
On the Applicability of the Fujisaki-Okamoto
Transformation to the BIKE KEM

Nir Drucker1,2, Shay Gueron1,2, Dusan Kostic3, and Edoardo Persichetti4

1University of Haifa, Israel, 2Amazon, USA, 3EPFL Switzerland,
4Florida Atlantic University, USA

Abstract. The QC-MDPC code-based KEM BIKE is one of the Round-
2 candidates of the NIST PQC standardization project. Its specification
document describes a version that is claimed to have IND-CCA security.
The security proof uses the Fujisaki-Okamoto transformation and a de-
coder that targeted a Decoding Failure Rate (DFR) of 2−128 (for Level-1
security). However, there are several aspects that need to be amended in
order for the IND-CCA proof to hold. The main issue is that using a de-
coder with DFR of 2−128 does not necessarily imply that the underlying
PKE is δ-correct with δ = 2−128, as required.
In this paper, we handle the necessary aspects in the definitions of the
KEM to ensure the security claim is correct. In particular, we close
the gap in the proof by defining the notion of a message-agnostic PKE
for which decryption failures are independent of the encrypted message.
We show that all the PKE underlying the BIKE versions are message-
agnostic. This implies that BIKE with a decoder that has a sufficiently
low DFR is also an IND-CCA KEM.

Keywords: BIKE, Post-Quantum Cryptography, NIST, QC-MDPC codes,
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1 Introduction

Bit Flipping Key Encapsulation (BIKE) is a Quasi-Cyclic Moderate-Density
Parity-Check (QC-MDPC) code-based Key Encapsulation Mechanism (KEM),
defined in [1] with three variants. A significant claim in [1] is that there exists
an IND-CCA secure version for each of the three KEM variants, named BIKE-
1-CCA, BIKE-2-CCA, BIKE-3-CCA. However, we have identified several gaps
affecting this claim, and casting doubts whether such variants are actually IND-
CCA secure. The first gap is that the specified decoder was not defined to have
a constant number of steps, so it was inherently not a constant-time algorithm.
In addition, no constant-time implementation for this decoder was provided.
This gap was resolved in [3], together with a study that identified some effi-
cient decoders and their constant-time implementations. The second gap, which
was reported in [3], but not yet resolved, was the assumption that δ, as used
in the implicit-rejection version of Fujisaki-Okamoto transformation (FO 6⊥, as



described in [5]) for converting a δ-correct Public Key Encryption (PKE) into
an IND-CCA KEM, is the same as the DFR of the decoder specified for BIKE
in [1]. Without a proof to this effect, IND-CCA security cannot be claimed even
if a decoder that has a DFR of 2−128 (for Level-1 security) is presented. Finally,
the protocol formulation of BIKE-2-CCA (and BIKE-3-CCA) does not allow
direct application of [5, Theorem 4] before first resolving the δ-correctness gap.
We argue that it is easier to slightly modify the flows as described in the text.

The subtle gap between δ and the DFR affects other schemes that have
a nonzero decapsulation failure probability. For example, LEDAcrypt-PKC [2]
provides a sketch for the McEliece framework. We fully flesh out this idea by
defining the notion of message-agnostic PKE and apply it to BIKE-1-CCA.
LEDAcrypt-KEM [2], instead, solves the gap by adding an Extensible Output
Function (XOF). We generalize this notion, showing that all Hybrid Encryption
(HE) schemes, such as those underlying BIKE-2-CCA and BIKE-3-CCA, are
message-agnostic. We amend the description of the BIKE protocols where nec-
essary. Thus, we are now able to substantiate the claim that the BIKE-*-CCA
variants actually achieve IND-CCA security, given that there exists a decoder
with a constant number of steps and a DFR of the required magnitude.

2 Message-agnostic PKEs

General notation. We denote a protocol failure by ⊥. Uniform random sampling

from a set W is denoted by w
$←− W . For an algorithm A, we denote its output

by out = A() if A is deterministic, and by out← A() otherwise.

A Public Key Encryption (PKE) scheme is defined over some parameter set,
and three spaces: the key space K, the message space M and the ciphertext
space C. It consists of three algorithms:

– a Key Generation algorithm (sk, pk) ← Gen() that generates a key pair,
namely a secret key sk and a public key pk;

– an Encryption algorithm c← Encrypt(pk,m) that encrypts a message m ∈
M and produces a ciphertext c ∈ C;

– a Decryption algorithm m′ = Decrypt(sk, c) that decrypts c ∈ C using sk to
either a message m′ ∈M upon successful decryption, or a failure symbol ⊥
upon decryption failure.

We define the following probabilities

p1(sk, pk,m) = Pr
[
Decrypt(sk, c) 6= m | c← Encrypt(pk,m)

]
; (1)

p2(sk, pk) = Pr[(sk, pk)← Gen()]. (2)

For a fixed (sk, pk) ∈ K, and a fixed m ∈M, we say that p1(sk, pk,m) is the
“per-(key,message) pair decryption failure probability”, while p2(sk, pk) is the
probability that Gen() outputs the key pair (sk, pk). We also define the “overall
decryption failure probability” as

2



p3 = Pr[Decrypt(sk, c) 6= m | (sk, pk)← Gen(),m
$←−M, (3)

c← Encrypt(pk,m)],

or in other words:

p3 =
1

|M|
∑

(sk,pk)∈K,m∈M

p2(sk, pk) · p1(sk, pk,m) (4)

since m is chosen uniformly at random from M.

Definition 1 (δ-correct PKE [5]). A given PKE is said to be δ-correct if

E
[

max
m∈M

p1(sk, pk,m)

]
≤ δ (5)

Remark 1. Our discussion revolves around PKEs for which the decryption has a
nonzero failure probability (that could depend on the encrypted message and/or
on the private key). We note that PKEs with no failures at all, can be viewed
as a (degenerate) special case where δ = 0.

Definition 2 (Message-agnostic PKE). A message-agnostic PKE is a PKE
with the following property: the equality

p1(sk, pk,m) = p1(sk, pk,m′) (6)

holds for every (sk, pk) ∈ K and every m,m′ ∈ M. In other words, for a given
key pair, the decryption failure probability is the same for all possible messages.

Claim 1 Consider a message-agnostic PKE. Then,

p3 = E
[

max
m∈M

p1(sk, pk,m)

]
(7)

where the expectation is taken over (sk, pk)← Gen().

Proof.

E
[

max
m∈M

p1(sk, pk,m)

]
=

by (6)
E

 1

|M|
∑

m∈M
p1(sk, pk,m)


=

∑
(sk,pk)∈K

1

|M|
∑

m∈M
p1(sk, pk,m) · p2(sk, pk)

=
1

|M|
∑

(sk,pk)∈K,m∈M

p1(sk, pk,m) · p2(sk, pk)

= p3. ut

Corollary 1. A message-agnostic PKE is δ-correct if p3 ≤ δ.
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3 Hybrid Encryption

The HE paradigm (also known as KEM-DEM) was introduced in [6]. The paradigm
constructs PKEs by combining an asymmetric component called KEM with a
symmetric component called Data Encapsulation Mechanism (DEM). The latter
is usually some sort of authenticated cipher, but for our purposes, we can imagine
it consists simply of two deterministic algorithms Encrypt(pk,m)/Decrypt(sk, c).
Since the focus of this work is the BIKE KEM, we do not give here more details
about DEMs, but move on instead to define KEMs accurately.

A Key Encapsulation Mechanism (KEM) is defined over some parameter set,
and three spaces: the key space K, the ciphertext space C and the shared string
space S. It consists of three algorithms:

– a Key Generation algorithm (sk, pk) ← Gen() that generates a key pair,
namely a secret key sk and a public key pk;

– an Encapsulation algorithm (c, k)← Encaps(pk) that generates a bit string1

k ∈ S and encapsulates it in a ciphertext c ∈ C;

– a Decapsulation k = Decaps(sk, c) that returns k ∈ S upon successful de-
capsulation of c ∈ C using sk, or ⊥ upon failure (if using implicit rejection,
decapsulation returns a uniform random value k′ instead of ⊥).

Remark 2. Some KEMs use a technique called implicit rejection. Here, in case
of a failure, decapsulation returns a uniform random value k′ instead of ⊥. The
reason is that a KEM is normally used in conjunction with a DEM, which uses
the KEM output as symmetric key, and therefore, unless a collision occurs,
returning the “wrong” value k′ causes a failure in the DEM decryption process.
In this way, an incorrect ciphertext is still rejected as it would by a traditional
KEM, but without revealing information to an adversary.

Definition 3 (δ-correct KEM [5]). A KEM is δ-correct if

p4 = Pr
[
Decaps(sk, c) 6= k|(sk, pk)← Gen(), (c, k)← Encaps(pk)

]
≤ δ (8)

Corollary 2. Consider a KEM built using the FO 6⊥ transformation [5] over an
underlying message-agnostic PKE. Then p4 = p3.

Proof. The FO 6⊥ transformation [5] converts a given δ-correct PKE to a δ1-
correct KEM by using the T and the U 6⊥ transformations. The T transformation
converts a δ-correct PKE to a δ1-correct PKE1 by adding “derandomization” and
“re-encryption”. It uses a hash function G that acts as a random oracle. The
number of calls to G is qG, and δ1(qG) = qG · δ. The U 6⊥ transformation converts

a δ1-correct PKE1 to a δ1-correct KEM by choosing m
$←− M and calculating

1 Generally, this is used as a shared key for a symmetric encryption scheme.
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the shared-secret. These two steps do not involve a failure option. Thus, p4 is
equivalent to

Pr[Decrypt1(sk, c) =⊥ |(sk, pk)← Gen(), (9)

c← Encrypt1(pk,m;G(m)),m
$←−M ].

In T , Decrypt1(sk, c) returns ⊥ when Decrypt(sk, c) returns ⊥ or when the re-
encryption failed, which can happen only if Decrypt(sk, c) 6= m. Thus, Eq. (9)
is equivalent to

p3 = Pr[Decrypt(sk, c) 6= m | (sk, pk)← Gen(),

m
$←−M, c← Encrypt(pk,m)]. ut

We are now ready to show the main result of this section, that is, that the HE
paradigm always yields message-agnostic PKEs. We begin by briefly outlining
the framework of an HE scheme.

A Hybrid Encryption (HE) scheme is defined over some parameter set, and
three spaces: the key space K, the message spaceM and the ciphertext space C.
It consists of three algorithms:

– a Key Generation algorithm (sk, pk) ← Gen() which is the same as that of
the KEM;

– an Encryption algorithm c = (c0, c1) ← Encrypt(pk,m), that encrypts
a message m ∈ M and produces a ciphertext c ∈ C. The ciphertext is
obtained by first computing (c0, k) = KEM.Encaps(pk) and then c1 =
DEM.Encrypt(k,m).

– a Decryption algorithm m′ = Decrypt(sk, c) that decrypts c ∈ C using
sk to either a message m′ ∈ M upon successful decryption, or a failure
symbol ⊥ upon decryption failure. Here m′ is obtained by first computing
k′ = KEM.Decaps(sk, c0) and then DEM.Decrypt(k′, c1).

Claim 2 The HE scheme described above is message-agnostic.

Proof. Note that Decrypt can fail only in two cases: either KEM.Decaps(sk, c0)
returns ⊥, or it returns k′ 6= k. In both cases, the decapsulation algorithm
depends only on sk and c0, and therefore a decryption failure is independent of
the message m. ut

Remark 3. HE was, historically, introduced as a tool to design IND-CCA secure
PKEs. The advantage of such a construction is that IND-CCA security for the
PKE provably reduces to the IND-CCA security of the KEM and DEM compo-
nents. It is trivial to show that, if the underlying KEM only achieves a weaker
security notion (e.g. IND-CPA, which is the case for BIKE), the resulting HE
scheme does not achieve IND-CCA security, but it does preserve the original
notion (IND-CPA).
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4 Applications to BIKE

Let F2 be the finite field of characteristic 2. Let R be the polynomial ring
F2[X]/ 〈Xr − 1〉. For every element v ∈ R denote its Hamming weight by wt(v).
Note that every v ∈ R with odd weight is also invertible [1]. We write {0, 1}l[t]
to denote the set of all l-bit strings with Hamming weight t. For BIKE, we
set M = R, C = R2 and S = {0, 1}`1 (hereafter, `1 = 256). The parameters
common to all schemes are the integers r, w, t, plus an additional parameter `
corresponding to the desired length of the shared key. For example, [1] specifies
r = 11779, w = 142, t = 134 for BIKE-1-CCA Level-1. The parameter ` is set
to ` = 256.

The scheme uses a QC-MDPC decoder. In the case of BIKE-1-CCA and
BIKE-2-CCA, a decoder is a procedure decode: R3 −→ {R2,⊥}. Both variants
can (and do) use the same decoder. For BIKE-3-CCA, the procedure decode
is slightly tweaked, in order to obtain a so-called “noisy” decoder which returns
an output in {R3,⊥} instead.

The model for the BIKE schemes uses two functions H and K that are called,
loosely, “hash functions” in [1]. For convenience, we keep this loose notion, but
point out that, technically, H and K should be viewed as random oracles over
the appropriate domains. Our proofs for BIKE-2-CCA and BIKE-3-CCA modify
the original flows by adding another hash function, denoted by L. The domains
for these hash functions are summarized in Table 1.

Table 1. Hash function (random oracle) domains for the BIKE variants.

BIKE-1-CCA BIKE-2-CCA BIKE-3-CCA

H : {0, 1}2r → {0, 1}2r[t] H : {0, 1}` → {0, 1}2r[t] H : {0, 1}` → {0, 1}3r[t]

K : {0, 1}4r → {0, 1}` K : {0, 1}r+2` → {0, 1}` K : {0, 1}2r+2` → {0, 1}`

L : {0, 1}2r[t] → {0, 1}` L : {0, 1}3r[t] → {0, 1}`

Details and explanations about the subtle differences between the hash func-
tion, the random oracles, and the relation to a concrete implementation are
provided in Section 5.

δ-correctness of the BIKE-CCA variants. The BIKE specification docu-
ment in [1, Section 2.4] defines the DFR of a specific decoder decoder as “the
probability for the decoder to fail when the input (h0, h1, e0, e1) is distributed
uniformly”. Subsequently, the IND-CCA proofs of the BIKE-CCA variants re-
place the δ-correctness definition of [5] with the DFR in [1, Section 6.2] as follows
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“the resulting KEM will have the exact same DFR as the underlying
cryptosystem”.

The authors of [3] have already indicated (see Section 7 in [3]) that there is a
subtle difference between the two definitions. Note also that Theorem 4 of [5]
states that “If PKE1 is δ1-correct, so is KEM 6⊥ [..]”. However, this does not
imply that if a KEM is δ1-correct then PKE1 is necessarily δ1-correct. Corollary
1 shows that it is true when the underlying PKE is message-agnostic.

The underlying PKEs The BIKE [1] submission states that its IND-CCA
proofs rely on applying the FO 6⊥ transformation of [5] to the underlying cryp-
tosystems. Note that [5] remarks that “all our transformations require a PKE
scheme (and not a KEM). We view it as an interesting open problem to construct
similar transformations that only assume (and yield) KEMs”. In fact this paper
offers such a construction, and applies it to BIKE-2-CCA and BIKE-3-CCA.
As a consequence, to properly analyze the proofs, one first needs to extract the
underlying PKEs. Since those are not explicitly described in [1], we do this in
this paper, by reversing the U 6⊥ and T transformations.

In the next section, we discuss the three BIKE CCA variants, which are
presented with all the modifications necessary to fill the gaps. The modifications
will then be explained and justified in Section 5. We refer the reader to sections
2.2.1 to 2.2.3 of [1] for the original description of the three schemes.

4.1 BIKE-1-CCA

BIKE-1-CCA consists of the following algorithms.

Key generation. Choose (h0, h1, σ0, σ1)
$←− R4 with wt(h0) = wt(h1) = w/2 of

odd weight, and choose another polynomial g
$←− R of odd weight wt(g) ≈ r/2.

Then, set pk = (f0, f1) = (gh1, gh0) and sk = (h0, h1, σ0, σ1).

Encapsulation. Generate m
$←− R. Compute (e0, e1) = H(mf0,mf1), where

wt(e0) +wt(e1) = t. Calculate the ciphertext c = (c0, c1) = (mf0 + e0,mf1 + e1)
and the shared secret k = K(mf0,mf1, c).

Decapsulation. Compute the syndrome s = c0h0 + c1h1. Calculate (e′0, e
′
1) ←

decode(s, h0, h1) and (e′′0 , e
′′
1) = H(c0 + e′0, c1 + e′1). If the decoder returns ⊥,

or wt(e′0, e
′
1) 6= t, or (e′0, e

′
1) 6= e′′0 , e

′′
1 , then return k = K(σ0, σ1, c). Otherwise,

return k = K(c0 + e′0, c1 + e′1, c).

We now proceed to extract the PKE underlying BIKE-1-CCA, which we
denote by E-1. This is essentially a version of the McEliece cryptosystem, in-
stantiated with QC-MDPC codes. Thus, the key generation algorithm of E-1 is
the same as in BIKE-1-CCA, with the exception of the elements σ0 and σ1 which
are added as part of the KEM conversion. The encryption/decryption algorithms
of E-1 are:
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Encryption. Generate (e0, e1)
$←− R2, where wt(e0) + wt(e1) = t. Calculate the

ciphertext c = (c0, c1) = (mf0 + e0,mf1 + e1).

Decryption. Compute the syndrome s = c0h0 + c1h1. Calculate (e′0, e
′
1) ←

decode(s, h0, h1). If the decoding succeeds and wt(e′0)+wt(e′1) = t, then return
m = f−10 (c0 + e′0); else return ⊥.

Finally, we prove the following claim about E-1.

Claim 3 E-1 is message-agnostic.

Proof. The decryption of E-1 can fail to output m in two cases: a) (e′0, e
′
1) 6=

(e0, e1); b) decode(s, h0, h1) returns ⊥ (i. e., decoding failure occurred). Ac-
cording to [1], the probability that Case #a occurs is negligible and we therefore
ignore it here. Note that decode depends only on h0, h1 and the syndrome,
s = h0e0 + h1e1, is independent of m. Therefore, the probability that Case #b
occurs is also independent on m. ut

Remark 4. The case where c = (c0, 0) = (mf0 +e0, 0) is interesting and deserves
to be treated separately. In this case, s = (mf0 + e0)h0, and it may seem that
the syndrome depends on m. However, this is not true. In fact, from c1 = 0 =
mf1 + e1 it follows that m = f−11 e1. Substituting this equality in s yields

s = (f−11 e1f0 + e0)

(g−1gh−10 h0h1e1 + h0e0) = h1e1 + h0e0

The latter expression is independent of m, as expected.

4.2 BIKE-2-CCA

BIKE-2-CCA consists of the following algorithms.

Key generation. Choose σ
$←− {0, 1}` and (h0, h1)

$←− R2 with wt(h0) = wt(h1) =
w/2 of odd weight. Then, set pk = h = h1h

−1
0 and sk = (h0, h1, σ).

Encapsulation. Generatem
$←− {0, 1}`. Compute (e0, e1) = H(m), where wt(e0)+

wt(e1) = t. Calculate the ciphertext c = (c0, c1) = (e0 + e1h, L(e0, e1)⊕m) and
the shared secret k = K(m, c).

Decapsulation. Compute the syndrome s = c0h0. Set (e′0, e
′
1)← decode(s, h0, h1)

and m′ = c1⊕L(e′0, e
′
1). If the decoder returns ⊥, or wt(e′0, e

′
1) 6= t, or (e′0, e

′
1) 6=

H(m′), then return k = K(σ, c). Otherwise, return k = K(m′, c).

We now proceed to extract the PKE underlying BIKE-2-CCA, which we
denote by E-2. There is a substantial difference here, compared to the previous
case of BIKE-1-CCA. In fact, the BIKE-2 KEM was originally designed to follow
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the Niederreiter framework. However, this approach utilizes the fixed-weight
error vector (e0, e1) as input for the key derivation, and this could create some
security issues: an adversary performing a reaction attack would be able to choose
specific error patterns that are potentially more likely to cause a decoding failure.
As a consequence, the PKE underlying BIKE-2-CCA is created as an HE scheme,
composing a one-time pad (playing the role of the DEM) with the simple IND-
CPA KEM2 described below.

Key generation. Choose sk = (h0, h1)
$←− R2 with wt(h0) = wt(h1) = w/2 of

odd weight. Then, set pk = h = h1h
−1
0 and sk = (h0, h1).

Encapsulation. Generate (e0, e1)
$←− R2, where wt(e0) + wt(e1) = t. Calculate

the ciphertext c = e0 + e1h and the shared secret k = L(e0, e1). Here, L is a
hash function that generates the appropriate value.

Decapsulation. Compute the syndrome s = ch0. Set (e′0, e
′
1)← decode(s, h0, h1).

If the decoder returns ⊥, or wt(e′0, e
′
1) 6= t, then return ⊥. Otherwise, return

k = L(e′0, e
′
1).

To avoid confusion, we chose to use a different notation for the hash function
that is used for deriving the shared key in the two KEMs. To this end, we
introduced the hash function L. As mentioned above, the KEM and the DEM
are combined to obtain the PKE E-2. As in every HE scheme, the key generation
algorithm of E-2 is the same as that of the above IND-CPA KEM, and it is thus
omitted here. The encryption/decryption algorithms of E-2 are given as follows.

Encryption. Generate (e0, e1)
$←− R2, where wt(e0) + wt(e1) = t. Calculate the

ciphertext c = (c0, c1) = (e0 + e1h, L(e0, e1)⊕m).

Decryption. Compute the syndrome s = c0h0. Set (e′0, e
′
1)← decode(s, h0, h1).

If the decoding succeeds and wt(e′0)+wt(e′1) = t, then return m = c1⊕L(e′0, e
′
1);

else return ⊥.

Finally, we prove the following claim about E-2.

Claim 4 E-2 is message-agnostic.

Proof. This follows immediately from Claim 2. Note that, as in the case for
Claim 3, we can deem negligible the probability that (e′0, e

′
1) 6= (e0, e1) (which

would imply L(e′0, e
′
1) 6= L(e0, e1) and thus cause a decryption failure). ut

4.3 BIKE-3-CCA

BIKE-3-CCA consists of the following algorithms.

2 This corresponds to the BIKE-2 variant described in [1].
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Key generation. Choose σ
$←− {0, 1}` and (h0, h1)

$←− R2 with wt(h0) = wt(h1) =

w/2 of odd weight, and choose another polynomial g
$←− R of odd weight wt(g) ≈

r/2. Then, set pk = (f0, f1) = (h1 + gh0, g) and sk = (h0, h1, σ).

Encapsulation. Generate m
$←− {0, 1}`. Compute (e, e0, e1) = H(m), where

wt(e0) + wt(e1) = t and wt(e) = t/2. Calculate the ciphertext c = (c0, c1, c2) =
(e+ e1f0, e0 + e1f1, L(e, e0, e1)⊕m) and the shared secret k = K(m, c).

Decapsulation. Compute the syndrome s = c0 + c1h0. Calculate (e′, e′0, e
′
1) ←

decode(s, h0, h1) and m′ = c2 ⊕ L(e′, e′0, e
′
1). If the decoder returns ⊥, or

wt(e′, e′0, e
′
1) 6= 3t/2, or (e′, e′0, e

′
1) 6= H(m′), then return k = K(σ, c). Other-

wise, return k = K(m′, c).

We now proceed to extract the PKE underlying BIKE-3-CCA, which we
denote by E-3. Similarly to the case of BIKE-2-CCA, and for the same reasons,
this is also a hybrid PKE. The IND-CPA KEM3 is described below.

Key generation. Choose sk = (h0, h1)
$←− R2 with wt(h0) = wt(h1) = w/2 of

odd weight, and choose another polynomial g
$←− R of odd weight wt(g) ≈ r/2.

Then, set pk = (f0, f1) = (h1 + gh0, g) and sk = (h0, h1).

Encapsulation. Generate (e, e0, e1)
$←− R3, where wt(e0)+wt(e1) = t and wt(e) =

t/2. Calculate the ciphertext c = (c0, c1) = (e + e1f0, e0 + e1f1 and the shared
secret k = L(e, e0, e1). Here, L is a hash function that generates the appropriate
value.

Decapsulation. Compute the syndrome s = ch0. Compute (e′, e′0, e
′
1)← decode

(s, h0, h1). If the decoder returns ⊥, or wt(e′, e′0, e
′
1) 6= 3t/2, then return ⊥.

Otherwise, return k = L(e′, e′0, e
′
1).

As before, to avoid confusion, we use L to denote the hash function that
derives the shared key in the above KEM. We now proceed to combine the KEM
and the DEM to obtain the PKE E-3. The key generation algorithm of E-3 is
the same as that of the above IND-CPA KEM, while the encryption/decryption
algorithms of E-3 are given by:

Encryption. Generate (e, e0, e1)
$←− R3, where wt(e0) + wt(e1) = t and wt(e) =

t/2. Calculate the ciphertext c = (c0, c1, c2) = (e+ e1f0, e0 + e1f1, L(e, e0, e1)⊕
m).

3 This corresponds to the BIKE-3 variant described in [1].
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Decryption. Compute the syndrome s = c0 + c1h0. Calculate (e′, e′0, e
′
1) ←

decode(s, h0, h1). If the decoding succeeds, wt(e′0) + wt(e′1) = t and wt(e′) =
t/2, then return m = c2 ⊕ L(e′, e′0, e

′
1); else return ⊥.

Finally, we prove the following claim about E-3.

Claim 5 E-3 is message-agnostic.

Proof. This follows immediately from Claim 2. Note that, similar to the case of
Claim 3 and Claim 4, we can deem negligible the probability that (e′, e′0, e

′
1) 6=

(e, e0, e1) (which would imply L(e′, e′0, e
′
1) 6= L(e, e0, e1) and thus cause a de-

cryption failure). ut

5 Protocol Modifications

Our definition of the BIKE-2-CCA and BIKE-3-CCA protocols is slightly dif-
ferent from the description given in the specification document [1]. This section
summarizes the modifications we made to the protocols, and explains why they
were necessary.

5.1 Key Derivation

One of the crucial steps in the FO 6⊥ transformation, and a fundamental part of
the proof of [5, Theorem 4], is that the shared key generated from the KEM is
obtained by applying a random oracle to the pair (message, ciphertext) of the
underlying PKE. However, this is not the case for BIKE. In fact, for BIKE-2-
CCA, the algorithm specified in [1] derives the shared key as k = K(e0, e1, c).
Similarly, for BIKE-3-CCA, the algorithm specified in [1] derives the shared key
as k = K(e, e0, e1, c). In both cases, this corresponds, effectively, to deriving the
key from the randomness of the PKE, rather than from the message. Now, by
means of transformation T , this randomness is generated from the message using
a dedicated random oracle. It follows that a substantial modification in the proof
would be necessary for it to hold for BIKE-2-CCA and BIKE-1-CCA. Such a
discrepancy is not discussed nor justified in the BIKE specification document. In
the end, we chose to deal with this issue by slightly modifying the encapsulation
(and decapsulation) flows.

Our description derives the shared key as k = K(m, c) for both BIKE-2-
CCA and BIKE-3-CCA. This has two advantages: a) It is consistent with the
description of [5], which means the security argument can be applied to BIKE
directly; b) It is more efficient since the input to the key derivation function is
much shorter, consisting of only the ` = 256 bits of m instead of the t log2 r bits
of (e0, e1) (for BIKE-2-CCA) or the 3t/2 log2 r bits of (e, e0, e1) (for BIKE-3-
CCA).
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Note that, technically, the description of BIKE-1-CCA is also not exactly
following the blueprint given in [5]. In fact, the scheme derives the shared key as
k = K(mf0,mf1, c), effectively replacing the message m with (mf0,mf1). This
vector corresponds to the codeword associated to the message m in the quasi-
cyclic code defined by the generator matrix (f0, f1). The modification, however,
is much less significant in this case: there is a one-to-one correspondence between
messages and codewords in a linear code (for a fixed choice of generator matrix),
and no random oracle is involved in the process. Furthermore, as mentioned
in [1], this is a convenient choice. In fact, unlike the case of BIKE-2-CCA and
BIKE-3-CCA, where m is obtained immediately by “undoing” the one-time pad,
for BIKE-1-CCA one would need to recover m from (mf0,mf1). This requires
performing a polynomial inversion, which is one of the most expensive operations,
and one that BIKE-1 explicitly aimed to avoid. Therefore, in the end, we chose
to leave the description of BIKE-1-CCA as in [1].

5.2 Random Oracles

The encapsulation algorithm in [1] uses the same function K for the encapsu-
lation step, c = (c0, c1) = (e0 + e1h,K(e0, e1) ⊕m), and for the key-derivation
step, k = K(e0, e1, c). Our definition, instead, uses an independent function L
for c = (c0, c1) = (e0 + e1h, L(e0, e1) ⊕ m) since this is, formally, a different
random oracle (it is, in fact, the key-derivation function in the underlying IND-
CPA KEM). Similarly, our definition of BIKE-3-CCA is also different from that
of [1]. Encapsulation in [1] uses the same function K for the encapsulation step
c = (c0, c1, c2) = (e+ e1f0, e0 + e1f1,K(e, e0, e1)⊕m) and for the key-derivation
step k = K(e, e0, e1, c). Once again, in our definition we use an independent
function L for c = (c0, c1, c2) = (e+ e1f0, e0 + e1f1, L(e, e0, e1)⊕m). Obviously,
the decapsulation procedure is modified accordingly for both BIKE-2-CCA and
BIKE-3-CCA.

For our model, we consider the functions H, K and L as being chosen uni-
formly at random from the set of all functions with the associated domains and
the required constraints on their range, as defined in Table 1. The new model
definition does not affect the way that BIKE-2-CCA and BIKE-3-CCA can be
(and are) instantiated in practice (see [1] for details). Indeed, K and H are
implemented by first “extracting” the input with a hash function X (e.g., SHA-
384) and subsequently “expanding” the hash digest to an output of the desired
length (and constraints), using some pseudorandom generator. This can be done
for the new function L as well. Since the inputs to K, H and L have different
lengths, this already provides domain separation when applying the extraction
step X. For the instantiations, we assume that the SHA-384 digests are indis-
tinguishable from random strings (of the proper lengths and with the required
constraints) by an observing adversary with a given number of queries, and that
the distinguishing advantage from the pseudorandom expansion is also negligible
here.
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6 Conclusion

We showed that constructing a decoder with a DFR of 2−128 (for Level-1) is
sufficient for supporting the IND-CCA property for BIKE. Together with [3],
this completes the missing parts of the IND-CCA proof given in [1].

Some minor modifications were necessary for our analysis to fit the cases
of BIKE-2-CCA and BIKE-3-CCA. The subtlety lies in the difference between
the PKEs underlying the three variants. For BIKE-1-CCA, this is essentially
McEliece, where the randomness (error vector) is already independent of the
message (codework). BIKE-2-CCA and BIKE-3-CCA are based on the Niederre-
iter and Ouroboros cryptosystems, respectively. Here, the message was originally
conveyed in the error vector. As a consequence, it was necessary to use a different
approach, building a PKE by means of the HE paradigm. This is obtained by
combining the original IND-CPA KEM (BIKE-2 and BIKE-3, respectively) with
a simple DEM (one-time pad), so that the message (a fixed-length bit string)
is effectively encrypted using the KEM output (a hash of the error vector) as
key. In the end, the small modification detailed in Section 5 makes the under-
lying PKE message-agnostic, and extends the conclusion to BIKE-2-CCA and
BIKE-3-CCA as well.

Of course, to complete the proof, the BIKE specification needs to define at
least one decoder (or multiple options for a decoder), decode, associated with
the scheme and the chosen parameters, that provably provides the appropriate
DFR. To summarize, even after closing the δ-correctness gap, the IND-CCA
proof still needs to rely on the three assumptions:

1. decode has a DFR of 2−128 (for Level-1).
2. decode can be implemented in constant-time.
3. The probability for a decoding success but a decryption failure is negligible.

Some examples for efficient and constant-time constructions for decode,
their suggested parameters, and estimated DFR, are explored in [3, 4]. These
estimations (perhaps tuned with parameters that provide comfortable margins)
may be perceived as enough practical evidence for a sufficiently low DFR.
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