈ [`]. In that case
DS.verifypkσ (s, σ) = 1 with non-negligible probability (either on line 2 of qverify or on line
4 of cverify). We could use A to construct a digital signature forger F with non-negligible
success probability: F simulates a bank, but instead of signing with skσ and verifying
with pkσ that were generated in key-gen he uses his signing oracle and the real pk. He
then runs A against the simulated bank, and will be able to present (s, σ) which pass DS
verification with non-negligible probability, while s /∈ Q since s 6= sj ∀j ∈ [`].
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Theorem 1 (Public Semi-Quantum Money). Assuming the existence of
a secure Quantum Lightning scheme (Definitions 39 and 40) with bolt-to-
certificate capability (Definition 41), and the existence of a PQ-EU-CMA
digital signature scheme (Definitions 36 and 37), then a secure memory-
dependent (Definition 6) public semi-quantum money scheme exists (Defi-
nition 9).

We can see that Theorem 11 proves our main public result.

4 Trapdoor Claw-Free Families and 1-of-2 Puzzles
In this section, as the name suggests, we discuss the concepts of NTCF and
1-of-2 puzzles. For completeness, we restate the formal definition of NTCF
by Brakerski et al. in Appendix D. In Section 4.1, we introduce 1-of-2
puzzles. In Section 4.2 we show how to construct a 1-of-2 puzzle using an
NTCF, and in Section 4.3 we show a parallel repetition theorem for 1-of-2
puzzles that is subsequently used to construct strong 1-of-2 puzzles.

4.1 1-of-2 Puzzles

Definition 12 (1-of-2 puzzle). A 1-of-2 puzzle consists of four efficient
algorithms: the puzzle generator G, an obligation algorithm O, a 1-of-2
solver S, and a verification algorithm V . G is a classical algorithm, V is a
classical deterministic algorithm, and O and S are quantum algorithms.

1. G outputs, on security parameter 1λ, a random puzzle p and some
verification key v: (p, v)← G(1λ).

2. O receives a puzzle p as input and outputs a classical string o called
the obligation and a quantum state ρ: (o, ρ)← O(p).

3. S receives p, o, ρ and a bit b ∈ {0, 1} as input and outputs an answer
string a: a← S(p, o, ρ, b).

4. V receives p, v, o, b, a as input and outputs 0 or 1: V (p, v, o, b, a) ∈
{0, 1}.

Completeness: Let η be some arbitrary function η : N 7→ [0, 1]. We say
that the 1-of-2 puzzle has completeness η if there exists a negligible function
negl(λ) such that

Pr[(p, v)← G(1λ), (o, ρ)← O(p), b← {0, 1}, a← S(p, o, ρ, b) :
V (p, v, o, b, a) = 1]
≥ η(λ)− negl(λ) .

(2)
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We define the V2 algorithm as:

V2(p, v, o, a0, a1) = V (p, v, o, 0, a0) · V (p, v, o, 1, a1) . (3)

Hardness: Let h : N 7→ [0, 1] be an arbitrary function. We say that the
1-of-2 puzzle Z is 1− h-hard if for any QPT 2-of-2 solver T there exists a
negligible function negl(λ) such that

Pr[SOLVE-2T ,Z(λ) = 1] ≤ h(λ) + negl(λ) . (4)

The 2-of-2 solving game SOLVE-2T ,Z(λ):

1. The puzzle giver runs (p, v)← G(1λ)

2. The 2-of-2 solver T receives input p and outputs a triple (o, ao, a1)

3. The puzzle giver runs r ← V2(p, v, o, a0, a1) and outputs r

4. T wins the game if and only if r = 1, in which case the output of the
game is defined to be 1.

We say that the 1-of-2 puzzle is strong if η = 1 and h = 0 (i.e., the
puzzle is 1-hard). We say that the 1-of-2 puzzle is weak if η = 1 and 1 − h
is noticeable.

4.2 An NTCF Implies a 1-of-2 Puzzle

This section presents how an NTCF can be used to construct a 1-of-2 puzzle.
The formal definition of an NTCF and its properties used in this section can
be found in Appendix D, taken from [BCM+18].

Theorem 13. An NTCF implies a 1-of-2 puzzle with completeness η = 1
and hardness h = 1

2 .

Note that the 1-of-2 puzzle above is a weak 1-of-2 puzzle.

Proof. The proof contains arguments similar to those used by Brakerski et
al. [BCM+18].

Given an NTCF family F that consists of the algorithms

key-genF , InvF ,CHKF ,SAMPF , JF

we construct the 1-of-2 puzzle Z = (key-genZ , OZ , SZ , VZ) as specified in
Algorithm 2.

Completeness: we need to show that Eq. (2) holds for Z defined above.
By NTCF property 3, the state |ψ′〉 in line 2 of the algorithm OZ is negligibly
close in trace distance to:

|ψ̃〉 = 1√
2|X |

∑
x∈X ,y∈Y,b∈{0,1}

√
(f ′k,b(x))(y)|b, x〉|y〉 .
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Algorithm 2 The 1-of-2 Puzzle Z
1: procedure key-genZ(λ)
2: (k, tk)← key-genF (λ)
3: Set p ≡ k, v ≡ tk
4: return (p, v)
5: end procedure
1: procedure OZ(p)
2: |ψ′〉 ← SAMPF (p, |+〉)
3: Measure the last register to obtain an o ∈ Y. Denote the post-

measurement state |ψ〉 . In the completeness we show that
|ψ〉 ≈ 1√

2(|0〉|x0〉+ |1〉|x1〉).
4: return (o, |ψ〉)
5: end procedure
1: procedure SZ(p, o, |ψ〉, b) . p and o are not used in this construction.
2: if b = 0 then
3: Measure both registers of |ψ〉 to obtain a result i ∈ {0, 1} and
x ∈ X .

4: Set a ≡ (i, x)
5: else if b = 1 then
6: Evaluate the function J on the second register of |ψ〉, and apply

Hadamard transform on both registers.
7: Measure both registers to obtain the result i ∈ {0, 1} and d.
8: Set a ≡ (i, d)
9: end if
10: return a
11: end procedure
1: procedure VZ(p, v, o, b, a)
2: Set x0 ≡ INVF (v, 0, o) and x1 ≡ INVF (v, 1, o) . Recall that v is the

trapdoor, and o is an image of the NTCF.
3: if b = 0 then
4: Interpret a as i, x
5: if x = xi then
6: return 1
7: else
8: return 0
9: end if
10: else if b = 1 then
11: Interpret a as i, d.
12: if d ∈ Gp,0,x0 ∩Gp,1,x1 and d · (J(x0)⊕ J(x1)) = i then . This

membership test uses CHKF
13: return 1
14: else
15: return 0
16: end if
17: end if
18: end procedure
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For the sake of the analysis, therefore, we can replace |ψ〉 with |ψ̃〉, and the
algorithm will behave the same, up to a negligible probability. By NTCF
property 2b, the post-measurement state |ψ〉 generated by OZ is |ψ〉 =

1√
2(|0〉|x0〉 + |1〉|x1〉), where (x0, x1) ∈ Rp. Since o was the outcome of

the measurement in line 3, we know that o ∈ Suppfp,i(xi). By NTCF
property 2a, for i ∈ {0, 1}:

xi = INVF (v, i, o) . (5)

Consider the case b = 0. In this case, the output of SZ is a ≡ (i, xi),
where, by Eq. (5), xi = INVF (v, i, o). Therefore, VZ will return 1 in line 6.
In the case of b = 1, before line 6 in SZ the state is 1√

2(|0〉|x0〉+|1〉|x1〉), after
the evaluation of J on the second register the state is 1√

2
∑
j∈{0,1} |j〉|J(xj)〉,

and after the Hadamard on both registers (which consist of w + 1 qubits),
the state is

1√
2w+2

∑
i∈{0,1},d∈{0,1}w

 ∑
j∈{0,1}

(−1)ij+d·J(xj)

 |i〉|d〉
= 1√

2w
∑

d∈{0,1}w
(−1)d·J(x0)|d · (J(x0)⊕ J(x1))〉|d〉 .

Therefore, the outcome of the measurement in line 7 will provide a random
d ∈ {0, 1}w and an i ∈ {0, 1} that satisfy i = d · (J(x0) ⊕ J(x1)). Since d
is random, property 4a guarantees that the first condition in line 12 of VZ
will be met (up to a negligible probability), and the analysis in the previous
sentence guarantees that the second condition will be met. Overall, the
probability that VZ outputs 1 is 1 − negl(λ), for some negligible function
negl, as required.

Soundness: We need to show that Eq. (4) holds for every QPT T . In
Algorithm 3, we show a reduction that maps a 2-of-2 solver T for the 1-of-2
puzzle as in Eq. (4) to an NTCF adversary A as in Eq. (9).

Algorithm 3 The Adversary A
1: procedure AF (k)
2: (o, a0, a1)← T (k)
3: Interpret a0 as i, x and a1 as i′, d.
4: return (i, x, d, i′)
5: end procedure

If T succeeds with probability 1
2 + ε(λ) (where ε(λ) is not necessar-

ily negligible), then the l.h.s. in Eq. (9) is lower-bounded by 2ε(λ) with
respect to A. Plugging the definition of V2 (see Eq. (3)) and the ac-
ceptance criteria of VZ into lines 6 and 12, we see that the 2-of-2 solver
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T needs to find o, i, x, d, i′ such that d ∈ Gp,0,x0 ∩ Gp,1,x1 and x = xi,
where x0 = INVF (v, 0, o), x1 = INVF (v, 1, o) and i′ = d · (J(x0) ⊕ J(x1)).
This implies the membership of (i, x, d, i′) in Hk (see Eq. (8)). Therefore,
Pr(k,tk)←key-genF (1λ)[A(k) ∈ Hk] ≥ 1

2 + ε(λ). Since Hk and Hk are disjoint,
Pr(k,tk)←key-genF (1λ)[A(k) ∈ Hk] ≤ 1

2 − ε(λ), and∣∣∣ Pr
(k,tk)←key-genF (1λ)

[A(k) ∈ Hk]− Pr
(k,tk)←key-genF (1λ)

[A(k) ∈ Hk]
∣∣∣

≥ 2ε(λ) .

Since by property 2b (Definition 42) the l.h.s. of Eq. (9) is upper-
bounded by the negligible function µ(λ), we conclude that ε(λ) must be
negligible, as required for h = 1

2 .
�

4.3 A Parallel Repetition Theorem for 1-of-2 Puzzles

Definition 14 (Parallel repetition of 1-of-2 puzzles). Let Z be a 1-of-2
puzzle system, and let n ∈ N. We denote by Gn the algorithm that, on
security parameter λ, runs G(1λ) for n(λ) times and outputs all the n puzzles
with their verification keys:

((p1, . . . , pn)), (v1, . . . , vn))← Gn(1λ) (6)

where (pi, vi)← G(1λ). A similar approach is used for all other algorithms
in Z:

((o1, . . . , on)), (ρ1 ⊗ · · · ⊗ ρn))← On(p1, . . . , pn) (7)

where (oi, ρi)← O(pi).

(a1, . . . , an)← Sn((p1, . . . , pn), (o1, . . . , on), ρ1 ⊗ · · · ⊗ ρn, b)

where ai ← S(pi, oi, ρi, b). The algorithm

V n((p1, . . . , pn), (v1, . . . , vn), (o1, . . . , on), b, (a1, . . . , an))

outputs 1 iff for all i ∈ [n], V (pi, vi, oi, b, ai) = 1.
The n-fold parallel repetition of Z is the 1-of-2 puzzle

Zn = (Gn, On, Sn, V n) .

We emphasize that Zn is a 1-of-2 puzzle (and not a 1-of-2n puzzle),
which explains why the algorithm contains a single challenge bit b rather
than n bits. The reason for that should be made clear later — see Fact 19.

It is natural to ask what is the hardness parameter of Zn, relative to
the hardness of Z. In the settings of 2-prover games: on the one hand, the
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soundness parameter decreases exponentially [Raz98]; yet the exponential
decrease is not as fast as one would expect [Raz11]. We say the parallel
repetition is perfect if the fact that Z is 1−h-hard means that Zn is 1−hn-
hard. Note that a perfect parallel repetition means that the adversary can do
no better than solving each 1-of-2 puzzle independently (up to a negligible
correction). This is indeed the case for 1-of-2 puzzles:

Theorem 15 (Perfect parallel repetition of 1-of-2 puzzles). Let Z be a 1-
of-2 puzzle with completeness η and hardness parameter h. For a function
n(λ) that satisfies n(λ) = poly(λ), the 1-of-2 puzzle Zn has completeness ηn
and hardness parameter hn.

Proof. First we prove the completeness property (see Eq. (2)). For ease of
notation, we write n, negl, η ,etc., instead of n(λ), negl(λ), η(λ). Suppose
that the success probability of Z is η − negl for some negligible function
negl. Since the repeated game Zn is an independent repetition of Z, its
success probability is (η − negl)n. We show that for the negligible function
negl′ = n2negl(λ), indeed (η − negl)n ≥ ηn − negl′:

(η − negl)n = ηn +
n∑
k=1

(−1)k
(
n

k

)
ηn−kneglk

≥ ηn −
n∑
k=1

nkneglk

≥ ηn −
n∑
k=1

n · negl = ηn − negl′ ,

where the last inequality holds for all λ ≥ λ0 (where n · negl ≤ 1).
We are now ready to prove the soundness. Our main tool is the notion

of a weakly verifiable puzzle system defined by Canetti, Halevi and Steiner:

Definition 16 (A weakly verifiable puzzle, adapted from [CHS05]). A sys-
tem for weakly verifiable puzzles consists of a pair of efficient classical algo-
rithms Ẑ = (G,V ) such that

1. The puzzle generator G outputs, on security parameter λ, a random
puzzle p along with some verification information v: (p, v)← G(1λ).

2. The puzzle verifier V is a deterministic efficient classical algorithm
that, on input of a puzzle p, verification key v, and answer a, outputs
either zero or one: V (p, v, a) ∈ {0, 1}.

The hardness of a weakly verifiable puzzle is defined as follows:
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Definition 17 (Hardness of a weakly verifiable puzzle, adapted from [CHS05]).
Let h : N 7→ [0, 1] be an arbitrary function. A weakly verifiable puzzle Ẑ is
said to be 1−h-hard if, for any QPT13 algorithm S, there exists a negligible
function negl(λ) such that:

Pr[SOLVES,Ẑ(λ)] ≤ h(λ) + negl(λ) .

The event SOLVES,Ẑ(λ) is defined by the following security game:

1. The puzzle giver runs (p, v)← G(1λ).

2. The solver S is given input p and outputs an answer a.

3. The puzzle giver runs r ← V (p, v, a). The event SOLVES,Ẑ(λ) is when
r = 1.

To avoid confusion, we always use Z to denote a 1-of-2 puzzle and Ẑ to
denote a weakly verifiable puzzle.

Definition 18 (Repetition of weakly verifiable puzzles, from [CHS05]). Let
Ẑ = (G,V ) be a weakly verifiable puzzle system, and let n : N 7→ N be some
function. We denote by Gn the algorithm that, on security parameter λ,
runs G(1λ) for n(λ) times and outputs all the n puzzles with their respective
verification keys:

((p1, . . . , pn)), (v1, . . . , vn))← Gn(1λ)

where (pi, vi)← Gn(1λ). V n receives n inputs and accepts if and only if all
n runs of V accept:

V n((p1, . . . , pn), (v1, . . . , vn), (a1, . . . , an)) ≡
n(λ)∏
i=1

V (pi, vi, ai) .

There is a tight relation between the hardness of a 1-of-2 puzzle and
the hardness of a weakly verifiable puzzle. Given a 1-of-2 puzzle Z =
(G,O, S, V ), we define the weakly verifiable puzzle

Ẑ = (G,V2)

(where V2 is defined in Eq. (3)).

Fact 19. For every polynomially bounded function n : N 7→ N, the 1-of-
2 puzzle Zn is 1 − h-hard if and only if the weakly verifiable puzzle Ẑn is
1− h-hard.

13In Ref. [CHS05] this notion is defined for any PPT algorithm.

30



This fact follows from the observation that the hardness property of the
1-of-2 puzzle Z is equivalent to the hardness of the weakly verifiable puzzle
Ẑ (see Definitions 16 and 12). Furthermore, the hardness of Zn is equivalent
to the hardness of Ẑn (see Definitions 14 and 18).

Canetti, Halevi and Steiner proved a parallel repetition theorem for
weakly verifiable puzzles.

Theorem 20 ([CHS05, Theorem 1]). Let h : N 7→ [0, 1] be an efficiently
computable function, let n : N 7→ N be efficiently computable and polynomi-
ally bounded, and let Ẑ = (G,V ) be a weakly verifiable puzzle system. If Ẑ
is 1− h-hard, then Ẑn, the n-fold repetition of Ẑ, is 1− hn-hard.

Although the original proof of Canetti, Halevi and Steiner assumed that
the hardness is with respect to a classical solver, the result holds also when
we consider our definition, in which the solvers are quantum. The reason is
as follows. Their proof maps an efficient solver of the n-fold repetition of a
puzzle, which succeeds with probability which is non-negligibly higher than
1 − hn, to an efficient solver that succeeds with probability non-negligibly
higher than 1 − h for a single puzzle, which is of course a contradiction.
This reduction is black-box, and in particular there is no rewinding (which,
of course, could cause an issue in the quantum setting)14. For completeness,
a sketch of their proof is provided in Appendix F.

We use Theorem 20 to prove the soundness of the 1-of-2 puzzle Zn. We
assume Z = (G,O, S, V ) is 1 − h-hard. We define the weakly verifiable
puzzle Ẑ = (G,V2). By the equivalence in Fact 19, we know that Ẑ is also
1 − h-hard. By Theorem 20, we know that Ẑn is 1 − hn-hard. Using the
equivalence in Fact 19 again, we conclude that Zn is 1 − hn-hard, which
completes the proof. �

Corollary 21. A weak 1-of-2 puzzle implies a strong 1-of-2 puzzle.

Note that we define a weak 1-of-2 puzzle to have completeness η = 1. We
refrain from answering the question whether any puzzle in which η(λ)−h(λ)
is noticeable, implies a strong puzzle.

Proof. By using Theorem 15 with n(λ) = log2(λ)
log( 1

h
) repetitions15 of the weak

h-hard 1-of-2 puzzle, we construct a 1-complete 16, 1 − hn = 1 − 1
λlog(λ) =

1− negl(λ)-hard 1-of-2 puzzle. Note that a 1− negl(λ)-hard 1-of-2 puzzle is
equivalent to a 1-hard 1-of-2 puzzle, which completes the proof. �

14The weakly verifiable puzzle Ẑ constructed from a 1-of-2 puzzle is classical — each
attempt to solve the puzzle creates a new quantum state, so even when running a solver
for a puzzle multiple times there is indeed no rewinding.

15Note that n(λ) is indeed polynomial in λ - since a weak 1-of-2 puzzle holds that 1−h is
noticeable (see Definition 12), by using the inequality ln(1− ε) ≤ −ε we get that log(1/h)
is noticeable.

16Recall that a weak 1-of-2 puzzle has completeness η = 1 (see Definition 12).
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5 Strong 1-of-2 Puzzles Imply Semi-QuantumMoney
In this section, we show a construction of a private semi-quantum money
scheme using strong 1-of-2 puzzles.

In Section 5.1, we define interactive private quantum money. We de-
fine three degrees of security. Full scheme security means that every QPT
counterfeiter cannot pass t+ 1 verifications given t quantum money states.
We define mini-scheme security as a weaker variant of full security, which
is secure only when the adversary is given a single banknote. Finally, we
define 2-of-2 mini-scheme security as an even weaker variant wherein the
adversary does not have a banknote verification oracle. We also formally
define semi-quantum money.

In Section 5.2, we show the construction of a 2-of-2 mini-scheme, and
show that our 2-of-2 mini-scheme is in fact a mini scheme (see Definition 25).

In Section 5.3, we show that any (interactive private quantum money)
mini scheme can be elevated to a full (interactive private quantum money)
scheme — see Definition 24.

5.1 Definitions of Private Semi-Quantum Money

The following definitions are slight variations of the definitions in Section 3.1.

Definition 22 (Interactive memoryless private quantum money). An in-
teractive memoryless private quantum money scheme consists of a classical
PPT key generation algorithm key-gen and two-party interactive memory-
less QPT protocols mint and verify. key-gen(1λ) outputs a key k. Both the
minting protocol and the verification protocol are two-party quantum proto-
cols involving an Acquirer A and a Bank B. During both protocols, the bank
receives the key k as input, and the user does not. At the end of the honest
run of mint, the user holds a quantum money state that, in general, could be
a mixed state. In this work, the protocols will end with a pure state, usually
denoted |$〉. In the following sections, for the sake of clarity, we work with
the pure-state formalism. The banknote the user chooses to verify is denoted
in this work as the input of the verify protocol. At the end of the verification
protocol, the bank outputs a bit b that states whether the money is valid or
not.

Correctness. The scheme is correct if there exists a negligible function
negl(λ) such that:

Pr(k ← key-gen(1λ); |$〉 ← mintk(1λ); b← verifyk(|$〉) :
b = 1) = 1− negl(λ) .
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Definition 23. We say that the protocol has classical minting (verification)
if B is classical in mint (verify). To emphasize that the verification is classi-
cal, we use cverify to denote the (classical) verification algorithm. We define
private semi-quantum money as any secure memoryless interactive private
quantum money protocol that has classical minting and classical verification.

In the quantum setting, there are a number of possible verifications with
different qualities; a notable quality is whether the verification “destroys”
the banknote (i.e., whether the banknote can be used again after verifica-
tion). This distinction can be thought of as the difference between verifying
— proving that a legal money state exists — and spending — proving a legal
money state does not exist — and it becomes more interesting when consid-
ering the public setting. There, a banknote can be spent with the bank in
the same manner as in the private setting, but it can also be verified with
other users. In such a case it is important that the banknote is preserved, so
it could be transferred. Another distinction is added by the introduction of
classically verified money: whether the verification is a classical or quantum
protocol. Moreover, a classical verification must be a challenge-response pro-
tocol — otherwise the same proof can be passed twice, effectively spending
the same banknote twice. In our scheme, verification is classical and does
not preserve the banknote, proving both that it existed and that it does not
exist anymore.

In this definition, we emphasize that the protocols mint and verify are
memoryless: i.e., all outgoing messages depend solely on the key and the
input from the user. In other words, the bank does not maintain a variable
state that changes between different runs of the protocols — each run is
independent. Constructing a stateful scheme is trivial even in the classical
setting, as discussed in Appendix E. In addition, it is interesting to note that
our protocols are composed of a fixed number of messages, independent of
the security parameter: verify has 2 messages (a single round) and mint has
3 messages.

Definition 24. We say that an interactive private quantum money scheme
$ is secure if for every QPT counterfeiter A there exists a negligible function
negl(λ) such that:

Pr[COUNTERFEITfullA,$ (λ) = 1] ≤ negl(λ) .

The money counterfeiting game COUNTERFEITfullA,$ (λ):

1. The bank generates a key k ← key-gen(1λ).

2. The bank and the counterfeiter interact. The counterfeiter can ask
the bank to run mintk(·) and verifyk(·) polynomially many times, in
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any order the counterfeiter wishes. The counterfeiter is not bound to
following his side of the protocols honestly. The counterfeiter can keep
ancillary registers from earlier runs of these protocols and use them
in later steps. Let w be the number of successful verifications, ` the
number of times that mint was called by the counterfeiter and v the
number of times that verify was called by the counterfeiter.

3. The bank outputs (w, `, v).

The value of the game is 1 iff w > `. In this case we sometimes simply
say that the counterfeiter wins.

We state here again that this security definition is stronger than the one
previously used — this is further explained in Remark 4.

Following previous works [AC13, GK15], we define a private quantum
money mini-scheme, with a slight deviation. Additionally, we define a 2-of-2
mini-scheme, which is a weaker variant of the mini-scheme.

Definition 25 (quantum money mini-scheme and 2-of-2 mini-scheme). We
define mini-scheme security as we defined full scheme security but with re-
gard to COUNTERFEITminiB,$ (λ), wherein the counterfeiter B wins iff w >
` ∧ ` = 1.

We define 2-of-2 mini-scheme security as we did above but with regard
to COUNTERFEIT2−of−2

C,$ (λ), where the counterfeiter C wins iff w > ` ∧ ` =
1 ∧ v = 2.

Note that the definitions in this sections could be naturally extended to
the public settings.

5.2 Construction of a Mini-Scheme

In this section, we show the construction of a scheme that we then prove to
be a 2-of-2 semi-quantum mini-scheme. Later we prove that our construction
in fact achieves a stronger security notion — a semi-quantum mini-scheme.

We now give an informal description of our construction, which is defined
formally in Algorithm 4. The construction uses a strong 1-of-2 puzzle and
a post-quantum existentially unforgeable under an adaptive chosen-message
attack (PQ-EU-CMA) MAC (see Definitions 12, 34 and 35). In key-gen, the
bank generates a MAC signing key and n pairs of strong 1-of-2 puzzles and
their respective verification keys. The minting process is done as follows.
The bank sends these n puzzles to the user, who then runs the obligation
protocol Z.O on all the n puzzles. The user keeps the quantum output
of O and sends the classical outputs (called the obligations) to the bank.
The bank signs these obligations using the classical MAC scheme and sends
these tags back to the user. The verification starts with the bank sending
random challenges to the user. The user then has to present a set of signed
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obligations (which the user should have from the mint protocol) together
with a set of solutions to the challenges of these puzzles. The bank verifies
the solution to each puzzle with its respective verification key (the set of
verification keys is part of the key). Due to the fact that this verification is
classical, it is denoted cverify. We show that a counterfeiter cannot double-
spend a banknote without breaking the soundness of a strong 1-of-2 puzzle
(or the security of the MAC).

Intuitively, an adversary could try to double-spend the banknote using
the solutions he received from the first verification, while hoping to be given
the same challenges. However, assuming a sufficiently large number of puz-
zles (say, n = log2(λ)), the probability of encountering the exact same set
of challenges more than once is negligible. Passing two verifications of any
banknote in which the challenges were not the same both times essentially
requires one to pass the SOLVE− 2 security game for the 1-of-2 puzzle. In-
sofar as this is considered a strong 1-of-2 puzzle, the probability that it can
occur is therefore negligible.

For ease of notation, we write:

• pn := (p1, . . . , pn)

• vn := (v1, . . . , vn)

• on := (o1, . . . , on)

• ψ
n := |ψ1〉 ⊗ · · · ⊗ |ψn〉

• b
n := (b1, . . . , bn)

• an := (a1, . . . , an)

Proposition 26 (Correctness of $Z). Assuming MAC has perfect complete-
ness and Z is a 1-of-2 puzzle with completeness η = 1, $Z (Algorithm 4)
is a semi-quantum money scheme that satisfies the correctness property (see
Definition 22).
Proof. Clearly, the communication and the bank’s operation in mint and
cverify are classical — therefore, the scheme is semi-quantum.

From the perfect completeness property of MAC (see Definition 34) we
get:

Pr[MAC.verifyk(on,MAC.mack(on)) = 1] = 1
meaning Pr[rMAC = 1] = 1.

From the completeness η = 1 of Z we get:

Pr[(p, v)← Z.G(λ); (o, |ψ〉)← Z.O(p); b← {0, 1};
a← Z.S(p, o, |ψ〉, b) :
Z.v(p, v, o, b, a) = 1]
≥ 1− negl(λ) .
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Algorithm 4 The Interactive Private Money Scheme $Z
$Z .key-gen(1λ)
1 : n← log2(λ)
2 : foreach i ∈ [n] :
3 : (pi, vi)← Z.G(1λ)
4 : pn ← (p1, . . . , pn), vn ← (v1, . . . , vn)
5 : k ←MAC.key-gen(1λ)
6 : k$ ← (pn, vn, k)
7 : return k$

$Z .mintk$

Acquirer Bank

1 : pn

2 : foreach i ∈ [n] :
3 : (oi, ψi)← Z.O(pi)
4 : on ← (o1, . . . , on), ψn ← (ψ1, . . . , ψn)

5 : on

6 : to ←MAC.mack(on)

7 : to

$Z .cverifyk$
(on, to, ψ

n)
Acquirer Bank

1 : b
n∈R{0, 1}n

2 : foreach i ∈ [n] :
3 : ai ← Z.S(pi, oi, |ψi〉, bi)

4 : an, on, to

5 : rMAC ←MAC.verifyk(on, to)
6 : foreach i ∈ [n] :
7 : ri ← Z.V (pi, vi, oi, bi, ai)

8 : r ← rMAC ·
n∏
i=1

ri

9 : return r
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Let bi be the event of failing verification on the ith puzzle. From the pre-
vious equation, Pr[bi] ≤ negl(λ) for some negligible function negl(λ). Let
negl′(λ) := n · negl(λ) = log2(λ) · negl(λ). Using the union bound:

Pr[∪ni=1bi] ≤
n∑
i=1

Pr[bi] = log2(λ) · negl(λ) = negl′(λ)

meaning Pr[(∏n
i=1 ri) = 1] ≥ 1− negl′(λ). Thus:

Pr[k$ ← $Z .key-gen(1λ); (pn, on, to, ψ
n)← $Z .mintk$();

$Z .cverifyk$
(pn, on, to, ψ

n) = 1]

= Pr[rMAC = 1
⋂(

n∏
i=1

ri

)
= 1]

≥1− negl′(λ) .

�

Proposition 27 ($Z is a 2-of-2 mini-scheme). Assuming Z is a strong 1-
of-2 puzzle and MAC is a PQ-EU-CMA MAC, the scheme $Z (Algorithm
4) is a 2-of-2 mini-scheme (see Definition 25).

Proof. We show that the probability of a QPT counterfeiter to win the 2-
of-2 mini-scheme security game against $Z (Algorithm 4) is bound by the
negligible probability to solve both challenges of the strong 1-of-2 puzzle Z.
Intuitively, double-spending a banknote entails solving both challenges for
at least one of its n puzzles, which is intractable. For this proof, as well
as the following security proofs of our money scheme (Proposition 28 and
Theorem 30), we use a sequence-of-games based technique adapted from
[Sho04]. The following sequence of games binds the success probability of
any QPT 2-of-2 mini-scheme counterfeiter to that of a QPT 2-of-2 puzzle
solver (see Eq. (4)):

Game 0. Let C be a QPT 2-of-2 mini-scheme counterfeiter. We as-
sume w.l.o.g. that C performs exactly two verifications and one mint (i.e.,
` = 1 and v = 2) — an adversary which does not comply with this as-
sumption will necessarily fail (see Definition 25). We define Game 0 to be
COUNTERFEIT2−of−2

C,$Z (λ).
Let S0 be the event where w > 1 (see Definition 25) in Game 0 (this is

the original win condition for C, since we assume ` = 1 ∧ v = 2).

Game 1. We now transform Game 0 into Game 1, simply by changing the
win condition: Game 1 is identical to Game 0, but we define the following
event: let b1n, b2n be the random bit strings that were generated in line 1
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of $Z .cverify the first and second times C asked for verification, respectively.
Let S1 be the event where w > 1 ∧ b1n 6= b2

n in Game 1.
Let F be the event where b1n = b2

n in Game 1, and F ′ the event where
w > 1 ∧ b1 = b2 in Game 1. Since b1n and b2n are generated uniformly and
independently, Pr[F ] = 1

2n ≤ negl(λ) for some negligible function negl(λ).
Therefore: Pr[S0] = Pr[S1 ∪ F ′] ≤ Pr[S1 ∪ F ] ≤ Pr[S1] + Pr[F ] ≤ Pr[S1] +
negl(λ). So Pr[S0] ≤ Pr[S1] + negl(λ).

Game 2. We now add a small change to the game above: at the start of
the game, a uniform i′ ∈R [n] is chosen by the bank. Let j be the first index
such that b1j 6= b2j (j =∞ if b1 = b2).

Let S2 be the event where w > 1 ∧ b1 6= b2 ∧ i′ = j in Game 2.
S1 ⇒ b1 6= b2, so since i′ was chosen uniformly and independently of w,

b1, b2 and j, we get that Pr[S2|S1] = 1
n . Moreover, it is easy to see that

Pr[S2|¬S1] = 0. So Pr[S2] = 1
n · Pr[S1], meaning Pr[S1] is a polynomial

multiplicative factor of Pr[S2].

Game 3. Game 3 is identical to Game 2, but we now add an additional
constraint to the win condition. Let on be the set of obligations C sent in line
5 of $Z .mint, and let o1n, o2n be the sets of obligations sent by C during line
4 of $Z .cverify the first and second times C asks for verification, respectively.

Let S3 be the event where w > 1 ∧ b1 6= b2 ∧ i′ = j ∧ o1n = o2n = on in
Game 3.

Let F be the event where C passes one or more verifications such that
o1n 6= on or o2n 6= on. It is easy to see that S2 ∧ ¬F ⇐⇒ S3 ∧ ¬F .
Therefore, from the Difference Lemma (Lemma 38) we get

|Pr[S3]− Pr[S2]| ≤ Pr[F ] .

From the unforgeability of MAC (see Definition 35), Pr[F ] is negligible17.
Therefore, Pr[S2] ≤ Pr[S3] + negl(λ).

Game 4. We now change the behavior of verifications. Let a1n, a2n be the
sets of answers sent by C in line 4 of $Z .cverify the first and second times C
asks for verification, respectively18. Instead of performing verifications both

17Otherwise, we could construct a MAC forger F with non-negligible success probability.
Assume towards a contradiction that with non-negligible probability, C passes verification
by sending in line 4 o′n, t′o such that o′n 6= on. That means that the MAC verification in
line 5 passed. So F could simulate a bank, but instead of signing and verifying with k
generated in $Z .key-gen, F uses the signing and verification oracles. F runs C against the
simulated bank, and present o′n, õ′n. With non-negligible probability, MAC verification
passes, and since o′n 6= on, and no other signings are requested (mint was run only once),
F wins MAC-FORGEF,MAC(λ).

18C can, of course, run both verification protocols simultaneously. We number the
verifications according to the one that got to line 4 of the protocol first.
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times, the bank now performs both verifications only on the second time:
the first time $Z .cverify is called, after line 4 the bank returns 1 and stops.
The second time $Z .cverify is called, the bank performs both verifications:
i.e., on the second verification we replace everything from line 7 with:

6 : foreach i ∈ [n] :

7 : ri ← Z.V (pi, vi, oi, b1
i , a

1
i )

8 : r′
i ← Z.V (pi, vi, oi, b2

i , a
2
i )

9 : r ← rMAC ·
n∏
i=1

ri ·r′
i

10 : return r

Let S4 be the event where w > 1 ∧ b1 6= b2 ∧ i′ = j ∧ o1n = o2n = on in
Game 4.

Verifying both inputs on the second request is equivalent to verifying
them individually: S3 ⇒ S4 since if both verifications pass in Game 3, then
both pass in Game 4 (the first one always passes, the second one runs both
verifications that passed in S3), and ¬S3 ⇒ ¬S4 since that means one of the
verifications in Game 3 fail, which means the second verification in Game 4
fails. So Pr[S3] = Pr[S4].

Game 5. We now change the second verification: on the i′th pair of puz-
zles, if b1i′ 6= b2i′ (we note that this always holds when i′ = j), we perform
V2 instead of normal verification — i.e., we replace everything from line 7
forward in $Z .cverify in the second verification with:

6 : foreach i ∈ [n] :

7 : if i = i′ ∧ b1
i′ 6= b2

i′ :

8 : if b1
i = 0 : â0 ← a1

i , â1 ← a2
i

9 : else : â0 ← a2
i , â1 ← a1

i

10 : ri, r
′
i ← V2(pi, vi, oi, â0, â1)

11 : else :
12 : ri ← Z.V (pi, vi, oi, b1

i , a
1
i )

13 : r′
i ← Z.V (pi, vi, oi, b2

i , a
2
i )

14 : endif

15 : r ← rMAC ·
n∏
i=1

ri · r′
i

16 : return r

Let S5 be the event where w > 1 ∧ b1 6= b2 ∧ i′ = j ∧ o1n = o2n =
on ∧ V2(pi, vi, oi, â0, â1) = 1 in Game 5.

In the case where i = i′∧b1i 6= b2i , running V2(pi, vi, oi, â0, â1) is equivalent
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to running Z.v twice, since we assign â0 and â1 respective to b1i and b2i . So
S4 ⇐⇒ S5, meaning Pr[S4] = Pr[S5].

Game 6. We now simply relax the win condition: Game 6 goes exactly
the same as Game 5, but we define the following event: let S6 be the event
where V2(pi, vi, oi, â0, â1) = 1 in Game 6. Since this is a relaxation of the
conditions of S5, we get Pr[S5] ≤ Pr[S6].

Bound on success probability. We show a reduction mapping a 2-of-2
mini-scheme counterfeiter to a 2-of-2 solver (see Definition 17):

Let C be a QPT 2-of-2 mini-scheme counterfeiter. We construct a QPT
2-of-2 solver T in the following manner:

Let (p, v) be the output of G(1λ) at step 1 of the solving game. On step
2, T simulates a Game 6 bank (by honestly running mints and verifications
as defined in Game 5, as well as choosing i′ uniformly) with two changes:

1. The i′th puzzle is replaced with p.

2. In line 10 of the second verification, T outputs (oi, â0, â1) to the
puzzle giver instead of running V2. The honest puzzle giver runs
V2(p, v, oi, â0, â1) and returns the result, which T uses as ri and ri′ .

We can see that for any C, Pr[S6] is not affected by the above changes: in
the first change we replace a random puzzle with another random puzzle,
which has no affect on Pr[S6]. In the second change, the honest puzzle giver
runs V2 with exactly the same input as the bank in the original Game 6
should, and returns the result — this also does not affect Pr[S6].
T runs C against Game 6. S6 is exactly the win condition of the 2-of-2

solving game, which means T wins the 2-of-2 solving game with probability
Pr[S6]. Since Z is a strong 1-of-2 puzzle, the success probability of any
QPT 2-of-2 solver is negligible — meaning Pr[S6] is negligible for any QPT
counterfeiter.

For each pair of consecutive games i and i + 1, we have shown that
Pr[Si] ≤ poly(λ)·Pr[Si+1]+negl(λ) for some poly(λ), negl(λ). Finally, we have
shown that Pr[S6] is negligible in λ, so we can conclude that Pr[S0] is negli-
gible in λ. Since Game 0 is defined as the 2-of-2 mini-scheme counterfeiting
game, and S0 is defined as its win condition, no QPT 2-of-2 mini-scheme
counterfeiter can win the game with more than negligible probability. �

We now prove that $Z (Algorithm 4) is, in fact, a mini-scheme (see
Definition 25). Unlike the others, this proof is not modular — not every 2-of-
2 mini-scheme is a mini-scheme. For example, consider a scheme wherein the
bank shares with the counterfeiter a single bit of the key on each verification.
This scheme could have 2-of-2 mini-scheme security, but obviously, it would
not be secure for a counterfeiter with a verification oracle, which could easily
discern the key.
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Proposition 28 ($Z is a mini-scheme). Assuming $Z is a 2-of-2 mini-
scheme (where $Z is given in Algorithm 4, and a 2-of-2 mini-scheme is
defined in Definition 25), $Z is a mini-scheme (see Definition 25).

Proof. We use an idea very similar to that used in Ref. [PYJ+12, Theorm 5]
(a slightly different variation also appeared in Ref. [BS16a, Appendix C]);
we show that if a counterfeiter with access to a verification oracle can ask
for v verifications and have two of them succeed, a 2-of-2 counterfeiter could
guess the two success indices randomly and apply the same strategy, thus
breaking the security of the 2-of-2 mini-scheme. The following sequence of
games binds the success probability of any QPT mini-scheme counterfeiter
to that of a QPT 2-of-2 mini-scheme counterfeiter against $Z :

Game 0. Let B be a QPT mini-scheme counterfeiter. We assume w.l.o.g.
that B asks for mint only once (i.e., ` = 1), and for verification v times such
that v is polynomial in λ — an adversary which does not comply with this
assumption necessarily fails (see Definition 25). We define the first game to
be COUNTERFEITminiB,$Z (λ) (see Definition 25).

Let S0 be the event where w > 1 (see Definition 25) in Game 0 (this is
the original win condition for B since we assume ` = 1 and v is polynomial
in λ).

Game 1. We now make one small change to Game 0, namely, that the
game stops after B receives two successful verifications (i.e., the counterfeiter
is not allowed to make additional verifications after receiving two successful
ones. We model this by defining additional verification attempts as failures).

Let S1 be the event where w = 2 in Game 1.
It is obvious why S1 ⇒ S0. In addition, S0 ⇒ S1, since any run of Game

0 with more than two successful verifications is equivalent to a run of Game
1 in which all verifications beyond the second successful one are ignored. So
Pr[S0] = Pr[S1].

Game 2. We model a run of v verifications using a string r ∈ {0, 1}v,
such that ri = 1 if and only if the ith time B asked for verification was
successful19. At the beginning of Game 2, a uniform binary string r′ ∈R
{0, 1}v is generated such that ∑v

i=1 r
′
i = 2.

Let S2 be the event where w = 2 ∧ r′ = r in Game 2.
Given S1, we know that the string r representing the verifications in

Game 1, like r′, also holds ∑v
i=1 ri = 2. There are

(v
2
)
such strings, so since

r′ was chosen uniformly and independently of r, there is a 1
(v2)

probability
that r′ = r. So Pr[S2] = 1

(v2)
· Pr[S1], meaning Pr[S1] =

(v
2
)
· Pr[S2].

19B can, of course, run several verification protocols simultaneously. We number the
verifications according to the order in which they were initiated.
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Game 3. We transform Game 2 into Game 3 by changing the following:
for each i ∈ [v], for the ith time B runs a verification protocol with the bank,
instead of receiving the actual result of the MAC and puzzle verifications
(r), it receives r′i; i.e., we change line 9 with return r′i.

Let S3 be the event where w = 2 ∧ r′ = r in Game 3.
Given S2, since r′ = r in both Game 2 and Game 3, the fact that

B receives r′i instead of ri changes nothing. So Pr[S3|S2] = 1. Trivially,
Pr[S3|¬S2] = 0. So Pr[S2] = Pr[S3].

Game 4. Let k, h be the two indices such that r′k = r′h = 1, k 6= h (by
construction there are exactly two such indices). In Game 4, for every
verification other than the kth and the hth, the MAC verification and puzzle
verifications are not called at all — bi is generated and r′i is returned; i.e.,
lines 5 to 8 are removed.

Let S4 be the event where w = 2 ∧ r′ = r in Game 4.
It is easy to see that Pr[S3] = Pr[S4], since for every verification but the

kth and the hth, the bank did nothing with the result of the MAC or puzzle
verifications, so whether we run them at all changes nothing.

Bound on success probability. We show a reduction mapping a mini-
scheme counterfeiter to a 2-of-2 mini-scheme counterfeiter (see Definition 25):

Let B be a QPT mini-scheme counterfeiter. We construct a a QPT 2-of-2
mini-scheme counterfeiter C in the following manner:
C simulates a Game 4 bank with the following difference: when asked

to run $Z .mint, it, in turn, asks the real bank to run $Z .mint and returns
the result, and on the kth an hth verifications, it asks the real bank to run
$Z .cverify and returns the result. We note that for any other verification, C
can simulate the bank since MAC and puzzle verifications are not performed;
all it needs to do is choose a uniform b and return r′i. C runs B against the
simulated Game 4 bank.

So Pr[S4] = Pr[COUNTERFEIT2−of−2
C,$Z (λ) = 1] ≤ negl(λ) for some neg-

ligible function negl(λ). Therefore, by construction, we get that Pr[S0] ≤
poly(λ) ·Pr[S4] for some poly(λ) and therefore is also negligible for any QPT
counterfeiter. Game 0 is defined as the original mini-scheme security game,
and S0 is defined as its original win condition; therefore, $Z (Algorithm 4)
is a mini-scheme. �

5.3 A Mini-Scheme Implies a Full Blown Scheme

We show how a mini-scheme $ can be used to construct a full blown scheme
$̂. The construction is based on a very similar idea to those in Refs. [BS16a,
Appendix C] and [AC13, Section 3.3].

Here we provide an informal description of our full scheme $̂. The con-
struction is defined formally in Algorithm 5. Our full scheme is constructed
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by minting mini-scheme banknotes, and including the key of the mini-scheme
in each one. To that end, a MAC and a private-key encryption scheme are
used: on minting, the bank mints a mini-scheme banknote, encrypts the
mini-scheme key that was generated in the process, signs it in its encrypted
form, and hands it to the user together with the mini-scheme banknote. The
secure nature of the encryption scheme prevents the user from exploiting the
mini-scheme key to break the mini-scheme’s underlying security. On verifi-
cation, the bank uses the MAC scheme to verify that the note was indeed
minted by a bank, after which it decrypts the mini-scheme key to verify the
mini-scheme banknote itself.

In both [BS16a] and [AC13], the core idea of the construction is the same,
with minor differences: in [BS16a] algorithms are used instead of interactive
protocols, and [AC13] is in the public setting, so a digital signature scheme
is used instead of MAC, and an encryption scheme is not necessary.

We prove the security of the full-blown scheme by showing a reduction
mapping a full-blown scheme counterfeiter to a mini-scheme counterfeiter,
such that the mini-scheme counterfeiter generates fake bank notes for the
full-blown counterfeiter.

Proposition 29 (Correctness of $̂). Assuming $ is a correct mini-scheme
(see Definition 22) and that both MAC and ENC have perfect completeness,
$̂ (Algorithm 5) is correct (see Definition 22).

Proof. From the perfect completeness of MAC (see Definition 34), we get
that Pr[Sm] = 1, where

Sm := MAC.verifykm(c,MAC.mackm(c)) = 1 .

Therefore, when the acquirer is honest, we know that he will send t =
MAC.signkm(c) (that he received during the run of $̂.mint) to the bank on
line 1 of $̂.cverify. Thus, the MAC verification on line 2 will succeed.

From the perfect completeness of ENC (see Definition 32), we get that
Pr[Se] = 1, where

Se := ENC.decryptke(ENC.encryptke(k$)) = k$ .

Therefore, when the acquirer is honest, we know that he will send c =
ENC.encryptke(k$) (that he received during the run of $̂.mint) to the bank
on line 1 of $̂.cverify. Thus, the decryption in line 3 will succeed.

From the above, we conclude that for an honest acquirer both the de-
cryption and MAC verification in $̂.cverify always succeeds. As such, the
verification can only fail in $.cverifyk$

. We know that the result of the de-
cryption is k$ as it was generated in $̂.mint, and that this k$ was generated
by running $.key-gen. Thus, from the correctness of the mini-scheme $ (see
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Algorithm 5 The Interactive Private Money Scheme $̂

$̂.key-gen(1λ)
1 : km ←MAC.key-gen
2 : ke ← ENC.key-gen
3 : return (km, ke)

$̂.mint(km,ke)

Acquirer Bank
1 : k$ ← $.key-gen(1λ)
2 : c← ENC.encryptke(k$)
3 : t←MAC.mackm(c)

|$〉 ← $.mintk$()

4 : c, t

$̂.cverify(km,ke)(c, t, |$〉)
Acquirer Bank

1 : c, t

2 : rm ←MAC.verifykm(c, t)

. . . . . . . . . . . . . . . . . . . . . . . . . . .if rm = 1. . . . . . . . . . . . . . . . . . . . . . . . . . .

3 : k$ ← ENC.decryptke(c)

rv ← $.cverifyk$
(|$〉)

4 : return rv

. . . . . . . . . . . . . . . . . . . . . . . . . . .if rm = 0. . . . . . . . . . . . . . . . . . . . . . . . . . .

5 : return 0
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Definition 22), we get that Pr[S$] ≥ 1− negl(λ) for some negligible function
negl(λ), where

S$ := k$ ← $.key-gen(1λ); |$〉 ← $.mintk$();
$.cverifyk$

(|$〉) = 1 .

$̂.cverify passes whenMAC.verify, ENC.decrypt and $.cverify all pass, so for
an honest acquirer:

Pr[(km, ke)← $̂.key-gen(1λ); (c, t, |$̂〉)← $̂.mint(km,ke)();
$̂.cverify(km,ke)(c, t, |$̂〉) = 1]
= 1− Pr[¬Sm ∪ ¬Se ∪ ¬S$]
≥ 1− negl(λ) .

�

Theorem 30 ($̂ is a secure interactive private quantum money scheme).
Assuming $ is an interactive private quantum money mini-scheme, MAC
is a PQ-EU-CMA MAC (see Definition 35) and ENC has PQ-IND-CPA
(see Definition 33), $̂ (Algorithm 5) is a secure interactive private quantum
money scheme (see Definition 24). Moreover, if $ is semi-quantum, $̂ is
also semi-quantum.

Proof. The proof idea is very similar to that used in [BS16a, Appendix C]:
we show that the success probability of any full-scheme counterfeiter able
to verify more banknotes than he received is upper-bounded by the suc-
cess probability of a mini-scheme counterfeiter; a mini-scheme counterfeiter
could guess which banknote the full-scheme counterfeiter will double-spend,
generate fake banknotes, and with non-negligible probability double-spend
the single mini-scheme banknote. The following sequence of games binds
the success probability of any QPT full-scheme counterfeiter to that of a
QPT mini-scheme counterfeiter:

Game 0. Let A be a QPT full scheme counterfeiter. We assume that the
amount of mints and verifications requested by A is polynomial in λ (i.e.,
` and v are polynomial in λ) since an adversary that does not comply with
this assumption is not QPT. We define the first game to be the original
interactive private quantum money security game, COUNTERFEITfull

A,$̂
(λ)

(see Definition 24).
Let S0 be the event where w > ` (see Definition 24) in Game 0 (this is

the original win condition of the interactive private quantum money security
game, since we assume ` and v are polynomial in λ).
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Game 1. We change Game 0 slightly by adding the condition that a spe-
cific banknote is double-spent: recall that ` and v are the numbers of times
$̂.mint and $̂.cverify are run during Game 0, respectively. In the start of
Game 1 a uniform i ∈R [`] is chosen by the bank. Let (cj , tj , |$j〉) be the
result of the jth mint, and let wj be the amount of verifications such that
$̂.cverify(cj , t, |$〉) = 1 for some t, |$〉. Let ĵ be the smallest j such that
wj ≥ 2 (ĵ =∞ if for all j ∈ [`] : wj < 2).

Let S1 be the event where w > ` ∧ i = ĵ in Game 1.
Assume S0 occurred. Due to the unforgeability of MAC (see Defini-

tion 35), we know that in every successful verification, A presented (cj , t, |$〉)
for some j ∈ [`], t, |$〉20. Therefore, since A was given only ` pairs (cj , tj)
(from the ` times that $̂.mint was run), and there were w > ` successful ver-
ifications from the assumption that S0 occurred, then from the pigeonhole
principle we conclude that wj ≥ 2 for some j, meaning 1 ≤ ĵ ≤ `. Since
i ∈ [`] was chosen randomly and independently to ĵ, given S0, there is a
1
` probability that i = ĵ; in which case S1 occurs — therefore Pr[S1|S0] =
1
` · Pr[S0].

Assume S0 did not occur: then we know w ≤ `, meaning S1 also did not
occur — namely, Pr[S1|¬S0] = 0. So Pr[S1] = 1

` · Pr[S0], meaning Pr[S0] is
Pr[S1] times some polynomial in λ.

Game 2. We now change the above game such that now, on the ith mint21,
instead of encrypting and signing the mini-scheme key from line 1 (the one
later used in $.mint), the bank encrypts and signs 0$ (where 0$ is a string
of 0’s the length of a mini-scheme key); i.e., on the ith mint we replace lines
2 and 3 with:

c← ENC.encryptke(0$)
t←MAC.mackm(c) .

On $̂.cverify(c, t, |$〉), if ENC.decryptke(c) = 0$, then the bank runs $.cverify
with the original mini-scheme key that was used in the ith mint (the one
originally generated in line 1 of the ith mint) rather than with 0$.

Let S2 be the event where w > ` ∧ i = ĵ in Game 2.
Game 2 is different from Game 1 only in the ith mint, and the sole

difference in the ith mint is that A receives an encrypted and signed 0$
20Suppose A passes with non-negligible probability a verification of (c, t, |$〉) such that

c 6= cj ∀j ∈ [`]. In that case MAC.verify(c, t) = 1 with non-negligible probability. We
could use A to construct a forger F with non-negligible success probability: F simulates
a bank, but instead of signing and verifying with the MAC key generated in $̂.key-gen, he
uses the signing and verification oracles. He then runs A against the simulated bank, and
will be able to present c, t which pass MAC verification with non-negligible probability,
while he did not ask for a tag of c before since c 6= cj ∀j ∈ [`].

21A can, of course, run several mint protocols simultaneously. We number them accord-
ing to the order they were initiated.
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rather than the key that was used in $.mint. Similarly, in a verification for
(c, t, |$〉) such that c = ENC.encryptke(0$) for some t, |$〉, the mini-scheme
bank verifies |$〉 with the mini-scheme key that was generated in the ith
mint, that in Game 1 is sent instead of 0$.

That means that the only difference between Game 2 and Game 1 is
in what A receives on the ith mint; on the ith mint, A receives a signed
encryption of a random key rather than the key used to sign the mini-scheme
banknote he received, but the same key will be used to verify it, just like on
a normal verification. So, due to the indistinguishability of ENC, replacing
an encryption of one message with the encryption of another message of the
same length22 cannot change the behavior of A, i.e., |Pr[S2] − Pr[S1]| ≤
negl(λ)23.

Bound on success probability. We show a reduction mapping a Game
2 counterfeiter to a mini-scheme counterfeiter:

Let A be a QPT full-scheme counterfeiter. We construct a mini-scheme
counterfeiter B in the following manner:
B simulates the bank of Game 2, with one exception: on the ith mint,

instead of generating the actual mini-scheme key and banknote, B asks the
actual mini-scheme bank to run $.mint. Similarly, when performing a verifi-
cation for 0$, B asks the actual mini-scheme bank for verification. B runs A
against the altered version of Game 2. The only difference from the original
Game 2 is that on the ith mint B asks the bank to generate the banknote,
and when he receives 0$ he asks the bank to verify that same note. The
honest mini-scheme bank runs minting and verification on that banknote
in the exact same way as the bank in Game 2 should, meaning that Pr[S2]
is unchanged for any A by the simulated Game 2. In the case that S2 oc-
curred, B passed at least two verifications with 0$, meaning he passed two
verifications with the actual bank, while only asking mint once. So B has a
probability of Pr[S2] to pass win the mini-scheme counterfeiting game, and

22Indistinguishability works for messages of the same length. Here we assume, without
loss of generality, that key-gen(1λ) always outputs keys of the same length.

23Assume |Pr[S2]− Pr[S1]| is non-negligible. Assume without loss of generality that
Pr[S2] ≤ Pr[S1]. In that case, we could construct a distinguisher D with non-negligible
success probability: D will simulate a bank, but instead of encrypting with the ENC key
generated in $̂.key-gen, he will use the encryption oracle, and instead of decrypting he
will “remember” each encryption he made and thus could match each encryption to the
relevant key (any unrecognized encryption would not have passed the real bank verification
either, because the encryptions are MAC signed). On the ith mint, he will present a
random key and the actual mini-scheme key used in that mint as m0 and m1 (the chosen
messages whose encryptions he needs to recognize in the CPA game) respectively, and
proceed with the encryption he received to finish the game. D returns b′ = 1 (guessing
the encryption he received was of the real key) if and only if he wins the counterfeiting
game (since he wins with higher probability when he receives encryption of the real key).
D has a 1

2 + |Pr[S2]−Pr[S1]|
2 probability to win, which is non-negligible, in contradiction to

the security of ENC.
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we showed that the success probability of any QPT counterfeiter to do so is
negligible — meaning Pr[S2] must be negligible.

From construction, Pr[S0] is also negligible. Game 0 was defined to
be the original full-scheme security game, and S0 was defined as its win
condition; so $̂ is secure (see Definition 24). �

6 LWE Implies Semi-Quantum Money
For convenience, we restate the main theorem of our private semi-quantum
money result:

Theorem 2 (Private Semi-Quantum Money). Assuming that the Learning
With Errors (LWE) problem with certain sets of parameters is hard for BQP,
then a secure private semi-quantum money scheme exists (Definition 23).

Proof. From Theorem 43 we get that the hardness of LWE with certain
parameters implies that an NTCF family exists. From Theorem 13 we get
that an NTCF implies 1

2 -hard 1-of-2 puzzles, and from Corollary 21 we get
that weak 1-of-2 puzzles (and in particular, 1

2 -hard 1-of-2 puzzles) imply
strong 1-of-2 puzzles.

From [BZ13, GHS16] we get that the hardness of LWE with certain
parameters24 (that are different to those used for NTCF) implies that a
PQ-EU-CMA MAC and a PQ-IND-CPA encryption exist. By combining
these with Propositions 26, 27, 28 and 29 and Theorem 30 (based on the
constructions of Algorithm 4 and Algorithm 5), we get secure semi-quantum
private money from 1-of-2 puzzles. �

7 Semi-Quantum Money Requires Computational
Assumptions

Both our public and private semi-quantum money constructions rely on
computational assumptions. For our public construction we know this is
necessary directly from the fact that public quantum money schemes cannot
be secure against computationally unbounded adversaries [AC13]. However,
it is known that private quantum money schemes could be information-
theoretically secure25. In this section we show that for semi-quantum money
schemes, and in fact for any quantum money scheme with classical minting,
computational assumptions are necessary. We do so by showing an adversary

24Both [BZ13] and [GHS16] rely on Quantum Pseudorandom Functions (QPRF). From
Banerjee et al. [BPR12] and Zhandry [Zha12] we get that QPRFs can be constructed from
LWE with certain parameters.

25Wiesner’s original quantum money scheme [Wie83] was proven to be information-
theoretically secure [MVW13], and Pastawski et al. [PYJ+12] even showed a slightly
modified version of the scheme that is also noise-tolerant.
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that, after running a single minting protocol with the bank, can create 2
states which pass verification with non-negligible probability:

Theorem 31. Let $C be a quantum money scheme with classical minting.
Then there is a computationally unbounded adversary A such that:

Pr[k ← $C .key-gen(1λ); |$〉 ← $C .mintk(1λ); (|$1〉, |$2〉)← A(1λ, |$〉);
$C .verify(|$1〉) = $C .verify(|$2〉) = 1] = p

where p is non-negligible.

Proof. The adversary’s strategy is simple — she simply recreates the exact
run of the protocol on her own by aborting and rerunning whenever a mea-
surement result differs from the original run with the bank, and uses the
messages from the original run to substitute for the bank. Eventually she
will be able to rerun the protocol with the same measurement results (this
would occur only after an exponential number of tries, but this is fine since
the adversary is unbounded), resulting in another quantum money state
identical to that minted with the bank. �

Note that Theorem 31 does not hold for a memory-dependant scheme
(see Definition 6) where the database can be modified during the verification
protocol, since the bank could keep track of money that has been verified.
However, a private26 scheme where this is allowed is not interesting, since
if such modifications are considered we can even construct a simple secure
classical scheme (see Appendix E). Therefore, when considering memory-
dependant private quantum money schemes, the database can be modified
only during the minting protocol.

It is known that only private quantummoney schemes which are memory-
dependant can be information-theoretically secure — Aaronson [Aar18, The-
orem 8] showed that any semi-quantum money scheme with a fixed key (i.e.,
any scheme that is not memory-dependant) is vulnerable to counterfeiting
by an unbounded adversary. Obviously, this also holds for schemes with clas-
sical minting that are not memory-dependant. However, Theorem 31 also
holds for schemes with classical minting which are memory-dependant, thus
getting a stronger result — that no quantum money scheme with classical
minting can be information-theoretically secure.

8 Discussion
The main question that is raised in this work is the following. There are
many multi-party quantum cryptographic protocols which require that both
parties have quantum resources. This work elicits an important question: is

26This discussion is not relevant to the public setting.
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there a way (preferably, as general as possible) to convert some of these pro-
tocols to ones in which at least one of the parties does not need a quantum
computer? A weaker open question can be posed from the perspective of
device-independent cryptography: can at least one party use an untrusted
quantum computer in unison with a trusted classical computer? We empha-
size that device independent protocols (see [VV19, FRV19] and references
therein), such as DI quantum key distribution, DI randomness expansion27
and randomness amplification, use unconditional (information theoretic) se-
curity notions, while our protocols are only computationally secure.

Additional questions are raised when considering Remote State Prepara-
tion (RSP). RSP is a protocol that allows a classical client to create quantum
states on an untrusted quantum server, with different levels of security; a
protocol can promise blindness [DK16] (i.e., the server learns nothing about
the state) and verifiability [GV19, CCKW19] (i.e., the client can verify the
right states were created). This raises the following question: is there a
general way to turn a classically-verifiable quantum money scheme into a
semi-quantum money scheme using remote state preparation for the user-
side minting? We note that Pastawski et al. [PYJ+12] proved that a simple
variant of Wiesner’s scheme is classically verifiable. Their scheme also tol-
erates constant level of noise. Their construction only requires preparations
of the states |0〉, |1〉, |+〉 and |−〉 which the RSP constructions above sup-
port. A recent work by Badertscher et al. [BCC+20] shows that an RSP
protocol cannot be composable in the abstract cryptography framework —
this result is somewhat discouraging, but there might still be a way to use
RSP to create semi-quantum money schemes.

Moreover, can the randomness generation protocol from [BCM+18] be
amplified by our parallel repetition result? Currently the protocol has N
rounds; could this number be made constant using parallel repetition?
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pass verification for two bolts with the same serial number, page 60

LWE Learning With Errors, page 7

MAC Message Authentication Code, page 58

[n] We denote [n] ≡ {1, . . . , n}, page 28

NTCF Noisy Trapdoor Claw-free Function, page 7

P A payer in a transaction, page 13

PQ-EU-CMA Post-quantum existentially unforgeable under an adaptive
chosen-message attack, page 59

PQ-IND-CPA Post-quantum indistinguishable encryptions under a chosen-
plaintext attack, page 58

QL A quantum lightning scheme, page 19

R A receiver in a transaction, page 13

T A QPT 2-of-2 solver — an adversary that attempts to solve both
challenges of a 1-of-2 puzzle, page 25

V2 An algorithm that verifies solutions for both challenges of a puzzle,
page 25

Z A 1-of-2 puzzle, page 25

Ẑ A weakly verifiable puzzle, page 29

B Preliminaries
This appendix contains mainly the standard definitions of private-key en-
cryption and message authentication codes (MAC), and can be safely skipped
by readers already familiar with these notions.

We use the standard definitions for negligible, non-negligible and notice-
able functions — see, e.g., [Gol01].

Definition 32 (Private-key encryption system, [KL14, Definition 3.7]). A
private-key encryption scheme consists of three PPT algorithms key-gen,
encrypt and decrypt such that:

1. The randomized key-generation algorithm key-gen takes as input 1λ
and outputs a key k ← key-gen(1λ).
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2. The (possibly randomized) encryption algorithm encrypt takes as input
a key k and a plaintext message m ∈ {0, 1}∗, and outputs a ciphertext
c← encryptk(m).

3. The deterministic decryption algorithm decrypt takes as input a key k
and a ciphertext c, and outputs a message m := Deck(c).

A private-key encryption system is required to have perfect completeness,
meaning that for every λ, every k output by key-gen(1λ), and every m ∈
{0, 1}∗, it holds that decryptk(encryptk(m)) = m.

Definition 33 (PQ-IND-CPA, adapted from [KL14, Definition 3.22]). A
private-key encryption scheme Π has post-quantum indistinguishable en-
cryptions under a chosen-plaintext attack (PQ-IND-CPA) if for every QPT
distinguisher D there is a negligible function negl(λ) such that, for all λ:

Pr[IND-CPAD,Π(λ) = 1] ≤ 1
2 + negl(λ) .

The indistinguishability game IND-CPAD,Π(λ):

1. A key k is generated by running key-gen(1λ).

2. The distinguisher D is given input 1λ and classical oracle access to
encryptk(·), and outputs a pair of messages m0,m1 of the same length.

3. A uniform bit b ∈R {0, 1} is chosen, and then a ciphertext c ←
encryptk(mb) is computed and given to D.

4. D continues to have oracle access to encryptk(·) and outputs a bit b′.

5. The output of the game is defined to be 1 if b′ = b, and 0 otherwise.
In the former case, we say that D succeeds.

Definition 34 (Message authentication code [KL14, Definition 4.1]). A
message authentication code (MAC) consists of 3 PPT algorithms key-gen, mac
and verify satisfying:

1. key-gen takes as input the security parameter 1λ and outputs a key k

2. mac takes as input a key k and a message m ∈ {0, 1}∗ and outputs a
tag t← mack(m).

3. verify takes as input a key k, a message m, and a tag t. It outputs a
bit b := verifyk(m, t), with b = 1 meaning valid and b = 0 meaning
invalid.

A MAC is required to have perfect completeness, i.e., for every λ, every key
k ← key-gen(1λ) and every m ∈ {0, 1}∗, it holds that verifyk(m,mack(m)) =
1.
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Definition 35 (PQ-EU-CMA MAC, adapted from [KL14, Definition 4.2]).
A message authentication code Π is Post-Quantum Existentially Unforge-
able under an adaptive Chosen-Message Attack (PQ-EU-CMA) if for every
QPT forger F , there exists a negligible function negl(λ) such that:

Pr[MAC-FORGEF ,Π(λ) = 1] ≤ negl(λ) .

The CMA message authentication game MAC-FORGEF ,Π(λ):

1. A key k is generated by running key-gen(1λ).

2. The forger F is given input 1λ, classical oracle access to mack(·) and
classical oracle access to verifyk(·) (note that the forger cannot query
the oracles in superposition). The forger eventually outputs (m, t). Let
Q denote the set of all queries that F asked its signing oracle.

3. F succeeds if and only if (1) verifyk(m, t) = 1 and (2) m /∈ Q. In that
case the output of the game is defined to be 1.

Definition 36 (Digital signature scheme [KL14, Definition 12.1]). A digital
signature scheme consists of three PPT algorithms key-gen, sign and verify
such that:

1. The key-generation algorithm key-gen takes as input a security param-
eter 1λ and outputs a pair of keys (pk, sk). These are called the public
key and the private key, respectively. We assume that pk and sk each
has length of at least λ, and that λ can be determined from either.

2. The signing algorithm sign takes as input a private key sk and a mes-
sage m. It outputs a signature σ ← signsk(m).

3. The deterministic verification algorithm verify takes as input a pub-
lic key pk, a message m and a signature σ. It outputs a bit b ←
verifysk(m,σ), with b = 1 meaning valid and b = 0 meaning invalid.

A digital signature scheme is required to have perfect completeness, meaning
that except with negligible probability over (pk, sk) output by key-gen(1λ), it
holds that verifypk(m, signsk(m)) = 1 for every legal message m.

Definition 37 (PQ-EU-CMA digital signature scheme, adapted from [KL14,
Definition 12.2]). A digital signature scheme Π is Post-Quantum Existen-
tially Unforgeable under an adaptive Chosen Message Attack (PQ-EU-CMA)
if for every QPT forger F , there exists a negligible function negl(λ) such that:

Pr[SIG-FORGEF ,Π(λ) = 1] ≤ negl(λ) .

The signature experiment SIG-FORGEF ,Π(λ):

1. key-gen is run to generate to obtain keys (pk, sk).
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2. Forger F is given pk and access to a signing oracle signsk(·). The
forger than outputs (m,σ). Let Q denote the set of all queries that F
asked its oracle.

3. F succeeds iff verifypk(m,σ) = 1 and m /∈ Q. In this case the output
of the experiment is defined to be 1 (and otherwise 0).

Lemma 38 (Difference Lemma [Sho04, Lemma 1]). Let A,B, F be events
defined in some probability distribution, and suppose that A ∧ ¬F ⇐⇒
B ∧ ¬F . Then |Pr[A]− Pr[B]| ≤ Pr[F ].

C Quantum Lightning with Bolt-to-Certificate
The following definitions are taken almost verbatim from [CS20]. The defini-
tions originate in [Zha19] and [Col19], but in this work we use the notations
of the superseding work [CS20].

Definition 39 (Quantum Lightning [Zha19]). A quantum lightning scheme
consists of a PPT algorithm QL.setup(1λ) (where λ is a security parameter)
which samples a pair of QPT algorithms (gen-bolt, verify-bolt). gen-bolt out-
puts a pair of the form |ψ〉 ∈ H$, s ∈ {0, 1}λ. We refer to |ψ〉 as a “bolt” and
to s as a “serial number”. verify-bolt takes as input a pair of the same form,
and outputs either “accept” (1) or “reject” (0). They satisfy the following:

•

Pr[(gen-bolt, verify-bolt)← QL.setup(1λ); (|ψ〉, s)← gen-bolt() :
verify-bolt(|ψ〉, s) = 1]
= 1− negl(λ) .

• For all s′ ∈ {0, 1}λ:

Pr[(gen-bolt, verify-bolt)← QL.setup(1λ); (|ψ〉, s)← gen-bolt() :
s 6= s′ ∧ verify-bolt(|ψ〉, s′) = 1]
= negl(λ) .

Definition 40 (Security [Zha19]). A quantum lightning scheme QL is secure
if, for all QPT bolt forgers L:

Pr[FORGE-BOLTL,QL(λ) = 1] = negl(λ) .

The bolt forging game FORGE-BOLTL,QL(λ):

1. The challenger runs (gen-bolt, verify-bolt) ← QL.setup(1λ) and sends
(gen-bolt, verify-bolt) to L.
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2. L produces a pair |Ψ12〉 ∈ H⊗2
$ , s ∈ {0, 1}λ.

3. The challenger runs verify-bolt(·, s) on each half of |Ψ12〉. The output
of the game is 1 if both outcomes are “accept” (and otherwise 0).

Definition 41 (Bolt-to-certificate). For a quantum lightning scheme QL
to have bolt-to-certificate capability, we change the procedure QL.setup(1λ)
slightly, so that it outputs a quadruple

(gen-bolt, verify-bolt, gen-certificate, verify-certificate) ,

where gen-certificate is a QPT algorithm that takes as input a quantum
money state and a serial number and outputs a classical string of some fixed
length l(λ) for some polynomially bounded function l, to which we refer as
a certificate, and verify-certificate is a PPT algorithm that takes as input a
serial number and a certificate, and outputs “accept” (1) or “reject” (0).

Let λ ∈ N. We say that a quantum lightning scheme QL has bolt-to-
certificate capability if:

•

Pr[(gen-bolt, verify-bolt, gen-certificate, verify-certificate)← QL.setup(1λ);
(|ψ〉, s)← gen-bolt(); c← gen-certificate(|ψ〉, s) :
verify-certificate(s, c) = 1]
= 1− negl(λ) .

• For all QPT algorithms C:

Pr[FORGE-CERTIFICATEC,QL(λ) = 1] = negl(λ) .

The certificate forging game FORGE-CERTIFICATEC,QL(λ):

1. The challenger runs

(gen-bolt, verify-bolt, gen-certificate, verify-certificate)← QL.setup(1λ) ,

and sends the quadruple to C.

2. C returns c ∈ {0, 1}l(λ) and (|ψ〉, s).

3. The challenger runs verify-certificate(s, c) and verify-bolt(|ψ〉, s), and
outputs 1 if they both accept (otherwise outputs 0).
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D Trapdoor Claw-Free Families
Most of this section is taken verbatim from Brakerski et al. [BCM+18]. Let
λ be a security parameter, and let X and Y be finite sets (depending on λ).
For our purposes, an ideal family of functions F would have the following
properties. For each public key k, there are two functions {fk,b : X →
Y}b∈{0,1} that are both injective, that have the same range (equivalently,
(b, x) 7→ fk,b(x) is 2-to-1), and that are invertible given a suitable trapdoor
tk (i.e., tk can be used to compute x given b and y = fk,b(x)). Furthermore,
the pair of functions should be claw-free: it must be hard for an attacker
to find two pre-images x0, x1 ∈ X such that fk,0(x0) = fk,1(x1). Finally,
the functions should satisfy an adaptive hardcore bit property, which is
a stronger form of the claw-free property: assuming for convenience that
X = {0, 1}w, we want it to be computationally infeasible to simultaneously
generate (b, xb) ∈ {0, 1}×X and a non-zero string d ∈ {0, 1}w such that with
a non-negligible advantage over 1

2 the equation d · (x0⊕x1) = 0 holds, where
x1−b is defined as the unique element such that fk,1−b(x1−b) = fk,b(xb).

Unfortunately, we (as well as Brakerski et al.) do not know how to
construct a function family that exactly satisfies all these requirements under
standard cryptographic assumptions. Instead, Brakerski et al. construct a
family that satisfies slightly relaxed requirements based on the hardness of
the learning with errors (LWE) problem, and we will show that these are
still adequate for our purposes. The requirements are relaxed as follows.
First, the range of the functions is no longer a set Y; instead, it is DY , the
set of probability densities over Y. That is, each function returns a density,
rather than a point. The trapdoor injective pair property is then described
in terms of the support of the output densities: these supports should either
be identical for a colliding pair or be disjoint in all other cases.

The consideration of functions that return densities elicits an additional
requirement of efficiency: there should exist a quantum polynomial-time
procedure that efficiently prepares a superposition over the range of the
function, i.e., for any key k and b ∈ {0, 1}, the procedure can prepare a
state that is close (up to a negligible trace distance) to the state

1√
X

∑
x∈X ,y∈Y

√
fk,b(x)(y)|x〉|y〉 .

We modify the adaptive hardcore bit requirement slightly. Since the
set X may not be a subset of binary strings, we first assume the existence
of an injective, efficiently invertible map J : X → {0, 1}w. Next, we only
require the adaptive hardcore bit property to hold for a subset of all nonzero
strings rather than for the set {0, 1}w \ {0w}. Finally, membership in the
appropriate set should be efficiently checkable, given access to the trapdoor.
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Definition 42 (NTCF family). Let λ be a security parameter. Let X and
Y be finite sets. Let KF be a finite set of keys. A family of functions

F =
{
fk,b : X → DY

}
k∈KF ,b∈{0,1}

is called a noisy trapdoor claw free (NTCF) family if the following
conditions hold:

1. Efficient Function Generation. There exists an efficient proba-
bilistic algorithm key-genF which generates a key k ∈ KF together
with a trapdoor tk:

(k, tk)← key-genF (1λ) .

2. Trapdoor Injective Pair. For all keys k ∈ KF the following con-
ditions hold.

(a) Trapdoor: For all b ∈ {0, 1} and x 6= x′ ∈ X , Supp(fk,b(x)) ∩
Supp(fk,b(x′)) = ∅. Moreover, there exists an efficient determin-
istic algorithm INVF such that for all b ∈ {0, 1}, x ∈ X and
y ∈ Supp(fk,b(x)), INVF (tk, b, y) = x.

(b) Injective pair: There exists a perfect matching Rk ⊆ X ×X such
that fk,0(x0) = fk,1(x1) if and only if (x0, x1) ∈ Rk.

3. Efficient Range Superposition.28 There exists an efficient proce-
dure SAMPF that on input k and b ∈ {0, 1} prepares a state |ψ′〉 which
has a negligible trace distance to the state

|ψ〉 = 1√
|X |

∑
x∈X ,y∈Y

√
(fk,b(x))(y)|x〉|y〉 .

4. Adaptive Hardcore Bit. For all keys k ∈ KF the following condi-
tions hold, for some integer w that is a polynomially bounded function
of λ.

(a) For all b ∈ {0, 1} and x ∈ X , there exists a set Gk,b,x ⊆ {0, 1}w
such that Prd←U{0,1}w [d /∈ Gk,b,x] is negligible, and moreover there
exists an efficient algorithm that checks for membership in Gk,b,x
given k, b, x and the trapdoor tk.

28Here we use a slightly weaker (and simpler) definition compared to Brakerski et al.
Our definition follows from theirs by using Lemma 2 in [BCM+18], which relates the
Hellinger distance to the trace distance.
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(b) There is an efficiently computable injection J : X → {0, 1}w,
such that J can be inverted efficiently on its range, and such that
the following holds. If

Hk =
{
(b, xb, d, d · (J(x0)⊕ J(x1))) |

b ∈ {0, 1}, (x0, x1) ∈ Rk, d ∈ Gk,0,x0 ∩Gk,1,x1

}
, 29

Hk = {(b, xb, d, c) | (b, x, d, c⊕ 1) ∈ Hk

}
,

(8)

then for any quantum polynomial-time procedure A there exists
a negligible function µ(·) such that∣∣∣ Pr

(k,tk)←key-genF (1λ)
[A(k) ∈ Hk]− Pr

(k,tk)←key-genF (1λ)
[A(k) ∈ Hk]

∣∣∣
≤ µ(λ) .

(9)

Theorem 43 (Informal). Under the assumption that the Learning With
Errors (LWE) problem with certain parameters is hard for BQP, an NTCF
family exists.

The hardness definition of LWE and the exact parameters required for
the theorem above are given in [BCM+18, Theorem 26].

E The Advantage of Memoryless Money
When discussing any form of quantum money, we must consider the mo-
tivation, i.e., the benefits over classical constructions — for example, we
could construct a rudimentary private classical money scheme in the follow-
ing way: upon minting, the bank would produce a random serial number
significantly long for some security parameter λ and sign it using a MAC.
The bank would maintain a database of all banknotes that have already
been spent, and upon verification, after verifying the MAC tag of the ban-
knote, the bank would search for its serial number within the database —
if it is not there, the verification succeeds and the serial number is added to
the database, and if it is there the bank would know the money was already
spent and thus verification will fail (of course, the bank would have to mint a
new banknote for the user after a successful verification). Gavinsky [Gav12]
discusses a similar notion.

This scheme is counterfeit-resistant according to our security definitions.
However, it is memory-dependent (also known as state-based); i.e., the bank
has to maintain a database to represent an ongoing state, remembering the
banknotes that were spent. On its own, a memory-dependent protocol is

29Note that although both x0 and x1 are referred to to define the set Hk, only one of
them, xb, is explicitly specified in any 4-tuple that lies in Hk.
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not a terrible problem; many services maintain a database. This, however,
becomes a liability when considering multiple branches of the same bank: a
central database must maintain the shared state and synchronize the access
to it (otherwise information would have to propagate between the branches,
causing potential security breaches during the propagation time); this has a
toll in terms of response time and communication.

Constructing a memory-dependent (classical) private money scheme is
trivial — the scheme above is an extremely simple example — so such a con-
struction is not particularly interesting. The case is different, however, in
the public setting; constructing even a memory-dependent quantum money
scheme that is publicly secure is challenging (and impossible to achieve clas-
sically), and thus such a construction is an interesting result.

F Parallel Repetition of Weakly Verifiable Puzzles
As seen in Section 4.3, our main tool for proving parallel repetition for 1-of-
2 puzzles is the notion of weakly verifiable puzzles introduced by [CHS05].
This section provides a brief informal overview of their parallel repetition
proof for weakly verifiable puzzles (Theorem 20).

The goal is to show a reduction from an algorithm A (which in our case
may be quantum) that solves n weakly verifiable puzzles in parallel with
probability at least hn + negl(λ) for some non-negligible h to an algorithm
A′ solving a single puzzle with probability at least h+ negl(λ). This shows
that the best strategy for solving n puzzles has the same probability (up to
a negligible difference) of solving each puzzle separately.

Denote the event where A solves the puzzle pi correctly by Si, and denote
the event where A solves puzzles pk, . . . , pn correctly by Rk. We call a puzzle
coordinate i ∈ [n] good if it holds that Pr

p1,...,pn
[Si|Ri+1] ≥ h + negl(λ), i.e.,

if the probability that A solved pi correctly conditioned on the probability
that A solved pi+1, . . . , pn correctly is at least h, where the probability is
taken over the randomness of A as well as over the random choices of puzzles
p1, . . . , pn. We make the following statistical observation:

Pr[R1] = Pr[S1 ∧R2] = Pr[S1|R2] · Pr[R2] ≥ hn + negl(λ) .

The last inequality holds because we know the probability of A to solve
all n puzzles is at least hn. Therefore, we conclude that at least one of
the following must hold: either Pr

p1,...,pn
[S1|R2] ≥ h, or Pr

p1,...,pn
[R2] ≥ hn−1.

Meaning either 1 is a good coordinate, or the probability that A solves the
last n− 1 puzzles of its input is at least hn−1.

If 1 is a good coordinate, then A′ solves its original puzzle in the following
way: A′ runs A with (p, p2, . . . , pn) — where p is the original challenge puzzle
and p2, . . . , pn are randomly generated by A′ — until puzzles p2, . . . , pn
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were solved correctly30. Since 1 is a good coordinate, we know that if A
solved puzzles p2, . . . pn correctly, the first puzzle is also solved correctly
with probability at least h, as needed.

If 1 is not a good coordinate, than we know the probability of A to solve
n − 1 puzzles is at least hn−1. This provides us with a solver for n − 1
puzzles with probability at least hn−1 +negl(λ), and the reduction continues
by induction. Eventually, A′ will either reach a good coordinate i and solve
it with probability at least h as described above, or arrive at a solver that
solves a single puzzle — the last puzzle — with probability at least h.

To find out whether i is a good coordinate, A estimates Pr
p1,...,pn

[Si|Ri+1].
This is done by generating n puzzles, and running A multiple times, all
the while checking whether puzzles pi+1, . . . , pn were solved correctly, and
if so checking whether puzzle pi was also solved correctly. Since Pr[Ri+1] ≥
Pr[R1] ≥ hn + negl(λ), this estimation can be done efficiently with high
probability.

The proof itself in [CHS05] is more complex than the outline given here.
For example, we cannot know for sure if a coordinate is a good coordinate,
since we can only estimate the probabilities within some polynomial bounds
— the original proof deals with these issues.

Note that this parallel repetition is “perfect” — i.e., it shows that the
best strategy for solving multiple puzzles has the same probability as solving
them separately (up to a negligible difference). This would not be the case if
we had more than 2 rounds — for 3 rounds the repetition would not be per-
fect, and for 4 rounds the soundness error does not decrease exponentially at
all [BIN97]. We can see that the proof above indeed would not work for more
than 2 rounds: in our reduction, when we find a good coordinate i, we run
the multiple-puzzle adversary multiple times until the puzzles pi+1, . . . , pn
are solved correctly, and then our original puzzle is solved correctly with
probability h. But in the case of multiple rounds, the single-puzzle adver-
sary is required to provide the multiple-puzzle adversary with messages from
the challenger for all the puzzles, including the original one. The answers
of the multiple-puzzles adversary for each puzzle can therefore depend on
messages for all the puzzles, but we can run the protocol for the original puz-
zle with the challenger only once — i.e., we cannot provide the challenger’s
answers for the original puzzles more than once. Therefore, we cannot con-
dition on the adversary solving pi+1, . . . , pn correctly, meaning that if we can
run the adversary only once our success probability will not be h as needed.

30This can be verified since A′ generated those puzzles along with their verification
information and therefore can verify them efficiently. Moreover, A solves n − 1 puzzles
with non-negligible probability, meaning A′ can get correct solutions in polynomial time
with high probability.
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G Transaction Figures
This section contains figures showing transactions can be made with each
flavor of quantum money and the kind of communication they require (quan-
tum or classical). Fat arrows ⇒ indicate quantum communication and thin
arrows → indicate classical communication. A two-sided arrow indicates
two-sided communication.
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(a) Payer has money in an
account and a credit card

(b) Payer sends credit card
details to receiver

(c) Receiver receives credit
card details

(d) Receiver sends credit
card details to bank re-
questing to transfer money
from payer

(e) Bank verifies credit card
details

(f) Bank performs the
transaction, deducting
from payer’s account and
crediting receiver’s account

Figure 2: Regular (non-quantum) money direct transaction. The communi-
cation required is one-way, though usually two-way communication is used
to send confirmations for actions.
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(a) Payer has money in an
account

(b) Payer contacts bank
requesting to perform a
transaction and providing
authentication

(c) Bank verifies payer’s au-
thentication information

(d) Bank performs the
transaction, deducting
money from payer’s
account and crediting
receiver’s account

(e) Bank notifies receiver
that the transaction took
place

Figure 3: Regular (non-quantum) money bank transaction. Though it is
possible for communication between payer and bank to be one-way, usually
the authentication process is an interactive protocol, and the payer receives
confirmation from the bank, making communication two-way.
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(a) Payer has a banknote

(b) Payer sends banknote
to receiver

(c) Receiver receives ban-
knote

(d) Receiver sends ban-
knote to bank

(e) Bank verifies banknote

(f) Bank mints a new ban-
knote for receiver

(g) Receiver was paid suc-
cessfully

Figure 4: Private standard direct transaction.
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(a) Payer has a banknote

(b) Payer sends banknote
to bank

(c) Bank verifies banknote

(d) Bank mints a new ban-
knote for receiver

(e) Receiver was paid suc-
cessfully

Figure 5: Standard bank transaction.
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(a) Payer has a banknote

(b) Receiver initiates ver-
ification protocol with the
bank and acts as a relay be-
tween payer and bank (de-
stroying payer’s banknote)

(c) Bank verifies protocol
was executed correctly

(d) Bank mints a new ban-
knote for receiver

(e) Receiver was paid suc-
cessfully

Figure 6: Private classically verifiable direct transaction. In step (b), re-
ceiver acts as a relay between payer and bank and thus can be sure the
banknote was valid.
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(a) Payer has a banknote

(b) Payer runs verification
protocol with bank (losing
the banknote)

(c) Bank verifies protocol
was executed successfully

(d) Bank mints a new ban-
knote for receiver

(e) Receiver was paid suc-
cessfully

Figure 7: Classically verifiable bank transaction.
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(a) Payer has a banknote

(b) Payer sends banknote
to receiver

(c) Receiver receives ban-
knote

(d) Receiver runs verifi-
cation protocol with bank
(without losing the ban-
knote)

(e) Bank verifies protocol
was executed successfully

Figure 8: Private classically verifiable direct transaction for a scheme which
allows multiple verifications for the same banknote. Note that after a finite
number of verifications the banknote is destroyed and communication with
the bank is required, like in Fig. 6.
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(a) Payer has a banknote

(b) Payer sends banknote
to bank

(c) Bank verifies banknote

(d) Bank mints a new ban-
knote for receiver

(e) Receiver was paid suc-
cessfully

Figure 9: Private classically verifiable bank transaction for a scheme which
allows multiple verifications for the same banknote. For some such schemes
it could be possible to have a classical verification that ensures the ban-
knote was destroyed, in which case a transaction through the bank could be
executed like in Fig. 11.
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(a) Payer has a banknote

(b) Payer sends banknote
to receiver

(c) Receiver receives ban-
knote

(d) Receiver sends ban-
knote to bank

(e) Bank verifies banknote

(f) Bank mints a new ban-
knote for receiver

(g) Receiver was paid suc-
cessfully

Figure 10: Private classical minting direct transaction.
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(a) Payer has a banknote

(b) Payer sends banknote
to bank

(c) Bank verifies banknote

(d) Bank mints a new ban-
knote for receiver

(e) Receiver was paid suc-
cessfully

Figure 11: Classical minting bank transaction.
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(a) Payer has a banknote

(b) Receiver initiates ver-
ification protocol with the
bank and acts as a relay be-
tween payer and bank (de-
stroying payer’s banknote)

(c) Bank verifies protocol
was executed correctly

(d) Bank mints a new ban-
knote for receiver

(e) Receiver was paid suc-
cessfully

Figure 12: Private semi-quantum direct transaction. In step (b), receiver
acts as a relay between payer and bank and thus can be sure the banknote
was valid.
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(a) Payer has a banknote

(b) Payer runs verification
protocol with bank (losing
the banknote)

(c) Bank verifies protocol
was executed successfully

(d) Bank mints a new ban-
knote for receiver

(e) Receiver was paid suc-
cessfully

Figure 13: Semi-quantum bank transaction.
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(a) Payer has a banknote (b) Payer sends banknote
to receiver

(c) Receiver receives ban-
knote

(d) Receiver validates ban-
knote — receiver was paid
successfully

Figure 14: Public quantum money direct transaction.
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(a) Payer has a banknote (b) Payer runs transaction
protocol with receiver

(c) Receiver receives ban-
knote

(d) Receiver validates ban-
knote — receiver was paid
successfully

Figure 15: One-shot signature direct transaction.
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