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Abstract. Stateful hash-based signature schemes are among the most efficient
approaches for post-quantum signature schemes. Although not suitable for gen-
eral use, they may be suitable for some use cases on constrained devices. LMS
and XMSS are hash-based signature schemes that are conjectured to be quan-
tum secure. In this work, we compared multiple instantiations of both schemes
on an ARM Cortex-M4. More precisely, we compared performance, stack con-
sumption, and other figures for key generation, signing and verifying. To achieve
this, we evaluated LMS and XMSS using optimised implementations of SHA-
256, SHAKE256, Gimli-Hash, and different variants of KECCAK. Furthermore,
we present slightly optimised implementations of XMSS achieving speedups of
up to 3.11× for key generation, 3.11× for signing, and 4.32× for verifying.

Keywords: LMS, XMSS, implementation, hash-based signatures, digital signa-
ture, post-quantum cryptography
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1 Introduction

Digital-signature schemes are among the most important and widely used cryptographic
primitives. Schemes used in practice today (RSA [30], DSA [14], ECDSA [20], and
EdDSA [4]) are based on assumptions regarding the computational difficulty of solving
certain mathematical problems. Due to Shor’s algorithm [32] and its variants, some of
these problems, such as integer factorisation and discrete logarithms, can be efficiently
solved on a quantum computer. Since the National Institute of Standards and Technol-
ogy (NIST) started a project (NIST-PQC3) to evaluate and standardise post-quantum

* Author list in alphabetical order; see https://www.ams.org/profession/leaders/

culture/CultureStatement04.pdf
3 https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
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cryptographic algorithms, many solutions have been proposed. Hash-based signature
schemes (HBS) are among the most attractive candidates for quantum-safe signature
schemes. Every signature scheme requires a hash function to reduce a message to a
small representation that can be easily signed. While other signature schemes rely on
additional computational hardness assumptions, hash-based approaches only needs a
secure hash function. HBS have been intensively analysed ([5], [10], [13], [16], [27])
and the two schemes discussed in this work are currently undergoing a standardisa-
tion process ([18], [26]). The Leighton-Micali Signature system (LMS) [26] and the
eXtended Merkle Signature Scheme (XMSS) [18] have been proposed in the Internet
Engineering Task Force (IETF) as quantum-secure HBS. NIST proposed [11] to ap-
prove the use of LMS and XMSS and their multi-tree variants Hierarchical Signature
System (HSS) and multi-tree XMSS (XMSSMT ), respectively. This recommendation
suggests the use of some of the parameter sets from the RFCs and defines some new pa-
rameter sets. It considers SHA-256 or SHAKE256 as underlying hash functions, with
outputs of 192-bit or 256-bit length. HBS provide through the choice of parameters
several trade-offs between time and size. Hence, the parameter selection has a major
impact on how feasible it is to deploy HBS on resource-constrained environments such
as embedded microcontrollers. In this work, we chose a subset of parameters from the
suggested sets of the NIST recommendation which are suitable for embedded devices.

Due to the popularity and widespread use of Cortex-M4 microcontrollers in dif-
ferent applications, NIST recommended it to submission teams as an optimisation tar-
get for the second round of NIST-PQC. The pqm44 project [22] investigates the fea-
sibility and performance of the proposed NIST-PQC approaches on microcontrollers.
It provides a framework for testing and benchmarking NIST-PQC submissions on a
Cortex-M4 microcontroller. It includes reference and optimised implementations of
key-encapsulation mechanisms and signature schemes. The implementations and mea-
surements in our work were realized within the pqm4 framework.

Related Work. Many aspects regarding the implementations of HBS have been stud-
ied in the literature. Rohde, Eisenbarth, Dahmen, Buchmann, Paar [31] presented the
first implementation of GMSS [8], an improvement of Merkle’s hash-based signature
scheme, on an 8-bit smart-card microprocessor. Hülsing, Busold, Buchmann [17] im-
plemented a variant of XMSS on a 16-bit smart card. A comparison between stateful
and stateless HBS was given by Hülsing, Rijneveld, Schwabe [19]. For this, the au-
thors implemented SPHINCS and XMSSMT on an ARM Cortex M3. Van der Laan,
Poll, Rijneveld, de Ruiter, Schwabe, Verschuren [23] presented an implementation of
XMSS on the Java Card platform. Kannwischer, Rijneveld, Schwabe, Stoffelen [22]
presented the pqm4 framework for testing, speed benchmarking, and measurement of
stack consumption of NIST-PQC submissions on an ARM Cortex-M4 microcontroller.
Kampanakis, Fluhrer [21] provided the only comparison between LMS and XMSS on
a x86-architecture regarding their security assumptions, signature/public key sizes, per-
formance, and some other aspects.

4 https://github.com/mupq/pqm4
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Our Contribution. This paper aims at comparing stateful HBS on microcontrollers. To
achieve this, LMS and XMSS and their multi-tree variants were compared on an ARM
Cortex-M4. For this, we provide an adapted implementation of LMS for the Cortex-M4,
which represents the first implementation to date to the best of the authors’ knowledge.
We evaluated suitable parameter sets for constrained devices from the NIST recommen-
dation for stateful hash-based signature schemes [11]. Furthermore, deviating from the
RFC 8391 [18], we slightly modified the reference implementation of XMSS, leading
to noticeable speedups. We provide a comparative performance and stack consump-
tion analysis for several parameter sets of the instantiated versions of LMS and XMSS.
Thereby we instantiate both HBS with several optimised hash functions. All software
and results described in this paper are available in the public domain. It is publicly
available at https://doi.org/10.5281/zenodo.3631571. Further, we refer to the
respective projects included in our implementation for licensing information.

Organisation. The remainder of this document is structured as follows. First, we start
by giving preliminary information on hash-based signature schemes. In Section 3, we
reflect the main structural differences between LMS and XMSS. Details about the im-
plemented hash functions and the approaches to speed up XMSS are presented in Sec-
tion 4. Our implementation results are given in Section 5. Next, we discuss the results
and draw a conclusion in Section 6. Finally, Appendix A contains further evaluated
results.

2 Hash-based Signature Schemes

While the security of other post-quantum cryptographic approaches like isogeny-based
cryptography is still object to further research, hash-based schemes come with well-
understood security assumptions.

Both discussed stateful schemes in this work use a tree construction along with a
variant of a one-time signature schemes (OTS). Unlike in stateless schemes, in LMS
and XMSS the signer needs to keep track of which key pairs have already been used.
Therefore, the current state (index) is stored in the secret key, indicating which key pair
to use next. XMSS provides methods to decrease the worst case runtime by keeping
state information beyond the index [9]. To allow a fair comparison, this have not been
considered in this work.

2.1 One-Time Signature Schemes

Many techniques have been proposed for constructing OTS schemes ([7], [24], [27]).
One of the most prominent OTS is the Winternitz OTS (WOTS) scheme [27], which
is relatively efficient, has been used in practice and allows space/time trade-offs. LMS
and XMSS use variants of WOTS.

https://doi.org/10.5281/zenodo.3631571
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Winternitz One-time Signature Scheme. The main idea of all WOTS variants is to
use a function chain to sign multiple bits starting from random inputs. The key gen-
eration is processed as shown in Algorithm 1, where n is the security parameter, w is
(a power of 2) the Winternitz parameter, and f : {0,1}∗ → {0,1}n defines a one-way
function. Thereby, f w−1 should be interpreted as the (w−1)-th iteration of the one-way
function f . Increasing the value of the Winternitz parameter w will linearly shrink the
size of a signature and increase exponentially the effort to perform key generation, sign-
ing and verification. Thus, the Winternitz parameter w enables space/time trade-offs.

Algorithm 1: Key generation.
Input : security parameter n, Winternitz paramater w.
Output: one-time key pair: (secret key X , public key Y ).

1 `1← dn/ log2(w)e
2 `2← blog2(`1(w−1))/ log2(w)c+1
3 `← `1 + `2
4 for i = 0, ..., `−1 do
5 xi

$←− {0,1}n // sampled uniformly at random
6 yi← f w−1(xi)

7 return ((x0,x1, ...,x`−1),(y0,y1, ...,y`−1))

In order to protect against trivial attacks, a checksum C is computed and signed
along with the message, as shown in Algorithm 2 in line 5-7. A signature is computed
by mapping the i-th chunk of M′ to one intermediary value of the respective function
chain, by iterating the one-way function M′i times. As shown in Algorithm 3, in WOTS

Algorithm 2: Signing.
Input : message M, secret key X , security parameter n, Winternitz parameter w.
Output: signature σ .

1 `1← dn/ log2(w)e
2 `2← blog2(`1(w−1))/ log2(w)c+1
3 `← `1 + `2
4 (M0,M1, ...,M`1−1)← split(M) // split M into log2(w)-bit chunks
5 C← ∑

`1−1
i=0 w−1−Mi

6 C← pad(C) // pad C with zeros if necessary
7 M′←M ||C // concatenate M and C
8 (M′0,M

′
1, ...,M

′
`−1)← split(M′) // split M′ into log2(w)-bits chunks

9 for i = 0, ..., `−1 do
10 σi← f M′i (xi)

11 return (σ0,σ1, ...,σ`−1)

the public key can be calculated directly from the signature.

According to [13], assuming f is a collision-resistant one-way function, this scheme
is existentially unforgeable under chosen-message attacks. XMSS makes use of the vari-
ant WOTS+. WOTS+, proposed by Hülsing [16], introduced a slight modification of the
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Algorithm 3: Verifying.
Input : signature σ , message M, public key Y , security parameter n, Winternitz

parameter w.
Output: valid or invalid.

1 `1← dn/ log2(w)e
2 `2← blog2(`1(w−1))/ log2(w)c+1
3 `← `1 + `2
4 (M0,M1, ...,M`1−1)← split(M) // split M into log2(w)-bit chunks
5 C← ∑

`1−1
i=0 w−1−Mi

6 C← pad(C) // pad C with zeros if necessary
7 M′←M ||C // concatenate M and C
8 (M′0,M

′
1, ...,M

′
`−1)← split(M′) // split M′ into log2(w)-bits chunks

9 for i = 0, ..., `−1 do
10 if (( f w−1−M′i (σi)) 6= yi) then
11 return invalid

12 return valid

chaining function by adding a random bitmask ri for each iteration, such that f 0(x) = x,
and f i(x) = f ( f i−1(x)⊕ ri) for i > 0. This modification eliminates the requirement for
a collision resistant hash function.

2.2 Many-time Signature Schemes

Merkle trees enable the use of a single long-term public key created from a large set
of OTS public keys. In the following we will only briefly describe the methods for the
construction of many-time schemes and refer to [26] and [18] for further details on the
respective approach.

Merkle Trees. Based on the idea of one-time signature schemes Merkle’s approach
[27] is to construct a balanced binary tree (a so-called Merkle Tree) using a given hash
function to enable the use of a single public key (root of the tree) for verifying several
messages. A signer generates 2h one-time key pairs (X j,Yj) where 0 ≤ j < 2h for a
selected h∈N and h≥ 2. The leaves of the tree are represented by the public keys X j of
the OTS which are derived from the secret keys Yj for 0≤ j < 2h. Parameter h defines
the height of the resulting binary tree whose inner nodes are represented by the value
computed as n = f (nl || nr), where nl and nr are the values of the left and right children
of n. To verify a signature at leaf with index i, one additionally needs the authentication
path of i which is a sequence of h nodes. This authentication path contains the siblings of
all the nodes on the path between leaf i and the root. Thus summarizing, a signature on a
message m contains the one-time signature on m produced using X j, the authentication
path, and the index j to indicate which key pair of the OTS was used.

Multi-Trees. Rather than scaling up a single tree, LMS and XMSS define single and
multi-tree (hypertree) variants of their signature schemes. In the multi-tree variant, the
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Fig. 1: Overview with L-trees and WOTS chains (adopted from [34], Fig. 1). Grey nodes
are the private keys and the black nodes the public keys of the WOTS chains. The black
node at the top is the public key.

trees on the lowest layer are used to sign messages and the trees on higher layers are
used to sign the roots of the trees on the layer below. Considering a hypertree of total
height h that has d layers of trees of height h/d, the top layer d− 1 contains one tree,
layer d−2 contains 2(h/d) trees, and so on. Finally, the lowest layer contains 2(h−(h/d))

trees. In order to generate the public key, only the single tree at the top of the structure
needs to be generated. This requires generating the OTS keys along the bottom of this
tree. The lower trees are generated deterministically as required. Thus, for a given h,
key generation in a hypertree is faster than in a single tree. A signature consists of all
the signatures on the way to the highest tree. Hence, the signature size increases and
signing and verifying takes slightly longer. The root of the top-level tree is the public
key. For further details on the multi-tree variants of LMS and XMSS, we refer to [26]
and [18], respectively.

3 Comparison

Roughly speaking, LMS and XMSS have a very similar construction. Both schemes use
Merkle trees [27] along with a variant of WOTS. For this reason, we will focus on the
most relevant structural differences of the schemes.

LMS and XMSS use different notations to specify equivalent parameters. As shown
in Table 1, we define a common notation for parameters used in this work. For further
details on the definition of the parameters, we refer to [26] and [18].

3.1 Prefixes and Bitmasks

In order to move away from collision resistance and towards collision resilience, within
LMS and XMSS whenever an input is hashed, a specific prefix is added to the input.
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Table 1: Notation.

symbol meaning XMSS LMS

n security parameter ' length of the hash digest (in bits) n n

h height of the tree or hypertree in a multi-tree variant h h

d number of Merkle Trees in the multi-tree variant d L

w Winternitz parameter w 2w

` number of Winternitz chains used in a single OTS operation len p

In the case of XMSS as mentioned in Section 2.1, WOTS+ [16] requires a random bit-
mask for each chaining iteration as additional input. Although LMS and XMSS apply
different mechanisms to strengthen the security, the underlying constructions are very
similar. To describe this principle theoretically, Bernstein, Hülsing, Kölbl, Niederha-
gen, Rijneveld, Schwabe [5] introduced an abstraction called tweakable hash functions
(Th) as follows.

Definition 1. (Tweakable hash function): Let n,α ∈ N,P be the public parameters
space, and T be the tweak space. A tweakable hash function is an efficient function

Th : P×T ×{0,1}α →{0,1}n, MD← Th(P,T,M)

mapping an α-bit message M to an n-bit hash value MD using a public parameter
P ∈ P , also called function key, and a tweak T ∈ T .

Thus, a tweakable hash function adds specific context information (tweak) and public
parameters (function key) to the input. According to this definition, the constructions
within LMS and XMSS can roughly be described as follows.

Construction 1. (Prefix construction/LMS): Given a hash function H : {0,1}2n+α →
{0,1}n, we construct Th with P = T = {0,1}n, as

Th(P,T,M) = H(P||T ||M).

Construction 2. (Prefix and bitmask construction/XMSS): Given two hash functions
H1 : {0,1}2n ×{0,1}α → {0,1}n with 2n-bit keys, and H2 : {0,1}2n → {0,1}α , we
construct Th with P = T = {0,1}n, as

Th(P,T,M) = H1(P||T,M⊕), with M⊕ = M⊕H2(P||T ).

As defined in Construction 2, while XMSS additionally generates distinct random in-
puts for each invocation of the hash function, LMS provides inputs with predictable
changes to the hash function. Construction 1 reduces the effort, but comes in return
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at the cost of stronger security assumptions. For further details on the security model
of LMS and XMSS, we refer to [21] and for further security notions for the defined
constructions, we refer to [5].

3.2 WOTS Public Key Compression

Both schemes combine the public keys (final values) of a WOTS chain into an n-bit
value. While LMS hashes them together as a single message (see Figure 2), XMSS
uses a tree (called L-tree) to compress these values (see Figure 1). The construction in
XMSS obviously leads to a higher number of hash operations.

4 LMS and XMSS on the Cortex-M4

In the case of XMSS5, we removed all file-based procedures and implemented an inter-
face to the pqm4 framework. For this, we used a slightly modified version of the pqm4
framework. This modification allows updating the secret key during the signing process
by not passing the secret key as a constant. Thus, we enable the signing algorithm to
be stateful. For further practical considerations around statefulness in this context, we
refer to [25]. To port the reference implementation of LMS6 to Cortex-M4, apart from
smaller modifications, we integrated the single-thread version, and turned floating-point
operations off.

4.1 Implemented Hash Functions

Primarily for the purpose of speedup and to achieve a broader comparison range, we
integrated two more lightweight hash functions in addition to those recommended by
NIST [11] (SHA-256 and SHAKE256) and already available in pqm4. In particular,
we additionally evaluated LMS and XMSS using different variants of KECCAK and
Gimli-Hash.

KECCAK-f [800]. KECCAK-f describes a family of permutations originally specified
in [1]. The KECCAK-p permutations within KECCAK-f are specified by a fixed width of
the permutation (b) and the respective number of rounds (nr) required. Furthermore, the
permutation is denoted by KECCAK-p[b,nr], where b∈{25,50,100,200,400,800,1600}
and nr ∈ {12,14,16,18,20,22,24}. Thus, according to [28], KECCAK-f [800], a per-
mutation with 800 bits of width, applies to KECCAK-p[800, 22]. For further details on
KECCAK, we refer to [1] and [28].

In the case of KECCAK-f [800], we additionally considered a KECCAK permuta-
tion with only 12 rounds (KECCAK-p[800, 12] similar to River Keyak7) to reduce the
computational workload per hash invocation. Evidently, a reduced number of rounds

5 https://github.com/XMSS/xmss-reference, commit fb7e3f8
6 https://github.com/cisco/hash-sigs, commit 5efb1d0
7 https://keccak.team/files/Keyakv2-doc2.2.pdf

https://github.com/XMSS/xmss-reference
https://github.com/cisco/hash-sigs
https://keccak.team/files/Keyakv2-doc2.2.pdf
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Fig. 2: Overview without L-trees (adopted from [34], Fig. 1). Grey nodes are the private
keys and the black nodes the public keys of the WOTS chains. The black node at the
top is the public key.

provides a smaller safety margin than the full 22 rounds recommended for KECCAK-
f [800] [28]. Nevertheless, since the best known practical collision attack against SHA-3
exists only up to 5 rounds [15], the margin provided by 12 rounds is still comfortable. In
a similar manner, Aumasson [2] proposed a general revision of the number of rounds of
widely used symmetric primitives to speed up the standards without increasing the se-
curity risk. Furthermore to achieve a certain security level, we set the capacity c = 256
as specified in River Keyak7.

Gimli-Hash. The family of hash functions Gimli-Hash is built on top of a 384-bit
permutation called Gimli. The Gimli permutation [6] was designed to achieve high
security with high performance. According to the authors, the proposed permutation
is distinguished from other permutation-based primitives for its high cross-platform
performance. Furthermore, one of the core idea of Gimli was to define one standard that
achieves high performance in lightweight as well as in non-lightweight environments.
Due to the selected design, Gimli fits into 14 easily usable integer registers on 32-bit
ARM microcontrollers. Gimli-Hash works on a 48-byte state with a rate of 16-byte.

We chose Gimli-Hash as an exemplary approach for the current round-2 candidates
in NIST’s Lightweight Cryptography Standardisation8 process. It is of practical impor-
tance to investigate the performance of the remaining candidates.

4.2 Speeding Up XMSS

In this section, we discuss three methods for speeding up XMSS deviating from RFC
8391 [18]. The first described technique replaces the tree-based WOTS public-key com-
pression with a single hash call. This approach was first proposed in SPHINCS+ [3].
The second one, a structure omitting the use of bitmasks (the so-called ”simple” ver-
sion) was proposed in the round-2 submission of SPHINCS+ [3] at NIST-PQC. Finally,

8 https://csrc.nist.gov/projects/lightweight-cryptography

https://csrc.nist.gov/projects/lightweight-cryptography
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Fig. 3: Hash pre-computation within KECCAK-f [800] with a rate of 512 bits.

we describe a technique called ”hash pre-computation”. This approach was first men-
tioned by Kampanakis, Fluhrer [21] and first described by Wang, Jungk, Wälde, Deng,
Gupta, Szefer, Niederhagen [34]. Thereby, recurring intermediate results of a certain
type of hash calls are temporarily stored and reused in the subsequent hash calls.

All these methods lead to speedups during key generation, signing and verifying.
However, during the signature verification, the hash pre-computation method only leads
to small speedups in certain parameter sets. Although the methods presented in the
following can also be implemented in other cases, in this work we will mainly focus on
the parameter sets from Table 3. Other approaches, which lead to possible speedups in
both LMS and XMSS, were intentionally not considered in this work.

Other acceleration methods, such as storing some top nodes in the secret key [12],
applying a more efficient tree traversal scheme [33] (already part of the XMSS reference
implementation9 and our implementation), or instantiating the schemes with shorter
hash functions, were intentionally not considered in this work. Although these methods
lead to significant speedups, they can be applied in LMS and XMSS and therefore have
no fundamental impact in our comparison.

The instantiation of the different parameter sets is managed by conditional compila-
tion. In the case of XMSS, the modifications presented in this section are also controlled
by preprocessing allowing to compile different versions of XMSS.

Tree-less WOTS+ Public Key Compression. As described in SPHINCS+ [3], we
compress the end nodes of the WOTS chains (black nodes in Figure 2) with a single
call to a tweakable hash function, as shown in Figure 2. A tree-based compression (see
L-trees in Figure 1) is slower than using a single call to a tweakable hash function with
the concatenated digest of all end nodes of the WOTS chains (see black nodes in Figure
2) as input.

Bitmask-less Hashing. In this construction no bitmasks are generated and XORed with
the input of the tweakable hash functions. In this case, the tweakable hash function is
defined according to Construction 1 instead of Construction 2 (see Section 3.1). For the

9 https://github.com/XMSS/xmss-reference, commit fb7e3f8

https://github.com/XMSS/xmss-reference
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resulting implications for security by applying Construction 1 in XMSS, we strongly
refer to [5].

Hash Pre-computation. Within XMSS, for a given key pair and a security parameter
n, the first 2n-bit block (n-bit domain separator and n-bit hash-function key) of the input
to the pseudo-random function (of type F : {0,1}3n→{0,1}n) is the same for all calls.
Considering this fact, we store the digest of the first 2n-bit block at the first call to the
pseudorandom function (PRF) and skip this effort by reusing this result in all further
calls. This approach can easily be applied whenever the internal block size/rate of the
used hash function is less than or equal to 2n bits. Depending on the internal block size
of the used hash function, the number of saved calls to the internal compression respec-
tively permutation function (SpeedupPRF ) can be calculated as follows. Let Bbits ≥ 2n
bits be the internal block size/rate in bits and #callPRF be the number of calls to the
PRF, then

SpeedupPRF(Bbits,#callPRF) = b2n bits/Bbitsc∗#callPRF .

As in Figure 3 exemplified for the case of KECCAK-f [800] and n= 256, this method
can basically be applied in every sponge construction, by reducing the rate to 2n bits
whenever the rate is longer than 2n bits. Hence, even in the case n = 256, it can be
implemented in SHAKE256 (KECCAK-f [1600]) by reducing the width of the rate from
1088 bits to 2n bits. However, in hash calls apart from the PRF invocations this would
increase the number of permutations required for inputs longer than 2n bits. A ”hybrid
approach” (not considered in this paper) with variable rate width (512 bits for PRF calls
and 1088 for other hashing cases) could lead to a possible acceleration.

In the case of SHA-256 and n = 256, where the 512-bit block fits into a 512 bit
SHA-256 internal block, this approach reduces the number of calls to the compression
function by half. According to the standard definition [28] in KECCAK-f [800] with a
capacity of 256-bit length, the length of the rate should be 544 bits. In order to enable
hash pre-computation, we reduced the length of the rate to 512 bits. In other words,
the rate within an instantiation of XMSS using KECCAK-f [800] applying hash pre-
computation is 512 bits long, while a version without hash pre-computation makes use
of the whole 544 bits. This modified design with a longer capacity obviously has no
negative influence on the security of the hash function. In the case of KECCAK-f [800],
this approach reduces the number of required permutations by half. Since the rate in the
sponge construction within Gimli-Hash is 128 bits long, it results in saving 4 permuta-
tion runs per PRF invocation.

From now on as shown in Table 2, we call an implementation of XMSS with L-trees
using Construction 2 (see Section 3.1) without hash pre-computation XMSS ROBUST, the
variant without L-trees using Construction 1 XMSS SIMPLE, and the one without L-trees
applying Construction 1 and hash pre-computation XMSS SIMPLE+PRE. The multi-tree
variants are called XMSSMTROBUST, XMSSMTSIMPLE, and XMSSMTSIMPLE+PRE, respec-
tively. XMSS ROBUST and XMSSMTROBUST represent the current version of XMSS from
RFC 839110.
10 https://tools.ietf.org/html/rfc8391

https://tools.ietf.org/html/rfc8391
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Table 2: Implemented variants of XMSS.

design multi-tree tree-less WOTS+ bitmask-less hashing pre-computation

XMSS ROBUST

XMSS SIMPLE • •
XMSS SIMPLE+PRE • • •

XMSSMT ROBUST •
XMSSMT SIMPLE • • •

XMSSMT SIMPLE+PRE • • • •

5 Evaluation

We measured the performance of our implementations on a commercially available mi-
crocontroller. We use the widely available board STM32F4DISCOVERY featuring a
32-bit ARM Cortex-M4 with FPU core, 1-Mbyte Flash ROM, and 192-Kbyte RAM.
The reference implementation of LMS11 and XMSS12 provided the basis for our im-
plementation. The methods used for cycle counter reading, device communication at
runtime, and hardware-based random byte generation were provided by the pqm413

framework. This framework in turn includes the libopencm314 library for providing
these methods. All test instances were compiled with GNU Tools for ARM Embed-
ded Processors 9-2019-q4-major15 (gcc version 9.2.1 20191025 (release) [ARM/arm-
9-branch revision 277599]) using the flags:
-03 -mthumb -mcpu=cortex-m4 -mfloat-abi=hard -mfpu=fpv4-sp-d16.

We additionally evaluated LMS and XMSS using optimised assembly implemen-
tations of KECCAK-f [800] (KeccakP-800-u2-armv7m-le-gcc) from the eXtended
Keccak Code Package16 and of the Gimli17 (arm-m4 version) permutation.

In this work, LMS and XMSS share the same implementations to perform the hash
computations, clock-cycle measurement, and stack analysis, hence yielding an unbi-
ased comparison. The selection of the evaluated parameter sets is based on the recom-
mendation of NIST [11]. The parameter sets from Table 3 were implemented in com-
bination with Gimli-Hash, KECCAK (KECCAK-p[800,22] and KECCAK-p[800,12]),
SHAKE256, and SHA-256. The resulting signature size for each parameter set is also
shown in Table 3.

As shown in Table 4, the implemented modifications in XMSS and XMSSMT lead
to significant speedups. XMSS SIMPLE achieves a speedup of up to 3.03× for key gen-

11 https://github.com/cisco/hash-sigs, commit 5efb1d0
12 https://github.com/XMSS/xmss-reference, commit fb7e3f8
13 https://github.com/mupq/pqm4, commit 8136c82
14 https://libopencm3.org/
15 https://developer.arm.com/
16 https://github.com/XKCP/XKCP, commit 035a8ff
17 https://gimli.cr.yp.to/impl.html, version 2017.06.27

https://github.com/cisco/hash-sigs
https://github.com/XMSS/xmss-reference
https://github.com/mupq/pqm4
https://libopencm3.org/
https://developer.arm.com/
https://github.com/XKCP/XKCP
https://gimli.cr.yp.to/impl.html
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Table 3: Selected parameter sets.

scheme n w h layer signature size (bits)

LMS 256 16 5 1 2352

LMS 256 256 5 1 1296

LMS 256 16 10 1 2512

LMS 256 256 10 1 1456

XMSS 256 16 5 1 2340

XMSS 256 16 10 1 2500

HSS 256 16 10 2 4756

HSS 256 256 10 2 2644

XMSSMT 256 16 10 2 4642

eration and signing, and up to 4.32× for verifying. In combination with the hash pre-
computation approach, key generation and signing achieve accelerations up to 3.11
times. However, when applying the hash pre-computation method, a speedup only oc-
curs in certain parameter sets, mostly when the number of rounds of the hash function
and the number of calls to the PRF are large enough to compensate for the additional
effort. In the case of verification, a speedup through hash pre-computation occurred
rarely (see Table 9 and Table 10).

Reducing the number of rounds in KECCAK-f [800] to 12 instead of 22 yields a
speedup of up to roughly 1.66× for key generation and signing, and 1.72× for verifying
in all implemented variants of XMSS, and up to roughly 1.70× for key generation and
signing, and 1.76× for verifying in all implemented variants of LMS (see Table 9, Table
10, and Table 11).

Structurally, XMSS SIMPLE, the variant without L-trees using Construction 1, differs
only marginally from LMS. To confirm this analysis, we measured the number of hash
operations required in LMS and XMSS SIMPLE. As Table 5 shows, XMSS SIMPLE and
XMSSMTSIMPLE hash operations are almost equivalent to LMS and HSS, respectively.
As shown in Table 6, although the changes in XMSS result in a slightly smaller number
of hash calls than in LMS, LMS unexpectedly requires fewer clock cycles for all tested
cases. We further measured the time spent performing hash operations for each scheme.
The results of this measurement are given in Table 7. In both schemes, at least 85% of
the time was spent on performing the hash computations. XMSS spends 15% of the
evaluated time on computing other operations, while LMS spends up to 94% of time on
hashing.

During key generation, the stack consumption of XMSS is on average slightly
higher than for LMS. However, as shown in Table 8, the difference during signing and
verification is 1.6× and almost 4× as high, respectively.
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Table 4: Speedup in XMSS and XMSSMT exemplary with SHA-256.

design w h layer key gena signa verifya

XMSS ROBUST 16 5 1 738.46 747.85 13.84

XMSS SIMPLE 16 5 1 243.25 247.72 3.20

speedup factorb 3.03 3.01 4.32

XMSS SIMPLE+PRE 16 5 1 237.27 241.02 3.73

speedup factorb 3.11 3.10 3.71

XMSS ROBUST 16 10 1 23631.70 23642.03 13.07

XMSS SIMPLE 16 10 1 7784.50 7788.56 3.67

speedup factorb 3.03 3.03 3.56

XMSS SIMPLE+PRE 16 10 1 7586.15 7589.49 4.20

speedup factorb 3.11 3.11 3.11

XMSSMTROBUST 16 10 2 738.43 1498.06 27.67

XMSSMTSIMPLE 16 10 2 243.49 494.55 7.77

speedup factorc 3.03 3.03 3.56

XMSSMTSIMPLE+PRE 16 10 2 237.26 481.73 7.77

speedup factorc 3.11 3.11 3.56

a All results (apart from speedup) are given in 106 clock cycles.
b Compared to XMSS ROBUST.
c Compared to XMSSMTROBUST.

Table 5: Number of hash operations for SHA-256, n = 256, and w = 16.

LMS XMSS SIMPLE ratioa HSS XMSSMTSIMPLE ratiob

key gen 1105990 1100800 0.99 34566 34400 0.99

sign 2216417 2202194 0.99 112542 104371 0.93

verify 2217208 2202686 0.99 113493 105359 0.93

a XMSS SIMPLE/LMS
b XMSSMTSIMPLE/LMS
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Table 6: Performance comparison for SHA-256, n = 256, w = 16, and h = 10.

LMS XMSS ROBUST ratioa XMSS SIMPLE ratiob XMSS SIMPLE+PRE ratioc

key gend 3774.88 23631.70 6.26 7792.23 2.06 7586.15 2.01

signd 3791.15 23642.03 6.23 7796.39 2.05 7596.24 2.00

verifyd 2.65 13.07 4.93 3.57 1.34 4.20 1.58

a XMSS ROBUST/LMS
b XMSS SIMPLE/LMS
c XMSS SIMPLE+PRE/LMS
d All results (apart from ratio) are given in 106 clock cycles.

Table 7: Percentage of time on hashing for SHA-256, n = 256, w = 16, h = 10, and
d = 2.

HSS XMSSMTSIMPLE

key gen 92% 85%

sign 92% 85%

verify 94% 85%

The round-reduced version of KECCAK (KECCAK-p[800, 12]) achieved the best
performance (see Table 9, Table 10, and Table 11) while Gimli-Hash the lowest stack
consumption (see Table 12).

A complete overview of our results can be found in Appendix A.

6 Conclusion

We showed that the current reference implementation of LMS with some required mod-
ifications achieves good performance results on a Cortex-M4. Further, we presented
that the implemented modifications in XMSS lead to a significant speedup. Although
the XMSS SIMPLE version of XMSS is structurally very similar to LMS, LMS still
achieves significantly better performance. Therefore, these performance differences are
not based on properties of the schemes but rather on properties of the reference im-
plementation. In addition, the currently discussed correct selection of safety margins
for round-based symmetric cryptographic primitives is also considered in this work.
In considering the fact that post-quantum approaches are more resource intensive than
those currently in use, it is worth considering round-reduced and lightweight designs
and concepts of hash functions in an embedded environment.

Our results based on reference implementations should merely give an idea on how
practical the evaluated stateful schemes could be in an embedded environment.
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Table 8: Stack memory usage (bytes) for XMSSMT and HSS using Gimli-Hash.

scheme hash type w h layer key gen sign verify

XMSSMTROBUST Gimli-Hash 16 5 2 3560 3704 3604

XMSSMTSIMPLE Gimli-Hash 16 5 2 3512 3656 3600

XMSSMTSIMPLE+PRE Gimli-Hash 16 5 2 3484 3672 3572

HSS Gimli-Hash 16 5 2 3528 2268 936

HSS Gimli-Hash 256 5 2 3528 2268 980
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A Further Results

A.1 Speed and Stack Memory

Speed is measured in CPU clock cycles. Stack memory (bytes) excludes the space re-
quired to store key material, messages, and in the case of hash pre-computation the
intermediate state.

Table 9: Speed in clock cycles for XMSS and LMS for h = 5.

design hash type w h d key gen sign verify

XMSS ROBUST Gimli-Hash 16 5 1 1048850892 1063994437 17850167

XMSS SIMPLE Gimli-Hash 16 5 1 345097734 351135622 4843341

XMSS SIMPLE+PRE Gimli-Hash 16 5 1 35652023 341236863 4991976

LMS Gimli-Hash 16 5 1 210439959 226186258 4601931

LMS Gimli-Hash 256 5 1 1688484184 1808265632 38644523

XMSS ROBUST KECCAK-p[800, 22] 16 5 1 1162653236 1179847660 19384572

XMSS SIMPLE KECCAK-p[800, 22] 16 5 1 380333946 387149205 5183652

XMSS SIMPLE+PRE KECCAK-p[800, 22] 16 5 1 369894358 375718141 5838576

LMS KECCAK-p[800, 22] 16 5 1 180384764 193651049 4108963

LMS KECCAK-p[800, 22] 256 5 1 1445029158 1550179966 35721222

XMSS ROBUST KECCAK-p[800, 12] 16 5 1 699127232 709176591 11945544

XMSS SIMPLE KECCAK-p[800, 12] 16 5 1 230594112 234234392 3625308

XMSS SIMPLE+PRE KECCAK-p[800, 12] 16 5 1 225063121 228715963 3444956

LMS KECCAK-p[800, 12] 16 5 1 106406966 114348011 2325050

LMS KECCAK-p[800, 12] 256 5 1 848547880 909533298 20963781

XMSS ROBUST SHAKE256 16 5 1 1569880839 1593969977 25282729

XMSS SIMPLE SHAKE256 16 5 1 515089881 523679528 7643266

LMS SHAKE256 16 5 1 482690432 519083330 10541350

LMS SHAKE256 256 5 1 3882760965 4165192023 92414919

XMSS ROBUST SHA-256 16 5 1 738461396 747855715 13842083

XMSS SIMPLE SHA-256 16 5 1 243254582 247726301 3207473

XMSS SIMPLE+PRE SHA-256 16 5 1 237275019 241026688 3735483

LMS SHA-256 16 5 1 117988963 126516806 2576515

LMS SHA-256 256 5 1 941182086 1009663117 23252036

https://ia.cr/2018/1225
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Table 10: Speed in clock cycles for XMSS and LMS for h = 10.

design hash type w h d key gen sign verify

XMSS ROBUST Gimli-Hash 16 10 1 33564541776 33577999022 19809084

XMSS SIMPLE Gimli-Hash 16 10 1 11043410042 11048855367 5499037

XMSS SIMPLE+PRE Gimli-Hash 16 10 1 10741004533 10746291644 5350407

LMS Gimli-Hash 16 10 1 6732401742 6760950108 4735761

LMS Gimli-Hash 256 10 1 54029816692 54252236257 41774596

XMSS ROBUST KECCAK-p[800, 22] 16 10 1 37206439782 37224119943 19141666

XMSS SIMPLE KECCAK-p[800, 22] 16 10 1 12156299702 12162295897 6023986

XMSS SIMPLE+PRE KECCAK-p[800, 22] 16 10 1 11836857885 11842845219 5754294

LMS KECCAK-p[800, 22] 16 10 1 5770801259 5795821406 4082342

LMS KECCAK-p[800, 22] 256 10 1 46239422162 46435056305 35772292

XMSS ROBUST KECCAK-p[800, 12] 16 10 1 22373006810 22383060343 12090021

XMSS SIMPLE KECCAK-p[800, 12] 16 10 1 7379129292 7382968494 3460242

XMSS SIMPLE+PRE KECCAK-p[800, 12] 16 10 1 7202125901 7205678899 3591854

LMS KECCAK-p[800, 12] 16 10 1 3403971523 3418764578 2445893

LMS KECCAK-p[800, 12] 256 10 1 27152481832 27267386528 20218474

XMSS ROBUST SHAKE256 16 10 1 50237912742 50263977292 23600738

XMSS SIMPLE SHAKE256 16 10 1 16483247517 16490948379 8606414

LMS SHAKE256 16 10 1 15443962652 15509782696 10611902

LMS SHAKE256 256 10 1 124246229161 124768084452 92485431

XMSS ROBUST SHA-256 16 10 1 23631706453 23642038600 13071813

XMSS SIMPLE SHA-256 16 10 1 7784507955 7788564498 3676358

XMSS SIMPLE+PRE SHA-256 16 10 1 7586158652 7589495830 4201201

LMS SHA-256 16 10 1 3774882103 3791157911 2658884

LMS SHA-256 256 10 1 30117102840 30244495755 22424231

Table 11: Speed in clock cycles for XMSSMT and HSS for h = 10 with 2 layers.

design hash type w h d key gen sign verify

XMSSMT ROBUST Gimli-Hash 16 10 2 1048850426 2132881606 33496306

XMSSMT SIMPLE Gimli-Hash 16 10 2 345098305 701246056 10713254

XMSSMT SIMPLE+PRE Gimli-Hash 16 10 2 335652685 681899583 10564618

HSS Gimli-Hash 16 10 2 210440071 478103461 5782431

HSS Gimli-Hash 256 10 2 1688484230 3829196649 49449332

XMSSMT ROBUST KECCAK-p[800, 22] 16 10 2 1162646143 2359535503 41171355

XMSSMT SIMPLE KECCAK-p[800, 22] 16 10 2 379877664 772410324 11268039

XMSSMT SIMPLE+PRE KECCAK-p[800, 22] 16 10 2 369895178 751777787 11335455

HSS KECCAK-p[800, 22] 16 10 2 180384846 410370171 4730609

HSS KECCAK-p[800, 22] 256 10 2 1445029240 3283683503 41004008

XMSSMT ROBUST KECCAK-p[800, 12] 16 10 2 699115534 1420918009 23592244

XMSSMT SIMPLE KECCAK-p[800, 12] 16 10 2 230594929 468987052 6745119

XMSSMT SIMPLE+PRE KECCAK-p[800, 12] 16 10 2 225063940 457454439 6882114

HSS KECCAK-p[800, 12] 16 10 2 106407050 242305287 2781069

HSS KECCAK-p[800, 12] 256 10 2 848547971 1926719634 24063701

XMSSMT ROBUST SHAKE256 16 10 2 1569879645 3190288610 50539786

XMSSMT SIMPLE SHAKE256 16 10 2 515090566 1046239697 16371600

HSS SHAKE256 16 10 2 482690353 1095714785 12421365

HSS SHAKE256 256 10 2 3882761056 8805213845 117271251

XMSSMT ROBUST SHA-256 16 10 2 738439917 1498069037 27673083

XMSSMT SIMPLE SHA-256 16 10 2 243495342 494559179 7775017

XMSSMT SIMPLE+PRE SHA-256 16 10 2 237269504 481736648 7775063

HSS SHA-256 16 10 2 117989078 268526114 3082339

HSS SHA-256 256 10 2 941182212 2140447370 26690663
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Table 12: Stack memory usage (bytes) for XMSS and LMS for h ∈ {5,10}, and for
XMSSMT and HSS.

design hash type w h layer key gen sign verify

XMSS ROBUST Gimli-Hash 16 5 1 3784 3832 3604

XMSS SIMPLE Gimli-Hash 16 5 1 3712 3760 3556

XMSS SIMPLE+PRE Gimli-Hash 16 5 1 3728 3776 3572

LMS Gimli-Hash 16 5 1 3528 2240 876

LMS Gimli-Hash 256 5 1 3528 2240 876

XMSS ROBUST KECCAK-p[800, x]a 16 5 1 3896 3944 3720

XMSS SIMPLE KECCAK-p[800, x]a 16 5 1 3824 3872 3672

XMSS SIMPLE+PRE KECCAK-p[800, x]a 16 5 1 3840 3888 3688

LMS KECCAK-p[800, x]a 16 5 1 3644 2356 988

LMS KECCAK-p[800, x]a 256 5 1 3644 2356 988

XMSS ROBUST SHAKE256 16 5 1 4224 4272 4088

XMSS SIMPLE SHAKE256 16 5 1 4176 4200 4024

LMS SHAKE256 16 5 1 3844 2532 1164

LMS SHAKE256 256 5 1 3844 2532 1164

XMSS ROBUST SHA-256 16 5 1 4032 4080 3912

XMSS SIMPLE SHA-256 16 5 1 3984 4032 3832

XMSS SIMPLE+PRE SHA-256 16 5 1 3976 4016 3840

LMS SHA-256 16 5 1 3764 2460 1044

LMS SHA-256 256 5 1 3740 2460 1084

XMSS ROBUST Gimli-Hash 16 10 1 4128 4016 3604

XMSS SIMPLE Gimli-Hash 16 10 1 4056 3944 3600

XMSS SIMPLE+PRE Gimli-Hash 16 10 1 4072 3960 3616

LMS Gimli-Hash 16 10 1 3556 2268 832

LMS Gimli-Hash 256 10 1 4072 3960 876

XMSS ROBUST KECCAK-p[800, x]a 16 10 1 4240 4128 3720

XMSS SIMPLE KECCAK-p[800, x]a 16 10 1 4168 4056 3672

XMSS SIMPLE+PRE KECCAK-p[800, x]a 16 10 1 4184 4072 3688

LMS KECCAK-p[800, x]a 16 10 1 3644 2356 988

LMS KECCAK-p[800, x]a 256 10 1 3668 2356 988

XMSS ROBUST SHAKE256 16 10 1 4592 4480 4088

XMSS SIMPLE SHAKE256 16 10 1 4520 4408 4040

LMS SHAKE256 16 10 1 3860 2532 1164

LMS SHAKE256 256 10 1 3844 2532 1164

XMSS ROBUST SHA-256 16 10 1 4400 4288 3896

XMSS SIMPLE SHA-256 16 10 1 4328 4216 3848

XMSS SHA-256 16 10 1 4320 4208 3848

LMS SHA-256 16 10 1 3780 2460 1044

LMS SHA-256 256 10 1 3780 2460 1084

XMSSMT ROBUST Gimli-Hash 16 5 2 3560 3704 3604

XMSSMT SIMPLE Gimli-Hash 16 5 2 3512 3656 3600

XMSSMT SIMPLE+PRE Gimli-Hash 16 5 2 3484 3672 3572

HSS Gimli-Hash 16 5 2 3528 2268 936

HSS Gimli-Hash 256 5 2 3528 2268 980

XMSSMT ROBUST KECCAK-p[800, x]a 16 5 2 3672 3816 3760

XMSSMT SIMPLE KECCAK-p[800, x]a 16 5 2 3624 3768 3712

XMSSMT SIMPLE+PRE KECCAK-p[800, x]a 16 5 2 3640 3784 3688

LMS KECCAK-p[800, x]a 16 5 2 3644 2364 1052

LMS KECCAK-p[800, x]a 256 5 2 3668 2364 1092

XMSSMT ROBUST SHAKE256 16 5 2 4024 4168 4112

XMSSMT SIMPLE SHAKE256 16 5 2 3976 4080 4024

LMS SHAKE256 16 5 2 3844 2540 1268

LMS SHAKE256 256 5 2 3844 2564 1268

XMSSMT ROBUST SHA-256 16 5 2 3832 3976 3896

XMSSMT SIMPLE SHA-256 16 5 2 3784 3920 3832

XMSSMT SIMPLE+PRE SHA-256 16 5 2 3776 3920 3840

HSS SHA-256 16 5 2 3764 2468 1148

HSS SHA-256 256 5 2 3740 2468 1188

a Values valid for KECCAK-p[800, 22] and KECCAK-p[800, 12].
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