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Abstract

Variant secret sharing schemes deriving from Shamir’s threshold secret sharing
protocol [Sha79| are presented. Results include multi-secret sharing protocols using
shares with O(1) elements, independent of the number of secrets. The new schemes
achieve a weaker notion of security (they’re secure rather than strongly secure) but
maintain a property called K-privacy (inspired by k-anonymity [SS98]). K-privacy
ensures that all secrets remain private with respect to a subset of the secret space,
though the particular subset providing privacy may vary among adversaries that acquire
distinct sub-threshold sets of shares. Depending on the number of secrets and the
protocol details, secure K-private multi-secret sharing schemes may be “almost” strongly
secure or may remain merely secure and K-private - a difference captured by the notion
of K-security. Novel applications of the multi-secret sharing schemes are presented,
realising a primitive called a switched threshold signature. Switched threshold signatures
have the quirky property that aggregating a threshold number of signatures of one type
(e.g. Pointcheval-Sanders signatures [PS16]) “switches” the signatures into a master
signature of a different type. Collectively these results may permit efficiencies within,
e.g., threshold credential issuance protocols.
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1 Introduction

Shamir’s threshold secret sharing scheme permits ¢t-out-of-n friends/share-holders to collabo-
ratively retrieve a secret via polynomial interpolation [Sha79|. Blakely also (independently)
introduced the notion of threshold secret sharing [Bla79]. Since these discoveries, secret
sharing schemes have been widely researched and deployed, with many variant schemes
appearing. Overviews of the various approaches can be found in, e.g., an early article
by Stinson [Sti92] or the more-recent review by Beimal [Beill]. Examples of the many
variants in the literature include t-out-of-¢ threshold secret sharing [KMG*83|, multi-secret
sharing [KMG*83, BDSDC*94, JMO94| and protocols with dependent secrets (in which the
shares have reduced complexity [FY92]). Secret sharing protocols were also generalised to
permit access structures, allowing specified subsets of share-holders to reconstruct a secret
while forbidding secret reconstruction by non-authorised sets of share-holders [[SN89, BL90)].
The so-called monospan program approach, which can also accommodate multi-secret shar-
ing, found use in this context [BI93, BL90].

Other variant protocols include pseudo-random secret sharing, in which randomness
initially distributed via an execution of Shamir’s scheme is subsequently used to generate
multiple (pseudo-)random shared secrets without communicating [CDI05]. Variant threshold
secret sharing protocols alleviate the need for a trusted party [Ped91|, and verifiable secret
sharing schemes [CGMAS85| allow secret-owners to commit to a polynomial encoding of their
secret by separately committing to each coefficient in the polynomial [Fel87]. The subse-
quent discovery of polynomial commitment schemes [KZG10| permitted the construction
of verifiable secret sharing protocols leveraging commitments containing a single group ele-
ment [KZG10]. Secret sharing protocols were also leveraged to construct threshold signature
schemes (e.g. Shoup’s well-known RSA threshold signature protocol [Sho00]) and threshold
credential issuance schemes [SABT19|. Generalisations of multi-linear secret sharing schemes
permit the use of polynomials for shares [PCR19| and a recent work performed a fine-grained
analysis of secret sharing schemes [CDS19].

The present work proposes generalisations of Shamir’s secret sharing scheme. The focus
is on multi-secret sharing protocols related to both Shamir’s protocol and the variant in
which the secret is generated during protocol execution. A number of multi-secret sharing
protocols are presented, including one in which users share multiple secrets by issuing shares
with O(1) elements. Such schemes permit a reduction in the work required to generate
and distribute shares, which may be of interest for, e.g., threshold credential schemes such
as Coconut [SAB*19|. However, the standard trade-off between security and efficiency
holds, with the resulting protocol being secure and K-private (a notion inspired by k-
anonymity [SS98]) but not strongly secure (as defined below). Secure K-private g-secret
sharing schemes may be “almost” strongly secure, depending on the number of secrets ¢
and the details of the protocol. For example, one new protocol is K-private and secure for
all ¢, but has even stronger security properties for particular values of q. These properties
motivate the notion of K-security as a kind of “middle ground” security category between
K-private security and strong security.

Example applications of the multi-secret sharing schemes are also presented, realising a



primitive referred to as a switched threshold signature. A switched threshold signature is a
type of threshold signature with quirky properties, such that aggregating a threshold number
of signatures of one type “switches” the signatures to achieve a master signature of a different
type. For example, leveraging the new multi-secret sharing schemes, switched threshold
signature schemes are presented in which a threshold number of Pointcheval-Sanders signa-
tures [PS16] are aggregated to form a polynomial-based [McD20] aggregate /master signature
(and vice-versa). Variant switched threshold signatures leveraging Camenisch-Lysyanskaya
signatures [CLO04] also appear possible.

The layout of this paper is as follows. Section 2 briefly reviews Shamir’s single-secret
sharing protocol and a related multi-secret sharing protocol. This section mainly sets
notations and establishes definitions (experts need only skim it). The variant of Shamir’s
protocol which generates the secret during protocol execution is discussed in Section 3,
and multiple multi-secret generalisations of this scheme are presented. To better define the
security properties of the new schemes, the notions of secret sharing K-privacy and K-
security are introduced in Section 4. Applications of the new secret sharing schemes which
realise switched threshold signatures appear in Section 5. Brief comments on a larger family
of related multi-secret sharing schemes are offered in Section 6 and the paper concludes in
Section 7.

2 Shamir Secret Sharing

2.1 Single-Secret Sharing

Shamir secret sharing allows an individual to store and recover a secret by distributing shares
to n friends, such that t-out-of-n shares are required to reconstruct the secret [Sha79]. The
single-secret sharing protocol Shamir is defined as follows:

e Shamir:

— Select a secret value y € Fj, and a set of n friends, labeled by a € n] =
{1,2,...,n}.

— Draw t — 1 field elements uniformly at random, . il 7, for c € [t —1].

— Use y and the elements «, to construct the polynomial f(z) =g+ Z;ll Q. xC.

Evaluate f(z) at n distinct evaluation points, x € {Z4}acp). The pair (24,sha),
with sh, =y, = f(x,), is called a secret share or simply a share."

— Distribute a single share to each of the n friends.

'For brevity, the evaluation point for a share, namely z,, is not always explicitly shown - shares are
denoted simply as sh,. In all secret sharing schemes discussed in this work, either the friends must store
the values of x, (and return them when requested) or users must store a dictionary relating each friend a
with an evaluation point z,. Typically the evaluation points may be given convenient assignments, such as
Zq = a, Va € [n]. For additional security, users may keep the evaluation points confidential and only share
the shares sh,,.



— Secret recovery:

% Select a subset of ¢ friends, labeled as 7, C [n], with |7.| = ¢, and request
their shares.

* Reconstruct the polynomial f(x) using the shares sh, = y,, for b € T, via
interpolation.

* Evaluate the polynomial at the origin to recover the secret, f(0) = ¥.

Regarding notation, in this document indices a and b generally denote elements in the sets
[n] and T, C [n] respectively (with |7.| = t); e.g. a € [n] and b € T, where [n]| denotes the
set {1,2,...,n}. The index c generally denotes elements in a subset of [n] with cardinality
t—1,suchasce[t—1]orce T, with |T| =t —1, where [t — 1] C [n] and T C T, C [n].
In schemes where t = n, the index a is also used as a € [t] (i.e. a labels the full set of
friends/shares in both cases). A negligible quantity in security parameter A is smaller than
O(1/poly(X)) and denoted as negl(\).

There are multiple ways to formally define the notion of secret sharing security. Protocol
Shamir requires users to first select a secret, then generate the shares. However, protocols
discussed below require users to first generate shares, then obtain the secret. Accordingly,
the following definition of secret sharing security, which is suitable for both classes of secret
sharing schemes (i.e. secret-first or shares-first), is adopted.

Definition 2.1. Secret Sharing Security. A t-out-of-n (t < n) secret sharing protocol P is
said to be secure if any probabilistic polynomial time adversary A that obtains ¢t — 1 shares
{Ye}eer, with |T| =t — 1, has a negligible chance of outputting the corresponding secret 7.
Namely:

Fo = G(1); (7, {Yataciy) < Plinput); €< [t); T = [(\{Eh] _ 0
' P E M e 23 el

where input denotes (optional) input data which may include the secret .

This security definition requires that a probabilistic polynomial time (PPT) adversary
which acquires ¢ — 1 shares has a negligible probability of determining the corresponding
secret. Here G(1*) is an object generator that outputs a finite field F,, for prime p, on input
a security parameter (in unary form). The input data to protocol P may include the secret
y itself, as occurs for P = Shamir. Protocol Shamir is unconditionally (i.e. information-
theoretically) secure [Sha79]| since there is no strategy an adversary with ¢ — 1 shares can
use to reconstruct the (under-determined) polynomial f(x), beyond guessing the secret (or
share). Security of Shamir with respect to Definition 2.1 follows immediately; the following
theorem is stated without proof.

Theorem 2.1. The secret sharing scheme Shamir, is secure.

2.2 Sharing Multiple Secrets

Some use cases require the storage and retrieval of multiple secrets (see e.g. [BDSDCT94,
JMO94]). Protocol Shamir, invokes ¢ independent instantiations of Shamir to distribute
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shares for ¢ secrets among n friends, such that t-out-of-n friends must cooperate to recover
the secrets:

e Shamirg:

— Select a set of ¢ secrets, {¥; }icfq, With 7; € [, and a set of n friends.

— Draw ¢ x (¢t — 1) field elements uniformly at random:
X(e,i) & ), for i€lg and ce[t—1], (1)

and define ¢ polynomials:
t—1
filz) = g+ Za(c,i) z¢ for i€ lg]. (2)
c=1

— Evaluate the polynomials fij(x) at the evaluation points {%,}scpn). Label the
evaluations as y,; = fi(z,) and distribute a share sh, to each of the n friends,
where

Sha = (ya,h s aya,q)‘ (3)

— To reconstruct the secrets {#; }iciq:

* Request the shares shy, from ¢ friends (described by the index b € T, C [n],
where |T,| = t).

* Reconstruct the polynomials f;(z) via interpolation, and evaluate the secret
values as y; = fi(0), Vi € [q].

The following generalisation of Definition 2.1 is adopted:

Definition 2.2. ¢-Secret Sharing Security. A t-out-of-n (¢ < n) g-secret sharing protocol
P, is said to be secure if any probabilistic polynomial time adversary A that obtains a full
set of ¢ — 1 shares {yc;}ceTiclq, With | 7| =t — 1, has a negligible chance of outputting the
corresponding secrets {¥; }icg. Namely:

Pr F, < G(1%); ({9i biews {Yai tacmiclg) < Polinput); £ [t T =[\{th| _ negl(\
: AN gl(A),
{Zi}ie[q] «— A({yc,i}ceT,ie[q]> D Z =Y, Vi € [q]

where input denotes (optional) input which may include the secrets {g; }icq-

This definition requires that PPT adversaries which acquire ¢t — 1 shares have a negligible
probability of determining the full set of corresponding secrets. For protocols such as Shamir,,
the input data includes the secrets {7; };c[q. The following theorem follows immediately from
the information-theoretic security property of Shamir (and is therefore stated without proof):

Theorem 2.2. The g-secret sharing scheme Shamir, is secure.
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In protocol Shamir, the polynomial f(z) is drawn uniformly at random from the set of
degree t — 1 polynomials with evaluation f(0) = y. In the g-secret sharing scheme Shamir,,
the set of ¢ secrets {7; }ic[q are encoded using ¢ distinct polynomials, { f;(x)}ic[q, such that
each polynomial f;(z) is independently drawn uniformly at random from the set of degree
t — 1 polynomials with evaluation f;(0) = ;. The security of Shamir therefore trivially
carries over independently for each secret §; € {¥;}icq inputted into algorithm Shamir,.
Consequently one may define a stronger security property:

Definition 2.3. Strong q-Secret Sharing Security. A t-out-of-n (t < n) g-secret sharing
protocol P, is said to be strongly secure if:

1. Any probabilistic polynomial time adversary A that obtains a full set of ¢ — 1 shares
{eiteeTicigs, with |T| = ¢t — 1, has a negligible chance of outputting one of the
corresponding secrets §; € {¥; }icq- Namely:

Pr Fp < G(1Y); ({Ti}icl)s {Vaibaciicla) + Pq(input); [ i T =[N\t negl(\
k L gl(A),
Zj ¢ Al{YeideeTicla) % € {Uitiely

where input denotes (optional) input data which may include the secrets {7;}ic[q-

2. A probabilistic polynomial time adversary that successfully determines one secret, say
U; € {Ui}iclq, continues to have a negligible probability of determining the other secrets

Yjrti € {Yitielq

This definition requires PPT adversaries which acquire ¢ — 1 shares to have a negligible
probability of determining any of the corresponding secrets, and, if an adversary does obtain
one secret, they gain at most a negligible advantage in determining the other secrets. Strong
g-secret sharing security therefore implies g-secret sharing security. Shamir, satisfies this
stronger security definition:

Theorem 2.3. The g-secret sharing scheme Shamir, is strongly secure

Proof. Protocol Shamir, invokes ¢ independent instantiations of protocol Shamir, which is
information-theoretically secure. Consequently the theorem follows immediately. [ |

2.3 Sharing Multiple (Power) Secrets

Consider the scenario in which a user Alice wants to store and recover a set of ¢ secrets which
have the form {7, ...,97} = {§'}icjg. Such a set is referred to as a power secret because
the secrets are related as powers of a single secret 3. Clearly, in some use cases, Alice may
leverage the fact that the secrets are related and need only store and recover the single secret
y, from which 7* may be calculated, for all i € [¢]\{1}. In such cases, Alice can use Shamir
to distribute and recover . However, other use cases may not permit recovery of the set
{y'} from the single value . For example, in threshold signature schemes, the secrets may



correspond to private keys, such that secret recovery only occurs “in the exponent” without
direct knowledge of . If one needs to store and recover a power secret {y_i}ie[q], the g-secret
sharing scheme pwrSecretq may be appropriate:

e pwrSecret,:

— Select ¢ secrets {7 }ie[g, Which are powers of a single secret i € ;.

— Execute protocol Shamir, using the secrets {'}ic(q-

Protocol pwrSecret, is a simple implementation of Shamir, with a power secret (i.e. valid
secrets are ordered powers of the first secret). Strong g-secret sharing security of pwrSecret,
therefore follows immediately from the strong g-secret sharing security of Shamir,.

3 PolyShamir Secret Sharing

This section discusses a variant of Shamir which may be generalised to obtain variant multi-
secret sharing protocols.

3.1 Sharing PolyShamir Secrets

A user (Alice) of protocol Shamir specifies a secret y and uses ¢ — 1 randomly drawn field
elements to define a degree t — 1 polynomial f(x), with evaluation f(0) = y. Evaluations of
f(z) at arbitrary nonzero points are uniformly random as f(x) is drawn uniformly at random
from the set of degree t —1 polynomials with fixed evaluation f(0) = y. There exists a variant
of Shamir that similarly draws uniformly random field elements to construct a polynomial,
with random evaluations, that encodes a secret. Imagine that Alice wishes to generate a
secret value y and share the secret among t of her friends, such that all ¢ shares are required
to reconstruct . Such scenarios arise, e.g., if the shares are used in signature schemes that
require all friends/authorities to sign a message in order to generate a valid master signature.?
Furthermore, assume Alice is indifferent to the particular value of the secret but wants surety
that she may reliably generate a secret and recover its value when needed. For example, the
secret may be a cryptographic key whose particular value is irrelevant (i.e. random) but
whose secrecy is paramount. The secret sharing scheme polyShamir is suitable for such cases:

e polyShamir

— Randomly draw ¢ field elements 1, < I, for a € [t].

— Using interpolation, construct a polynomial f(x) by defining f(z,) = y,, for
specified evaluation points {Z, }scpy-

2In t-out-of-t secret sharing, provided at least one friend is honest, the secret cannot be reconstructed
by a set of adversaries. For t-out-of-n secret sharing, honesty of a single friend is insufficient to preclude
collusion - one requires at least n — ¢t + 1 honest friends.



— Identify the (random) secret value with the evaluation f(0), namely g <— f(0).
— Distribute a single share sh, = y, to each of the t friends.
— To recover the secret y:

* Retrieve the t shares from the friends, reconstruct the polynomial f(z) via
interpolation, and perform the evaluation y = f(0).

Security of protocol polyShamir follows immediately:

Theorem 3.1. The t-out-of-t secret sharing scheme polyShamir is secure.

Proof. Protocol polyShamir is information-theoretically secure to any adversary with (at
most) ¢t — 1 shares and is therefore secure, according to Definition 2.1. |

Protocol polyShamir is a variant of Shamir that is appropriate when the secret value need
not be specified prior to protocol execution. The label polyShamir reflects the fact that users
first construct a random polynomial, then deduce their secret value. Security of polyShamir
can also be proven via reduction to Shamir, using a mapping from any set of t — 1 randomly
drawn shares {y.}ccs, for secret § in polyShamir, to the same set of shares for the same
secret ¢ in scheme Shamir. An adversary Apoiyshamir With a non-negligible success probability
of determining a polyShamir secret could be leveraged to obtain a non-negligible probability
of breaking the security of Shamir, contradicting Theorem 2.1.

Note that, in the above description of polyShamir, the user drew random shares and
distributed them to friends. However, if the friends are honest, they may directly draw their
own shares. Also, polyShamir can be generalised to achieve t-out-of-n secret sharing (see
below) though appears more naturally suited for ¢t-out-of-t secret sharing.

3.2 Sharing Multiple PolyShamir Secrets

In scheme polyShamir, the interpolated polynomial is defined directly by using randomly
drawn shares as polynomial evaluations. There are multiple ways to generalise this scheme
and construct g-secret sharing schemes. Three generalisations are discussed in what follows
(two below; one in the subsequent subsection). The first generalisation is a minimal extension
of polyShamir in which Alice defines ¢ secrets, using ¢ evaluations of the single randomly
drawn polynomial f(x). Specifically, Alice chooses ¢ points x;, such that z; # z, for all
i € [¢] and all a € [t], and defines her secrets as the evaluations g; = f(x;). Recovery of all
t shares allows Alice to reconstruct all ¢ secrets using the single polynomial f(z). Referring
to this scheme as polyShamir,, one has the following theorem:

Theorem 3.2. The q-secret sharing scheme polyShamir, is secure.

Proof. polyShamir, is information theoretically secure as an adversary with ¢ — 1 shares
has insufficient information to reconstruct the polynomial f(z). Thus, the probability of
outputting the set of full secrets is negligible provided p is sufficiently large. [
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Note that knowledge of one polyShamir, secret is sufficient to determine the polynomial
f(z) and obtain all other secrets (if £—1 shares are already known). Consequently polyShamir,

is secure but not strongly secure. Users of polyShamir, must tolerate all ¢ secrets being
encoded on a single polynomial, whose form is not known prior to initiating the protocol.
Note that an analogous g-secret generalisation of Shamir, that encodes multiple secrets in
a single polynomial, is not possible as a Shamir secret must be specified prior to protocol
execution.

A second g-secret generalisation of polyShamir is obtained by following the recipe of
Section 2.2, where independent instantiations of Shamir were used to construct protocol
Shamir,. Using independent instantiations of the single-secret scheme polyShamir produces
the g-secret sharing scheme polyShamir , defined as follows:

e polyShamir :

— Randomly draw ¢ x t field elements, y,; & Fy, for a € [t] and i € [q].

— Define ¢ polynomials via interpolation, using fi(z,) = ya, for evaluation points
{xa}ae[k]'
— Identify the ¢ secrets with the evaluations at the origin, namely y; < f;(0).

— Distribute a shares containing ¢ elements y, ;, for fixed a, to each friend:
she = (Ya,1, - -+ s Yaq)- (4)

— To recover the secrets {7; }ic[q:

* Request the shares from all friends, construct the ¢ polynomials f;(z) via
interpolation using fi(z,) = Y., and obtain the g secrets as y; = f;(0).

Security of polyShamir, follows immediately as the shares are uniformly distributed at random
(similar to polyShamir).

Theorem 3.3. The q-secret sharing scheme polyShamir, is strongly secure.

Proof. Each secret generated by an execution of polyShamir, is generated by an independent
execution of polyShamir, which is information-theoretically secure (Theorem 3.1). Conse-
quently knowledge of one secret provides no additional information about the other secrets
and protocol polyShamir, is strongly secure. [

3.3 Sharing Multiple PolyShamir Secrets Using Power Shares

The method of directly drawing random shares, employed in polyShamir, avails an additional
g-secret generalisation that is not available when one instead randomly draws the polynomial
coefficients and evaluates the shares (as in Shamir). Protocol pwrShares,, an alternative g-
secret generalisation of polyShamir, is defined as follows:



e pwrShares,:

— Randomly draw t elements y, & [y, for a € [t].

— Via interpolation, define ¢ polynomials f;(z), using the evaluations f;(z,) = ¥,
for all a € [t], and all i € [q].

— Identify the ¢ secrets {7, }ic|q as the evaluations 7; < f;(0), i € [q].
— Distribute one (partial) share, sk, = y,, to each of the ¢ friends.?
— To recover the secrets {7; }ic[q:

* Retrieve the shares {y,}acpi), reconstruct the polynomials f;(x) using inter-
polation and evaluate the secrets as y; = f;(0).

Protocol pwrShares, is a g-secret sharing scheme with power shares, meaning the full shares
required to define all ¢ polynomials f;(x) via interpolation have the form:

EG, = (yCL?y?LJ"'?yZ)? (5)

for each friend a € [t]. Users need not distribute the full shares sh,, as these may be
derived from the (partial) shares sh, = y,. Consequently users need only generate and
distribute the single field element y, (per friend) to permit secret storage and reconstruction.
Thus, relative to Shamir, and polyShamir,, the number of randomly drawn and distributed
field elements used as shares is reduced from ¢ x ¢ independent elements to t independent
elements, making key generation and distribution less complex in pwrShares,. In particular,
the (partial) share length remains at O(1) elements, independent of the number of secrets
q. Similar to polyShamir and polyShamir , pwrShares, also requires users to first construct
random polynomials and then derive their secrets by evaluating the polynomials.

Theorem 3.4. The q-secret sharing scheme pwrShares, is secure

Proof. Security of pwrShares, is proven by contradiction, using a reduction to the single-
secret sharing scheme polyShamir. Assume that there exists a probabilistic polynomial time
adversary prrSharesq, which has a non-negligible probability of successfully determining all ¢
secrets produced by an execution of pwrShares,. Let challenger C execute protocol polyShamir
and provide the probabilistic polynomial time adversary Apolyshamir With ¢t —1 shares, {y.}eer,
where | 7| =t — 1, corresponding to secret §. Algorithm Apeyshamir is tasked with outputting
a secret 4, and wins the challenge if 74 = §. Upon receipt of the shares {y.}ce7, Apolyshamir
passes them to prrSharesq, which treats the shares as pwrShares, shares. Algorithm prrSharesq
outputs the secrets {Z; };cq, which, by assumption, have a non-negligible probability of being
the actual secrets {g;}ic[q, corresponding to the (partial) shares {y.}.c7, such that y; = 7.
Upon receipt of the secrets {Z;}iclg, adversary Apoyshamir Sets 4 = Z1, and outputs 34
to C. With non-negligible probability, ¥ = 71 and Ayoyshamir Wins the challenge. This
result contradicts Theorem 3.1, which asserts that all adversaries against polyShamir have a
negligible probability of success. Thus, probabilistic polynomial time adversary prrSharesq
cannot exist and pwrShares, is secure.

31f the friends are honest, the scheme also works if the friends directly draw their own share, sh, = y, £

F,.



The above proof avails the following intuition. Consider the execution of polyShamir with
secret y encoded as the constant in polynomial f(z), which is constructed via interpolation
using the shares {y.}cep—1) U {3}, where f(z.) = y. and f(x;) = 1. The shares are drawn

uniformly at random y., y; ¥l F,, meaning the polynomial is selected uniformly at random
from the set of degree t —1 polynomials. Using this set of valid polyShamir parameters, which
contains ¢ shares, one can always construct the following set of ¢ x ¢ shares:

{yitee—1 U{wi}, Vi€ ql. (6)

These shares define ¢ polynomials f;(x), via the evaluations fi(x.) = v’ and f;(z;) = v..
Together with the evaluations 7; = f;(0), these parameters form a valid set under pwrShares,,
such that:

y =1« f1(0) = f(0). (7)

Thus, any set of valid parameters for polyShamir automatically defines a corresponding set of
valid parameters for pwrShares . More precisely, there is a one-to-one mapping from a valid
polyShamir share (y,), to a related full pwrShares, share, with action

Yo = Yar Y2y -, yd). (8)

Consequently if the g-secret scheme pwrShares, were insecure, one could always break the
security of polyShamir by mapping a given instance of valid parameters for polyShamir to the
corresponding set of valid parameters for pwrShares,, and leveraging the security vulnerability
of pwrShares, to break polyShamir. Hence, security of the multi-secret scheme pwrShares, is
expected to be related to the security of the single-secret sharing scheme polyShamir, as
explicitly demonstrated above. Similar comments hold with respect to Shamir - by mapping
an instance of Shamir to an instance of polyShamir, one can always derive a valid set of
parameters for an execution of polyShamir, from a set of valid parameters for Shamir, such
that the ¢ = 1 polynomial in polyShamir, matches the single polynomial used in Shamir.
Security vulnerabilities that reveal all g secrets in pwrShares, could therefore be used to
break Shamir.

Note that pwrShares, is secure but not strongly secure - knowledge of a single secret
allows an adversary to determine the value of the remaining share for that secret, which
may, in turn, allow the adversary to determine the remaining share for other secrets.* The
different security properties of pwrShares, and the multi-secret sharing schemes polyShamir,
and Shamir, reflect the fact that the ¢ polynomials f;(z) are related in pwrShares . To
elaborate on this point, consider an adversary prrSharesq, acting against pwrShares , which
obtains a complete set of (partial) shares {y,}qcy. Such an adversary can generate all
polynomials f;(z) and reconstruct all secrets g;, for i € [g]. In contrast, an adversary
Ashamir,, acting against Shamir,, which obtains a complete set of shares {y,;}acfy, for some
fixed value of j € [¢], can generate the polynomial f;(z) and obtain the secret y; = f;(0),
but cannot generate the polynomials f;(x) for i # j, so the secrets ¢;.; remain secure. Both
adversaries have access to t field elements, yet prrSharesq achieves a full break of pwrSharesq

4This point is discussed in Section 4.
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whereas Ashamir, 0nly achieves a partial break of Shamir,. To achieve a full break of Shamir,,
adversary Aspamir, must instead obtain all ¢ x ¢ shares {y,, }ic[q,acg- Similar comments hold
for polyShamir,. Thus, in some sense the security of pwrShares, is more similar to that of
Shamir, for which a set of ¢ shares is sufficient to achieve a full break (and reconstruct the
single secret), than it is to Shamir, and polyShamir , where t x g shares are needed to achieve
a full break. Speaking informally, pwrShares, is a type of multi-secret sharing scheme with
security properties resembling a single-secret sharing scheme, as a partial break may expose
all secrets.”

It may appear strange that, to securely share g secrets among ¢ friends using polyShamir,,
one must generate and distribute ¢ x ¢ secret field elements, whereas to share ¢ secrets among
t friends using pwrShares , one need only generate and distribute ¢ random elements. To
better understand why pwrShares, remains secure, it is useful to consider how an adversary
may attack the scheme. Assume that an adversary knows ¢ — 1 shares {yc}ce[t_l] and the
evaluation points {x.}cc—1)U {2}, but does not know the final share 3,. The adversary may
construct the following equations

t—1
filwe) = G+ Y awnal =y
/=1

t—1
filw) = G+ awayrf = Y, (9)
=1

where Y; =y, denotes the unknown share, and both the coefficients o~ ; and the secrets y;
are unknown. This system contains ¢ x ¢ linear equations in the 1+¢ x ¢ unknowns Y;, o/« )
and ;. Consequently the system of equations cannot be solved and, in fact, the final share
Y, is randomly distributed. Thus, although the full set of shares required to reconstruct
all polynomials f;(x), namely sh, = (ya,¥2,...,v9), can be calculated with knowledge of
the (partial) shares sh, = y,, the underlying system of equations remains under-determined
unless an adversary knows all partial shares, so the system cannot be solved. Accordingly,
pwrShares, is secure unless an adversary obtains either all ¢ secret shares or ¢ —1 secret shares
and one or more secrets that allow the system of equations (9) to be solved.

Finally, note that it is not possible to generalise polyShamir to a multi-secret sharing
scheme with power secrets. Protocol polyShamir generates random secrets during execution
that will not, in general, be related as powers of a single secret.

3.4 Generalising to t-out-of-n Secret Sharing Schemes

The t-out-of-t secret sharing schemes polyShamir, polyShamir, and pwrShares, may be gen-
eralised to t-out-of-n secret sharing schemes. In scheme polyShamir, users construct polyno-

mials by drawing ¢ shares at random, v, %l F,, and identifying the shares with polynomial

5This comment is unsurprising - pwrShares, leverages the same amount of randomness as e.g. Shamir, and
consequently has similar security properties.
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evaluations f(z,) = Y4, for all a € [t].5 Protocol polyShamir may be generalised to a t-out-
of-n secret sharing scheme by evaluating f(z) at an additional n — ¢ points, y» = f(za),
and defining the secret keys shy = yo for o’ € {t+1,¢42,...,n}. This same process can be
repeated for the t-out-of-t g-secret sharing schemes polyShamir, and pwrShares, by evaluating
the multiple polynomials f;(xz) at an additional n — ¢ points x, and using the evaluations
Yo i = fi(za) to define the shares shy = (Yo 1, ..., Yw ) for the additional n — ¢ friends. A
user may now reconstruct the secrets by retrieving shares from ¢ of the n friends and using
interpolation.

In these generalisations to t-out-of-n threshold secret sharing schemes, the shares for the
first ¢ friends would be generated by drawing random field elements and assigning these
directly to shares, but the shares for the additional n —t friends are calculated as polynomial
evaluations for polynomials that are drawn randomly. Thus, some friends would receive
a short share sh, = y, (for a € [t]), whereas other friends would receive longer shares
she = (Yar1s-- s Yarg) (for ' € {t +1,t+2,...,n}). This asymmetry among friends may
be accommodated in the protocol by, e.g., distributing full shares sh, — (y4,y2,...,39) to
the first ¢ friends (so all shares contain ¢ elements) or handling long versus short shares
differently during interpolation. Nonetheless, this asymmetry is not particularly appealing
and one may reasonably argue that secret sharing schemes with power shares are better
suited to t-out-of-t scenarios. The t-out-of-n implementations are not discussed further here.

4 K-Private Secret Sharing

4.1 K-Privacy

To further discuss the differences between strongly secure g-secret sharing protocols such as
Shamir, and secure g-secret sharing protocols such as pwrShares, , it is useful to introduce the
notion of secret sharing K-privacy.

Definition 4.1. Secret Sharing K-Privacy. A t-out-of-n (t < n) secret sharing protocol P,
with secret space I, is said to be K-private if any probabilistic polynomial time adversary
A that obtains shares {y.}e.er (with |T| =t — 1), corresponding to secret y, may leverage
the shares to deduce that there exists a set Ay C F of cardinality |[Ar| = K, such that
y e Ar.

This definition captures the idea that, upon receipt of t — 1 shares, the adversary may
leverage the shares and auxiliary information about the protocol to determine that the secret
y must reside within a set of candidate secrets A, of cardinality K < |F)|. K-privacy is
related to the notion of k-anonymity [SS98|, whereby anonymity of an individual’s data is
provided with respect to subsets of size k within a larger data set, but the anonymising
subsets for distinct individuals may differ. In the present context, the idea is that even if the

6In the g-secret sharing schemes polyShamir, and pwrShares , a similar process is employed for multiple
polynomials.
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protocol permits an adversary to deduce that the secret belongs to some subset A C F, the
protocol ensures that, for any such PPT adversary with t—1 shares, the corresponding subset
contains at least K candidate values for the secret which cannot be excluded a priori. The
particular subset that provides K-privacy for a given adversary may vary among adversaries,
allowing distinct adversaries to acquire different information about the secret. Nonetheless,
a K-private protocol ensures that the secret remains K-private for all adversaries. Note
that a secret sharing scheme with K-privacy may or may not be secure, depending on the
properties of the scheme.

To exemplify K-privacy, consider the following single-secret sharing variant of polyShamir,
referred to as NpolyShamir:

e NpolyShamir

— Randomly draw ¢ field elements y, - I, for a € [t].

— Construct a polynomial f(x), defined by f(z,) = y~, for specified evaluation
points {x,}acy-

— Identify the (random) secret value with the evaluation f(0), namely g < f(0).

— Distribute a single share sh, = 3V to each of the ¢ friends.

— To recover the secret y:

* Retrieve the t shares from the friends, reconstruct the polynomial f(z) via
interpolation, and perform the evaluation y = f(0).

Protocol NpolyShamir is identical to polyShamir except that the shares sh, = y2 are raised to
the power of N. Consequently all shares reside in the set of N-atic residues mod p, namely
sh, € Ay, for all @ € [t]. Consider an adversary A that acquires ¢ — 1 shares {y }.c7. Using
knowledge of the protocol, the adversary may deduce that the missing share must also be
an N-atic reside mod p, i.e. yY € Ay,. Thus, for each candidate value of the share y,
there exists a unique candidate value for the secret z € F), so the set of candidate valid

secrets Z, where z € Z, has cardinality |Z| = |Ap,|. Moreover, a different adversary A’
that acquires a non-identical set of ¢ — 1 shares {yc }eerr can also deduce that the secret
must reside within a set of candidate valid secrets Z’, with 2 € Z’, where |Z'| = |[Ay,|. In

general, one may have 2’ # Z but with Z2'NZ # (. The full secret space ) is a subset of F,,
defined as the set of values § € Fy, such that there exists a polynomial f(x) of degree t —1

with evaluations f(z,) = y~ and f(0) = . All adversaries agree on the set J but distinct
adversaries, which obtain different sets of shares, deduce that the secret must reside within
different sets of candidate secrets such as Z C y and Z' C y

Combining the above information demonstrates that protocol NpolyShamir is |Ay |-
private. For the particular case with N = 1, one has 1polyShamir = polyShamir and protocol
IpolyShamir is both |A; ,|-private and secure. However, as [A; | = [F7], the set of candidate
secrets deduced by any adversary with ¢ — 1 shares is equal to the full secret space and
the notion of K-privacy trivially holds. However, for N = 2 the protocol 2polyShamir is
|As,|-private, so adversaries with distinct sets of ¢ — 1 shares deduce that there exist |A, |
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corresponding candidate values for the secret, but the particular set Z of candidate secrets,
of size | Z| = |An,|, can differ among adversaries. The point here is that, with knowledge
of the protocol, an adversary against 2polyShamir with ¢ — 1 shares can deduce that there
are |Ay,| candidate secrets which are consistent with their shares, and |Ay,| may be less
than the number of candidate secrets available before obtaining the shares (i.e. the full secret
space). Protocol 2polyShamir is therefore |A,,|-private and, for sufficiently large p, secure.
Note, however, that K-privacy is non-trivial in this instance - in general, the set of |Ay |
candidate secrets deduced by an adversary with ¢ — 1 shares can be a proper subset of
the secret space, so an execution of NpolyShamir ensures privacy with respect to a set of
candidate secrets of size |Ay |, not the full secret space. As an example at the other extreme
to the N = 2 case, consider the case with N = p — 1, for which one has |A,_; ,| = 1 and the
secret is uniquely determined. In this case, the scheme is 1-private and (trivially) insecure.

For present purposes, the following generalised version of K-privacy, applicable for g-
secret sharing schemes, is of interest:

Definition 4.2. g-Secret Sharing K-Privacy. A t-out-of-n (t < n) g-secret sharing protocol
Py, with secret space F, is said to be K-private if any probabilistic polynomial time
adversary A that obtains shares {y.;}cc7,iclg (With |T| = ¢ — 1), corresponding to secrets
{#i}iclq, may leverage the shares to deduce that there exists sets Ay; C F;, such that
yi € A7, and [A7;| = K; < |F)| for all i € [q]. Moreover, there exists at least one value
J € lq] such that Kj; < |F;|. The i-th secret of a K-private g-secret sharing protocol is said
to be K;-private.

Here, the idea is that an adversary may deduce that each of the ¢ secrets belongs to
a particular subset A7; C F7, with |A7 ;| = K;, but cannot uniquely determine which of
these K; candidate values for the i-th secret is the actual secret. Different adversaries may
determine that the i-th secret resides in distinct subsets At ;, depending on which shares
they receive, but for all adversaries there exist K; candidate values for the i-th secret which
the adversary cannot exclude a priori. For a K-private g-secret sharing scheme, the size
of the sets providing privacy varies among secrets, such that the i-th secret is K;-private;
i.e. privacy of the i-th secret is ensured with respect to a set of size K;. The requirement that
there exists at least one value j € [q], with K < |F|, ensures that K-privacy is non-trivial
for g-secret sharing (i.e. there is always at least one secret for which privacy is provided
with respect to a subset of the secret space, rather than the full secret space). For g-secret
sharing schemes, the label of “ K-private” refers to the fact that adversaries may deduce that
the secrets belong to subsets of the secret space, with the particular size of the subsets being
specified by the individual values K;.

Theorem 4.1. The q-secrel sharing scheme pwrShares, is K-private.

Proof. Consider a PPT adversary A that obtains ¢ — 1 shares {y.;}.c7,ic[q, corresponding to
an execution of pwrShares, which generated secrets {7; }ie[q, With 7 = [t]\{t} for some ¢ € [t].
Protocol pwrShares, is secure, by Theorem 3.4, so the adversary has a negligible probability
of determining all ¢ secrets. However, the adversary may deduce that, for a given secret
;i € {Ui}icq, the absent final share must reside in the set of j-atic residues mod p, namely
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yg € A,,. For each candidate value of the ¢-th share, denoted ztz € Aj,, there exists a
corresponding candidate value for the secret (call it Z;). The set of such candidate secrets
Z; (with z; € Z;) has cardinality |Z;| = |A;,], in direct correspondence with the candidate
values for the remaining share yg. The adversary cannot a priori determine which of the
candidate values for the j-th secret is the actual secret, as all elements of Z; are viable secrets.
Moreover, different adversaries A’, which acquire distinct sets of t — 1 shares {y..;}ce7 ic(q;
where 7' = [t]\{{'} for some ¢’ € [t] with ¢ # {, may also deduce that the remaining share
for the j-th secret is a j-atic residue mod p, namely the candidate values for the final share
are zg, € Ajp. Again, for each candidate share zg,, there exists a candidate secret 27, and
the set of such candidate viable secrets Z} has cardinality |A;p|. Moreover, one always has
Z;N 2} # ( but, in general, one may have Z; # Z7, so that different adversaries deduce that
the j-th secret is private with respect to different subsets possessing the same cardinality
|Ajp|- Assuming non-trivial values of ¢ > 1, one has that [Ag | < [y, so there always exists
a value j' € [q] for ¢ > 2 such that K < [F;|. Thus, the g-secret sharing scheme pwrShares,
is K-private and, in particular, the i-th secret is |A, ,|-private. [ |

Protocol pwrShares, is both secure and K-private. To further discuss the security prop-
erties of pwrShares,, it is useful to recall that, for a given set of £ — 1 polyShamir (or Shamir)
shares, the final share may take any value in the field, so an adversary may deduce that
all values in F, are viable candidate values for the remaining share. The set of candidate
valid secrets is in one-to-one correspondence with these candidate values for the last share,
giving a probability |I[~?’;';|*1 of successfully guessing the secret. Similarly, the probability of
guessing all q-secrets produced by an execution of pwrShares, is also |F,| 7!, independent of
the strategy employed. This observation makes intuitive sense as any instance of polyShamir
can be mapped to an instance of pwrShares , implying that breaking the latter should in some
sense be equivalent to breaking the former.” The equivalence is trivially transparent in the
case of an adversary whose strategy is to attack the first secret 7; derived from an execution
of pwrShares . For a given set of ¢ —1 shares for pwrShares , the remaining share resides in the
field, y; € F, and the candidate values for the first secret are in one-to-one correspondence
with the candidate values for the final share; i.e. 1 € F, as the first secret is |Ay ,|-private
and |Ay,| = [F5|. The probability of successfully guessing the first secret is [F5|~", but an
adversary that successfully recovers the first secret can uniquely determine the final share
and recover all secrets. Hence, the probability of successfully guessing all shares, by attacking
the first secret, is equal to the probability of guessing a polyShamir secret, namely |]F;|*1.
The same statement applies for an adversary that attacks the i-th secret whenever the i-th
secret is |Fy|-private; i.e. when |A;, [ = [F;|, the number of candidate valid secrets for the
i-th secret is equal to the number of elements in the field, and the probability of successfully
guessing the i-th secret is [F5|~'. Determining the i-th secret when |A;,| = |F}| uniquely
determines all ¢ secrets, so the probability of determining all ¢ secrets by guessing is again

-1
5

"Said differently, if it were easier to break pwrShares, with access to ¢t — 1 sets of shares {yi}ceT’ie[q],
than it was to break polyShamir (or Shamir) with ¢ — 1 shares {y.}.c7, one has discovered a new attack on
single-secret sharing schemes - namely, map shares for a single-secret sharing scheme onto pwrShares, shares
and attack the latter to break the former.
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Among the g secrets produced by an execution of pwrShares , not all secrets will be ]F;]—
private. Specifically, whenever |A;,[ < [F5|, |A;p|-privacy implies that the adversary has
a greater probability of successfully guessing the i-th secret than of guessing e.g. the first
secret. Despite this advantage, the probability of guessing all ¢ pwrShares, secrets remains af
[F%|~!. For example, one has [Ay,| = [F|/2, so the second secret is (|F}|/2)-private and the
probability of guessing the second secret is twice that of guessing the first secret. However,
for a given value of the second secret, there are two candidate valid values for the first
secret, such that the probability of successfully guessing both the first and second secrets is
(1/2) x (|F3]/2)~" = |F;|'. More generally, for |A;,| < [F|, the probability of successfully
guessing the i-th secret is |A; |7, and for a given value of the i-th secret, the probability of
guessing the (i &= 1)-th secret is |A;,|/|F5| (this result follows as each unique value for the
i-th level share yi maps into [F|/|A,;,| candidate values for the (i 4 1)-th share; similarly,

there exist [F*[/|A;,| distinct values for the (i — 1)-th level share v that map to a given
unique value of the share y!). Consequently the probability of successfully guessing both the
i-th secret and the (i £ 1)-th secret is:

*

_ ‘Ai,p‘ « 1 _ |F |—1
L B FAN Y

Pr[(guess 9;) A (guess ¥i+1)] (10)
As another concrete example, consider an execution of pwrShares, with ¢ = p — 1, in which
case the secret g,—,—1 is uniquely fixed as |A,_;,| = 1. An adversary has a 100% proba-
bility of successfully guessing the (p — 1)-th secret as it is 1-private and therefore uniquely
determined. However, successfully determining the secret ¢,—, 1 delivers no advantage in
guessing the secret g7, o, as the (p—2)-th secret is |A, 5 [-private and [A, 5 ,| = [F;], giving

Pr{(guess p-1) A (guess gp-2)] = [F2] ™. (11)

Thus, the strategy of using knowledge of ,_1, to determine ¥,_», is no more successful than
merely trying to guess y,_» (or the first secret). More generally one can consider sets of j < ¢
secrets, such that successfully guessing all 7 secrets uniquely fixes the value for all secrets. All
such strategies have a success probability of [F*|~!, independent of the sets chosen. Hence,

p
attempting to leverage relationships between arbitrary pairs of secrets provides no gain.

Note that the above statements hold when an adversary guesses all secrets together,
reflecting the fact that pwrShares, is secure but not strongly secure. If, instead, an adversary
were able to independently test its guesses for the i-th secret and confirm success/failure of
each guess, the probability of guessing all secrets decreases. For example, if an adversary
attacks secret g, by guessing, there are |F;|/2 candidate values to differentiate. Once
o is determined, however, a single guess is required to determine %;. Thus, instead of
requiring at most |F;| — 1 guesses to determine 7, directly, an adversary requires at most
[(|F5]/2) — 1] + 1 = [F5|/2 guesses to determine the values of both 7, and 7, and thus
determine all g secrets. Implementations of pwrShares, must therefore preclude the possibility
of independently verifying the correctness of guesses for individual secrets, or only use values
of ¢ such that |A,; ,|-privacy also ensures security. For example, with ¢ = 2, the execution of
pwrShares, generates two secrets, which are |A; ,|-private and |A, ,|-private, such that the
probability of independently guessing either 4; or i, is automatically negligible provided p
is chosen sufficiently large to ensure security of 7; (see Theorem 4.2 below).
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Finally, note also that, in practice, an attacker must determine elements from the set
of ¢-atic residues A,;, to gain an advantage when attacking the i-th secret. Determining a
set of i-atic residues itself incurs a cost. Efficient algorithms for calculating a cubic residue
in F, cost O(10log, p), though these techniques do not purportedly yield efficient methods
for ¢ > 3 [CKHK14]. Naive construction of A;s,, therefore costs > O(10plog, p), prior
to undertaking any attack leveraging this knowledge.® Roughly speaking, for values of p
sufficiently large to achieve adequate security in protocol Shamir, the set of possible values
for the i-th secret in pwrShares, is expected to be sufficiently large to ensure security of the
i-th secret provided |A,; | ~ O(p).

4.2 K-Security

Protocol pwrShares, is K-private and secure but not strongly secure. Yet for ¢ = 2, an
adversary has a negligible probability of independently outputting either of the secrets.
Thus, pwrShares, appears to be an example of a protocol whose security properties reside
somewhere between the notions of K-private g-secret sharing security and strong g-secret
sharing security. The notion of g-secret sharing K-security is introduced to describe this
“middle ground,” in which there is a negligible probability that an adversary will output any
secret generated by a protocol, and yet the secrets may not be independent (as required for
strong g-secret sharing security).

Definition 4.3. g-Secret Sharing K-Security. A t-out-of-n (t < n) g-secret sharing protocol
P,, with secret space Iy, is said to be K-secure if it is (i) g-secret sharing secure; (ii) g-secret
sharing K-private (implying that K; < |F5| for at least one secret); and (ii) probabilistic
polynomial time adversaries have a negligible probability of successfully outputting any of
the g secrets.

Theorem 4.2. The 2-secret sharing scheme pwrShares, is K -secure.

Proof. By Theorem 3.4, pwrShares, is secure and, by Theorem 4.1, it is K-private. Moreover,
the second secret is |Ag,|-private, where |Ay,| < [F3]. Finally, one may always choose p
sufficiently large such that both [F*|~" and [F;/2|7' are negligibly small, demonstrating
K-security. [ |

K-security obviously implies K-privacy. Moreover, for a K-secure ¢-secret sharing pro-
tocol, there is a negligible chance that a PPT adversary can output all ¢ secrets together
(i.e. g-secret sharing K-security implies g-secret sharing security). Furthermore, there is
a negligible chance that a PPT adversary will output any individual secret in a K-secure
g-secret sharing protocol (i.e. g-secret sharing K-security is stronger than g-secret sharing
security). However, if an adversary acting against a K-secure g-secret sharing protocol
manages to uncover one secret, they may gain an advantage in discovering other secrets.
Thus, g-secret sharing K-security “almost” (but not quite) implies strong g¢-secret sharing
security (i.e. g-secret sharing K-security is weaker than strong g-secret sharing security). The

8There are trivial exceptions to this claim - e.g. the set A,_; , always contains a single element.
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notion of K-security explicitly indicates that the probability of determining the individual
secrets is non-uniform; i.e. there exists at least one secret, in the set of ¢ secrets, such that
the probability of determining that secret is less than the probability of determining the
other secrets.

In summary, the g-secret sharing protocol pwrShares, is secure and K-private. Depending
on the value of ¢, the protocol may also be K-secure or it may remain merely secure and K-
private. For particular use cases, one may require g-secret sharing K-security, which restricts
the allowed values of ¢, or g-secret sharing security and K-privacy may be sufficient, in which
case ¢ is less constrained.

5 Switched Threshold Signatures

Threshold signature schemes leverage secret sharing protocols to generate master signatures
from partial signatures contributed by distinct signing authorities (see e.g. [Ped91|). For
example, one may distribute shares for a (master) private key among a set of authorities,
such that all signing authorities must sign a message to generate a valid signature under the
master key. In this way, the signing authorities may collectively construct a valid signature
under the master key without knowing the actual value of the master key |Ped91]|. The
secret sharing schemes described in previous sections can be employed in this context. To
illustrate this point, example applications of pwrSecret, and pwrShares, are presented in
what follows. These examples realise a primitive referred to as a switched threshold signature.
Switched threshold signatures are a type of threshold signature with the quirky property that
a threshold number of signatures of one type may be aggregated to form a master signature
of a different type; i.e. the aggregated partial signatures are “switched” to a master signature
with a distinct type. Two classes of switched threshold signature schemes are presented.
These schemes switch between Pointcheval-Sanders (PS) signatures |[PS16] and polynomial-
based signatures [McD20|, and may have utility in, e.g., threshold credential schemes such as
Coconut [SABT19], where the adoption of secret sharing schemes with shorter shares would
permit efficiency gains.

5.1 Generalities

A variant of the Pointcheval-Sanders (PS) signature scheme [PS16] is used in the examples
discussed below. Before describing the variant scheme, first recall the approach of PS. For
a set of ¢ messages (mq,...,m,) € [F7, the signature scheme PS is specified by the following
algorithms:

e PS.Setup(1?): On input a security parameter ), outputs the public parameters pp =
(p,Fp,G1,Go,Gr, g,7,¢e), for generators (g,9) € Gy x Gg, and a type-3 pairing e :
Gl X G2 — GT.

e PS.Keygen(pp, ¢): On input the public parameters pp and an integer ¢, randomly selects
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q + 1 field elements (z,y1,...,y,) il (F;)q“, and defines the secret key:

sk = (2,y1,.-.,Yqg)- (12)

Computes the following group elements:

(Z,Yh,...,Y,) = (§,3",...,3"), (13)

and sets the public key pk = (g, Z, Y1, . .. Yy

o PS.Sign(pp, sk, {m;}iciq): On input the public parameters pp, secret key sk, and mes-
sages {m;}ic[q, parses sk as (2,41,...,Yq), and randomly selects a group element

o & Gj. Outputs a signature:
ZPS = (0'1,(7) = (Ol,Uf—i_Zimiyi), (14)
for messages {m;}iciq-

o PS.Verify(pp, pk, {m;}icq,>): Parses ¥ as (01, 0), parses pk as (Z,Y1,... ,}qu), checks
that o7 # 1g, and tests whether e(oq, Z-[[, Y;") = e(o, §). If both checks are satisfied,
outputs accept, otherwise outputs reject.

The security properties of this scheme were described by PS [PS16, PS18|. There ex-
ists a mapping between PS signatures and a related class of polynomial-based signature
schemes [McD20|. The related multi-message signature scheme PolySig is defined by the
following algorithms:

e PolySig.Setup(1*): For a given security parameter A\, outputs the public parameters
pp = (p,F,, G1, Gy, Gr, e), for generators (g, g) € Gy x Gy, where e : Gy X Gy — Gy is
a type-3 pairing.

e PolySig.Keygen(pp, ¢): On input public parameters pp and integer ¢, randomly selects
two field elements, which are assigned to the secret key:

sk = (z,y) < (F)%. (15)
Computes the following group elements:
(ZY1, Y = (.53, (16)
and sets pk = (Z,Y1,. .. ,}7;,).

e PolySig.Sign(pp, sk, {m;}iclg): On input the public parameters pp, secret key sk, and

messages {1 }icg, parses sk as (z,y), and randomly selects a group element o, il G7.
Outputs a signature:

polysig = (01,0) = (UlyUerZimiyz) (17)

for messages {m;}iciq-
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e PolySig.Verify(pp, pk, {m;}icg,>): Parses ¥ as (01,0), parses pk as (Z,f/l,...,Y}]),
checks that o1 # 1g, and tests whether e(oy, Z - [[,Y;™) = e(o,g). If both checks
are satisfied, output accept, otherwise reject.

The secret sharing protocols pwrSecret, and pwrShares, generate relations between certain
instantiations of the multi-message signature schemes PS and PolySig. However, to leverage
these secret sharing protocols within multi-signer signature schemes, one must first overcome
an obstacle. Both PS and PolySig require the signer to generate a random element ;. To
leverage secret sharing and achieve threshold signatures, one needs all signing authorities to
agree on a common value for oy [SABT19]. A suitable common value for o1 may be generated
by leveraging a feature of Boneh-Lynn-Shacham signatures [BLS01| and taking the hash of
the messages [SABT19]. In the present context, one may define h = H(aux||m4||...||m,),
where aux denotes agreed-upon (optional) auxiliary information and the hash function maps
field elements representing different attributes to the group G;, H : F, — G; [BLSO01].
Thus, variants of both the PS and PolySig signature schemes may be defined, such that the
PS signature is replaced with:

Yps = (h,0) where o= h¥TZimi¥i (18)
and the PolySig signature is replaced with:
Spaysig = (h,0)  where o = R*FXimy (19)

In what follows, signature protocols with these modified signatures are still referred to as PS
and PolySig schemes, respectively. The algorithms remain as above, except for the following
modified definitions for the signing algorithms:®

e PS.Sign(pp, sk, {m;}ic[q, aux): Parses sk as (z,y1,...,y,), computes the group element:

h = H(aux||m4||...||m,) € G, (20)
and outputs the signature Yps for messages {m;}icq and auxiliary information aux,
where

Sps = (h,0) = (h, h*H=imive), (21)

e PolySig.Sign(pp, sk, {m; }ic[q, aux): Parses sk as (z,y), computes h = H(aux||mq]| ... ||m,) €

1, and outputs the signature:
Spoysig = (h, o) = (h, FHE™) (22)

for messages {m;}:cq and auxiliary information aux.

Henceforth, the labels PS and PolySig refer to the protocols with the above-modified signing
algorithms, PS.Sign and PolySig.Sign, respectively.

9The explicit argument provided for the hash function should be treated as symbolic - a particular
implementation can specify the argument as desired, provided it is an appropriate function of the messages.
For example, it may be preferable to include a nonce, or hash commitments to attributes, etc.

20



5.2 Polynomial Signatures from Switched Pointcheval-Sanders Sig-
natures

The new secret sharing protocols can be leveraged to construct a switched threshold signature
scheme in which master signatures under a polynomial-based private key are generated by
switching aggregated PS signatures (issued by multiple signers); i.e. a threshold number of
PS signatures are aggregated in a way that switches them to a polynomial-based master
signature. The basic idea is that a master private key of the PolySig form is shared using
protocol pwrSecret,, such that the share for the a-th signing authority forms their corre-
sponding private key. After a threshold number of ¢ signing authorities have signed a set of
messages, these (partial) signatures may be aggregated to construct a valid signature under
the master private key. The corresponding switched threshold signature scheme PolySwitchPS
(i.e. polynomial-based master signatures formed by switching aggregated PS signatures) is
defined by the following algorithms:

e PolySwitchPS.Setup(\): On input a security parameter ), executes PolySig.Setup(1*)
and outputs the public parameters pp = (p,F,, G1,Ga, Gr, g, §, €), where (g, ) € Gy x
Gy are generators and e : G; x Gy — G is a type-3 pairing.

e PolySwitchPS. TTPKeyGen(pp, ¢, n,q):

— On input the public parameters pp and three integers ¢, n and ¢t < n, executes

PolySig.Keygen(pp, q), which generates two random field elements (z,y) il (F;)Q,
and outputs the master secret key (sk) and master public key (pk) as:

sk = (z,y),
pk = (Z,V,Ys,....Y,) = (7,3 ,3",...,3"). (23)

— Defines ¢+ 1 polynomials v, w;, for i € [q], of degree t — 1, with coefficients in F,,.
Specifically, sets:

(29,97, .. yY) = (v(0),w1(0),wz(0),...,w,(0)), (24)

by executing Shamir with input secret z, which outputs the random polynomial v
with v(0) = z, and by executing pwrSecret, with input secret y, which outputs ¢
polynomials w; with w;(0) = .

i S :

— Uses the shares shzhamlr = 2,, and shi serete (Ya1 -+ Yayq), output by Shamir

and pwrSecret,, respectively, to provide each issuing authority a € [n] a secret key
sk,, comprised of ¢ + 1 field elements obtained as polynomial evaluations:

ska = (Zay Ya1 - - s Yaq) = (v(a),wi(a),...,wy(a)), (25)

where v(a) and w;(a) denote polynomial evaluations at the point a.

— Provides the signing authorities with a corresponding public key:

PKy = (Zas Yoo, Yag) = (57,500 ..., ). (26)
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e PolySwitchPS.Sign(sk,, ¢, {m; }ic|q, aux): Executes PS.Sign(pp, sk, {m;}ic[q, aux), which
parses sk, as (Za; Ya1 - - - » Yaq), cOmputes h = H(aux||m4||...||m,), and outputs the PS
signature ¥, = (h, 0,), with

o hza-i-zie[q] MiYai (27)

e PolySwitchPS.AggSig(7T, {X.}ce7): Confirms that the set T C [n] satisfies |T| =t < n.
Parses each X, as (h,0,.), for ¢ € T, and outputs the PolySig signature:

2= (h,0) < (b, ][ o), (28)
ceT
where /. is a Lagrange coefficient:
0—0
beT bic

i.e., (. is an evaluation of the Lagrange polynomial L. at the point zero, {. = L.(0).

o PolySwitchPS.Verify(pp, pk, 2, {m;}icjg): On input a set of messages {m;}cq, public

key pk, and signature ¥, parses pk as (Z,Y7,...,Y,), parses X as (h,o), and executes
the check:

e(h, Z- 1Y) = elo,d). (30)
i€[q]

Outputs accept if the check passes, otherwise outputs reject.

Note that the aggregated signature ¥ = (h,0) = (h, ][« ol is a valid PolySig signature
under the (master) secret key sk = (z,y). To observe this, note that the full secret key can
be reconstructed via interpolation:

2 = 0(0) = Y v(E)L(0) = Yzl

ceT ceT
y'o= wi(0) = > w(e)Le(0) = ) yeile (31)
ceT ceT

This reconstruction happens in the exponent of the signature element o:
o = Ho—gc — H(hzc‘i’zz miyc,'L)Ec — hz“l’zl miyi, (32)
ceT ceT

where the final expression has the form of a PolySig signature. The following features of the
switched threshold signature scheme PolySwitchPS are noted:

e PolySwitchPS employs the secret sharing scheme Shamir and the ¢-secret sharing scheme
pwrSecret, to construct shares sh, containing g+1 elements. These shares are identified
with the secret keys for signing authorities:

Ska = (shzhamir7 ShzwrSharesq) - (ZG«J Ya,1,- - - 7ya,q)' (33)
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e Algorithm PolySwitchPS.Sign is used by a signing authority to generate a (partial)
signature o, under their secret key sk,. The outputted partial signatures ¥, = (h, 0,)
have the standard PS form, namely Yps = (h, o) = (h, h*+2imv:),

e The “full” master secret key contains the elements (z,y,y*...,y?). These elements
are reconstructed via secret sharing in the exponent of element o, from an aggregated
signature ¥ = (h, o), by algorithm PolySwitchPS.AggSig.

e Signing authorities generate PS signatures but the (master) aggregated threshold sig-
nature is switched to a PolySig signature. This transformation between partial PS
signatures and aggregated PolySig signatures results from the use of pwrSecret,. The
use of Shamir, would instead convert the partial PS signatures into an aggregated PS
signature. The switch from PS signatures to an aggregated PolySig signature is reflected
in the fact that PolySwitchPS. TTPKeyGen executes PolySig.Keygen to generate PolySig-
style master keys, whereas PolySwitchPS.Sign executes PS.Sign to generate PS-style
partial signatures.

e Because the master/aggregated signature is switched to a PolySig signature, the master
secret key need only contain two field elements, sk = (z,y). In particular, the length
of the master secret key is independent of the number of messages q.

e The master public key pk, and signing authority public keys pk,, contain the same
number of elements. Consequently the Verify algorithm works for both aggregated and
partial signatures, even though these distinct signatures have different forms (PolySig
versus PS).

In summary, PolySwitchPS is a t-out-of-n switched threshold signature scheme that leverages
Shamir and the g-secret sharing scheme pwrSecret, to switch PS partial signatures into an
aggregated PolySig master signature. The master secret key contains O(1) independent
elements, irrespective of the number of messages.

5.3 Pointcheval-Sanders Signatures from Switched Polynomial Sig-
natures

One can also leverage the new secret sharing schemes to construct switched threshold
signatures that build master PS-style signatures by switching aggregated PolySig signatures
issued by multiple signers. In this approach, a master secret key with the standard PS
form, namely sk = (2,91...,¥,), is shared using secret sharing scheme pwrShares , such
that the share for the a-th signing authority forms their private key. When all signing
authorities have signed a set of messages, the resulting partial signatures can be aggregated
and switched to construct a signature under the master secret key. The corresponding
switched threshold signature scheme PSSwitchPoly (i.e. PS-based master signatures formed
by switching aggregated polynomial-based signatures) is defined by the following algorithms:

23



e PSSwitchPoly.Setup(A): On input a security parameter \, executes PS.Setup(1?), which
outputs the public parameters pp = (p,F,, G1, G2, Gr, g, g, €), where (g,7) € Gy x Go
are generators and e : G; X Gy — Gy is a type-3 pairing.

e PSSwitchPoly. TTPKeyGen(pp, ¢, q):

— On input the public parameters pp and integers ¢, t, executes polyShamir and
pwrShares,, which output the shares:

pwrShares,

ShzolyShamir =z, <£ ]F; and shy, =Yg (ﬁ ]F; for a€ [t], (34)

respectively, and define ¢ + 1 corresponding polynomials v and w;, i € [q].
Polynomial v, constructed by polyShamir, satisfies v(a) = z,. Polynomials w;(x),
for i € [¢], are constructed by pwrShares, using w;(a) =y, (for all a € [t]).

— Using the 2¢ random field elements {24, ¥a }acpy, provides each issuing authority
a € [t] with a secret key and corresponding public key:

Ska _ (ShgolyShamir7 ShzwrShareSq) _ (Zaa ya)’
- g e
pka = (ZIZ?Y(L,I;"‘?}/CL,(]) = (g >gyaugya .- .’gy ) (35)

— Constructs a master secret key:

sk = (z,91,...,Yq) = (v(0),w1(0),...,w,(0)), (36)

and sets the corresponding master public key:
pk = (Z,Y1,Ya, ..., Yy) = (77,3",5%,...,3"). (37)

o PSSwitchPoly.Sign(skq, ¢, {m;}icfq, aux): Executes PolySig.Sign(pp, sk, {m;}:c|q, aux), which
parses sk, as (2q4,Ys), computes h = H(aux||m4||...||m,), and outputs the PolySig
signature ¥, = (h, 0,), with

0 = h*etEicla ™, (38)

e PSSwitchPoly.AggSig({X, }scp): Parses each X, as (h,0,), for a € [t], and outputs the
PS signature:

= (h,0) « (h, [ o). (39)

a€lt]

where ¢, is a Lagrange coefficient:

l, = H {S:b} mod p. (40)
belt] b£a




e PSSwitchPoly.Verify(pk, X, {m;}ic[q): On input a set of messages {m;}c[q, public key
pk, and signature X, parses pk as (Z,Y3,...,Y,), parses ¥ as (h, o), and executes the
check:

e(h, Z- [ Yi™) = e(0.d). (41)

ze[q

Outputs accept if the check passes, otherwise outputs reject.

Note that the aggregated signature X = (h, o) = (h, [ ¢y ote) is a valid PS signature under

the master secret key sk = (2,y1,...,¥,). The secret key is reconstructed via interpolation:
z = v(0) = Z v(a)L,(0) = Z 2q la,
a€lt] a€lt]
Yi = Z wla Zya as (42)
a€lt] a€lt]

which happens in the exponent of the element o:
H ol = H hzw& miyé)ﬁa — pETZimivi (43)
aclt] a€lt]
The following features of this switched threshold signature scheme are noted:
e PSSwitchPoly employs the secret sharing scheme polyShamir, and the g-secret sharing

scheme pwrShares , to construct shares containing just two field elements. These shares
are identified with the secret keys:

sk, = (ShZOIYShamiryShzwrSharesq) = (Zau ya)- (44)

e Algorithm PSSwitchPoly.Sign generates partial signatures under secret key (24, y,), with
the form:

S, = (h,04) = (h, k¥ Xiela b)), (45)
which is the standard PolySig form, namely Ypoysig = (h, o) = (h, hEt2 miyi).
e Conversely, the aggregated signatures:
Y = (h,0) = (h, h¥Hzimivi), (46)

have been switched from the PolySig form to the standard PS form, Yps = (h, h* T2 ™),
Thus, signing authorities generate PolySig signatures for the messages but the (master)
aggregated signature is actually a PS signature. This switching from PolySig signatures
to an aggregated PS signature results from the use of pwrShares,.

e Because the partial signatures o, are PolySig signatures, the signing authorities’ secret
keys only contain two field elements, sk, = (z4,¥,). In particular, these secret keys
contain O(1) elements, independent of the number of messages g¢.
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e The Verify algorithm works for both partial (PolySig) signatures and aggregated master
(PS) signatures, as the public keys for both signature types share a common form.

To summarise, PSSwitchPoly is a t-out-of-t switched threshold signature scheme that lever-
ages the secret sharing scheme polyShamir, and the g-secret sharing scheme pwrShares,, to
switch ¢t aggregated PolySig signatures into a master PS signature. Signing authorities use
secret keys containing just two field elements, independent of the number of messages signed.

6 General Related Shares

Before concluding, it is noted that the methods employed to construct protocol pwrShares,
can be generalised to construct related families of g-secret sharing schemes in which a single
random value is leveraged to construct multiple shares. These more-general secret sharing
schemes can also be used within threshold signature schemes. The general idea is that
the protocol selects a random element vy, (per friend) as a partial share, sh, = y,, and some
prescribed process is employed to generate elements of the full shares, namely y,; = F(ya, 1),
for some function (or operation) F. For pwrShares, one has F(y,, 1) = y;. Other possibilities
include generating the additional secrets using an alternative function or, e.g., a hash function
H. Protocol rltdShares, describes the more-general class of g-secret sharing protocols with
related shares:

e rltdShares,

Randomly draw ¢ field elements y, ¢~ Mgy, for a € [t].

Generate (¢ — 1) x t additional field elements y,; < F(ya, 1), for i € [¢].

Construct ¢ polynomials f;(z), defined by f;(z,) = va,, for i € [q], at specified
evaluation points {4 }ac[y-

— Identify the ¢ secrets with the evaluations f;(0), namely g; < f;(0).
— Distribute a single share sh, = y, to each of the ¢ friends.
— To recover the secrets {7; }ic[q

* Retrieve the t shares from the friends, reconstruct the polynomials f;(z) via
interpolation, and perform the evaluations y; = f;(0).

Provided F' is deterministic, users need only distribute the (partial) shares sh, = y, to
friends, from which both the friends and the original user can generate the full shares:

(Ya,1: Y025+ Yaq) = (F(Was 1), F(Was 2), -, F(Yar 4)- (47)

Depending on the form of F', the protocol may or may not be K-secure. Provided protocol
rltdShares, possesses sufficient security properties (which requires specification of the func-
tion /algorithm F’), it may be employed within threshold signature schemes, the details of
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which are readily inferred from Section 5. Similar to the scheme PSSwitchPoly described
in Section 5, each friend receives a secret key sk, = (z,,%,) for random elements z,, yq,
and signs messages {m;}ic[q as X, = (h,0,) for group element h with o, = petiet Mibai
The keys y,; are constructed via Eq. (47). Aggregation of a threshold number of these
signatures produces a master signature. Scheme rltdShares, can therefore be employed in
place of Shamir, to construct switched threshold signature schemes of use for e.g. threshold
credential schemes such as Coconut [SAB*19].

7 Conclusion

Generalisations of the single-secret sharing schemes Shamir and polyShamir were presented.
Protocol Shamir was generalised to the g-secret sharing scheme pwrSecret,, in which users
share multiple secrets whose elements are related as powers of a single secret (i.e. power
secrets). Scheme polyShamir was generalised to the g-secret sharing scheme pwrShares, , which
leverages succinct shares containing O(1) elements, independent of the number of secrets
shared. Succinct (partial) shares were achievable as the “full” shares were related as powers
of a single element (i.e. power shares). The notion of secret sharing K-privacy was introduced
and the g-secret sharing protocol pwrShares, was shown to be g-secret sharing secure and
K-private, such that each secret remains private within a set of cardinality |A;,| (i.e. the
i-th secret is |A; ,|-private). Despite pwrShares, not being strongly g-secret sharing secure,
it was shown that, for particular values of ¢, there is a negligible chance of a PPT adversary
outputting any of the ¢ secrets. This observation indicates that a security category exists
between K-private g-secret sharing security and strong g-secret sharing security, motivating
the notion of ¢-secret sharing K-security. Example applications of the new multi-secret
sharing schemes were presented. These examples realised a primitive called a switched
threshold signature, wherein a threshold number of signatures of one type are switched into a
master signature of a different type. Switched threshold signature schemes were constructed
in which an aggregated set of PolySig signatures was switched into a master PS signature
(and vice-versa, for PolySig <> PS). Finally, comments on a more general family of g-secret
sharing schemes were offered.
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