
Optimized La�ice Basis Reduction In Dimension 2,
and Fast Schnorr and EdDSA Signature Verification

Thomas Pornin

NCC Group, thomas.pornin@nccgroup.com

18 April 2020

Abstract. We present an optimization of Lagrange’s algorithm for lattice basis reduc-
tion in dimension 2. The optimized algorithm is proven to be correct and to always ter-
minate with quadratic complexity; it uses more iterations on average than Lagrange’s
algorithm, but each iteration is much simpler to implement, and faster. The achieved
speed is such that it makes application of the speed-up on ECDSA and EC Schnorr
signatures described by Antipa et al[1] worthwhile, even for very fast curves such as
Ed25519[3]. We applied this technique to signature veri�cation in Curve9767[12], and
reduced veri�cation time by 30 to 33% on both small (ARM Cortex M0+ and M4) and
large (Intel Co�ee Lake with AVX2) architectures.

1 Introduction
Schnorr signatures[13] are an e�cient signature algorithm that can be readily applied to most
groups where discrete logarithm is a hard problem. Ed25519, de�ned in [3] and later ex-
tended to other curves and standardized under the generic name EdDSA[6], is an applica-
tion of Schnorr signatures to an Edwards elliptic curve. Weierstraß curves can also be used,
e.g. Curve9767[12]. Schnorr signature veri�cation is typically more expensive that signature
generation:

– Most of the cost of signature generation is computing point rB, where B is the conven-
tional generator point for the prime order subgroup, and r is a per-signature secret scalar.
Since B is �xed, precomputed tables can be used for many multiples of B, which greatly
speeds up the operation.

– Conversely, signature veri�cation relies on verifying the equation h(sB − kA) = hR,
where point R and scalar s are part of the signature value,A is the public key, k is com-
puted from the output of a hash function over the message, public key and R point,
and h is the cofactor, i.e. the ratio between the curve order and the order of the subgroup
generated by B (in practice, h is very small; for Ed25519, h = 8). Points R and A vary,
precluding the use of precomputed tables.

A method for improving signature veri�cation performance was described by Antipa et
al[1]. The main idea is that the veri�cation equation is equivalent to checking that:

h((δs)B − (δk)A − δR) = O

for any value δ invertible modulo the subgroup order n (which is prime). The products δs and
δk can be computed modulo n. By splitting δs mod n into two halves e0 and e1 (say, ofm/2

bits each, with the subgroup order n being anm-bit integer), that equation can be rewritten
as:

h(e0B + e12m/2B − (δk mod n)A − δR) = O

When computing a linear combination of curve points, the well-known “Shamir’s trick”
(in fact due to Straus[14]) allows mutualizing all the point doublings in a double-and-add
algorithm. In the case of sB − kA, both s and k have about the same size as n (i.e. about m
bits, in our notations), and the double-and-add algorithm will involve about m doublings,
and some extra additions. The number of extra additions can be reduced through a number
of techniques (windows, sliding windows, NAF recoding...) and them doublings dominate
the algorithm cost.

In our rewritten equation, we have a linear combination of four points, two of which are
�xed and thus known in advance (B and 2m/2B), and the other two being obtained dynam-
ically (A and R). Coe�cients e0 and e1 have size m/2 bits (half that of the prime subgroup
order n). E�ciency comes from �nding a value δ which is such that both δ and δk mod n
are “small”, i.e. about m/2 + 1 bits each. If such a δ is found, then there will be only about
m/2 point doublings instead ofm, i.e. halving the cost of the most expensive part of the com-
putation (the number of extra additions remains about the same as in the initial veri�cation
equation, since there are now four points instead of two, but with twice as small coe�cients).

A method for �nding an appropriate δ is found in [4]; in a nutshell, it uses an extended
Euclidean GCD algorithm, and stops when the intermediate value has shrunk to about half
the size of n. This heuristically �nds a good δ value.

The Ed25519 article ([3], page 14) explicitly considers the Antipa et al method, and rejects
it, on the grounds that the Euclidean GCD algorithm implies a number of divisions, which
are cumbersome and expensive to implement, making the cost of the computation of δ higher
than the savings obtained through reduction of the number of point doublings.

In this note, we describe an alternate algorithm for computing δ, which is e�cient enough
to make the optimization worthwhile, even for fast signature algorithms such as Curve25519.
Our algorithm can be viewed as a binary version of Lagrange’s algorithm for reduction of a
lattice basis in dimension two; in particular, no division is used, and only two plain integer
multiplications are involved, the inner loop consisting only of e�cient linear operations (ad-
ditions, subtractions, and left shifts).

Lagrange’s algorithm, and our new algorithm, are described in section 2. Some imple-
mentation notes and speed benchmarks are given in section 3.

2 La�ice Basis Reduction
2.1 Notations
We use a bold font to designate vectors, e.g. u and v. All vectors are in the vector spaceRe for
some integer e (in most of the article, we will focus on e = 2); moreover, apart from the initial
presentation of lattices, all vector coordinates will be integers.

For an integer x, we denote len(x) the minimum size of the binary representation of x,
using two’s complement for negative values, and excluding the sign bit. If x ≥ 0, then len(x)
is the smallest integerm ≥ 0 such that x < 2m. If x < 0, then len(x) = len(−x − 1).

2

There are other possible de�nitions for len, depending on whether len(2m) is de�ned to
bem orm + 1, and similarly for len(−2m). Our de�nition implies that len(2m) = m + 1 but
len(−2m) = m, because it maps well to an implementation that uses two’s complement for
negative values. All four possible combinations actually work in our algorithm.

2.2 La�ices
We de�ne here lattices and recall some known results. For ampler explanations and proofs,
refer to [11].

Let e ≥ 2 an integer; we consider the vector space Re. A lattice is a discrete subgroup of
Re. It can be shown that any lattice L has a basis consisting of e′ linearly independent vectors
(bi) (hence e′ ≤ e), such that:

L =

{
e∑
i=1
xibi

���� (x1, x2, . . . xe′) ∈ Ze′}
A lattice has, in general, in�nitely many bases; however, they all contain the same number

e′ of vectors, which is the rank of the lattice. In this paper, we will consider only lattices of
maximal rank (i.e. e = e′), and in particular the case of lattices of rank2 in a space of dimension
e = 2 (hereafter called “lattices of dimension 2”).

If B is the e × e matrix whose column vectors are a basis of L, then the volume of the
lattice L is the square root of the determinant of BBt (where Bt is the transpose of B). It can
be shown that this quantity does not depend on which basis is used for a given lattice. It is
denoted vol(L).

It shall be noted that if the elements of a lattice basis only have integer coordinates, then
all the lattice elements, and therefore all elements of any other basis of the lattice, will have
only integer coordinates.

For two vectors u and v, let 〈u, v〉 be their inner product; we denote N (u) = 〈u,u〉.
N (u) is the square of the Euclidean norm of u. A well-known problem is to �nd a shortest
non-zero vector in a lattice. The minimal length of non-zero vectors in a lattice is well-de�ned,
and there is only a �nite number of vectors in the lattice whose length is exactly the mini-
mal length1. When the dimension is large, �nding a shortest vector is a hard problem, but
in very low dimensions, e�cient algorithms are known[11]. Hermite proved[7] in 1850 that
there exists a constant γe that depends only on the dimension e, such that if s is a shortest
non-zero vector of a lattice L,N (s) ≤ γevol(L)2/e. Hermite proved that γe ≤ (4/3)(e−1)/2,
and Minkowski later showed[10] that γe ≤ e. The exact value of γe is known only for small
dimensions; in particular, γ2 = 2/

√
3 ≈ 1.16.

Application To Schnorr and EdDSA Signature Verification. As explained in the
introduction, the problem we are trying to solve is, given a prime n and an integer 0 ≤ k < n,
�nding two integers d0 and d1 such that |d0 | and |d1 | are small, and d0 = d1k mod n (note
that either or both d0 and d1 can be negative). We can rewrite that problem as an instance of
�nding a short vector in a lattice of dimension two (in the introduction, we used the letter δ to

1If u is a shortest non-zero vector, then so is −u; therefore, the solution is never unique.

3

designate d1; we switch the notation to emphasize the vector interpretation of the problem).
Indeed, we de�ne the two vectors:

u = (n, 0)
v = (k, 1)

These two vectors are linearly independent, and therefore are the basis for a lattice L of di-
mension two:

L =
{
αu + βv | (α, β) ∈ Z2

}
The volume of this lattice is vol(L) =

√
n2 = n.

Any vector c = (c0, c1) in the lattice L is such that c0 = kc1 + αn for some integer α,
and, conversely, any pair of integers (c0, c1) such that c0 = kc1 mod n is part of the lattice (it
su�ces to set β = c1 and α = (c0 − kc1)/n). The vector d = (d0, d1)we are looking for is thus
an element of the lattice, and we want it to be as short as possible. Hermite’s theorem shows
that a shortest non-zero vector in that lattice will be such that:

d20 + d
2
1 = N (d) ≤ γ2vol(L) ≈ 1.16n

It follows that there must exist a non-zero vector d in the lattice L such that |d0 | and |d1 | are
both at most

√
1.16n, i.e. about half the size of n. In particular, if n < 2m (anm-bit integer),

then we can always �nd integersd0 andd1 of at most b(m+2)/2c bits each (in absolute value).

2.3 Lagrange’s Algorithm
In 1773, Lagrange described an e�cient algorithm to �nd a shortest vector of a lattice in di-
mension two[8] (that algorithm was independently rediscovered and published by Gauss in
1801[5], and is sometimes called Gauss’s algorithm). The algorithm can be considered to be
an extension of the classic Euclidean GCD algorithm. It is described in algorithm 1.

Algorithm 1 Lagrange’s algorithm

Require: (u, v) ∈ Z2 × Z2 a basis for a lattice L of dimension two
Ensure: A size-reduced basis of L

1: if N (u) < N (v) then
2: swap u with v
3: repeat
4: q← b〈u, v〉/N (v)e .Division rounded to a nearest integer.
5: u← u − qv
6: swap u with v
7: untilN (u) ≤ N (v)
8: return (v,u) . v is a shortest non-zero vector in L.

Intuitively, Lagrange’s algorithm works as follows: given a lattice basis (u, v), the pair
(v,u−qv) is another basis, for any integer q (we recognize here a step similar to the Euclidean
GCD algorithm). We converge on a short vector by applying that transformation repeatedly,

4

until it no longer works, i.e. the basis cannot be made any shorter in this way. If we were to
allow a non-integral q, then the shortest vector u − qv would correspond to the orthogonal
projection of u along the direction of v, with value q = 〈u, v〉/N (v), and no further size
reduction would be possible once the basis has been made orthogonal. Since qmust be an in-
teger (otherwise, the modi�ed basis is no longer a basis for the source latticeL), the algorithm
rounds the fraction to a nearest integer, yielding a new basis which is not fully orthogonal,
but “more orthogonal” than the previous one.

Beyond this intuitive description, it is not obvious why this algorithm converges on a
shortest vector in the lattice, and why the overall complexity is quadratic. Extensive analysis
of this algorithm can be found in [11]. Lagrange’s algorithm has the following properties:

– When the algorithm terminates, v is a shortest non-zero vector of the lattice, and u is a
shortest vector of the lattice among those which are linearly independent with v. The
basis (u, v) is then said to be size-reduced.

– If, at the beginning of an iteration, |〈u, v〉| ≤ N (v)/2, then (u, v) is size-reduced and
the algorithm terminates. Conversely, the algorithm does not terminate until the basis is
size-reduced.

– It may happen that |q| = 1 only at the �rst and last iterations of the algorithm (this is
due to the greedy nature of the algorithm, see section 3.2 of [11]).

Algorithm 1 seems to require the computation of 〈u, v〉 andN (v) at each iteration, im-
plying multiplications of possibly large integers. However, the successive values of 〈u, v〉,
N (u) andN (v) can be computed more e�ciently by noting that:

N (u − qv) = N (u) + q2N (v) − 2q〈u, v〉
〈v,u − qv〉 = 〈u, v〉 − qN (v)

In algorithm 2, we describe Lagrange’s algorithm again, but with explicit updates that follow
these rules. The valueN (u),N (v) and 〈u, v〉 are kept in variablesNu,Nv and p, respectively,
which are adjusted with the above formulas whenever u or v is changed; notably, when u and
v are swapped with each other, N (u) and N (v) are swapped accordingly (since 〈u, v〉 =
〈v,u〉, the variable p does not need to be modi�ed when swapping u and v).

This description shows that all operations in an iteration can be expressed as additions,
subtractions, multiplications by q, and Euclidean division (rounded). The values q are usually
small, making these operations e�cient on average. The overall complexity of the algorithm
isO((log ‖u‖)2), i.e. quadratic in the norm of the largest vector of the input basis; intuitively,
each iteration reduces the norm of the larger vector (u) byO(log q)bits, so that larger q induce
better reduction, and the cumulative cost of all the multiplications is quadratic.

In practice, this algorithm is cumbersome to implement, because the value q, while nor-
mally small, can be large, requiring the implementation of multiplication and division over
large integers. Moreover, even when q is small, multiplication of a big integer by a small q
is slower than addition, by a constant factor that depends on the underlying hardware abili-
ties (cost of multiplication relatively to addition) but is not negligible. These characteristics
make Lagrange’s algorithm less interesting for application of the method of Antipa et al to
signature veri�cation, especially for fast curves.

5

Algorithm 2 Lagrange’s algorithm (with e�cient updates of 〈u, v〉,N (u) andN (v))

Require: (u, v) ∈ Z2 × Z2 a basis for a lattice L of dimension two
Ensure: A size-reduced basis of L

1: Nu ← N (u)
2: Nv ← N (v)
3: p← 〈u, v〉
4: if Nu < Nv then
5: swap u with v
6: swapNu withNv
7: repeat
8: q← bp/Nve .Division rounded to a nearest integer.
9: u← u − qv

10: Nu ← Nu + q2Nv − 2qp . The value ofNu is adjusted toN (u) for the new value of u.
11: p← p − qNv . The value of p is adjusted to 〈u, v〉 for the new value of u.
12: swap u with v
13: swapNu withNv . Swapping u and v does not change the value of 〈u, v〉.
14: untilNu ≤ Nv
15: return (v,u) . v is a shortest non-zero vector in L.

2.4 Improved Algorithm
We de�ne in algorithm 3 a variant of Lagrange’s algorithm which is much easier to implement,
and in practice more e�cient, since it uses only additions, subtractions and left shifts in the
main loop. The main idea is to force q to be a power of two (q = 2s for some integer s ≥ 0).

Like in algorithm 2, values ofN (u),N (v) and 〈u, v〉 are cached in variablesNu,Nv and
p, and updated with explicit operations.

The two main di�erences with Lagrange’s algorithm are the following:

– The quotient q is forced to ±2s for some integer s.
– An iteration does not necessarily reduce u to a size lower than that of v. Therefore, the

swap is made conditional to the actual norms. Consequently, the exit test (on line 8)
cannot use a failure to reduce u to a size lower than v; instead, the algorithm exits when
a size-reduced basis is obtained.

As we will see in section 2.5, in the case of optimizing EdDSA or Schnorr signature veri�-
cation, where we only need a short vector, not necessarily a shortest vector, the test on line 8 can
be replaced with a much cheaper test on the bit length ofNv, bit length which is computed
on line 10.

Correctness. Like Lagrange’s algorithm, the improved algorithm modi�es (u, v) only by
swapping u with v, and by replacing u with u − qv for some integer q; both operations
naturally lead to another basis for the same lattice L. Moreover, the exit condition is such
that the algorithm can only return a size-reduced basis, which implies that its smaller vector
(v) is necessarily a shortest non-vector in the lattice. What remains to be proven is that the
algorithm always terminates.

6

Algorithm 3 Improved algorithm

Require: (u, v) ∈ Z2 × Z2 a basis for a lattice L of dimension two
Ensure: A short non-zero vector of L

1: Nu ← N (u)
2: Nv ← N (v)
3: p← 〈u, v〉
4: loop
5: if Nu < Nv then
6: swap u with v
7: swapNu withNv
8: if 2|p| ≤ Nv then . This test matches when the basis is size-reduced.
9: return (v,u)

10: s← max(0, len(p) − len(Nv))
11: if p > 0 then
12: u← u − 2sv
13: Nu ← Nu + 22sNv − 2s+1p
14: p← p − 2sNv
15: else
16: u← u + 2sv
17: Nu ← Nu + 22sNv + 2s+1p
18: p← p + 2sNv

Consider the situation when reaching line 8. De�ne:

a = len(〈u, v〉)
b = len(N (v))

SinceN (v) > 0, we have:
2b−1 ≤ N (v) ≤ 2b − 1

Note that if 〈u, v〉 = 0, then the exit test matches and the algorithm exits. Therefore, line 10
may be reached only if 〈u, v〉 , 0. There are now three possible cases to consider:

Case 1: a ≥ b and 〈u, v〉 > 0
We have:

2a−1 ≤ 〈u, v〉 ≤ 2a − 1

which implies that:

−2a−1 + 2a−b ≤ 〈u, v〉 − 2sN (v) ≤ 2a−1 − 1

which means that the bit length of |〈u, v〉| at the end of the iteration must be at most
a − 1, i.e. at least one bit shorter than its previous value.

Case 2: a ≥ b and 〈u, v〉 < 0
A similar analysis applies:

−2a ≤ 〈u, v〉 ≤ −2a−1 − 1

7

and therefore:
−2a−1 ≤ 〈u, v〉 − 2sN (v) ≤ 2a−1 − 2a−b − 1

which again implies that |〈u, v〉| has been shortened by at least one bit.
Case 3: a < b

We have s = 0, and q = 1 if 〈u, v〉 > 0, −1 otherwise. We know that |〈u, v〉| > N (v)/2,
since the exit test on line 8 was not matched. This implies that:

|〈u, v〉 − qN (v)| < N (v)/2 < |〈u, v〉|

Therefore, |〈u, v〉| is made strictly lower during this iteration, and the algorithm makes
progress; we cannot get forever in this case.
We can furthermore show that if we reach this case, then the next iteration will either be
the last one, or it will match one of the two other cases where |〈u, v〉| is made shorter
by at least one bit. Consider that if Lagrange’s algorithm were invoked on the current
basis (u, v), then it would use a value q such that |q| = 1, and the sign of q would be
identical to that of 〈u, v〉. In that situation, algorithm 3 uses the exact same value of
q = ±2s = ±1, and, as such computes the same new basis as Lagrange’s algorithm.
However, if Lagrange’s algorithm uses |q| = 1 for two consecutive steps, then the second
step is the last one and the resulting basis is size-reduced. Correspondingly, if algorithm 3
reaches the case of a < b in any iteration, then either the next iteration will be in the
same case, and that will yield a size-reduced basis and terminate the algorithm; or the
next iteration will use one of the two other cases where a ≥ b.

From this analysis, it follows that |〈u, v〉|must be reduced by at least one bit for every two
iterations, unless the algorithm reaches the exit condition after the second iteration. None of
the iterations ever allows |〈u, v〉| to grow. Therefore, the total number of iterations cannot
be greater than 1 + 2dlog |〈u, v〉|e (for the vectors u and v originally used as input, and with
log denoting the base-2 logarithm). This proves that the algorithm always terminates, and, by
construction, returns a size-reduced basis whose smaller vector is a shortest non-zero vector
of the lattice L.

Complexity. The analysis above implies that the number of iterations is necessarily at
most 1 + 2dlog(|〈u, v〉|)e. If u is the largest vector of the input (u, v) basis, then |〈u, v〉| ≤
N (u); therefore, the number of iterations is at most 1 + 4dlog ‖u‖e, i.e. linear in the size of
the largest input vector.

Suppose that, at a given iteration, 〈u, v〉 > 0, and a ≥ b (where a = len(〈u, v〉) and
b = len(N (v)), as in the previous analysis). Then:

22sN (v) − 2s+1〈u, v〉 ≤ 22(a−b)2b − 2a−b+12a−1

≤ 0

i.e.N (u) (in variableNu in the algorithm) is updated by adding a value which is negative or
zero. Therefore, the size of u, the larger vector in the current (u, v) basis, cannot be increased.
A similar analysis holds when 〈u, v〉 < 0. And when a < b, as in the previous analysis, our
algorithm follows the same steps as Lagrange’s algorithm, in which the size of the larger vector
in the basis cannot be increased either. We can thus conclude that, at all steps of the algorithm:

8

– |u0 |, |u1 |, |v0 | and |v1 | can never be greater than the initial norm ‖u‖ (where u = (u0, u1)
and v = (v0, v1)).

– N (u),N (v) and |〈u, v〉| can never be greater than the initial squared normN (u).

Therefore, all operations in each iteration, which are linear in the size of the operands,
have cost at mostO(log ‖u‖). Since there areO(log ‖u‖) iterations (at most), the overall com-
plexity of our algorithm isO((log ‖u‖)2), i.e. quadratic.

It shall be noted that, in practice:

– All values (coordinates of u and v, squared normsN (u) andN (v), inner product 〈u, v〉)
decrease in size as the algorithm progresses. The size reduction can be leveraged by im-
plementations to reduce cost.

– The average number of iterations is lower than 4dlog ‖u‖e. We measured over 500 mil-
lion instances on random inputs in an EdDSA context (u = (n, 0) and v = (k, 1), with
n ≈ 2252 and k chosen uniformly in 0 . . . n − 1); the average number of iterations was
97.867with a standard deviation of 6.222. The observed minimum and maximum num-
bers of iterations were 64 and 135, respectively. It is probable that the upper bound com-
puted above (4 × 252 = 1004) is in fact unreachable in practice.

2.5 Application To Schnorr and EdDSA
When applying algorithm 3 to Schnorr and EdDSA signature veri�cation, a number of extra
optimizations are possible. We recall that, in that case, the input (u, v) to the algorithm is:

u = (n, 0)
v = (k, 1)

for the curve subgroup order n, and some integer k such that 0 ≤ k < n. The volume of the
lattice is vol(L) = n and a shortest non-zero vector has coordinates not exceeding (in absolute
value)√γ2n ≈

√
1.16n.

Applicable optimizations include the following:

– Since three coordinates of the basis are statically known (only kmay change between two
invocations of the algorithm), some values can be precomputed, e.g. the initial value of
N (u) = n2.

– We do not need a size-reduced basis; we only need one vector. Moreover, there is no cru-
cial need for obtaining a shortest vector, only a short enough vector. We can thus use a
looser exit condition based on the current bit length of N (v). In particular, that bit
length must already be obtained for the computation of s; reusing it makes the exit test
extremely cheap.

– We already know the maximum length r, in bits (including the sign bit), of the coordi-
nates of the returned short vector: r = b(len(n)+4)/2c; in practice r = 128 for a 252-bit
or 253-bit modulus n. Since all operations on u and v are additions, subtractions and left
shifts, i.e. only operations with low-to-high propagation, we can keep the coordinates of
u and v over r bits only, discarding upper bits. We will denote with “(mod±2r)” such
computations2.

2A practical implementation can use a larger value r if that is more convenient in a given situation;
truncation is allowed but not mandatory.

9

Algorithm 4 shows these optimizations.

Algorithm 4 Improved algorithm applied to Schnorr and EdDSA signature veri�cation
Require: Prime integer n, integer k such that 0 ≤ k < n . n is known statically.
Ensure: A short non-zero vector (v0, v1) such that v0 = v1k mod n

1: Nu ← n2,Nv ← k2 + 1, p← nk .Nu is known statically.
2: r ← b(len(n) + 4)/2c, t ← len(n) + 1 . t is the target length forN (v).
3: (u0, u1) ← (n, 0) (mod±2r)
4: (v0, v1) ← (k, 1) (mod±2r) .Coordinates are represented over r bits.
5: loop
6: if Nu < Nv then
7: swap (u0, u1)with (v0, v1)
8: swapNu withNv
9: if len(Nv) ≤ t then . This test matches when (v0, v1) is short enough.

10: return (v0, v1)
11: s← max(0, len(p) − len(Nv)) . len(Nv)was already computed on line 9.
12: if p > 0 then
13: (u0, u1) ← (u0 − 2sv0, u1 − 2sv1) (mod±2r)
14: Nu ← Nu + 22sNv − 2s+1p
15: p← p − 2sNv
16: else
17: (u0, u1) ← (u0 + 2sv0, u1 + 2sv1) (mod±2r)
18: Nu ← Nu + 22sNv + 2s+1p
19: p← p + 2sNv

As was analyzed,Nu andNv decrease regularly through the algorithm, and thus do not
need more bits than the initial valueNu = n2, which is statically known.Nu andNv are always
nonnegative, and therefore do not need an extra sign bit. The inner product p, on the other
hand, can become negative. Since |p| ≤ Nu, only one more bit than for the representation of
Nu is su�cient.

Some extra analysis can help with reducing size. In particular, if working with a 256-bit
curve such as P-256 or secp256k1, with a prime order n very close to 2256, the analysis above
would mean that 513 bits are needed, in all generality, to encode p, which is inconvenient if, for
instance, using 64-bit limbs: this would require an extra ninth limb. However, the following
can easily be seen:

– The initial value of p is known to be nonnegative. Therefore, the �rst iteration does not
formally need to store the sign bit of p.

– After the �rst iteration, the value of p is necessarily at least one bit shorter (in absolute
value) than the initial maximum n2, leaving room for a sign bit.

Thus, provided that the �rst iteration uses a special treatment for the sign of p, anm-bit curve
can be handled with a storage size of 2m bits for each ofNu,Nv and p.

10

3 Implementation Notes and Benchmarks
We implemented our improved algorithm (algorithm 4) for faster Schnorr signature veri�ca-
tion over Curve9767[12], a prime-order Weierstraß curve well suited to embedded systems.
Curve9767 source code is available on:

https://github.com/pornin/curve9767

Several implementations are provided, for di�erent architectures:

– src/scalar_ref.c: reference implementation in portable C code.
– src/scalar_cm0.s: optimized assembly for ARM Cortex M0 and M0+ (ARMv6-M

architecture).
– src/scalar_cm4.s: optimized assembly for ARM Cortex M4 (ARMv7-M architec-

ture).
– src/scalar_amd64.c: optimized assembly for x86 in 64-bit mode (the 128-bit type

__int128 and carry-propagation intrinsics are used).

Curve9767 order is n ≈ 2251.82, i.e. a 252-bit integer. The two short vector coordinates
will thus �t over r = 128 bits each, including the sign bit. ValuesNu,Nv and p use up to 505
bits each, including the sign bit (as pointed out in section 2.5,Nu andNv are always positive,
and the extra bit for p is not really needed; thus, 504 bits would be su�cient).

Integer Representation. Integer values are represented as sequences of limbs; each limb
has size w bits, and is a “digit” in base 2w. Additions and subtractions are performed on a
limb-by-limb basis. In the reference portable C code, we use w = 30, so that intermediate
values �t in a 32-bit type (uint32_t); thus,Nu,Nv and p use 17 limbs each, and the vector
coordinates u0, u1, v0 and v1 use 5 limbs each. In the specialized implementations, we can
leverage the carry/borrow �ag o�ered by the CPU (but inaccessible from portable C code);
thus, we can use w = 32 for the ARM implementations (16 limbs forNu,Nv and p, 4 limbs
for u0, u1, v0 and v1), and w = 64 for the 64-bit x86 implementation (8 limbs forNu,Nv and
p, 2 limbs for u0, u1, v0 and v1).

SinceNu,Nv and p decrease over the course of the algorithm, we can switch to code with
fewer limbs when these values have become short enough. At each iteration, u and v are con-
ditionally swapped to ensure that u is the larger vector; we can thus use the size ofNu to decide
when the alternate code with fewer limbs is safe. This strategy is applied in the x86 code, with
a switch to 6 limbs thenNu < 2383 (we know that |p| ≤ Nu, but we need an extra sign bit,
hence a threshold at 383 instead of 384 bits). In the ARM implementations, the number of
limbs is similarly decreased when possible, but always kept even for implementation reasons
(the addition, subtraction and shift loops use iterations that process two limbs at a time, to
better optimize memory accesses).

Bit Length. Our algorithm must evaluate the exact bit length of big integers (Nv and p).
This requires locating the most signi�cant non-zero limb value, then the most signi�cant non-
zero bit within that limb value. In all generality, �nding the position of the highest non-zero
bit in a word of w bits can be done with a dichotomic search, with logw steps. This is how
we implement it in the reference C code, and in the ARM Cortex M0 implementation. Some

11

https://github.com/pornin/curve9767

architectures o�er dedicated opcodes that can make that operation much faster: on the ARM
Cortex M4, we use the clz opcode, which returns the number of leading zeros in a 32-bit
word in a single clock cycle; on x86, the lzcnt opcode (_lzcnt_u64() intrinsic function)
o�ers the same service.

Variable Time Processing. Cryptographic implementations that run on physical sys-
tems, as opposed to abstract mathematical models of computing machines, may leak informa-
tion about the values they process through side channels. In particular, side channels based on
timing measures can often be e�ciently exploited, possibly from remote view points. Imple-
mentations that do not have such side channel information leaks are said to be constant-time.
In particular, constant-time code should not contain conditional jumps that depend on se-
cret data, or make memory accesses at addresses that depend on secret data. Our lattice basis
reduction algorithm is inherently not constant-time: the conditional swap of u and v, the
sign of q, the switch to shorter representations... all use conditional jumps that depend on
the reduced value. This is usually considered tolerable for signature veri�cation, because only
the public key is used, and it is, by de�nition, non-secret.

One can imagine contrived scenarios in which a constant-time signature veri�cation al-
gorithm must remain secret: for instance, the signed message is secret but of low entropy (e.g.
a human-memorable password), and the second half of the signature (the s value in a signa-
ture (R, s)) is somehow conveyed secretely to the veri�er along with the signed message. In
that case, the attacker cannot obtain enough information to run an o�ine dictionary attack
on the message, but timing-based side channels in the signature veri�cation algorithm can
yield such information. Such scenarios are not very plausible, but we nonetheless provide two
Schnorr signature veri�cation implementations in the Curve9767 code:

– curve9767_sign_verify() is constant-time and does not use lattice basis reduction.
– curve9767_sign_verify_vartime() is not constant-time; it uses our improved

lattice basis reduction algorithm and is faster than the constant-time implementation.

Point Multiplication Algorithms. The constant-time signature veri�cation algorithm
uses Straus’s algorithm. The function computes sB − kA with s and k having the same size
as the curve order n; two windows are computed with multiples ofA and B (multiples of B
are precomputed, since B is �xed, but multiple of A must be computed at the start of the
function and stored in a temporary stack bu�er). For instance, the ARM implementations
use 4-bit windows; every four point doublings, a point jA and a point j′B are added, with
−8 ≤ j < 8 and −8 ≤ j′ < 8. Since point negation is inexpensive to compute dynamically,
only 8 points jA (1 ≤ j ≤ 8) need to be stored in the stack.

When applying the improved lattice basis reduction algorithm, we now have to compute
a linear combination of four points, as explained in section 1. Two of these points are �xed
(B and 2m/2B), but two are obtained dynamically. Using 4-bit windows would then imply
storing twice as many points on the stack (8 points for the A window, and 8 other points
for the R window). Since stack space is usually a scarce resource on embedded systems, we
leveraged the fact that a variable-time algorithm does need to follow a strict schedule of point
additions; instead, we can use a non-adjacent form algorithm such that stored windows only
need points jA and jR for odd values of j. Indeed, if the window algorithm would call for
adding point 6A at some step in the sequence of point doublings, we can add point 3A one

12

doubling earlier. This trick allows for twice smaller windows, thereby reducing stack usage to
the same amount as in the constant-time algorithm.

Use of NAF also lowers the average number of point additions (even with a nominally
4-bit window, additions are applied on average once every five doublings), and we could make
the windows forB and 2m/2B larger, since these use only comparatively cheaper ROM/Flash.

Cofactor. As explained in section 1, the signature veri�cation equation is a linear combi-
nation of four curve points (B, 2m/2B,A andR, with B being the conventional generator,A
the public key, andR a point provided as part of the signature); once this linear combination
has been computed, it must still be multiplied by the cofactor h. Multiplication by the cofac-
tor is not strictly necessary as per the usual de�nition of the security of a signature algorithm,
but not applying it can induce discrepancies between veri�ers about the status of some nom-
inally invalid signature values. Suppose that multiplication by the cofactor h is not used; the
usual signature veri�cation is:

sB − kA = R
while our modi�ed veri�cation equation is:

e0B + e12m/2B − (δk mod n)A − δR = O

If there is on the curve a non-trivial pointT of order h, then replacingRwithR+T will make
the standard veri�cation equation fail, but the second one will still accept the signature if it
so happens that the value δ (obtained from the lattice basis reduction algorithm) turns out to
be a multiple of h.

Edwards curves, as used in EdDSA, always have a cofactor hwhich is a multiple of 4 (for
Ed25519, the cofactor is h = 8). A consequence is that an EdDSA signature veri�cation im-
plementation that uses our improved lattice basis reduction algorithm cannot guarantee that
a seemingly valid signature would be deemed acceptable by any other standard-compliant
implementation. Signature values that exhibit such discrepancies are nominally invalid and
cannot be produced by a valid signature generator; moreover, the security model of signatures
is still maintained: that kind of signature may exist only if the private key owner really com-
puted a signature over the same message. However, for protocols that require full agreement
of all parties about which signature values are valid or not (e.g. consensus protocols in some
distributed systems), it is recommended to apply point normalization, i.e. multiplying by the
cofactor h systematically.

On Curve9767, this is a non-issue: Curve9767 has a prime order, which means that the
cofactor is h = 1, and these point normalization issues simply go away. This is one of the
reasons why prime order curves are, in all generality, preferable. It is possible to build a prime-
order group, amenable to Schnorr signatures, over any Edwards curves with cofactor 4 or
8; this is known as the Ristretto construction[2] and it has relatively small computational
overhead over the underlying Edwards curve.

Benchmarks. Our implementation of Curve9767 has been benchmarked over three sys-
tems:

– ARM Cortex-M0+: SAM D20 Xplained Pro board (ATSAMD20J18 microcontroller),
clocked at 8 MHz, zero wait state for Flash access. Compiler is GCC-7.3.1, with �ags:
-Os -mthumb -mlong-calls -mcpu=cortex-m0plus

13

– ARM Cortex-M4: STM32F4 “discovery” board (STM32F407VG-DISC1), clocked at
24 MHz, zero wait state (I-cache and D-cache are enabled, but disabling them does not
change timings). Compiler is GCC-7.3.1, with �ags:
-Os -mthumb -mcpu=cortex-m4 -mfloat-abi=hard -mfpu=fpv4-sp-s16

– x86 (64-bit) with AVX2: Intel i5-8259U (Co�ee Lake) at 2.3 GHz (TurboBoost is dis-
abled). Compiler is Clang-9.0.0, with �ags:
-O3 -mavx2 -mlzcnt

All timings below are in clock cycles. For the ARM implementations, reported times in-
clude all opcodes that are part of the function, including the �nal “ret” (opcodes “bx lr”
or “pop { pc }”); however, the costs of the call opcode itself (bl) and the push/removal
of function arguments are not accounted as part of the reported costs. For x86 implemen-
tations, the cycle counter has been used (lfence memory barrier, followed by the rdtsc
opcode), but the “exact” cost of a function is ill-de�ned on a system with a deep pipeline with
out-of-order execution; reported execution time is the best observed over several executions,
with some “warm-up” calls to ensure relevant caches are �lled. For functions with a variable
execution time, randomized inputs have been used over a few hundred cycles; these values are
indicated below with the “≈” sign.

Operation Cortex M0+ Cortex M4 x86+AVX2
Lattice basis reduction (vartime) ≈106300 ≈92010 ≈15250
ECDH: key pair generation 1937792 887520 172660
ECDH: compute shared secret 4598756 2054792 392714
Schnorr signature: generate 2054110 965850 182892
Schnorr signature: verify 5688642 2565404 543176
Schnorr signature: verify (vartime) ≈3818000 ≈1779000 ≈380500

The table above shows benchmarks not only for the signature veri�cation itself, but also
for some other operations which can serve as a basis for comparison:

– ECDH, key pair generation: computation ofkB, for a secret scalark and the conventional
generator B.

– ECDH, shared secret computation: computation of kQ, for a secret scalar k and a dy-
namically received point Q.

– Schnorr signature generation: computation of rB, for a secret scalar r and the conven-
tional generator B, and a few extra operations (hashing, and one multiplication and one
addition modulo the curve order n).

The measured times also include decoding of received points, which involves point decom-
pression (reconstruction of the y coordinate of the point, using the curve equation and a
square root extraction), but this operation is very fast with Curve9767, because its base �eld
allows for e�cient square root routines.

In the case of the ARM Cortex M0+, the savings obtained from the improved signature
veri�cation algorithm split roughly as follows:

– Halving the number of doublings: about 1.67 million cycles saved.
– Reduction of the number of point additions through NAF: about 302000 cycles saved.
– Lattice basis reduction overhead: about 106300 cycles.

14

Exactly how much time is saved by halving the number of doublings depends on the used
curve, hardware architecture and implementation strategy. For Curve9767, overall savings are
about 30 to 33%, compared with the constant-time veri�cation implementation. On a faster
curve, the savings may be comparatively lower. On Ed25519, the fastest reported signature
veri�cation times[9] are about 110000 cycles; even if only (for instance) 25% of the cost is
avoided by the reduction in the number of point doublings, the cost savings would exceed
the overhead due to the lattice basis reduction algorithm, since the latter uses only an average
of 15250 cycles. Thus, even on that very fast curve, our improved algorithm should make the
application of the Antipa et al method worthwhile.

4 Conclusion
We presented here a novel variant of Lagrange’s algorithm, which allows non-negligible sav-
ings in the implementation of Schnorr signature veri�cation. As described by Antipa et al[1],
the method also applies to ECDSA, albeit with some extra complications due to the fact that
the �rst half of an ECDSA signature is not the complete curve point R, but only the x coor-
dinate of that point (and furthermore reduced modulo the curve subgroup order).

An open question is how fast a constant-time implementation of the lattice basis reduc-
tion algorithm could be. Conditional exchanges, shifts and additions and subtractions can
be turned into constant-time code with some overhead; moreover, the total number of itera-
tions in a constant-time implementation must match the worst possible case, and our current
analysis yields a worst case which is likely to be wildly exaggerated (more than a thousand it-
erations, while the worst observed case was 135 iterations). More analysis is needed to tighten
this bound.

An application of our method to other curves, in particular Ed25519, should be produced
and benchmarked.

Acknowledgements
We thank Isis Lovecruft for useful discussions about, and review of drafts of, this article.

References
1. A. Antipa, D. Brown, R. Gallant, R. Lambert, R. Struik and S. Vanstone, Accelerated Verification

of ECDSA signatures, Selected Areas in Cryptography - SAC 2005, Lecture Notes in Computer
Science, vol 3897, pp. 307-318, 2005.

2. T. Arcieri, I. Lovecruft and H. de Valence, The Ristretto Group,
https://ristretto.group/

3. D. Bernstein, N. Duif, T. Lange, P. Schwabe and B.-Y. Yang, High-speed high-security signatures,
Journal of Cryptographic Engineering, vol. 2, issue 2, pp. 77-89, 2012.

4. R. Gallant, J. Lambert and S. Vanstone, Faster Point Multiplication on Elliptic Curves with Efficient
Endomorphisms, Advances in Cryptology - CRYPTO 2001, Lecture Notes in Computer Science,
vol. 20139, pp. 190-200, 2001.

5. C. F. Gauss, Disquisitiones Arithmeticæ, Springer-Verlag, 1801.
6. S. Josefsson and I. Liusvaara, Edwards-Curve Digital Signature Algorithm (EdDSA),

https://tools.ietf.org/html/rfc8032

15

https://ristretto.group/
https://tools.ietf.org/html/rfc8032

7. C. Hermite, Extraits de lettres de M. Ch. Hermite à M. Jacobi sur di�érents objets the la théorie des
numbres (première lettre), Journal für die reine und angewandte Mathematik, vol. 40, pp. 261-277,
1850.

8. J.-L. Lagrange, Recherches d’arithmétique, Nouveaux mémoires de l’Académie royale des sciences
et belles-lettres de Berlin, pp. 695-795, 1773.

9. I. Lovecruft and H. de Valence, Dalek cryptography,
https://dalek.rs/

10. H. Minkowski, Geometrie der Zahlen, Teubner-Verlag, 1896.
11. P. Nguyen and D. Stehlé, Low-Dimensional Lattice Basis Reduction Revisited, Algorithmic Num-

ber Theory - ANTS 2004, Lecture Notes in Computer Science, vol 3076, pp. 338-357, 2004.
12. T. Pornin, Efficient Elliptic Curve Operations On Microcontrollers With Finite Field Extensions,

https://eprint.iacr.org/2020/009
13. C.-P. Schnorr, Efficient Identification and Signatures for Smart Cards, Advances in Cryptology -

CRYPTO ’89, Lecture Notes in Computer Science, vol. 435, pp. 239-252, 1989.
14. E. Straus, Addition chains of vectors (problem 5125), American Mathematical Monthly, vol. 70,

pp. 806-808, 1964.

16

https://dalek.rs/
https://eprint.iacr.org/2020/009

	Optimized Lattice Basis Reduction In Dimension 2, and Fast Schnorr and EdDSA Signature Verification

