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Abstract. We design a consecution of protocols which allows organizations to have secure
strong access control of their users to their desktop machines based on biometry. It provides
both strong secure authentication and privacy. Moreover, our mechanism allows the system
admins to grant a various level of access to their end-users by fine tuning access control policy.
Our system implements privacy-by-design. It separates biometric data from identity information.
It is practical: we fully implemented our protocols as a proof of concept for a hospital. We use
a 3D fingervein scanner to capture the biometric data of the user on a Raspberry Pi. For the
biometry part, we developed an optimal way to aggregate scores using sequential distinguishers.
It trades desired FAR and FRR against an average number of biometric captures.

1 Introduction

Biometric access control provides a mechanism to authenticate users. It has been an interest-
ing research domain throughout the years. Several secure and privacy-preserving biometric
protocols have been proposed with different techniques. We take a traditional approach to
develop a biometric access control with strong security guarantees. By assuming a secured
server storing a database of biometric templates, we develop a mechanism called BioLocker
for strong access control (AC) using end-to-end encryption and fingervein recognition.

Motivated from the real-world use cases, we focus on users aiming to log in desktops/laptops
D under a large network in an organization using a biometric scanner B. In such an orga-
nization, a directory L is used to identify them through passwords. In the present work, to
add an extra layer of secure authentication, a server S which is responsible for the biometric
recognition is introduced. For such a structure, we design two bodies: an enrollment station
that lets admins enroll users with their biometric data and a laptop login control that lets
the user authenticate themselves through biometric scanner before logging in to their devices.
The high-level overview of BioLocker is given in Fig. 1.

As depicted in Fig. 1, D serves as an intermediate machine between the biometric scanner
B and server S to make them communicate. The idea is to use this “intermediary” in a secure
way by encrypting the exchange of messages between B and S in an authenticated manner.

The goal of our construction is to add strong AC to an existing password-based AC system
deployed between D and L. We assume that the password-based protocol between D and L
is already secure by default. And, we focus on adding a biometric AC following the existing
password-based protocol. Our constraints are to add no software on L and to make as little
changes as possible on D. More importantly, for privacy reasons, nobody but B and S sees
biometric templates. The maintenance and security of the server S must be high. Nobody but

? The work was done when the author was in LASEC/EPFL.



User

B (scanner)
[serialB, skB, pkS]

D (desktop)
[pkS]

L: DB of
(login, pwd, pseudo)

S (server)
[pkS, skS,KS]

DB0

(serial, vk)
DB1

(pseudo, finger, ref-temp)

login, pwd
login, pwd

pseudo

queryB

finger

respB

[K1]
[tokenS]

[K2, respB]
[result]

Fig. 1: Full BioLocker mechanism. Enrollment is shown with fully black figures and Biometric AC Method
is same as Enrollment in addition to added gray arrows/queries between D and S. Solid rectangles are the
machines whereas dashed rectangles are the databases on the corresponding machines. Dashed arrow indicates
the inputs from the user to the specified machines. Solid arrows indicate the exchanges between the machines
over the network.

L and D sees the identity of the user. Hence, we only allow S to associate biometric data to
a pseudo. Nobody but L, D, and S see the pseudo of the user. Unless there is any collusion
with any of these participants, BioLocker offers privacy by design.

We make sure, in BioLocker, that the server S will only treat information coming from a
legitimate scanner. We design the mechanism in a way that D only forwards messages and
does two encryptions for S. Hence, the overhead on D is minimal. This makes our protocol
feasible to deploy on already existing systems.

For our system, we adopted fingervein biometry. To defeat spoofing attacks [20], we use
what we call 3D fingervein by capturing fingervein through several angles. In cooperation
with Global ID, IDIAP, HES-SO Valais-Wallis, and EPFL, we built a biometric scanner to
scan 3D fingerveins, algorithms, and security protocols.3 It is shown in Fig. 2.

Fig. 2: Current version of the scanner.

Previous work. While not as widely deployed as fingerprint authentication, fingervein recog-
nition has been a hot topic in recent years and many systems have been proposed [19, 17, 5].

3 https://www.global-id.ch

https://www.idiap.ch

https://www.hevs.ch

https://www.epfl.ch
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In 2015, Wang et al. [23] showed how hand-vein recognition can be used to build a practical
physical access control system. In 2018, Yang et al. [24] presented a system providing au-
thentication and encryption of healthcare data via a smartcard storing finger-vein biometric
templates. Finally, Kang et al. [9] studied real 3D fingervein algorithms.

Multimodal biometric (or multi-biometric) systems combine several biometric sources (e.g.
face, fingervein, and voice) or techniques (e.g. matching algorithms) to obtain a highly reliable
authentication. The design of such systems has thus led to the study of biometric score
aggregation (also called score fusion, i.e. how one can combine the different scores obtained
to get the best performance). The NIST surveyed many proposals for biometric score fusion
in 2006 [22] and another study was published by Lumini and Nanni [11] in 2017. A popular
technique for score aggregation is the maximum likelihood ratio test [15]. Recently, Ni et
al. [16] proposed a scheme based on the maximum decision reliability ratio and weighted
voting. In 2018, Kabir et al. [8] introduced an algorithm that relies on normalization and a
weighted sum of the different scores. Finally, another common approach for score fusion is
the use of classifiers (e.g. based on random forests [12] and SVM [6]).

There exist few products deploying access control with biometry. However, to the best of
our knowledge, there is no known publicly available protocol.

In BioID [3], a previous project, we developed a suite of protocols to design a privacy-
preserving identity document based on biometric recognition. Our scanners and protocols can
host BioID.

Our contribution. We design a practical biometric authentication mechanism called BioLocker
that is integrated into an already existing authentication system such as password-based
systems. Our construction makes no changes to the existing system and only extends secu-
rity integrating 3D fingervein recognition. Our algorithms optimally use biometry. Since the
matching algorithm runs with three images of the same finger from different angles, we needed
to come up with a way to aggregate the matching scores to grant access. We developed our
aggregation of matching scores to reach a desired FAR and FRR.4 To do this, we use the theory
of sequential distinguishers: at every capture, our algorithm decides if the recognition suc-
ceeded, failed, or requires more biometric samples to conclude. Hence, a user may be required
to be scanned several times, although in most cases, one capture is enough. To the best of our
knowledge, such an AC mechanism with biometric algorithm is a novel design in many ways:
1. it is easy to integrate on existing weakly private systems where strong privacy is required;
2. its policy-based methods run AC in fine-grained iterative mode and can accommodate other
modalities; 3. it uses 3D fingervein image recognition.

Designing a biometric mechanism in a secure manner may be very tedious and requires
a lot of crafting. Nevertheless, we prove the security of our mechanism and support the
practicality with implementation results.

Structure of the paper. We start with introducing our infrastructure in Section 2. Then, we
detail the AC protocol and enrollment station in Sections 3.1 and 3.2 respectively. Then,
we detail the biometric algorithms in Section 4. We analyze the security of our system in
Section 5. Finally, we present implementation results from a proof-of-concept in Section 6.

4 FAR is the false acceptance rate, i.e. the probability that a wrong finger is accepted, FRR is the false rejection
rate, i.e. the probability that the right finger is rejected.
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Notation. We will use a few cryptographic primitives for our protocols. In what follows, ⊥
denotes an error message or a dummy value (e.g. a null pointer, an empty string, or an empty
list). We use a public-key cryptosystem PKC, a digital signature scheme DSS, an authenticated
encryption with associated data AEAD, and a hash function H. Given a key pair (pk, sk), PKC
encrypts a plaintext pt into a ciphertext ct using pk and decrypts it back using sk. Dec is a
deterministic function. Given a key pair (vk, sk), DSS signs data data using sk and verify the
signature using vk. Given a key K ∈ AEAD.K, AEAD encrypts a plaintext pt with associated
data ad and a nonce N ∈ AEAD.N and decrypts it back with the same K. Given a bitstring
x, H computes a digest with H(x). Typically, PKC provides INDCCA security, DSS is EFCMA-
secure, AEAD is secure as a MAC and as an encryption against chosen plaintext/ciphertext
attacks, and we consider a collision-resistant hash function H. These primitives work with
the following notations:

PKC.Gen→(pk,sk) PKC.Encpk(pt)→ct PKC.Decsk(ct)→pt

DSS.Gen→(vk,sk) DSS.Signsk(data)→σ DSS.Verifyvk(data,σ)→0/1

AEAD.EncK(N,ad,pt)→ct AEAD.DecK(N,ad,ct)→pt

2 Infrastructure Specification

In this work, we focus on an organization which has its own network and file system. Most
of the organizations offer a system to authenticate its users with passwords, such as Active
Directory implemented with LDAP-like protocol. For instance, the organization could be a
hospital with many different departments. Each department has a set of doctors who can
access the files of their assigned patients and nothing else.

The mechanism BioLocker has an infrastructure with different entities: some machines and
human users. The machines are of several types.

Biometric scanner: B. Scanners capture biometric information of users and do necessary
computations by following the protocol honestly. In our settings, scanners take three images
of a finger from different angles, which we call 3D fingervein. A malicious biometric scanner
can clearly store and reuse some biometric templates as will. Hence, we assume that B is
honest in AC. Scanners will be considered as malicious when studying the privacy of the user
identity or pseudo.

Organization server: L. This server belongs to the organization and contains the directory of
its users, their names and passwords (or their hash). We extend it with a pseudo for privacy
reasons. The pseudo is not required to be remembered (or even known) by the user. The
server L has a unique identifier serialL. A user name login is assumed to be unique to each L,
meaning that the (serialL, login) pair is unique. In AC, the organization server is assumed to
be honest. When studying the privacy of biometric templates, L can be malicious.

Desktops: D. These desktop computers belong to the information network of the organization.
The goal is to control access of users to desktops. Each desktop is set up with the address of
its server L and the address addrB of a close-by biometric scanner B. We assume that only
D has access to B (e.g. B is connected to D by a USB cable). Since the purpose of AC is
to grant access to D, we assume that D is honest. When studying the privacy of biometric
templates, D can be malicious.
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Enrollment station: E. It consists of a security-sensitive computer in order to enroll users
with their biometric templates scanned through B. The sensitive computer communicates
with B to capture templates and communicates with S to add, remove, or modify entries in
the database on the server. The enroller is assumed to be honest in AC. When studying the
privacy of biometric templates, E can be malicious.

Biometric server: S. There is only one biometric server. It contains two databases: one stores
the reference biometric templates of users along with their associated pseudo and the other
stores identifiers of the enrollment stations and biometric scanners. The former is used for
matching the reference templates to the claimed users for the AC. The latter is used during
the authentication of data coming through legitimate E and B. The server S can be outside
of the organization, but high security is provided. As the server gives the final result of AC
to D, S is assumed to be honest. Servers will be considered as malicious when studying the
privacy of the user identity or pseudo.

Communication between D, E, and S is going through an insecure network. Communica-
tion between D and B is assumed to be authenticated. Communication between D and L is
assumed to be fully secure, and outside of the scope of the present construction.

Since the organization may consist of many departments, all elements except S belong
to a department. We identify each department with “domain” which is referred by a unique
string domain. The server L is unique for each domain, that is L stores users data for this
specific department. We assume that each pseudo is unique. The biometric server S is unique
(cross-domain). We assume secure communication between D and L.

Setup. We give the list of parameters that each elements of the infrastructure hold in Table 1.
More specifically, the server S generates its PKC key pair (pkS, skS) and a symmetric key
KS ∈ AEAD.K. Each biometric scanner B is configured with its own DSS key pair (vkB, skB)
and a unique serial number serialB. It keeps a copy of pkS, as well.

In each enrollment station, E is configured with its own DSS key pair (vkE, skE) and a
unique serial number serialE. It stores pkS, as well. The server S maintains a directory DB0 of
the public keys vk (vkB or vkE) of each B and E by their serial numbers (serialB or serialE).
The server S holds one database DB1 of (pseudo, finger, ref-temp, policy) and (pseudo, policy)
entries which is populated by enrollment station through a protocol which we will describe in
Section 3.2.

We let each desktop D hold the public key pkS of the server S. The server L holds a
database of (login, pwd, pseudo) entries for first layer authentication with passwords.

D B L E S

pkS pkS pkS (pkS, skS)
serialL (vkB, skB) (vkE, skE) KS

addrB serialB serialL serialE
DB = {(login, pwd, pseudo)} DB0 = {(serial, vk)}

DB1 = {(pseudo, fingeri, ref-temp, policy)}

Table 1: The elements of the infrastructure and their configuration parameters.
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3 Protocols

3.1 Access Control Protocols

For this section, we will focus on the communication between devices in AC without giving the
details about the biometric algorithms. We start defining a (straightforward) prior AC with
login credentials and then continue with extended AC mechanisms. Prior AC is the password
authentication between E and L. We assume that there is an already existing secure protocol
for this. More precisely, the prior AC works as follows.

1. The user types his identifier login and his password pwd on D.
2. The desktop D queries the server L with queryL = (login, pwd) and gets the response respL.

Then, the server L computes the response by respL = pseudo, where (login, pwd, pseudo)
is a valid record in the database. Otherwise, respL = ⊥.

3. If the response by L is ⊥, access is denied and the protocol ends. Otherwise, D proceeds
with our protocol.

fingerI,n Represents a set I of fingers to be scanned n times. The access is granted
conditioned that the user’s corresponding finger matches with the reference
template stored in the database. The method may include a message to display
on the scanner.

“always” The desktop D always grants access.
“never” The desktop D always denies access.
“sms” A verification code is sent by SMS to the user who types it on D.

“securitas” An alert is sent to the security officer who may call the user.

Fig. 3: Various methods the protocol sets with method variable.

To be able to follow the description in the present section, we need some back story about
the biometry. The AC heavily depends on the biometric matching. That is, upon inviting
the user to the scanner to provide a fingervein image, it will be used to match it to the
user’s reference templates stored in DB0 during enrollment (described in Section 3.2). The
matching algorithm returns a score denoted by score which may be insufficient to decide to
accept or reject. The decision in that case is to ask for another trial. The final decision is
based on all collected trials. Therefore, the extended AC works in a succession of iterations
which are defined by a method which we denote by method. The method can be to prompt
the capture of one specific finger or any other mean/modality. Some special methods are used
to terminate the iteration cycle: the method which accepts and the method which rejects.
In Fig. 3, we give the list of methods for extended AC along with their descriptions. We
need to define both the method of the first iteration and then the algorithm to decide on
the next method based on the collected results (i.e. aggregated scores). These two elements
form the policy : policy.initmethod and policy.method. More precisely, the initial method to be
used is policy.initmethod and after having collected a list hist of scores, the next method is
policy.method(hist). If hist is enough, we have policy.method(hist) = “always” (access granted)
or policy.method(hist) = “never” (access denied). The method could repeatedly be finger{i},1
(meaning to scan finger i once), change fingers, or try other modalities. We specify the policy
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for each user at enrollment, as one record of DB1. We give the extended AC in three stages
in Fig. 4, 5, and 6.

The first iteration of extended AC starts with a protocol called “Stage 1” with the server
S who sets the initial method (line 4-6 on the right in Fig. 4). Then, it continues like in every
other iteration. That is, it goes through a protocol called “Stage 2” using method (line 2-8 on
the left and line 7 on the left in Fig. 5). In Stage 2, D may decide to end (by granting access
or denying access) or interact with B. After that, it goes through a protocol with S called
“Stage 3”. In this stage, we determine the next method to use (line 24 in Fig. 6). Then, AC
goes back to Stage 2. Note that whenever there is a failure in verification in a protocol, the
protocol aborts immediately. Otherwise, they continue in the flow.

Our scanner is a stateless device. When it receives a request, it takes pictures, sends its
response, then sleeps back.

As the server is stateless as well, state information is carried inside a token that S encrypts
for himself. The token works like a cookie in a browser: S gives token in the response to D
and D must provide it in the next query to S. The token also contains method which is in
clear and which can be parsed by D and B.

Desktop D (Stage 1)
input: pseudo, addrB, serialB
stored: pkS
1: K1 ←$ AEAD.K
2: queryS ← PKC.EncpkS

(“Request”,K1, pseudo, serialB)
3: send queryS to S
4: get respS
5: parse respS = [N12, ct1]
6: (tokenS,K)← AEAD.DecK1

(N12,⊥, ct1)
7: erase K1

8: continue to Stage 2

Biometric server S (“Request” query)
stored: skS,KS

1: receive queryS
2: if anything fails below then return respS = ⊥
3: PKC.DecskS (queryS)→ (“Request”,K1, pseudo, serialB)
4: retrieve policy with pseudo from DB1

5: hist← ⊥
6: method← policy.method(hist)
7: set T as current time
8: ad← method

9: K
$←− AEAD.K

10: pt← (T, pseudo, hist, serialB,K)
11: N11,N12 ←$ AEAD.N
12: tokenS ←

[
N11, ad,AEAD.EncKS

(N11, ad, pt)
]

13: respS ←
[
N12,AEAD.EncK1

(N12,⊥, tokenS,K)
]

14: return respS

Fig. 4: Access control Stage 1 (between D and S).

3.2 Enrollment Protocol

The enrollment protocol is given in Fig. 7. The input to the enrollment protocol (on E) is
a string pseudo associated to a user to register, and the address addrB of the scanner B. In
practice, operating the enrollment station E is restricted to an administrator or a security
officer who checks the identity of the enrolling user and retrieves his/her pseudo securely
before enrollment. Specifically, E goes through two stages: Stage 1 with B and Stage 2 with
S. In Stage 2, S receives a query of type “Enroll”. Both stages are defined in Fig. 7. In
communication with B, only serialB, N, and ad = method are in clear. All the rest is end-to-
end encrypted. More importantly, we design both the server S and the scanner B as stateless
(both in enrollment and AC phase). E (and later D) acts as a master in the communication
with S and B. Interestingly, the scanner B answers to queries in a unique way, so there in no
difference between access control and enrollment for B.
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Desktop D (Stage 2)
1: parse tokenS = [N11, ad, ct2]
2: parse ad = method
3: if method ∈ {“sms”, “securitas”} then
4: method← treat(method,hist,serialB ,login,host)

5: end if
6: if method = “always” then grant access
7: if method = “never” then deny access
8: if method is not biometric then abort
9: display “scan finger in scanner serialB”

10: queryB ← (serialB, tokenS)
11: send queryB to B at addrB
12: get respB
13: continue to Stage 3

Biometric scanner B
stored: skB, pkS, serialB
1: receive queryB
2: if anything fails below then return respB = ⊥
3: parse queryB = (serialB, token)
4: check that serialB is correct
5: parse token = [N, ad, ct]
6: parse ad = method
7: parse method = (fingerI,n,message)
8: display message
9: extract I, n from fingerI,n

10: for i ∈ I, j = 1, . . . , n do
11: invite fingeri
12: capture tempi,j
13: end for
14: temp← list of all (fingeri, tempi,j)
15: data0 ← (queryB, temp)
16: sign0 ← DSS.SignskB

(data0)
17: respB ← PKC.EncpkS

(data0, sign0)
18: return respB

Fig. 5: Access control Stage 2 (between D and B).

Desktop D (Stage 3)
1: K2 ←$ AEAD.K
2: queryS ← PKC.EncpkS

(“Match”,K2,K)
3: send queryS and respB to S
4: get respS
5: parse respS ← (N12, ct2)
6: (tokenS,K)← AEAD.DecK2

(N, H(queryB), ct2)
7: erase K2

8: continue to Stage 2

Biometric server S (“Match” query)
stored: skS,KS

1: receive queryS and respB
2: if anything fails below then return respS = ⊥
3: parse (“Match”,K2, K̄) = PKC.DecskS (queryS)
4: (data, sign)← PKC.DecskS (respB)
5: parse data as (queryB, temp)
6: parse queryB as (serialB, tokenS)
7: retrieve vkB form DB0 with serialB
8: DSS.VerifyvkB

(data, sign)
9: parse tokenS as (N, ad, ct)

10: pt← AEAD.DecKS
(N, ad, ct)

11: parse ad = fingerI,n
12: parse pt = (T, pseudo, hist, serialB,K)
13: check K = K̄
14: check serialB is correct
15: verify T not too early/late
16: x← ⊥
17: for all (fingeri, tempi,j) ∈ temp do
18: retrieve ref-tempi from DB1 with (pseudo, fingeri)
19: compute score with the matching algorithm
20: x← (x, (i, score))
21: end for
22: hist′ ← (hist, x)
23: retrieve policy from DB1 with pseudo
24: determine method = policy.method(hist′)
25: set T′ as current time
26: ad← method

27: K′
$←− AEAD.K

28: pt← (T′, pseudo, hist′, serialB,K
′)

29: N11,N12 ←$ AEAD.N
30: token′S ←

[
N11, ad,AEAD.EncKS

(N11, ad, pt)
]

31: respS ← (N12,AEAD.EncK2
(N12, H(queryB), token′S,K

′))
32: return respS

Fig. 6: Access control Stage 3 (between D and S).

4 Biometric Algorithms

Image processing on fingervein images. The image from the scanner is first cleaned up using
image processing algorithms. After the contour of the finger is identified, the image is cropped.
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Enrollment station on device E
input: pseudo, policy, addrB, serialB
stored: skE, pkS, serialE

Stage 1:
1: set T as current time
2: K0 ←$ AEAD.K, N

cte←−− AEAD.N
3: fingerI,n ← policy.initmethod
4: ad← fingerI,n
5: pt← (T, pseudo, policy)
6: tokenE ←

[
N, ad,AEAD.EncK0

(N, ad, pt)
]

7: queryB ← (serialB, tokenE)
8: send queryB to B at addrB
9: get respB

Stage 2:
10: data1 ← (“Enroll”,K0, serialE, H(queryB), respB)
11: sign1 ← DSS.SignskE

(data1)
12: queryS ← PKC.EncpkS

(data1, sign1)
13: send queryS to S
14: get respS
15: parse respS = [N′, ct′]
16: check “ok” = AEAD.DecK0

(N′,⊥, ct′)
17: erase K0

Biometric server S (“Enroll” query)
stored: skS
18: receive queryS
19: if anything fails below then return respS = ⊥
20: (data1, sign1)← PKC.DecskS (queryS)
21: parse data1 = (“Enroll”,K0, serialE, h, respB)
22: retrieve vkE from DB0 with serialE
23: DSS.VerifyvkE

(data1, sign1)
24: (data0, sign0)← PKC.DecskS (respB)
25: parse data0 = (queryB, temp)
26: check h = H(queryB)
27: parse queryB = (serialB, tokenE)
28: retrieve vkB from DB0 with serialB
29: DSS.VerifyvkB

(data0, sign0)
30: parse tokenE = (N, ad, ct)
31: pt← AEAD.DecK0

(N, ad, ct)
32: parse ad = fingerI,n
33: parse pt = (T, pseudo, policy)
34: verify T not too early/late
35: store (pseudo, policy) in DB1

36: parse temp = (fingeri, tempi,j)i∈I,j=1,...,n

37: for each i ∈ I do
38: decide which j defines ref-tempi = tempi,j
39: store (pseudo, fingeri, ref-tempi) in DB1

40: end for
41: pick N′ ∈ AEAD.N
42: respS ← [N′,AEAD.EncK0

(N′,⊥, “ok”)]
43: return respS

B

Fig. 7: Enrollment protocol. The dashed square represents the steps run by B same as in Fig. 5.

A linear regression is performed to determine the angle of the finger and to correct it. Finally,
the biometric feature is extracted using the algorithm of Miura et al. [13, 14, 21] with Lee
mask preprocessing [10]. The final feature extraction is a black-and-white image which takes
about 2KB. This is the image which is stored in the database. Since we have three images, a
record takes less than 10KB.

Fig. 8: Image processing: raw capture, background elimination, angle correction, and feature extraction.

Matching algorithm. We use the matching algorithm from Miura et al. [13, 14, 21]. Given two
images, the biometric matching algorithm runs with the two images as input and returns a
score between 0 and 0.5.

Score algorithms with aggregation. Since we have three pairs of images, we obtain three
scores. We design an optimal way to aggregate the scores. Namely, we consider the following
problem. After m iterations, we have a list hist = (score1, . . . , scorem) where each scorei is a
triplet of numbers. Hence, hist = (s1, . . . , sn) with n = 3m. We model the si by independent
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random variables. If the templates correspond to the same random finger, we assume that
every si follows one distribution samec, depending on the used camera c (left, center, or
right) to scan the templates. If they correspond to different random fingers, we assume that
every si follows one distribution diffc. More precisely, we let ref-temp(finger) be the reference
template of a random finger and capturei(fingeri) be a captured template of a finger fingeri.
We let matchC(i)(ref-temp(finger), capturei(fingeri)) = scorei be the score obtained by the
matching algorithm based on Camera C(i). We define the events AUTH (authentic) and IMP
(impersonation) by

AUTH : finger = finger1 = · · · = fingerm

IMP : finger 6= finger1, . . . , finger 6= fingerm

The distributions same and diff are defined by

Pr
same

[score1, . . . , scorem] = Pr[score1, . . . , scorem|AUTH]

Pr
diff

[score1, . . . , scorem] = Pr[score1, . . . , scorem|IMP]

We design a sequential distinguisher such that given hist, the output is either “same”, or “diff”,
or ⊥, meaning that no decision is reached, hence more samples are needed. We define FAR =
Prdiff [output = same], FRR = Prsame[output = diff]. Our goal is to make a distinguisher
reaching a target FARtarget and FRRtarget, and requiring as few samples as possible.

We use the theory of sequential distinguishers. This theory is described in Siegmund [18].
It was first used in block cipher cryptanalysis [7], then in the side-channel attack against
SSL [4]. Given a tuple of m scores (score1, . . . , scorem), we compute the likelihood ratio

lr =
Prsame[score1, . . . , scorem]

Prdiff [score1, . . . , scorem]

The best sequential distinguisher accepts the hypothesis that the scores comes from same
if lr ≥ τ+, for some parameter τ+. It accepts the hypothesis that the score comes from diff
if lr ≤ τ−, for some parameter τ−. In between, the distinguisher waits for more samples.
Using the Wald approximation, if we want to obtain FARtarget and FRRtarget, we should use
τ+ ≈ 1/FARtarget and τ− ≈ FRRtarget.

We make the approximation that the scores are normally distributed, which is well sup-
ported by experiment. Namely, matching from the camera c follows either N (µsame

c , (σsame
c )2)

or N (µdiff
c , (σdiff

c )2). We let ci be the camera used to compute si. Hence, ln lr can be computed

by summing all ln Prsame[si]
Prdiff [si]

= ∆lpdfci(si). Using the probability density function of the normal
distribution, we obtain

∆lpdfc(s) =

(
s− µdiff

c

)2
2(σdiff

c )2
− (s− µsame

c )2

2(σsame
c )2

+ ln
σdiff
c

σsame
c

The expected value of ln lr with same distribution is

Esame(ln lr) =
∑
i

(
(σsame
ci )2

2(σdiff
ci )2

+
(µsame
ci − µdiff

ci )2

2(σdiff
ci )2

− 1

2
+ ln

σdiff
ci

σsame
ci

)
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Given that we have m iterations for each camera c, we deduce that the complexity to reach
a good decision with same is approximately

msame ≈
ln τ+∑

c

(
(σsame
c )2

2(σdiff
c )2

+ (µsame
c −µdiff

c )2

2(σdiff
c )2

− 1
2 + ln σdiff

c
σsame
c

)
As an application, we assume that we have scores coming from three cameras with the

following experimental parameters:

same left center right

µ 0.141 0.148 0.151
σ 0.037 0.032 0.043

diff left center right

µ 0.112 0.111 0.129
σ 0.020 0.014 0.026

In Fig. 9, we plotted the pdf for the central camera. We obtain msame ≈ − ln FARtarget

7.5 . For
FARtarget = 0.1%, this is msame ≈ 0.9. In Fig. 9, we can see the curve of ∆lpdf for the central
camera. Cumulated with the two others, we easily reach − ln 0.1% ≈ 6.9.

0

5

10

15

20

25

µτ µdiff µsame

same
diff

−6.9

0

6.9

10

20

µτ µdiff µsame

Fig. 9: Probability density (left) and ∆lpdf (right) of the score from the central camera.

This theory has one limitation though: it assumes a bad distribution coming from taking
the biometric features of two random different persons. If an adversary tries another distri-
bution of pictures (like a totally white picture), he may have better chances than what our
analysis shows. It is typically a problem when the score is very low. In Fig. 9, we can see that
for very low scores, the same distribution becomes more likely than the diff one. We let µτ
be the lower crossing point on the two probability density functions. We decide to skip scorei
whenever (scorei)center < µτ . It does not deny access. It only declares this capture unusable.
Hence, its effect is to divide msame by Prsame[µ > µτ ]. In our case, µt = 0.0739 and this
increases msame by only 1.04%. Finally, our decision algorithm works as on Fig. 10.

Given n samples temp1, . . . , tempn (typically, n = 3), we use the algorithm on Fig. 10 to
select the best tempi as the reference one.

5 Security Analysis

The security model assumes that the adversary has full control on the network and can make
participants launch protocols with adversarially chosen inputs. Desktops D, scanner B, the
server S, and enrollment desktop E are supposed to be honest in AC. The D ↔ L link is
assumed to be secure and out of the scope of this security analysis. As discussed below, B
is accessible to only one D but communication may leak. That is, in our security games,
the adversary plays with every D, E, B, S with chosen input and sits in the middle of
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Decision Algorithm
input: hist
1: acc← 0
2: for i = 1 to |hist| do
3: if (scorei)center ≥ µτ then
4: for c ∈ {left, center, right} do
5: acc← acc +∆lpdfc((scorei)c)
6: end for
7: end if
8: end for
9: if acc ≥ − ln FARtarget then return “accept”

10: if acc ≤ ln FRRtarget then return “reject”
11: return “undecided”

Reference Template Selection Algorithm
Input (temp1, . . . , tempn):
1: L = {temp1, . . . , tempn}
2: while #L > 1 do
3: find x ∈ L such that

∑
y∈L−{x} score(x, y) is mini-

mal
4: remove x from L
5: end while
6: output L

Fig. 10: Decision and Reference Template Selection Algorithms.

communication between them. He can also require a chosen user to have his finger scanned
on a chosen B.

We list our security results. Due to lack of space, we only informally state our security
results here. Formal models, results, and proofs are provided in Appendix A.

We assume that PKC is INDCCA-secure, DSS is EFCMA-secure, AEAD is indistinguishable
from an ideal primitive against chosen plaintext and ciphertext attacks, and H is collision-
resistant. We prove that

– (enrollment) if E says that pseudo was successfully enrolled with B, it must be the case
that S did so, and if S enrolls pseudo from B, it must be because E asked for it and B
followed (however, E may fail before announcing a success);

– (AC) if D granted access to pseudo from B, it is certainly the case that its policy in DB1

validated a sequence of captures from B;

– (privacy of templates) the adversary cannot extract information about the biometric tem-
plates taken from B, even if E is malicious;

– (privacy of pseudo) a semi-passive adversary cannot distinguish the pseudo of a user from
a random one (however, an active adversary could simulate D and test a pseudo for a
user).

Note that even though the biometric template could be known by the adversary (for
instance, from another organization who enrolled the same user and who is malicious), the
security of B prevents this template to be used.

One limitation of our model is that D does not authenticate to B. Hence, a user scanning
on B is not sure it is in context of a request from D. We could have made it more secure,
either by adding a PKI for D (which we did not want), or by using the help of the user to
check that a random number selected by D displays the same on D and B. Eventually, B
is connected to D by a unique (USB) cable so we concluded it was not worth making the
protocol heavier.

6 Implementation Results

We implemented the entire BioLocker mechanism from enrollment to the biometric AC for a
hospital. The IT department of the hospital has run the proof of concept to test the reliability,
performance, and security of BioLocker with its employees. Our implementation choices were
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made to be compatible with the infrastructure of the hospital. They use Active Directory
for password authentication on Windows 7/10 computers. We did not change any settings of
their password authentication and integrated our protocols on top of the Windows password
authentication. This means that in the login session to access the desktops, we implemented
another layer of authentication through biometric scanners that run when password authen-
tication succeeds.

The current prototype of our scanner (which is shown in Fig. 2) is based on a Raspberry Pi
PI3.5 The communication with the scanner happens through Ethernet, USB or WiFi. The
scanning of the finger is made via infrared lights and three cameras placed with different
angles. It happens when the user inserts her finger in a hole where the top is filled with a
rack of infrared LEDs and the bottom has the cameras. The scanner interacts with its user
through color LEDs and a small color display. The infrared LEDs illuminate a finger and
three cameras take QVGA images of the finger from three different angles.

When prompted to scan a finger, the scanner waits until a presence sensor detects a finger.
As each LED corresponds to a region of the picture, we dynamically adjust by software the
power of each LED so that the histogram of the corresponding region is optimal. Then, the
cameras take a picture. Images are in gray-scale of size 320 × 240. They are stored in png
format with a file size of one image being around 70KB in total.

We implemented the enrollment station in pure python. For communications, we chose
REST POST requests with JSON payload. We chose the Flask python framework to handle
these requests on D, B, and S.

For the AC protocol, we implemented S in python and the code on B for enrollment was
reusable. The choice we made for the authentication on D which is a Windows machine is
a tool called pGina. It is a credential provider that supports custom plugins. The code is in
C#. Alternatively, one could create a custom credential provider.

For PKC, we use 2048-bits RSA-OAEP and AES-GCM depending on the message length,
as shown in Fig. 11. AES-GCM is implemented with 128-bit key size, 128-bit Mac/Tag size,
and 128- bit IV/Nonce. The additional data is either empty, 6 bytes or a hash. For hash, we
use SHA256. For DSS, we use 2048-bits RSA-PSS.

For the biometric algorithms, we use the Bob library [2, 1].

The performance of both enrollment station and AC is fairly fast. Except the time for
users to type information and insert fingers, enrollment takes about 3 seconds when we take 3
fingervein images triplets. (Roughly, time is evenly split between Stage 1 and Stage 2.) AC is
very fast running under 2 seconds after the user has inserted her finger. (Stage 1 is negligible
as it takes 2ms. Stage 2 takes about 500ms. Stage 3 is the bottleneck part taking 1225ms.)
Given that more optimization can be done, we find these figures very practical.

The correct fingers are always accepted, almost all the time at the very first capture.
Hence, the experimental FRR is close to 0%, with good complexity. Incorrect fingers are
always rejected, typically after 1, 2, or 3 captures (but it is reasonable if the complexity is
high when we scan incorrect fingers). Hence, the experimental FAR is close to 0% as well.

5 A new version is currently under development.
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7 Conclusion

We designed a secure access control mechanism with biometry integration with privacy pro-
tection. We implemented a proof of concept with 3D fingervein biometry and demonstrated
that this technique is ready for deployment. It was successfully tested in a hospital.

As future work we aim at making a systematic survey on a big scale to measure the
effective FAR and FRR. We also want to study the evolution of biometry on a long time-scale.
We should also revisit the spoofing attacks on fingervein [20] to see how effective is our 3D
technique. Finally, we plan to strengthen privacy on the server side by having a distributed
database and multiparty matching.

Acknowledgement. The authors are grateful to Lambert Sonna and the Global ID SA company
for having sponsored this project.
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Sébastien Marcel. Continuously reproducing toolchains in pattern recognition and machine learning ex-
periments. In International Conference on Machine Learning (ICML), August 2017.
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A Security Proofs

In our security proofs, we assume a game in which a PPT adversary A can interact with a
few oracles:

– Launch returns a fresh sid for a session of the access control protocol for D or E;
– Query1

D(sid, P, serialB) starts the Stage 1 sid protocol for D with chosen inputs (P is
mapped to its pseudo) and returns queryS that D wants to send to S;

– Query2
D(sid, respS) continues the Stage 1 (with ⊥ as associated data for ct1) or Stage 3

(with H(queryB) as associated data for ct2) sid protocol for D with chosen response
from S and returns either queryB that D wants to send to B in Stage 2 or the final
acceptance/rejection;

– Query3
D(sid, respB) continues the Stage 2 sid protocol for D with chosen response from B

and returns queryS and respB that D wants to send to S in Stage 3;
– QueryS(queryS) or QueryS(queryS, respB) queries S with a chosen input and returns respS;
– QueryB(serialB, queryB) queries B of serialB with a chosen queryB and returns respB;
– Query1

E(sid, P, policy, serialB) starts the Stage 1 sid protocol for E with chosen inputs (P
is mapped to its pseudo) and returns queryB that E wants to send to B;

– Query2
E(sid, respB) continues the Stage 1 sid protocol for E with chosen response from B

and returns queryS that E wants to send to S in Stage 2;

15



– Query3
E(sid, respS) continues the Stage 1 sid protocol for E with chosen response from S

and terminate;
– Query(serialB, P, i) requests user P to insert his finger i in the scanner of serialB;
– Scan(P, i)→ temp captures the template temp of a chosen user P with a chosen finger i.

The last oracle models that an adversary could steal the biometric information of a user by
means outside of our system. As we can see, the stateless B and S make it easy to model the
interface in the game. As for D and E, we need separate oracles to model the different stages
of the protocol. We assume that a process with D or E does not respond if it is made with an
incorrect sid or a wrong sequence of superscripts i in Queryi∗, or if sid was already used with
another participant. We say that, during the execution of the game, a series of queries made
with sid match some queries with B and S if they are followed in sequence, with the output
from one query being the input of the next one.

At the beginning of the game, the keys are set up. The pseudo unique values are randomly
assigned to each participant. The adversary receives as input the public parameters (such as
the public keys), the set of participants and the set of pseudo. Except in the game for pseudo
privacy (Section A.4), the adversary receives the table P ↔ pseudo. Hence, we can use P or
pseudo interchangeably.

Security Game Γ :
1: set up the keys of participants
2: make a random P ↔ pseudo table
3: give the public parameters and the P ↔ pseudo table to the adversary
4: let the adversary play with oracles in probabilistic polynomial time

The main task of the security proof is to show that there are matching queries and that
involved participants see the same variables. To avoid ambiguities, to each variable we add
a superscript under parenthesis to indicate whose view of the variable we are talking about.
Once we know participants see the same value, the superscript disappears.

Assumption 1. PKC is INDCCA-secure, DSS is EFCMA-secure, AEAD is indistinguishable
from an ideal primitive against chosen plaintext and ciphertext attacks, and H is collision-
resistant.

In what follows, we state results assuming Assumption 1 and with statements using the verb
“must”. This verb has to be understood as “except with negligible probability”. For instance,
“R must be true” means that Pr[¬R] is negligible.

A.1 Proof of Enrollment Security

Theorem 2. We assume Assumption 1 and consider the game Γ .
If a Query3

E succeeds in an E protocol requiring to enroll P on serialB, there must be a
QueryS which inserted some biometric entries for the right pseudo coming from the right B.

If QueryS inserts biometric entries in the database, there must be a matching sequence
(Query1

E,QueryB,Query2
E,QueryS) which requested it, the right finger must have been invited

on the right B, and the result of its capture have resulted in the database entry. (Note that a
matching Query3

E may be missing.)

Hence, if E says that pseudo was successfully enrolled on B, it is certainly the case, and if S
enrolls pseudo from B, it must be because E asked for it and B followed. (However, if E does
not report a successful enrollment, we cannot deduce anything.)
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Proof. For the first part of the result, we consider a successful query Query3
E(sid, resp

(E)
S ). Due

to the definition of the Query3
E, it must be the case that there are some matching

Query1
E(sid, pseudo(E), policy(E), serial

(E)
B )→ query

(E)
B

and
Query2

E(sid, resp
(E)
B )→ query

(E)
S

queries with the same sid. The Query1
E query defines K

(E)
0 .

Clearly, resp
(E)
S parses to some (N(E), ct(E)) such that

AEAD.Dec
K
(E)
0

(N(E),⊥, ct(E))

decrypts. The key K
(E)
0 circulates in the game inside data

(E)
1 . Since the key skS does not

circulate, we can transform the game into an INDCCA game in which the challenge plaintext

is (data
(E)
1 , sign

(E)
1 ). In this transformation, we replace

PKC.EncpkS(data
(E)
1 , sign

(E)
1 )→ query

(E)
S

by a challenge query and we replace

PKC.DecskS(query
(S)
S )→ (data

(S)
1 , sign

(S)
1 )

by either a decryption query if query
(S)
S 6= query

(E)
S or by

(data
(E)
1 , sign

(E)
1 )→ (data

(S)
1 , sign

(S)
1 )

otherwise. This game does not make any decryption query with the challenge ciphertext.
Hence, the outcome is indistinguishable when the challenge plaintext is replaced by a random
string. Hence, we obtain a game in which K0 no longer circulates. We can then transform this
obtained game into a MAC forgery game for AEAD. We obtain that, except with negligible
probability, ct′(E) must have been made by the only process which could use K0 to make ct′,

which is a successful enrolling QueryS query with query
(S)
S = query

(E)
S = queryS. With the

second part of the theorem (to be proven below), we obtain that E, S, and B saw the same
pseudo, serialE, serialB, and temp.

For the second part of the result, we consider a successful query

QueryS(query
(S)
S )→ resp

(S)
S

in which data
(S)
1 parses to

(“Enroll”,K
(S)
0 , serial

(S)
E , h(S), resp

(S)
B )

where
PKC.DecskS(query

(S)
S ) = (data

(S)
1 , sign

(S)
1 )

Clearly, serial
(S)
E gives from DB0 a verification key vkE such that

DSS.VerifyvkE(data
(S)
1 , sign

(S)
1 )
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is true. Since skE never circulates, we transform the game into an EFCMA game with verifi-
cation key vkE by simulating the signatures by queries to a signing oracle. Due to EFCMA-

security, we deduce that sign
(S)
1 must (except with negligible probability) have been made by

a
Query2

E(sid, resp
(E)
B )→ query

(E)
S

query from E with serial
(E)
E = serial

(S)
E = serialE such that

PKC.DecskS(query
(E)
S ) = (data

(E)
1 , sign

(E)
1 )

with data
(E)
1 = data

(S)
1 = data1 and sign

(E)
1 = sign

(S)
1 = sign1. Since data1 includes serialE,

h, and respB, we must have serial
(E)
E = serial

(S)
E = serialE, h(E) = h(S) = h, and resp

(E)
B =

resp
(S)
B = resp

(E,S)
B .

Since skS never circulates, we can (as above) transform the game into an INDCCA game

where the encryption of (data1, sign1) is the challenge encryption which gives query
(E)
S . If

query
(E)
S = query

(S)
S , we skip the decryption of query

(S)
S to get (data1, sign1) directly. Otherwise,

after getting the decryption of query
(S)
S , we add a text which makes the game abort if the

decryption does not give (data1, sign1). Clearly, this never aborts. Due to the INDCCA security,

the game succeeds the same when we replace query
(E)
S by the encryption of something random.

Hence, it does not abort either. This implies that query
(E)
S = query

(S)
S . However, this fact

should remain equally verified, due to INDCCA security, when we do not replace query
(E)
S by

the encryption of something random. Hence, query
(E)
S = query

(S)
S = queryS.

Due to the definition of the Query2
E, it must be the case that there was a

Query1
E(sid, pseudo(E), policy(E), serial

(E)
B )→ query

(E)
B

query before with the same sid, hence same serialE. We note that h = H(queryB).
In QueryS, let us parse

query
(S)
B = (serial

(S)
B , token

(S)
E )

decrypt

PKC.DecskS(resp
(S)
B ) = (data

(S)
0 , sign

(S)
0 )

and parse

data
(S)
0 = (query

(S)
B , temp(S))

Since H(query
(S)
B ) = h = H(query

(E)
B ), by using the collision resistance of H, we obtain that,

except with negligible probability, we have query
(S)
B = query

(E)
B = query

(E,S)
B .

serialE gives from DB0 a verification key vkB such that

DSS.VerifyvkB(data
(S)
0 , sign

(S)
0 )

is true. By the same EFCMA argument as above, we obtain that there must be a

QueryB(serialB, query
(B)
B )→ resp

(B)
B

query with the same serial
(B)
B = serial

(S)
B = serialB such that

PKC.DecskS(resp
(B)
B ) = (data

(B)
0 , sign

(B)
0 )
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with the same data
(B)
0 = data

(S)
0 = data0 and sign

(B)
0 = sign

(S)
0 = sign0. By the same INDCCA

argument as above, we obtain that resp
(B)
B = resp

(S)
B = respB, except with negligible proba-

bility.

Further note that data0 includes query
(B)
B and that H(query

(B)
B ) = h = H(query

(E,S)
B ). Due

to collision-resistance, we obtain query
(E,S)
B = query

(B)
B = queryB.

In the QueryB query, we can see that the right B has received the right finger, pseudo,
policy information and captured temp(B) = temp(S) = temp which was processed by the
QueryS query.

Finally, we reconstructed a matching sequence

1: Query1
E(sid, pseudo, policy, serialB)→ queryB

2: QueryB(serialB, queryB)→ respB

3: Query2
E(sid, respB)→ queryS

4: QueryS(queryS)→ respS

ut

A.2 Proof of Access Control Security

One difficulty with access control is that D is not authenticated like E. Hence, the adversary
can fully simulate D.

Theorem 3. We assume Assumption 1 and consider the game Γ .
If Query2

D with sid runs with method, pseudo, serialB, there must be a matching sequence
of queries in the access control protocol starting with Query1

D(sid, pseudo, serialB) and ending
by this Query2

D, between D with sid, B with serialB, and S such that each method indicated by
the policy of pseudo was treated by B and produced a temp which gave the score defining the
next step.

For every QueryS(., respB,n) of type “Match” succeeding to respond, there must exist some
sequence

1: QueryS of type “Request”, making token1

2: QueryB(queryB,1)→ respB,1 seeing token1

3: QueryS(., respB,1) of type “Match”, receiving token1, making token2, and seeing queryB,1
4: QueryB(queryB,2)→ respB,2 seeing token2

5: · · ·
6: QueryB(queryB,n)→ respB,n seeing tokenn
7: QueryS(., respB,n) of type “Match”, receiving tokenn and seeing queryB,n

such that all QueryS see the same pseudo and T and all queries see the same serialB.
Furthermore, for every sequence as above, if the initial QueryS of type “Request” is fed

with queryS,0 returned by a prior Query1
D query, the above sequence must complete as

1: Query1
D(sid, P, serialB)→ queryS,0

2: QueryS(queryS,0)→ respS,0 of type “Request”, making token1

3: Query2
D(sid, respS,0)→ queryB,1

4: QueryB(queryB,1)→ respB,1 seeing token1

5: Query3
D(sid, respB,1)→ (queryS,1, respB,1)

6: QueryS(queryS,1, respB,1)→ respS,1 of type “Match”, receiving token1, making token2, and
seeing queryB,1

7: Query2
D(sid, respS,1)→ queryB,2
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8: QueryB(queryB,2)→ respB,2 seeing token2

9: · · ·
10: QueryB(queryB,n)→ respB,n seeing tokenn
11: Query3

D(sid, respB,n)→ (queryS,n, respB,n)
12: QueryS(queryS,n, respB,n) of type “Match”, receiving tokenn and seeing queryB,n

such that P uses pseudo and Query1
D started at time T.

Hence, if D granted access to pseudo from B, it is certainly the case that its policy in DB1 is
compatible with a sequence of captures from B.

The second part of the theorem means that queries to S of type “Match” must follow a
matching interleaved sequence of queries to S and B with the same pseudo and serialB. The
first query to S is of type “Request” and others are of type “Match”.

The last part of the theorem means that if S started a the sequence upon the request
from a honest D, then the entire chain must be matching with a discussion with this honest
D. However, the adversary could impersonate D from the beginning as there is no secret
attached to D.

Proof. We consider a successful query Query2
D(sid, resp

(D)
S ). Due to the definition of Query2

D,
there must be a matching sequence

Query1
D,Query2

D,Query3
D,Query2

D,Query3
D, . . . ,Query2

D

of queries with the same sid.
By the same argument as in the first part of the proof of Th. 2 using the INDCCA-security

of PKC and the security of AEAD, for every resp
(D)
S received as input to Query2

D, there must
exist a

QueryS(query
(S)
S , resp

(S)
B )→ resp

(S)
S

with the same resp
(D)
S = resp

(S)
S = respS, query

(D)
S = query

(S)
S = queryS, and query

(D)
B =

query
(S)
B = query

(D,S)
B in the previous QueryD.

Each matching QueryS verifies that a query
(D,S)
B from Query2

D is actually responded from

the right B in a QueryB (hence query
(D,S)
B = query

(B)
B = queryB and resp

(B)
B = resp

(S)
B =

resp
(B,S)
B ), using the EFCMA-security of DSS like in the proof of Th. 2.
Hence, we have a matching sequence

1: Query1
D(sid, pseudo, serialB)→ queryS,0

2: QueryS(queryS,0)→ respS,0

3: Query2
D(sid, respS)→ queryB,1

4: QueryB(serialB, queryB,1)→ respB,1

5: Query3
D(sid, .))→ queryS,1

6: QueryS(queryS,1, respB,1)→ respS,1

7: Query2
D(sid, respS,1)→ queryB,2

8: QueryB(serialB, queryB,2)→ respB,2

9: Query3
D(sid, .))→ queryS,2

10: QueryS(queryS,2, respB,2)→ respS,2

11: Query2
D(sid, respS,2)→ queryB,3

12: · · ·
13: Query2

D(sid, respS,n)
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where the last query is the one we started with. We can then easily see that they are talking
about the same values pseudo, serialB, temp, method. In addition to this, each new method
is the result of applying policy.method to the history of scores obtained by matching a temp
with the appropriate ref-temp.

Note that we do not prove that respB transits through Query3
D but it does not matter as

D does not use it. Its role is only to relay it from B to S.
For the second part of the theorem, we use the unforgeability of AEAD: since KS does not

circulate, an accepted tokenS must have been made by S before, hence either as tokenS in
“Request” or as token′S in “Match”. Furthermore, the EFCMA security guarantees that respB

comes from the right B. Since respB includes queryB which itself includes tokenS, the result
follows.

For the third part of the theorem, we prove that a discussion between the honest D and S
can only be continued with the honest D. Indeed, only D can decrypt with K2 the response
from S and use the obtained K to send the next query to S and be accepted. (We need first
to reduce to a game in which K no longer circulates.) ut

A.3 Proof of Privacy for the Template

Here, we use a variant Γ ′ of Γ in which the adversary gets as extra input the secret keys of
every E (to model that they are malicious). We assume that the format for the message temp
to be treated allows a special form of same length which contains an integer. In what follows,
we change the behavior of the oracle simulating B: every time there is a template temp to
encrypt, a counter c is increasing, temp is stored in some variable T [c] = temp, and temp
is replaced by the special form containing the integer c. The oracle simulating S is changed
accordingly: each time decryption obtains a temp which is of the special form, the integer c
inside is extracted and temp is replaced by T [c].

Security Game Γ ′:
1: set up the keys of participants
2: make a random P ↔ pseudo table
3: give the public parameters and the P ↔ pseudo table to the adversary
4: give all skE to the adversary
5: let the adversary play with oracles in probabilistic polynomial time

Theorem 4. We assume Assumption 1 and consider the game Γ ′.
We assume that PKC is INDCCA-secure and that DSS is EFCMA-secure. For every ad-

versary in the game with malicious E, changing the oracles QueryB and QueryS so that they
encrypt/decrypt a reference counter to replace every temp does not affect the outcome of the
game, except with negligible probability.

Hence, the adversary with malicious E cannot extract any information about captured bio-
metric templates from the protocol.

Proof. The skS key does not circulate. We use the INDCCA-security of PKC to replace the
encryption of each temp by a message of the special form. When the ciphertext made by B
is unchanged, we bypass decryption and replace the correct temp. Due to INDCCA security,
this does not affect the outcome of the game.

Then, in the case decryption is bypassed, we restore decryption and do the necessary
change in temp if we obtain something of the special form. Clearly, it does not change any
message visible by the adversary in the game.
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What remains to be done is to add the change in temp when it is of a special form, even
when the ciphertext are not equal to those made by B. For this, we observe that ciphertexts
made by B are all signed. Due to the EFCMA-security of DSS, there is no other ciphertext to
process, except with negligible probability. ut

A.4 Proof of Privacy for pseudo

We could have obtained a result similar than the privacy of templates, but for the pseudo,
by letting D sign documents like B. However, we decided not to overload the existing infras-
tructure and not to add a key infrastructure on desktops. Consequently, an active adversary
can simulate a desktop, try a pseudo of his choice, ask a designated user to have his finger
scanned, and see if the server say that they match. This attack is unavoidable but requires an
active attack with a human user. If users only log on trusted desktops, the attack is possible
only if an adversary interfere with the protocol with a honest D, but this would make the user
realize something is going wrong as his desktop would deny access to him, thanks to Th. 3.
Thus, this attack is inherently hard to run. Our Th. 3 says that if S is talking with a honest
D, then the adversary cannot interfere actively in this discussion. Hence, the only problem if
when the adversary takes the opportunity that someone inserts his finger in a scanner B to
start a fake protocol and hijacks the connection to B. However, the honest D waiting for B
would see B not responding and would warn the user, who would realize that his finger was
captured without D knowing.6 We believe that appropriate security measures would make
this attack too hard. Hence, we reduce to the case where the adversary is passive.

We use another variant Γ ′′ of the game. For this game, the adversary no longer receives
the table of pseudo any more. Hence, he can only specify users to the interface for Query1

D and
Query1

E. At the beginning of the game, the adversary receives a random user P and either (if
b = 0) its pseudo or (if b = 1) a random pseudo from the set. The adversary is also forced to
be semi-passive in this game, in the sense that queries to S must be the response from the
last oracle query to D.

Security Game Γ ′′b :
1: set up the keys of participants
2: make a random P ↔ pseudo table
3: pick a random P
4: if b = 0 then
5: set pseudo corresponding to P
6: else
7: set pseudo corresponding to a random user
8: end if
9: give the public parameters to the adversary

10: give P and pseudo to the adversary
11: let the adversary play with oracles in probabilistic polynomial time (each input to QueryS

must be an output from a prior Query1
D or Query3

D)

Theorem 5. We assume Assumption 1 and consider the game Γ ′′ with a semi-passive ad-
versary.

6 To strengthen a bit the protocol, we could have made S select a random number to release inside ad in
token, so that both D and B could extract it and display some function of it (e.g., an image from a database
at the address specified by this number). The user would see that D and B display the same thing and
would insert his finger.
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b = 0 and b = 1 are indistinguishable, but with negligible advantage.

Hence, the adversary cannot distinguish the pseudo of a user from a random one.

Proof. As we can see from the protocol, pseudo is encrypted either by D for S using PKC, or
by E for S using AEAD, or by S for himself using AEAD. Using both INDCCA and AEAD, we
can change each pseudo into π(pseudo) before encryption and bypass the decryption of known
ciphertexts, using a random permutation π, and reduce to a game in which pseudo does not
circulate any more.

Due to our assumption that the adversary is semi-passive, each query to S must match
queries with a honest D or E. Hence, we make sure that every decryption is actually bypassed.
We can restore decryption and apply π−1 to retrieve pseudo. Finally, each DB1 query would
use the result of π−1 so we could suppress the application of π−1 and have π(pseudo) in the
database as well.

We obtain a game in which every user is assign some new pseudo π(pseudo) internally,
and the only pseudo which is really used is the one given to the adversary at the beginning
of the game. Hence, b = 0 and b = 1 are indistinguishable. ut

B Example of PKC

In Fig. 11 we present a PKC based on RSA-OAEP and AES-GCM, which selects the best option
based on the length of the message to encrypt.

PKC.Enc(pk, pt):
1: if pt is small then . resp. to the max size of an RSA-OAEP pt
2: ct′ = RSA-OAEP.Enc(pk, 0‖pt)
3: return (0, ct′)
4: else
5: pick K at random
6: N = 0 . the nonce can be set to 0
7: ad = ⊥
8: ct1 = AES-GCM.Enc(K,N, ad, pt)
9: ct2 = RSA-OAEP.Enc(pk, 1‖K)

10: return (1, ct1, ct2)
11: end if

PKC.Dec(sk, ct):
1: parse ct = (flag, ct′)
2: if flag = 0 then
3: pt′ = RSA-OAEP.Dec(sk, ct′)
4: parse pt′ = 0‖pt (if not, return ⊥)
5: return pt
6: else
7: parse ct′ = (ct1, ct2)
8: pt′ = RSA-OAEP.Dec(sk, ct2)
9: parse pt′ = 1‖K (if not, return ⊥)

10: N = 0
11: ad = ⊥
12: pt = AES-GCM.Dec(K,N, ad, ct1)
13: return pt
14: end if

Fig. 11: Hybrid PKC RSA-OAEP with AES-GCM.
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