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Abstract. The technological advancements of the digital era paved the
way for the facilitation of electronic voting (e-voting) in the promise of
efficiency and enhanced security. In standard e-voting designs, the tally
process is assigned to a committee of designated entities called talliers.
Naturally, the security analysis of any e-voting system with tallier des-
ignation hinges on the assumption that a subset of the talliers follows
the execution guidelines and does not attempt to breach privacy. As an
alternative approach, Kiayias and Yung [PKC ’02] pioneered the self-
tallying elections (STE) paradigm, where the post-ballot-casting (tally)
phase can be performed by any interested party, removing the need for
tallier designation.
In this work, we explore the prospect of decentralized e-voting where se-
curity is preserved under concurrent protocol executions. In particular,
we provide the first comprehensive formalization of STE in the univer-
sal composability (UC) framework introduced by Canetti [FOCS ’01] via
an ideal functionality that captures required security properties such as
voter privacy, eligibility, fairness, one-voter one-vote, and verifiability.
We provide a concrete instantiation, called E-cclesia, that UC realizes
our functionality. The design of E-cclesia integrates several crypto-
graphic primitives such as signatures of knowledge for anonymous eligi-
bility check, dynamic accumulators for scalability, time-lock encryption
for fairness, and anonymous broadcast channels for voter privacy. For the
latter primitive, we provide the first UC formalization along with a novel
construction based on mix-nets that utilises layered encryption, thresh-
old secret sharing and equivocation techniques. Additionally, we provide
the first UC formalization of dynamic accumulators without a trusted
setup along with a UC realization based on existing constructions.

Keywords: e-voting, anonymous broadcast, dynamic accumulators, uni-
versally composable security

1 Introduction

In democratic societies, a wide spectrum of people with respect to their be-
liefs and social status can participate equally in shaping decisions that affect



governance both at a national or smaller (e.g., unions, corporations, academic
institutes, associations) scale. The means for achieving this is voting, which is
essential so that governance can operate in a transparent and fair way. With
the technological advancements of the digital era, electronic voting (e-voting)
has been introduced, promising better efficiency, enhanced security and greater
transparency than traditional voting.

Arguably, one critical aspect of e-voting design is to determine the level of
centralisation desired (or feasible), given that conflicts naturally arise between
scalability on the one hand, and security and privacy on the other. In principle,
election tasks such as setup, registration, vote collection, tally, and result an-
nouncement, can be carried out in one of the three following manners in terms
of decentralization: (i) completely centralized by a single authority, (ii) by a
committee of designated entities, or (iii) fully decentralized such that the voters
themselves are responsible for performing the task. Depending on the election
setting, decentralization may be a requirement for some task, but considered
impractical for another one. For instance, distributing trust for voter privacy
during tallying is often highly recommended, yet one cannot expect a direct
consensus among voters on a large scale election setup.

In this work, we explore the prospect of decentralized tallying. Since taking
the centralized approach often results in privacy and robustness attacks [62, 6]
on the authorities that constitute single points of failure, most state-of-the-art e-
voting systems include a committee of designated parties called talliers in charge
of tallying the result of the election (e.g., [16, 2, 22, 39, 21, 56, 20, 23, 43, 18]). In
what we call tallier designation e-voting, security hinges on the assumption that
a subset of the talliers follows the execution guidelines and does not attempt to
breach privacy. Indeed, in any e-voting system of this type, privacy is trivially
violated if all the talliers collude in order to jointly retrieve the voters’ prefer-
ences (typically, by combining their partial decryption keys). Moreover, in the
case where the voters post their votes to a publicly accessible bulletin board (e.g.,
[2, 22, 39, 23, 43, 18]), then partial results can be leaked during the ballot casting
period (fairness violation) under full tallier collusion. Hence, while distributing
trust among talliers strengthens the system w.r.t. privacy and robustness, the
introduction of assumptions regarding the tallier corruption threshold to argue
about security cannot be considered ideal. In fact, real world examples indi-
cate that designated tallying authorities can be the weak link in the system’s
overall performance and security, either due to benign errors or by becoming
high priority targets of attackers (e.g., the cases of the tallying machines in
Georgia, USA [49]). Towards overcoming the limitations present in tallier des-
ignation e-voting, we explore the potential of an alternative approach expressed
by the self-tallying elections (STE) paradigm [42]. Namely, an e-voting system
is self-tallying if the post-ballot-casting (tally) phase can be performed by any
interested party. Designing STE systems that satisfy a list of standard e-voting
security properties such as eligibility, fairness, voter privacy, and verifiability
raises a number of challenges. Specifically, the main challenges of STE are (i)
guaranteeing that no voter (or coalition of voters) can boycott the election; (ii)
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no intermediate results are being leaked during the ballot casting phase (fair-
ness); (iii) no vote can be linked back to the voter that cast it (voter privacy).
Unfortunately, the existing STE proposals [59, 42, 35, 28, 64, 41, 50, 37, 47, 36, 61,
53, 38, 48] lack formal treatment and/or suffer from limitations such as being
susceptible to abort, in the sense that there is a moment in the execution where
the participation of all active voters is required for tally to take place, or requir-
ing a trusted party to be involved during voting so that fairness can be achieved.

Contributions: We tackle all the aforementioned design challenges by deploy-
ing a formal framework where security is preserved under concurrent execu-
tions. In particular, we present E-cclesia, an STE protocol that constitutes
a fine-grained integration of fundamental and special cryptographic tools (e.g.,
signatures of knowledge, non-interactive commitments, dynamic accumulators,
time-lock encryption, anonymous broadcast), and is provably secure in Canetti’s
universal composability model (UC) [11] (cf. Supplementary material A). We
summarize in a bottom up fashion our contributions below.
1. UC formalization and realization of anonymous broadcast. We pro-
vide the first UC treatment of the anonymous broadcast notion by introducing
the ideal functionality Fan.BC and a protocol based on mix-nets [16] that UC-
realizes Fan.BC in the presence of (plain) broadcast channels and a programmable
random oracle. In our protocol, we split the messages into shares [58] and each
share is layer encrypted and sent to a row of a stratified mix network [27]. In
order to achieve UC realization, we borrow techniques from non-committing en-
cryption [52] for the correct opening of the messages. In addition, we apply cover
traffic to hide the senders’ activity. The shares are randomly reordered by each
layer of the mix servers and after some delay, they are broadcast to all parties,
thus preventing timing attacks [40]. Although Fan.BC and the protocol that UC
realises it fit the purposes of E-cclesia, it is a novelty beyond the concept of STE
and is of independent interest. For instance, in [30] a novel cryptographic prim-
itive is introduced, named Anonymous Authenticated Communication (ACC),
which assumes the existence of an anonymous broadcast channel.
2. UC formalization and realization of dynamic accumulators without
trusted setup. We formalize the concept of dynamic accumulators without
trusted setup in the UC framework via the ideal functionality Facc. Contrary
to [5], our functionality and construction do not rely on a trusted dealer that
would maintain a global accumulator state, which was the initial motivation of
the accumulators when firstly introduced by Benaloh et al. [7]. The challenge
here is to ensure consistency between different parties’ local accumulator states.
We prove that the Merkle tree-based construction proposed in [55] UC-realizes
Facc. Again, our formal treatment of public dynamic accumulators is of inde-
pendent interest as many applications (e.g., Zcash, Zerocoin, Distributed Public
Key Infrastructure) rely on dynamic accumulators without a trusted dealer to
coordinate the parties. For example, in a public ledger setting [29] the miners
should be able to update the accumulator state with domain names without any
trapdoor information or trusted setup.
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3. UC formalization of STE and modular design. We formalize the con-
cept of STE through the ideal functionality FSTE. Our functionality captures
correctness and standard e-voting properties such as eligibility, fairness, voter
privacy, one-voter one-vote, and verifiability. Specifically, we only allow eligible
voters to vote no more than once. Regarding privacy and fairness, we only leak
to the simulator the length of the message. In the casting phase, the voters’
identity remains hidden. The ballots are opened only after the end of the casting
phase and thus we guarantee fairness. Finally, during the tally phase, anyone
can retrieve and/or verify the election result which the adversary cannot alter
or drop, thus correctness is satisfied.

We adopt a resolutely modular approach in our formal treatment of STE in
accordance with the UC framework. We decompose FSTE into two smaller mod-
ules named Felig and Fvm. The functionality Felig is responsible for the eligibility
part of FSTE (e.g., credential generation and ballot authentication), while Fvm

is responsible for the vote management part of FSTE (e.g., ballot generation,
casting, and opening). Our modular approach facilitates easier future updates
without the need for reproving the security of the whole STE protocol.
4. UC realization of FSTE: the E-cclesia protocol. We present E-cclesia,
a self-tallying protocol that UC realizes FSTE. In its design, E-cclesia combines
several cryptographic primitives such as time-lock encryption (TLE) to guaran-
tee fairness, signatures of knowledge (SoK) and anonymous broadcast channels to
guarantee eligibility, privacy, and the one-voter one-vote property, and dynamic
accumulators for efficiency. E-cclesia relies on random oracles [52], common
reference string [13], broadcast channels [31], and a global clock [4].

2 Related work

Tallier designation e-voting. E-voting research spans over four decades [16,
2, 22, 39, 21, 56, 20, 23, 43, 18, 19]. E-voting design faces the challenge of capturing
(a reasonable subset of) security properties (e.g., eligibility, verifiability, fairness,
voter privacy, receipt-freeness, coercion resistance) that may be conflicting. In
the standard design approach, the execution of election processes such as setup,
registration, vote collection, tally, and result announcement is assigned to desig-
nated entities. As already mentioned, under a full tallier collusion setting, tallier
designation e-voting systems [16, 2, 22, 39, 21, 56, 20, 23, 43, 18] cannot preserve
voter privacy, and not even fairness when vote collection is carried out via post-
ing to a bulletin board [2, 22, 39, 23, 43, 18]. We stress that fairness is always
violated if the talliers additionally collude with the vote collection authorities
(e.g., ballot box) to retrieve the votes prior to the tally phase. On the con-
trary, E-cclesia satisfies fairness unconditionally w.r.t. corruption setting, i.e.,
it relies only on the security of the underlying cryptographic primitives (TLE).
Self-tallying voting. The STE notion was introduced in [42], and fairness was
already pointed out as one of the challenges; the last voter can learn the (partial)
election outcome before choosing their vote which may lead to the following
issues: the last voter 1) adapts her vote according to the partial results, or 2)
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aborts, where an aborting voter prevents the other voters from performing tally.
The construction in [42] addresses Issue 1 by considering a trusted party that
casts a final “dummy vote”, and Issue 2 by including an additional “recovery”
round, yet in that round all remaining voters must participate. Subsequent works
based on the ideas of [42] have the same limitations [59, 35, 28, 64]. In [41] and [50]
(the latter presents an implementation of [37]), commitments are deployed to
confront the adaptivity of the last voter. Moreover, any construction that relies
on a recovery round [41, 47, 36] is susceptible to abort. Alternatively, enforcing
financial incentives to achieve the participation of all voters was proposed in [50].

Regarding security modeling, we observe that in the literature, there is lack
of a formal framework for the desired STE properties [42, 35, 28, 64, 41, 50, 37,
47, 36, 61, 53, 38, 48] (only ballot secrecy is formalized in [41, 47]). A more formal
approach can be found in [59], where the authors define an ideal functionality
for e-voting that captures several properties such as correctness, eligibility, and
privacy, and a separate definition for universal verifiability. The modeling in [59]
has limitations, as the said functionality (a) allows a single voter to cause the
election to abort; (b) does not capture timing attacks for all tally functions (e.g.,
individual handling of votes); (c) lacks detailed formal description (e.g., token
handling in the UC framework); (d) considers the list of eligible voters as a fixed
parameter, rather than an input to the execution that varies per session.

The use of TLE for constructing STE has been suggested in [47]. In [48], self-
tallying voting is proposed as an application of homomorphic time-lock puzzles,
without further security analysis.
Anonymous broadcast channels. The concept of anonymous broadcast was
first studied in the context of DC-nets [17, 60, 33] that offer unconditional secu-
rity but typically have limitations such as message drop due to collisions, vul-
nerability to jamming attacks, and/or quadratic complexity for broadcasting a
single bit. Several anonymous broadcast protocols have been proposed, yet their
analysis is under security models that do not support composition. The proto-
col in [35] is based on ideas of the STE construction in the same work. In [63],
the authors build their protocol on top of the secure multiparty computation
in [24]. In [46], the authors propose an anonymous broadcast implementation
based on DC-nets. Moreover, the security analysis of the construction in [51] is
inspired by the ideal/real world paradigm; however, the ideal functionality in [51]
is not compatible with the UC setting (there is no environment that provides
the parties with inputs over time).
Dynamic accumulators. The first UC treatment of dynamic accumulators
was presented in [5]. It relies however on a trusted dealer for setup, update,
and deletion. Our ideal functionality Facc is designed for decentralized settings
(i.e., with no designated trusted parties). We further only consider additions and
membership checks, so Facc abstracts the class of additive and positive accumu-
lators. Besides, we are interested in scenarios where, although there may be an
agreement on the accumulated elements, the accumulated values’ computation
is done locally by each party. Thus, unlike the functionality in [5] that captures
the maintenance of a shared accumulator state by an accumulator manager, our
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functionality Facc handles an accumulator state for each honest party where
the only shared data are the accumulator algorithms and the initial value and
auxiliary information. Moreover, we do not require a mechanism that verifies if
the Update operation was carried out correctly, as each party is responsible for
updating their value locally.

3 Protocol specification

In this section, we provide a concise description of the E-cclesia self-tallying
protocol. First, we present the cryptographic building blocks that our protocol
utilizes, the parties involved in an execution, and the intuitive security properties
that it achieves. Throughout the paper, we use λ as security parameter, and
denote by negl(·) a negligible function.

3.1 Cryptographic building blocks

The E-cclesia protocol design encompasses a delicate integration of a set of
cryptographic primitives. Below, we outline these building blocks’ operations and
refer the reader to the full description of the corresponding ideal functionalities.
– We assume the existence of a global clock that synchronizes all entities involved
in the execution (cf. Figure 8 and [4] for the functionality Gclock). The time Cl
increases when all entities are ready to advance in time and can be read by
anyone upon request.
– A random oracle (RO) (cf. Figure 9 and [52] for the functionality FRO) models
the behavior of a randomly sampled function; The queries to the RO are re-
sponded with a random value in a consistent manner, i.e., querying for the same
argument will result in the same response.
– A common reference string (CRS) (cf. Figure 10 and [11] for the functional-
ity FCRS) models a (structured) randomness r shared across all parties in the
execution. Any party can obtain r from the CRS functionality upon request.
– We use the broadcast (BC) channel functionality FBC of [31] for message de-
livery in the pre-voting period (cf. Figure 11). This BC channel considers com-
munication where the sender is authenticated.
– We introduce an anonymous broadcast channel, where a sender party P can
broadcast a message M to all parties in the execution anonymously, i.e., without
P ’s identity being disclosed. In Section 5, we formalize the notion (cf. Figure 3)
and present a provably secure anonymous broadcast protocol based on mix-
nets [16].
– We make use of non-interactive commitments (NICs) (cf. Figure 12 and [8] for
the functionality FNIC) that are (i) binding and (ii) trapdoor (thus, also hiding),
such as the Pedersen scheme [54].
– We utilize signatures of knowledge (SoKs) (cf. Figure 13 and [15] for the func-
tionality FSOK), so that the voters prove their eligibility without revealing their
identity. In SoKs, anyone (and only them) holding a witness w for a statement
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x in some language L is able to produce a signature σm,x,L on a message m that
verifies correctly.
– We deploy a secure accumulator, a primitive that allows the compact repre-
sentation of a set of elements, that is additive (i.e., it supports only addition
of elements to the set) and positive (i.e., it supports membership proofs that a
certain element is in the set). We refer the reader to Section 6 for our formal
UC treatment of accumulators without trusted setup. In our concrete protocol
instantiation, we choose the secure hash-based accumulator construction in [55].
– To realize a secure STE construction, we turn to a special type of encryption,
called time-lock encryption (TLE) (cf. Figure 14 and [3] for the functionality
FTLE). In TLE, the encryption algorithm takes as input a message m and some
time difficulty τdec and outputs a ciphertext c. The decryption algorithm allows
the decryption of c only after time τdec has elapsed. Decryption is available to
any party who has a decryption witness wτdec that can be produced via some
publicly known process (in our protocol, the witness is produced after the party
has made a specific number of calls to a RO). In particular, we make use of
the TLE construction in [3]. We denote the pair of encryption and decryption
algorithms by (eFRO

, dFRO
), where FRO is the RO associated with the algorithms.

– To formally capture the parties’ computational restrictions in the UC setting,
we invoke a wrapper functionality, Wq, (cf. Figure 15 and [3]) that is parame-
terized by a number of queries q to a random oracle. Informally, the wrapper
restricts the access to the RO by allowing parties to call the RO only up to q
number of times per round (clock tick).

3.2 Parties

An execution of the E-cclesia protocol comprises four election phases Setup,
Credential generation, Cast, and Tally. The parties involved in the different
phases of a protocol execution are:
– The setup authority (SA) that is active only prior to the voting period. Specif-
ically, during Setup, SA is responsible for providing the election parameters,
that include the list of eligible voters, the set of valid election preferences, and
the period of each election phase.
– The voters V1, . . . , Vn. Each voter engages as follows:
◦ In Setup, she receives the election parameters from SA.
◦ In Credential generation, if she is eligible, she locally generates her private

credential and broadcasts the public part of the credential to the other voters.
◦ In Cast, if she is eligible, she generates a ballot for her choice and broadcasts

the ballot to all voters.
◦ In Tally, she computes the tally that corresponds to the set of ballots she

received from other eligible voters.
In our threat model, voters can be statically corrupted while SA remains honest.
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3.3 Desired security properties

Intuitively, the security properties that E-cclesia satisfies (and any other STE
system should satisfy) are the following:
1. Correctness: Every honestly cast vote will be included in the tally set which

is the same for all honest voters.
2. Eligibility : Only eligible voters’ votes will be included in the tally set of each

honest voter.
3. Fairness: During the Cast phase, no party can learn partial results.
4. Voter Privacy : The (honest) voters’ identities cannot be linked to their votes.
5. One voter-one vote: Only one vote per (eligible) voter can be included in the

tally set of each honest voter.
6. Verifiability : Every voter can verify that the result corresponds to the ballots

broadcast in the Cast phase, subject to the eligibility and one voter-one vote
properties [45].

The aforementioned six properties are formally captured via the description of
our ideal STE functionality (cf. Section 4).

3.4 Protocol overview

An execution of E-cclesia considers two distinct ROs, denoted by F1
RO and F2

RO.
All parties have the description of an accumulator scheme Σacc. In addition,
all voters have the description of a NIC scheme ΣNIC, a SoK scheme ΣSoK, a
pair of TLE encryption and decryption algorithms (eF2

RO
, dF2

RO
), and can access

F1
RO,F2

RO. In the beginning of the execution, SA is given the set of eligible voters
Velig, the set of valid election preferences O, and two time moments tcast, topen.
The four phases are executed as follows:
Setup. First, SA checks that Velig ⊆ V = {V1, . . . , Vn} and tcast < topen. If both
checks succeed, then it does (if not, it aborts):
1. Given tcast, topen and the latency of the underlying anonymous broadcast

channel delay_cast, it sets t⃗ := (tcast, topen, delay_cast) that specifies the
beginning and the end of all subsequent election phases.

2. It sets the voting parameters as vote.par := (Velig,O, t⃗).
3. It broadcasts vote.par to all voters.
4. It sets the registration parameters as reg.par := (Velig,O, t⃗).
5. It broadcasts reg.par to all voters.

Upon receiving (SA, vote.par) and (SA, reg.par) from the (authenticated) broad-
cast channel, the voter V stores vote.par, reg.par.
Credential generation. The voter V reads the time Cl from the global clock
and checks that the credential period is running. If so, then she does:
1. She randomly samples her credential cr from the commitment message space
M and creates a commitment for cr, denoted by ĉr, using randomness aux.

2. She broadcasts the commitment ĉr to all voters.
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3. Upon receiving (V ∗, ĉr∗) from the broadcast channel during the Credential
generation phase, she stores the pair (V ∗, ĉr∗), as long as (i) V ∗ ∈ Velig

and (ii) she has never received a similar message from V ∗ before.
Cast. Each (honest and eligible) voter V engages in the voting process once
by generating and casting an authenticated ballot v for her preference o ∈ O.
Specifically, V reads the time Cl from the global clock and checks that the casting
period is running. If so, then she does:
1. She computes the time-lock encryption v of her choice o as follows:

(i) She generates a new puzzle puz of difficulty topen − (Cl + 1), and the
corresponding solution sol. Note that for puzzle generation access to RO
F1

RO is required.
(ii) She computes the encryption of a random string r under a key derived

from sol. Let c1 denote the resulting ciphertext.
(iii) To allow equivocation, she then queries RO F2

RO for r and receives a
response h. Then, she sets c2 ← h ⊕ o. Next, she queries F2

RO for r||o
(where || denotes concatenation of strings) and receives a response c3.

(iv) She sets the ballot as v ← (c1, c2, c3).
2. She runs ballot authentication for v as follows:

(i) She computes the accumulated value for all received credential commit-
ments (including her own) according to the order these were received4,
by adding one commitment at a step and storing the intermediate accu-
mulator values for each step.

(ii) Assume that her credential was the k-th to be added to the accumu-
lator. Upon completing the addition of all received commitments, she
updates the accumulator witness for the commitment ĉr = ĉrk of her
own credential cr and receives the new witness wĉrk

k .
(iii) She computes a SoK, σ, for the ballot v of her credential being in-

cluded in the accumulator. The SoK is produced under the statement
x = (cr, αtmax), where αtmax is the final accumulator value, which is com-
puted identically for all voters, and the SoK witness w = (ĉr, aux, wĉrk

k ).
3. She anonymously broadcasts (v, cr, σ) to all voters.
4. She stores any triple (v∗, cr∗, σ∗) she receives from the anonymous broadcast

channel during the Cast phase.
Puzzle solving: Before completing her part in a round (clock tick), the voter V
engages in the puzzle solving procedure for all the puzzles that are related to the
ballots she has received from the anonymous broadcast channel. In particular, by
parsing a ballot v∗ that she has just received as (c∗1, c∗2, c∗3), V can extract a puzzle
included in c∗1 whose solution will produce the TLE decryption witness w∗

topen ,
necessary for opening v∗ at Tally phase. During the puzzle solving procedure,
V makes up to q oracle queries to the RO F1

RO (a restriction that Wq imposes).
The idea is that each puzzle is created in chain-based manner, in the sense that
the response of the i-th query becomes the i + 1-th query, which implies that
each puzzle will be solved sequentially after some well-defined time has elapsed

4 Note that the broadcast channel we use (cf. Figure 11 and [31]) guarantees that all
voters received each other’s credentials in the same chronological order.
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(i.e., with time difficulty adjusted so that time topen has been reached).
Tally. The voter V reads the time Cl from the global clock and checks that
the tally period is running. If so, then she computes the tally by executing the
following steps:

1. For every triple (v∗, cr∗, σ∗) she has received during the Cast phase, she ver-
ifies the SoK σ∗ for v∗ under the statement (cr∗, αtmax). If the verification is
successful, she adds (v∗, cr∗, σ∗) to the tally set. In this step, V discards any
received triple such that the included credential does not correspond to any
accumulated commitment value. However, note that after this step is com-
pleted, the tally set may contain multiple triples (v∗1 , cr

∗
1, σ

∗
1), . . . , (v

∗
µ∗ , cr∗µ∗ ,

σ∗
µ∗) that were broadcast by the same (dishonest) voter.

2. She discards multiple triples by pairwise checking whether the received triples
include credentials that match. Namely, for any two triples (v∗, cr∗, σ∗) and
(v∗∗, cr∗∗, σ∗∗) such that cr∗ = cr∗∗, she discards the triple she received last
out of those two. Clearly, after this pairwise check is completed, all except
one of triples that correspond to the same credential will be removed from
the tally set.

3. After the tally set has been “filtered” regarding multiple triples, V decrypts
every ballot v∗ = (c∗1, c

∗
2, c

∗
3) of a triple (v∗, σ∗, cr∗) in the tally set as follows:

(i) She runs the TLE decryption algorithm dF2
RO

on input c∗1 and the corre-
sponding decryption witness w∗

topen and receives the output r∗.
(ii) She queries F2

RO for r∗ and receives a response h∗. She extracts the
election option as o∗ ← h∗ ⊕ c∗2.

(iii) She verifies the validity of o∗ by first checking that o∗ ∈ O, and then
querying F2

RO for r∗||o∗ and checking if the response matches c∗3. If so,
then she records o∗ as valid.

4. She returns as election tally the set of all options that have been recorded
as valid during the execution of Steps 3(i)-(iii).

We now informally argue about the security of our protocol.

1) Correctness: is achieved by the binding property of commitments, the correct-
ness of all other cryptographic primitives, and the availability of the underlying
broadcast network. In particular, all credential commitments and authenticated
ballots will be delivered to all voters in the same chronological order while a
malicious party cannot create a different valid credential cr′ for a broadcast
commitment ĉr that was created originally for the honest voter’s credential cr.

2) Eligibility : is satisfied by the security of the accumulator, the unforgeability of
the SoK scheme, the binding property of commitments, and the fact that voters
store only the credential commitments that they received from the eligible voters
during the Credential generation phase. In addition, network availability and
synchronicity is essential, so that the voters agree on (i) the transition between
election phases, and (ii) the order of the received commitments that are going to
produce the final accumulated value. Given the above, at verification Step 1, the
voter is ascertained that no invalid credential has been added to the accumulator.
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3)Fairness: is achieved by the security of the TLE algorithms. Namely, no broad-
cast encrypted vote can be decrypted before the Cast phase ends. Therefore, no
party can learn some partial result before that point.
4) Voter Privacy : is preserved by the anonymity offered by the anonymous
broadcast channel, as well as the hiding property of commitments and the zero-
knowledge property of the SoK scheme. In particular, upon receiving a credential
cr during the Cast phase, a party cannot link cr to the corresponding commit-
ment ĉr this party recorded during the Credential generation phase.
5) One voter-one vote: is guaranteed by the multiple triples elimination Step 2,
where the voter performs the pairwise check for possible matching credentials.
6) Verifiability : is supported by the security of the authenticated broadcast chan-
nel, the unforgeability of the SoK scheme, and the correctness of the TLE scheme.

3.5 Road-map of formal analysis of E-cclesia

In this work, we embrace the modular approach of the UC framework, as depicted
in Figure 1. This figure can be read as the road-map for proving that the self-
tallying ideal functionality FSTE is UC realizable from the protocol presented
above. The road-map consists of intermediate functionalities, which can be found
in later sections, along with the logical order of their UC realization. All proofs
and theorem statements can be found both in later sections and Supplementary
Materials. For a recap of the UC framework, cf. Supplementary material A.

FSTEΠSTE

Felig

Fvm

Πelig

Πvm

Facc

FNIC

FSOK

Fan.BC

FTLE

Πacc

ΠNIC

ΠSOK

Πan.BC

ΠTLE

FCRS

FBC

FRO

Wq(F∗
RO)

≈

≈

≈

≈

≈

≈

≈

≈

Fig. 1. Modular design. Our contributions are denoted with double outlines.

4 The FSTE functionality

In this section, we describe the functionality FSTE which captures our security
requirements for STE elections (correctness, eligibility, fairness, voter privacy,
one voter-one vote, verifiability). The functionality FSTE interacts with the setup
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authority SA, the voters in the set V = {V1, . . ., Vn} and the simulator S. It is
summarized in the next paragraphs and is formally presented in Figure 2.

The functionality is parameterized by SA, the set V, an integer delay_gen
which shows the number of rounds that are needed for the generation of the
ballot, an integer value delay_cast which shows how many rounds a message
needs to reach its recipient from the time of casting, and the predicate Status

that given the current time Cl, the time values that define the election, and an
election phase, outputs ⊤ if that phase is active or ⊥ otherwise.

In the Setup phase, the functionality registers the set of eligible voters Velig,
the set of valid election preferences O, and the duration of the election (in the
time vector t⃗), upon request from SA and the permission of S.

The Credential generation phase is active for every Cl such that Status(Cl,
t⃗,Cred) = ⊤. In this phase, each credential request from an eligible voter V is
sent to S. If S replies with ready, then V is marked as ready to vote.

The Cast phase is active for every Cl such that Status(Cl, t⃗,Cast) = ⊤. In
this phase, if a voter is ready to vote, FSTE leaks to the simulator S the length of
the vote and a fresh random value tag. The latter is necessary as we allow S to
update this message with a ciphertext later on. So, S needs a reference point for
updating that message without getting the message itself (preserving privacy).

Each time FSTE receives a command message it follows the delayed ballot
generation and casting subroutine. Specifically, FSTE checks if by the time it re-
ceived a cast ballot request from an honest voter V the time for ballot generation
delay_gen has elapsed. Then, it checks if the ballot can still be cast by executing
the predicate Status for the current time Cl. If so, FSTE includes that ballot both
into the lists of cast ballots and the ballots pending for reception along with the
current recording time Cl. Then, it checks for every ballot in the list of ballots
pending for reception if delay_cast time has elapsed. If so, it informs S. All the
ballots in the list of cast ballots will be accessible for tallying, as by the time
of recording, the execution is still in the Cast phase, taking into consideration
delay_cast. Observe that S might receive a vote before the Tally phase. This
does not break fairness as the Cast phase would be over.

Finally, the Tally phase is active for every Cl such that Status(Cl, t⃗,Tally) =
⊤. In this phase, the voter V requests the tally from FSTE and receives the multi
set of the valid cast ballots. Moreover, S can request the election outcome and
receive it if Status(Cl, t⃗,Tally) = ⊤ or Status(Cl, t⃗,Cred) = Status(Cl, t⃗,Cast) =
Status(Cl, t⃗,Tally) = ⊥. The latter condition captures cases in which S might
be able to learn the tally earlier from the Tally phase but still after the Cast
phase would be over, meaning that fairness is preserved. In addition, V or S may
execute verification by providing FSTE with some multiset T̂, which replies by 1
or 0 depending on whether T̂ matches the tally multiset or not. The predicate
Status : N× (N)3 × {Cred,Cast,Tally} → {⊤,⊥} is defined as follows.
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Given the current time Cl ∈ N, the time vector t⃗ = (tcast, topen, delay_cast) ∈
(N)3, and ϕ ∈ {Cred,Cast,Tally}:

Status(Cl, t⃗, ϕ) =


⊤, ϕ = Cred ∧ Cl < tcast

⊤, ϕ = Cast ∧ tcast ≤ Cl < topen − delay_cast

⊤, ϕ = Tally ∧ topen ≤ Cl

⊥, otherwise

FSTE(SA,V, delay_gen, delay_cast).

The functionality initializes as empty the lists of eligible voters’ creden-
tials Lelig, generated ballots Lgball, cast ballots Lcast, pending for reception
ballots Lpend, a list Ladv of the (dummy) parties that have submitted an
Advance_Clock message for the current round, and a multiset T. Upon
receiving (sid,Corrupt,Vcorr) from S, if Vcorr ⊆ V, it fixes Vcorr as the set
of corrupted voters.

Each time the functionality receives a command message it executes the
delayed ballot generation and casting procedure as described below:

Delayed ballot generation and casting: Upon receiving (sid/sidC , I, input)
from V ∈ V \ Vcorr, where I ∈ {Gen_Cred,Cast,Update,
Cast_Check,Advance_Clock,Read_Clock,Tally}, if V \Vcorr ⊆
Ladv, it sends (sidC ,Advance_Clock) to Gclock to proceed to the next
round. Upon receiving (sidC ,Advanced_Clock,FSTE) from Gclock, it
reads the time Cl from Gclock and does:
1. For every tuple (V, v, o, tag,Cl′, 1) in Lgball such that Cl−Cl′ ≥ delay_gen,

if Status(Cl, t⃗,Cast) = ⊤, it adds (V, v, o,Cl, 1) to Lcast, and (v, V,Cl) to
Lpend, and removes (V, v, o, tag,Cl′, 1) from Lgball.

2. For every triple (v∗, V ∗,Cl∗) ∈ Lpend such that Cl − Cl∗ = delay_cast,
it sends (sid,Cast_Ballot, v∗) to S only if Status(Cl, t⃗,Cast) = ⊥.
Then, it removes (v∗, V ∗,Cl∗) from Lpend.

3. It sets Ladv as empty.
Then, it executes (sid/sidC , I, input) as described below.

■ Upon receiving (sid,Election_Info,Velig,O, tcast, topen) from SA for
the first time, if Velig ⊆ V and tcast < topen, it forwards the message to S.
Upon receiving (sid,Election_Info_OK,Velig,O, tcast, topen) from S, it
sets t⃗← (tcast, topen, delay_cast) and reg.par := (Velig,O, t⃗).
■ Upon receiving (sid,Gen_Cred) from V ∈ Velig for the first time, it reads
time Cl from Gclock. If Status(Cl, t⃗,Cred) = ⊤, it sends (sid,Gen_Cred, V )
to S. Upon receiving (sid,Gen_Cred, V, ready) from S, if V ̸∈ Vcorr, it
adds (V, ready, 1) to Lelig. Else, it adds (V, ready, 0) to Lelig.
■ Upon receiving (sid,Cast, o) from V ∈ V \ Vcorr for the first time such
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that (V, ready, 1) ∈ Lelig and o ∈ O, it reads the time Cl from Gclock. If
Status(Cl, t⃗,Cast) = ⊤ it does:
1. It picks tag $← TAG and it inserts the tuple

(
V,Null, o, tag,Cl, 1

)
→ Lgball.

2. It sends (sid,Gen_Ballot, tag,Cl, 0|o|) to S. Upon receiving the token
back from S, it returns (sid,Casting) to V .

■ Upon receiving (sid,Update, {(vj , tagj)}p(λ)j=1 ) from S for all vj ̸= Null, if
there is a tuple (·, vj , ·, ·, ·, 1) in Lgball or if there are j, j∗ ∈ [1, p(λ)] such that
vj = vj∗ it returns (sid,Update, {(vj , tagj)}p(λ)j=1 ,⊥) to S. Else, it updates
each tuple (V,Null, oj , tagj ,Clj , 1) to (V, vj , oj , tagj ,Clj , 1) in Lgball.
■ Upon receiving (sid,Cast, v, V ) from S for V ∈ Vcorr for the first time, it
reads the time Cl from Gclock. If Status(Cl, t⃗,Cast) = ⊤ and there is a tuple
(V, ready, 0) ∈ Lelig, it adds (V, v, ·,Cl, 0) to Lcast.
■ Upon receiving (sidC ,Advance_Clock) from a voter V ∈ V \ Vcorr,
if P /∈ Ladv, it adds P to Ladv and forwards (sidC ,Advance_Clock) to
Gclock on behalf of P .
■ Upon receiving (sidC ,Read_Clock) from a voter V ∈ V\Vcorr, it reads
the time Cl from Gclock and returns (sidC ,Read_Clock,Cl) to P .
■ Upon receiving (sid,Tally) from a voter V ∈ V \Vcorr, it reads time Cl
from Gclock. If Status(Cl, t⃗,Tally) = ⊤, it does:
1. If T = ∅, for every tuple (V ∗, v, ·,Cl, 0) ∈ Lcast it sends

(sid,Opening, V ∗, v) to S. Upon receiving (sid,Opening, V ∗, v, o) from
S, if o ∈ O, then it updates the tuple as (V ∗, v, o,Cl, 0) in Lcast. Finally,
it sets the tally multiset as T← {o ∈ O|(V ∗, ·, o, ·, ·) ∈ Lcast}.

2. It returns
(
sid,Tally,T

)
to V .

■ Upon receiving (sid,Tally) from S, it reads the time Cl from GClock.
If Status(Cl, t⃗,Cred) = Status(Cl, t⃗,Cast) = Status(Cl, t⃗,Tally) = ⊥ or
Status(Cl, t⃗,Tally) = ⊤, it returns the tally to S. Specifically, it returns
the multiset of all pairs (v, o) such that (V, v, o, tag,Cl∗, 1) ∈ Lgball ∧
(V, v, o,Cl′, 1) ∈ Lcast for some ballot generation time and casting time Cl∗

and Cl′, respectively.
■ Upon receiving (sid,Verify, T̂) from a voter V ∈ V \ Vcorr, it reads Cl
from Gclock. If Status(Cl, t⃗,Tally) = ⊤, it does:
1. If T = ∅, it computes the tally multiset as if it received a (sid,Tally)

command.
2. If T̂ = T, it returns (sid,Verify, T̂, 1) to V . Else, it returns

(sid,Verify, T̂, 0) to V .

Fig. 2. The self-tallying election functionality FSTE.
:Voter privacy, :One voter-one vote, :Eligibility, :Fairness, : Verifiability
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5 Realizing UC anonymous broadcast

In this section, we provide a formalization of the notion of anonymous broadcast
and a UC realization that is based on mix-nets [16]. We stress that our approach
guarantees a high level of sender anonymity, thus supporting resistance against
timing attacks [44, 1]. In later sections, we use Fan.BC for the UC realization of
Fvm (cf. Figure 1).
The ideal functionality Fℓ,B,p

an.BC: The functionality Fℓ,B,p
an.BC is presented in Fig-

ure 3. The parameter ℓ determines the communication delay from the moment
that a message is transmitted till the moment it is received by all parties. In
addition, Fℓ,B,p

an.BC is parameterized by B, which is a bound on the number of
messages that each party can broadcast per round. We stress that this bound
appears to be necessary, otherwise the functionality would become unrealistic.
Namely, in any real-world protocol, if the maximum number of messages that the
environment can instruct a sender party to broadcast in some round is unknown,
then any attempt to create a “cover traffic” effect via the transmission of (in-
distinguishable) dummy messages would fail. Thus, the sender’s broadcast rate
would be revealed to an adversary that observes the entire network (global ad-
versary) and anonymity, as determined by a functionality that does not consider
a bound B, could easily be broken. Finally, our functionality is parameterized by
a polynomial p(·) that sets an upper bound on the length of the messages that
are allowed to be broadcast. Like B, this bound seems to be necessary, otherwise
in any realization attempt, the length of the dummy messages would not be able
to support a cover traffic effect over actual messages of unknown variable length.

Overall, Fℓ,B,p
an.BC captures the highest possible level of sender anonymity by

hiding all sender’s activity apart from the fact that it has not broadcast more
than B messages per round, and that the message length is bounded by p(λ).

The Anonymous Broadcast functionality Fℓ,B,p
an.BC(P).

The functionality initializes as empty a list Lpool of messages pending to be
broadcast, and a list Ladv of the (dummy) parties that have submitted an
Advance_Clock message for the current round. In addition, it sets a flag
status as 0 and for every party P ∈ P, it sets a counter countP also as 0.
Let Pcorr ⊆ P be the set of corrupted parties.

Every time the functionality receives a command message from a party
P ∈ P, it executes the procedure Setup or Broadcast as described below
and then executes the command message according to its description.

Setup or Broadcast: Upon receiving (sid/sidC , I, input) from P ∈ P \Pcorr,
where I ∈ {Broadcast,Advance_Clock,Read_Clock}, if status = 0,
it sends (sid,Setup, P ) to S. Upon receiving (sid,Setup_No, P ) from S, it
halts. Else, upon receiving (sid,Setup_OK, P ) from S, it sets status = 1.
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Next, it reads the time Cl from Gclock. If P \ Pcorr ⊆ Ladv, it sends
(sidC ,Advance_Clock) to Gclock to proceed to the next round. Upon
receiving (sidC ,Advanced_Clock,Fℓ,B,p

an.BC) from Gclock, it does:

1. It randomly chooses a permutation π
$← {1, . . . , |Lpool|}, where |Lpool| is

the number of elements in Lpool.
2. It reorders the entries in Lpool w.r.t. π, i.e., Lpool ← π(Lpool).
3. For every triple (M∗, P ∗,Cl∗) ∈ Lpool such that Cl − Cl∗ = ℓ + 1, it

anonymously broadcasts M∗ to P1, . . . , Pn and S as follows: it sends
(sid,Broadcast,M∗, sender) to P ∗ and (sid,Broadcast,M∗) to all
other parties in P \ {P ∗} and S. Then, it removes (M∗, P ∗,Cl∗) from
Lpool. For the triples of the form (tag, P ∗,Cl∗) it does the same except
that it first requests from S the broadcast message M∗ that corresponds
to tag.

4. It sets Ladv as empty and for every P ∗ ∈ P it resets countP∗ as 0.

Subsequently, it executes (sid/sidC , I, input) as described below.
■ Upon receiving (sid,Broadcast,M) from a party P ∈ P \ Pcorr, if
countP = B or |M | > p(λ) or P ∈ Ladv, it ignores the message. Otherwise,
it reads the time Cl from Gclock, it adds (M,P,Cl) to Lpool and increases
countP by 1.
■ Upon receiving (sid,Broadcast, tag, P̂ ) from S on behalf of a party
P̂ ∈ Pcorr, it reads the time Cl from Gclock and adds (tag, P̂ ,Cl) to Lpool.
■ Upon receiving (sidC ,Advance_Clock) from a party P ∈ P \ Pcorr,
if P /∈ Ladv, it adds P to Ladv and forwards (sidC ,Advance_Clock) to
Gclock on behalf of P .
■ Upon receiving (sidC ,Read_Clock) from a party P ∈ P \ Pcorr, it
reads the time Cl from Gclock and returns (sidC ,Read_Clock,Cl) to P .

Fig. 3. The anonymous broadcast functionality Fℓ,B,p
an.BC .

The protocol Πm,ℓ,t,B,p
an.BC : Our mix-net-based construction is built upon a spe-

cial case of a m × ℓ stratified mix-net architecture [27]; For j ∈ [m], there is
a cascade of ℓ mix servers MXj,1 → · · · → MXj,k → · · · → MXj,ℓ. The in-
put to the server MXj,1 is encrypted via ℓ-level layered encryption. Let MX =
{MXj,k}j∈[m],k∈[ℓ] be the set of all mix servers.

The protocol execution is initialized by the first activated party broadcasting
(via FBC) a “setup” message to all mix servers. In turn, every MXj,k generates a
pair of a secret and a public key (skj,k, pkj,k) and broadcasts pkj,k to all parties.

Subsequently, anonymous broadcast of messages is carried out. To achieve
the high level of sender anonymity required by Fℓ,B,p

an.BC, our design encompasses
the following techniques:
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1. Padding: Only messages of length up to p(λ) will be broadcast. To achieve
transmission of messages of equal length standard padding is used. Upon receiv-
ing (sid,Broadcast,M) from Z, if the sender party P has not already received
B Broadcast commands from Z for the current round and if the message M
has length |M | < p(λ), then M is padded (e.g., with leading zeros) so that
|M | = p(λ). For notation simplicity, we will still write the padded message as
M and will clarify when necessary.

2. Equivocation: The sender applies the equivocation technique of [52] on the
padded message M that utilizes a random oracle H(·) (modeled as FRO in the
UC setting) for producing the pair (r,H(r)⊕M), where r is some randomness.
In the security proof, this step allows the simulator that controls FRO to emulate
message transmission and produce a consistent view to the adversary, even if it
receives the real broadcast messages from Fℓ,B,p

an.BC with delay ℓ.
3. Share-wise transmission: To be transmitted to the mix-net, the pair (r,

H(r)⊕M) is first split into m shares via Shamir’s (t,m)-threshold secret sharing
(TSS) scheme [58], where t is the threshold of shares required for recovering the
secret. Each share [(r,H(r) ⊕ M)]j , j ∈ [m], intended for the j-th cascade,
is encrypted into ℓ layers as PKE.Enc

(
pkj,1, . . . , (PKE.Enc(pkj,ℓ, (tag, [(r,H(r)⊕

M)]j)))
)
, where tag is a random tag common for all shares of (r,H(r)⊕M)]. By

utilising (t,m)-TSS, we achieve fault-tolerance (up to a fixed threshold m − t)
against fail-stop failures and totally hide (r,H(r)⊕M) from a coalition of up to
t− 1 corrupted exit servers.

4. Cover traffic and batch transmission: Each party creates a cover traffic
effect by transmitting as many dummy ciphertexts to each input (first layer)
server, so that the bound B is reached. The party transmits all real and dummy
ciphertexts together right before completing her round, i.e., when it receives
a (sidC ,Advance_Clock) command from Z. By applying cover traffic and
batch transmission, the protocol provides resistance against timing attacks.

5. Anonymous routing: Each input server of the m cascades receives the
corresponding encrypted share of the message (r,H(r)⊕M), where all encrypted
shares are accompanied by the same random tag. In each layer, the servers
remove one layer of encryption and in the beginning of the next round, they
randomly permute the (encrypted) shares they received in the current round.
By permuting the shares, the knowledge that the global adversary has on the
activation sequence of the senders during a round (inherent in the UC framework)
is neutralized. Then, MXj,k forwards the pool of permuted encrypted shares to
MXj,k+1, for k = 1, . . . , ℓ − 1. In the final ℓ-th layer, the exit server of each
cascade decrypts and obtains the shuffled shares of this cascade in plaintext. In
the beginning of the next round and upon randomly permuting the shares, the
exit server broadcasts the shares to all parties. The whole anonymization process
imposes an aggregate delay ℓ (1 clock tick per layer). Moreover, the mix servers
discard all ciphertexts that they have previously received.This step guarantees
protection against replay attacks, where the adversary eventually links an honest
message to its original sender by retransmitting its original encryption a distinct
number of times. Note that the security of the underlying encryption scheme
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implies that no message will be honestly encrypted twice in an identical manner
(i.e., using the same randomness) except from some negl(λ) probability, so the
servers can safely discard repeated ciphertexts.

6. Message recovery: Upon receiving at least t broadcast shares, every recip-
ient can reconstruct the pair (r,H(r) ⊕M) from the shares that are linked to
the same tag. Then, the recipient queries the random oracle on r, obtains H(r),
and finally recovers message M ← H(r)⊕ (H(r)⊕M) and removes the pads.

In terms of communication infrastructure, authentication is required from a
sender party to an input server and from a server at the k-th layer to the server
of the k+1-th layer of the same cascade. Broadcast is required at initialization,
and during execution only at the final layer where the exit servers send the de-
crypted shares to all recipients. In our protocol description, to avoid inserting an
extra hybrid message authentication functionality (such as the one in [12]) we
make use of the authenticated broadcast functionality FBC of [31] (cf. Figure 11)
that is sufficient for all communications.

The protocol Πm,ℓ,t,B,p
an.BC is formally presented in Figure 20 (cf. Supplemen-

tary material E.1). Its design enables defense against adversaries that can (i)
observe the whole network traffic (global adversary), (ii) corrupt parties, and
(iii) corrupt up to a threshold of mix servers (specified by m, ℓ, t), in a fail-stop
manner, i.e., the corrupted server follows the protocol semi-honestly, and can ad-
ditionally abort at any time. We prove the following theorem in Supplementary
material E.2.

Theorem 1. Let m, ℓ, t, B be non-negative integers such that m, ℓ,B ≥ 1 and
t ≤ m. Let p(·) be some polynomial. Let ΣPKE be a public key encryption scheme
that is IND-CPA secure. The protocol Πm,ℓ,t,B,p

an.BC (P,FBC,FRO) described in Fig-
ure 20 over ΣPKE UC-realizes Fℓ,B,p

an.BC(P) in the (FBC,FRO,Gclock)-hybrid model
against all adversaries that (i) are global, (ii) can corrupt parties, and (iii) can
corrupt mix servers in a fail-stop manner according to the following restrictions:
1. For every j ∈ [m], there is at least a kj ∈ [ℓ] such that MXj,kj is honest (i.e.,

in every cascade, not all mix servers are corrupted).
2.

∣∣{j | ∃k such that MXj,k is corrupted}
∣∣ ≤ m − t (i.e, there are at least t

cascades with no corrupted mix servers).
3.

∣∣{j | MXj,ℓ is corrupted}
∣∣ < t (i.e., the number of corrupted exit servers is

less than t).

6 Realizing a universally composable accumulator
without trusted party

As mentioned in Section 3, we utilize signatures of knowledge so that the voters
prove their eligibility without revealing their identity. To achieve scalability by
eliminating the dependency between the signature size and the voting popula-
tion, we introduce dynamic accumulators in our construction. While [5] provides
a UC treatment of dynamic accumulators, it relies on a trusted dealer for setup,
update, and deletion. Our decentralized setting calls for a decentralized (i.e., with
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no designated trusted party) functionality and realization. Below, we present our
ideal accumulator functionality Facc and the protocol Πacc that UC realises it.
In addition, we prove that the accumulator scheme in [55] allows the execution
of Πacc without the involvement of a trusted party such as a CRS. For the full
version of this section and the UC proof, cf. Supplementary material F.
The ideal functionality Facc: The functionality is presented in Figure 4. The
challenge here is to ensure consistency between different parties’ local accumu-
lator states. Further notable differences between our functionality and [5] are:

– The initial set (denoted as S0 in [5]) is always ∅.
– Since the hash-based construction in [55] that will be used in our realization

does not utilize a secret key, the Gen algorithm does not output a value sk
in our case.

– In an Update request, Facc also accepts an accumulated value α (besides
x). This is because in our setting, there is no shared state and we allow
“branches” in the history of accumulated multisets/lists5. Thus, we provide
α that serves as the starting point.

The accumulator functionality Facc(P).

The functionality initializes the following for each party P : the mapping SP

from the number of accumulated elements to the accumulated multiset/list
as SP [0] = ∅; a counter tP that represents the number of elements in the
accumulator as 0; the list of tuples LP

state as empty, where each tuple con-
tains (i) the accumulated value αtP , (ii) the auxiliary information mtP for
verifying the membership of an element, (iii) the update message upmsgtP for
updating older witnesses, (iv) the multiset/list SP [tP − 1] of the previous
accumulated value, (v) the new accumulated element x, (vi) its related wit-
ness wx, and (vii) the counter tP. Moreover, the functionality initializes the
shared parameters vector shared_params, that consists of the accumulation
algorithms and a generated initialization triple, as ∅. It initializes a set Pready

of parties ready to engage as empty. Upon receiving (sid,Corrupt,Pcorr)
from S, if Pcorr ⊆ P, it fixes Pcorr as the set of corrupted parties.
■ Upon receiving (sid,Setup) from some party P ̸∈ Pcorr or (sid,Setup, P )
from S for some party P ∈ Pcorr, it does:
1. If shared_params = ∅, it executes the Generation procedure as follows:

(a) It sends (sid,Gen) to S. Upon receiving
(sid,Gen, Gen, Update, WitUp, VerStatus) from S, it stores the
algorithms Gen, Update, WitUp, VerStatus.

(b) It computes the initialization triple (α0,m0, v0)← Gen(1λ).

5 For commutative accumulators the ideal functionality will maintain the multiset of
accumulated values, while if commutativity is not satisfies the accumulated values
are stores in an ordered list.
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(c) If VerStatus(α0,Null, v0) = 1, it sets shared_params :=
⟨(α0,m0, v0), Update, WitUp, VerStatus⟩. Otherwise, it sets
shared_params := ⊥.

2. If P /∈ Pready, it adds P to Pready.
3. If P /∈ Pcorr and shared_params = ⟨(α0,m0, v0), Update, WitUp,

VerStatus⟩, then it appends the tuple
(α0, (m0, v0),Null,Null,Null,Null, 0) to LP

state .
4. It sends (sid,Setup, shared_params) to P or S.

■ Upon receiving (sid,Update, α, x) from some party P ∈ Pready \
Pcorr, if there exists a tuple (α,mtP , upmsgtP ,S

P [tP − 1], x′, wx′

tP , tP) or
(α, (m0, v0),Null,Null,Null,Null, 0) in LP

state, it does:
1. It increases the counter tP ← tP + 1.
2. It computes (αtP ,mtP , w

x
tP , upmsgtP)← Update(α,mtP−1, x). If tP ̸= 1, it

sets SP [tP − 1] = SP [tP − 2] ∪ {x}. It adds (αtP ,mtP , upmsgtP ,S
P [tP −

1], x, wx
tP , tP) to LP

state.
3. If VerStatus(αtP , x, w

x
tP) ̸= 1, it returns (sid,Update, α, x,⊥) to P .

4. If VerStatus(αtP , x, w
x
tP) = 1, it returns

(sid,Update, α, x, αtP , w
x
tP , upmsgtP) to P .

■ Upon receiving (sid,Wit_Up, αold, αnew, x, wold, (upmsgold+1, . . . , upmsgnew))
from party P ∈ Pready \ Pcorr, if there exist tu-
ples {(αold,mold, upmsgold,SP [old − 1], x, wold, old), · · · ,
(αnew,mnew, upmsgnew,SP [new−1], xnew, wnew, new)} in LP

state with new > old
such that x ∈ SP [old− 1] ∩ · · · ∩ SP [new − 1], it does:
1. It computes wnew ← WitUp(x,wold, (upmsgold+1, . . . , upmsgnew)).
2. If VerStatus(αnew, x, wnew) ̸= 1, it returns

(sid,WitUp, αold, αnew, x, wold, (upmsgold+1, . . . , upmsgnew),⊥) to P .
3. If VerStatus(αnew, x, wnew) = 1, it returns (sid,Wit_Up,

αold, αnew, x, wold, (upmsgold+1, . . . , upmsgnew), wnew) to P .
■ Upon receiving (sid,Ver_Status, α, VerStatus′, x, w) from party P ∈
Pready \Pcorr or (sid,Ver_Status, α, VerStatus′, x, w, P ) from S for some
party P ∈ Pcorr, it does:
1. If VerStatus′ = VerStatus and for some largest integer tP∗ , there ex-

ists a tuple (α,mtP∗ , upmsgtP∗ ,S
P∗

[tP∗−1], xtP∗ , wtP∗ , tP∗) in LP∗

state for
some (honest) party P ∗ such that (xtP∗ ̸= x) ∨ (x ̸∈ SP∗

[tP∗ − 1]) and
VerStatus(α, x, w) = 1, it returns (sid,Ver_Status, α, x, w,⊥) to P .
Otherwise, it computes ϕ← VerStatus′(α, x, w).

2. It returns (sid,Ver_Status, α, x, w, ϕ) to P or S.
■ Upon receiving any command message from party P ∈ Pcorr, it forwards
it to S. Upon receiving the token back from S on behalf of P , it returns
whatever it receives back to P .

Fig. 4. The accumulator functionality FAcc(P).
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The protocol Πacc: The protocol Πacc is presented in Figure 5 and builds upon
an accumulator scheme Σacc = (Gen, Update, WitUp, VerStatus).

Πacc(P, Gen, Update, WitUp, VerStatus)

Each party P ∈ P has hard-coded the accumulator algorithms
(Update,WitUp,VerStatus) and Gen, in which the last returns always an
empty string. Also, she has initialized the counter tP as 0, the mapping from
the number of accumulated elements to the accumulated list as SP such that
SP [0] = ∅, and the list LP

state as described in Subsection F.1.
■ Upon receiving (sid,Setup) from Z for the first time, P does:
1. She computes (α0 = Null,m0 = Null, v0 = Null)← Gen(1λ) and appends

the tuple (α0, (m0, v0),Null,Null,Null,Null, 0) to LP
state.

2. She returns (sid,Setup, ⟨(α0,m0, v0), Update, WitUp, VerStatus⟩) to Z.
■ Upon receiving (sid,Update, α, x) from Z, if P has submitted a Setup
request and there exists a tuple (α,mtP , upmsgtP ,S

P [tP − 1], x′, wx′

tP , tP) or
(α, (m0, v0),Null,Null,Null,Null, 0) in LP

state, she does:
1. She increases the counter tP ← tP + 1.
2. She computes (αtP ,mtP , w

x
tP , upmsgtP) ← Update(α,mtP−1, x), if tP ̸= 1

sets SP [tP−1] = SP [tP−2]∪{x}. She appends (αtP ,mtP , upmsgtP ,S
P [tP−

1], x, wx
tP , tP) to LP

state.
3. She returns (sid,Update, α, x, αtP , w

x
tP , upmsgtP) to Z.

■ Upon receiving (sid,Wit_Up, αold, αnew, x, wold,
(upmsgold+1, . . . , upmsgnew)) from Z, if P has submitted a Setup
request and there exist tuples {(αold,mold, vold, upmsgold,SP [old −
1], x, wold, old), . . . , (αnew,mnew, vnew, upmsgnew, SP [new −
1], xnew, wnew, new)} in LP

state with new > old such that x ∈
SP [old− 1] ∩ · · · ∩ SP [new − 1], she does:
1. She computes wnew ← WitUp(x,wold, (upmsgold+1, . . . , upmsgnew)).
2. She returns (sid,Wit_Up, αold, αnew, x, wold,

(upmsgold+1, . . . , upmsgnew), wnew) to Z.
■ Upon receiving (sid,Ver_Status, α, x, w) from Z, if P has submitted a
Setup request, she does:
1. She computes ϕ = VerStatus(α, x, w).
2. She returns (sid,Ver_Status, α, x, w, ϕ) to Z.

Fig. 5. The accumulator protocol Πacc for parties in P, parameterized by the accu-
mulator algorithms Gen, Update, WitUp, VerStatus, and FCRS w.r.t. the distribution
D = {r : (α0,m0, v0)← Gen(1λ); r = (α0,m0, v0)} .

We prove that the protocol Πacc UC realizes Facc as stated in the next the-
orem (cf. Supplementary material F.4).
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Theorem 2. The protocol Πacc(P, Σacc) in Figure 5 UC-realizes Facc(P) if and
only if Σacc = (Gen, Update, WitUp, VerStatus) satisfies Correctness (cf. Defi-
nition 5) and Soundness (cf. Definition 6) properties defined in [55].

In particular, if Σacc is instantiated with the scheme in [55], then Πacc(P, Σacc)
UC-realizes Facc(P) without relying on any trusted party for executing Gen6.

7 Definition and realization of the eligibility functionality

In this section, we present the command interface of the eligibility functionality
Felig (the formal description can be found in Supplementary material D.1) along
with its UC realization. Felig handles the credential generation, ballot authen-
tication of eligible voters and ballot verification. In Section 9, we use Felig as a
building block for UC realizing FSTE.
The functionality Felig(SA,V, delay_cast): (cf. Figure 16) It records the set
of corrupted voters Vcorr provided by S.
■ Upon receiving (sid,Eligible,Velig,O, tcast, topen) from SA, if the parameters
are valid, it requests and receives algorithms GenCred, AuthBallot, VrfyBallot,
UpState, and state Stgen from S. Then, it sends the registration parameters
(sid,Elig_Par, (Velig,O, t⃗ := (tcast, topen, delay_cast), Stgen)) to V and S.
■ Upon receiving (sid,Gen_Cred) from V ∈ Velig \ Vcorr once during the
Credential generation phase, it computes a credential triple (cr, ĉr, aux) ←
GenCred(1λ, reg.par). It sends (sid,Gen_Cred, V, ĉr, sender) to V and (sid,
Gen_Cred, V, ĉr) to all other voters in V\{V } and S. The functionality allows
S to generate credential triples on behalf of eligible corrupted voters.
■ Upon receiving (sid,Auth_Ballot, v) from V ∈ Velig \Vcorr during the Cast
phase, it runs ballot authentication by computing σ ← AuthBallot(v, cr, Stfin,
reg.par, aux), where Stfin is generated by the UpState algorithm. It returns (sid,
Auth_Ballot, v, σ) to V . The functionality allows S to authenticate eligible
corrupted voters’ ballots.
■ Upon receiving (sid,Ver_Ballot, v, σ⃗ = (cr, σ)) from V ∈ V, it runs ballot
verification by computing x← VrfyBallot(v, σ⃗, Stfin, reg.par). If cr is recorded
and v has been honestly authenticated via σ⃗, it sends (sid,Ver_Ballot, v, σ⃗, 1)
to V . If x = 1 and v has not been authenticated via σ⃗, it sends (sid,Ver_Ballot,
v, σ⃗,⊥) to V and halts. If x = 1 and there is an honest ballot v′ ̸= v authen-
ticated via σ⃗′ = (cr, σ′), it sends (sid,Ver_Ballot, v, σ⃗,⊥) to V and halts.
Else, it sends (sid,Ver_Ballot, v, σ⃗, x) to V .
■ Upon receiving

(
sid,Link_Ballots, (v1, (cr1, σ1)), (v2, (cr2, σ2))

)
from V ∈

V, it returns
(
sid,Link_Ballots, (v1, (cr1, σ1)), (v2, (cr2, σ2)), x

)
to V , where

x = 1 if cr1 = cr2 and v1, v2 have been authenticated via (cr1, σ1) and (cr2, σ2),
respectively, and x = 0, otherwise.
Realizing Felig via accumulators, SoK, and NICs: We present the proto-
col Πelig that UC realizes Felig. In Πelig, the SA sets up: (i) the accumulator

6 Unlike the constructions in [26, 34, 10] that rely on a CRS.
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functionality Facc used for accumulating the commitments of all voters’ cre-
dentials; (ii) the non-interactive commitment functionality FNIC responsible for
generating the voters’ credentials; (iii) the signature of knowledge functionality
FSOK used by each eligible voter to authenticate her ballot.

Πelig(SA,V,Facc,FNIC,FSOK,FBC, delay_cast).

All parties have hard-coded the predicate Status. Each voter V maintains
the list that contains information related to the accumulation of elements
LV
info and the list of authenticated committed credentials LV

cred both initially
as empty. If at any point a hybrid functionality returns an error or ⊥, the
party forwards the message to Z.
■ Upon receiving (sid,Eligible,Velig,O, tcast, topen) from Z, if Velig ⊂ V,
SA does:
1. It sends (sid,Setup) to Facc.
2. Upon receiving (sid,Setup, shared_params) from Facc, it stores

shared_params and sends (sid,Com_Setup_Ini) to FNIC. Upon re-
ceiving (sid,Com_Setup_End, OK) from FNIC, SA sends (sid,Setup)
to FSoK. Upon receiving (sid,Algorithms, Sign, Verify) from FSoK,
it sets Stgen = α0 (extracted from shared_params) and sets t⃗ ←
(tcast, topen, delay_cast), and reg.par← (Velig,O, t⃗, Stgen).

3. It sends (sidall,Broadcast, reg.par) to FBC for sidall = (sid,SA ∪
V). Upon receiving (sidall,Broadcast, reg.par) from FBC, it returns
(sid,EligPar, reg.par) to Z.

■ Upon receiving (sidall,Broadcast, (SA, reg.par)) from FBC, V stores
reg.par.
■ Upon receiving (sid,Gen_Cred) from Z for the first time, V reads Cl
from Gclock. If Status(Cl, t⃗,Cred) = ⊤, then V does:
1. She picks a random cr from the message space M and

sends (sid,Com_Commit_Ini, cr) to FNIC. Upon receiving
(sid,Com_Commit_End, ĉr, aux) from FNIC, if ĉr ̸∈ D, she re-
peats this step until it does. She stores (cr, ĉr, aux).

2. She sends (sidall,Broadcast, ĉr) to FBC. Upon receiving
(sidall,Broadcast, (V, ĉr)) from FBC, she appends (V, ĉr) to Lcred.

■ Upon receiving (sidall,Broadcast, (V ∗, ˆcr∗)) from FBC, V reads Cl from
Gclock. If Status(Cl, t⃗,Cred) = ⊤ and V ∗ ∈ Velig, then V appends (V ∗, ˆcr∗)
to Lcred.
■ Upon receiving (sid,Auth_Ballot, v) from Z, V reads Cl from Gclock. If
Status(Cl, t⃗,Cast) = ⊤, then V does:
1. For all pairs (V1, ĉr1), . . . , (V, ĉr = ĉrk), . . . , (Vtmax , ĉrtmax) (in that

order), V sends (sid,Update, αt−1, ĉrt) to Facc. Upon receiving
(sid,Update, αt−1, ĉrt, αt, w

ĉr
t , upmsgt) from Facc, she appends the tu-

ple (Vt, αt, ĉrt, w
ĉr
t , upmsgt) to Linfo.
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2. She sends (sid,Wit_Up, αk, αtmax , ĉrk, w
ĉrk
k , (upmsgk+1, · · · , upmsgtmax

))
to Facc where tmax the last element in the list Linfo.

3. Upon receiving (sid,Wit_Up, αk, αtmax , ĉrk, w
ĉrk
k ,

(upmsgk+1, · · · , upmsgtmax
), wĉrk

αtmax
) from Facc, V sets Stfin = αtmax

and sends (sid,Sign, v, (cr, αtmax), (ĉrk, w
ĉrk
αtmax

, aux)) to FSOK.
4. Upon receiving (sid,Sign, v, (cr, αtmax), (ĉrk, w

ĉrk
αtmax

, aux), σ) from FSOK,
V returns (sid,Auth_Ballot, v, σ) to Z.

■ Upon receiving (sid,Ver_Ballot, v, σ⃗ = (cr, σ)) from Z, V sends
(sid,Verify, v, (cr, Stfin), σ) to FSOK and returns to Z whatever it receives.
■ Upon receiving (sid,Link_Ballots, (v1, σ⃗1 = (cr1, σ1)), (v2, σ⃗2 =
(cr2, σ2))) from Z, then V does:
1. She sends (sid,Verify, v, crj , σj) for both j = 1, 2 to FSOK. If for both

j = 1, 2 FSOK returns (sid,Verify, v, crj , σj , 1), she checks if cr1 = cr2
and sets b = 1. If for both j FSOK returns (sid,Verify, v, crj , σj , 1) and
cr1 ̸= cr2, she sets b = 0.

2. She returns (sid,Link_Ballots, (v1, σ⃗1), (v2 , σ⃗2), b) to Z.

Fig. 6. The eligibility protocol Πelig.

We provide a proof of the following theorem in Supplementary material G.

Theorem 3. The protocol Πelig(SA,V, Facc,FNIC,FSOK,FBC, delay_cast) in Fig-
ure 6 UC-realizes Felig(SA,V, delay_cast) in the (Facc, FNIC,FSOK,FBC,Gclock)-
hybrid model.

8 Definition and realization of the vote management
functionality

In this section, we present the command interface of the vote management
functionality Fvm (the formal description can be found in Supplementary ma-
terial D.2) along with its UC realization. Fvm handles the ballot generation,
casting, and opening. In Section 9, we use Fvm as a building block for UC real-
izing FSTE.
The functionality Fvm(SA,V, delay_gen, delay_cast): (cf. Figure 17) It records
the set of corrupted voters Vcorr provided by S.
■ Upon receiving (sid,Election_Info,O,Velig, tcast, topen) from SA for the first
time, if parameters are valid, it sends the voting parameters (sid,Election_Info,
(Velig,O, t⃗ := (tcast, topen, delay_cast))) to SA and S.
■ Upon receiving (sid,Gen_Ballot, o) from V ̸∈ Vcorr for the first time, if
o ∈ O, it records the time that V submitted the request for selection o associ-
ating it with some random tag, and asks from S to generate a ballot for 0|o|,
i.e., by disclosing only the length of o. It returns (sid,Generating) to V . The
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functionality allows S to generate ballots on behalf of the corrupted voters for
selections of its choice.
■ Upon receiving (sid,Update, {(vj , tagj)}p(λ)j=1 ) from S, it associates each ballot
vj with the preference oj of V that is recorded under the same tagj .
■ Upon receiving (sid,Retrieve) from V ̸∈ Vcorr, it returns (sid, Retrieve, (o, v))
to V , if ballot v is associated with the selection o of V that was recorded at least
delay_gen time earlier. Else, it returns (sid,Retrieve,⊥) to V .
■ Upon receiving (sid,Cast, v, σ⃗) from V ∈ Velig \Vcorr during the Cast phase,
if there is a ballot v associated with a selection o of V that was recorded at least
delay_gen time earlier, then it marks (v, σ⃗) as “pending” to be cast on behalf
of V . Otherwise, it returns (sid,Cast, v, σ⃗,⊥) to V . The functionality allows
casting of any corrupted voters’ ballots during the Cast phase.
■ The functionality forwards the requests of all honest parties to Gclock and mon-
itors the Advance_Clock messages forwarded during each round. If all hon-
est parties have made an Advance_Clock request for the current round, it
sends an Advance_Clock request for itself to proceed to the next round.
Then, for every M∗ pending to be cast on behalf of V ∗ for delay_cast time, it
sends (sid,Cast_Ballot, M∗, sender) to V ∗ and (sid,Cast_Ballot,M∗) to
all voters in V \ {V ∗} and S.
■ Upon receiving (sid,Open, v) from any party P ∈ V ∪ {S} during the Tally
phase, if v is associated with an honestly recorded selection o, it sends (sid,Open,
v, o) to P . Besides, the corrupted voters’ ballots are opened as S instructs.
■ Upon receiving (sid,Leakage) from S during either (i) a “waiting” period
that neither credential generation, casting nor tally happens, or (ii) during the
Tally phase, it provides S with all the honestly cast ballots and their associated
selections.
Realizing Fvm via time-lock encryption and anonymous broadcast: We
construct a real-world protocol Πvm that UC-realizes the vote management func-
tionality Fvm via the time-lock encryption functionality F leak,delay_gen

TLE as intro-
duced and UC-realized in the (Gclock,FBC,FRO)-hybrid model in [3] (cf. Fig-
ure 14) where the leakage function is defined as leak(Cl) = Cl+ 1. We provide a
proof that Πvm UC-realizes Fvm in the (F leak,delay_gen

TLE ,FBC,Fℓ,1,p
an.BC,Gclock)-hybrid

model, where ℓ = delay_cast − 1 and p(λ) is the length of a pair of a ballot v
and authentication data σ⃗.

Πvm(SA,V,F leak,delay_gen
TLE ,FBC,Fℓ,1,p

an.BC).

■ Upon receiving (sid,Election_Info,Velig, tcast, topen) for the first time
from Z, if Velig ⊆ V and tcast < topen, SA sets delay_cast ← ℓ +
1, t⃗ ← (tcast, topen, delay_cast) and sends (sidall,Broadcast, vote.par =
(Velig,O, t⃗)) to FBC, where sidall = (sid,SA ∪V).
■ Upon receiving (sidall,Broadcast, (SA, vote.par)) from FBC, V stores
(Velig,O, t⃗).
■ Upon receiving (sid,Gen_Ballot, o) from Z, V does:
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1. If this is the first time receiving this command, o ∈ O, and
V ∈ Velig, V sends (sid,Enc, o, topen) to F leak,delay_gen

TLE . Upon receiving
(sid,Encrypting) from F leak,delay_gen

TLE , V sends (sid,Generating) to Z.
2. Else, V returns to Z (sid,Gen_Ballot, o,⊥).

■ Upon receiving (sid,Retrieve) from Z, V sends (sid,Retrieve)
to F leak,delay_gen

TLE . Upon receiving (sid,Retrieve, (o, v, topen))
from F leak,delay_gen

TLE , she records the tuple (V, v, o, 1) and sends
(sid,Retrieve, (o, v)) to Z.
■ Upon receiving (sid,Cast, v, σ⃗) from Z, V reads the time Cl from Gclock.
If Status(leak(Cl), t⃗,Cast) = ⊤, V does:
1. She sends (sid,Retrieve) to F leak,delay_gen

TLE . Upon receiving
(sid,Retrieve, (o′, v′, topen)) from F leak,delay_gen

TLE she records the
tuple (V, v′, o′, 1).

2. If there is a tuple of the form (V, v, ·, 1) stored and it is the first time
receiving this command, V sends (sid,Broadcast, (v, σ⃗)) to Fℓ,1,p

an.BC.
3. Else, V returns (sid,Cast, v, σ⃗,⊥) to Z.

■ Upon receiving (sid,Broadcast, (v, σ⃗)) from Fℓ,1,p
an.BC, V ∗ stores the tuple

(v, σ⃗) to LV ∗

cast.
■ Upon receiving (sid,Open, v∗) from Z, if there is a tuple (v∗, σ⃗∗) ∈ LV

cast,
V sends (sid,Dec, v∗, topen) to F leak,delay_gen

TLE .
1. Upon receiving (sid,Dec, v∗, topen, o∗) from F leak,delay_gen

TLE , V returns the
message (sid,Open, v∗, o∗) to Z.

2. Upon receiving (sid,Dec, v∗, topen,⊥) from F leak,delay_gen
TLE , V returns the

message (sid,Open, v∗,⊥) to Z.

Fig. 7. The vote management protocol Πvm.

We provide a proof of the following theorem in Supplementary material H.

Theorem 4. The protocol Πvm(SA,V,F leak,delay_gen
TLE ,FBC,Fℓ,1,p

an.BC) in Figure 7
UC-realizes Fvm(SA,V, delay_gen, delay_cast) in the (F leak,delay_gen

TLE ,FBC,F l,1,p
an.BC,

Gclock)-hybrid model, where leak(Cl) = Cl+1, delay_cast = ℓ+1, and p(λ) is the
length of a pair of a ballot v and authentication data σ⃗.

9 E-cclesia: A UC realization of FSTE

In this section, we conclude our formal reasoning on the UC realization of FSTE.
Specifically, we present the (Felig,Fvm)-hybrid protocol ΠSTE that UC realizes
FSTE. Given the UC realizations of Felig and Fvm in Sections 7 and 8 respectively,
this provides a UC realization of FSTE in the (Facc, FNIC,FSOK,FBC,F leak,delay_gen

TLE ,
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F l,1,p
an.BC,Gclock)-hybrid model. Finally we derive E-cclesia via the concrete in-

stantiations of Facc, FNIC, FSOK, F leak,delay_gen
TLE , and F l,1,p

an.BC as the protocols from
Section 6, [8], [15], [3], and Section 5, respectively.

The protocol ΠFelig,Fvm

STE (SA,V, delay_gen, delay_cast): The protocol is presen-
ted in details in Supplementary material D.3 (cf. Figure 18) along with the proof
of the following theorem. Its purpose is to combine the two interfaces of Felig

and Fvm in order to build a complete hybrid protocol that realizes FSTE.
In the Setup phase, SA accepts the set of the eligible voters Velig, the set

of valid election preferences O, and the times that define the duration of the
election (topen, topen) from Z. Then, SA calls both Felig and Fvm for setting up
the parameters of the election.

In the Credential generation phase, each voter V generates their credential
upon request from Z. Specifically, V calls Felig and either receives the public part
of her credential or ⊥, in case a credential request has been made in the past.

Next, in the Cast phase, each voter V generates her ballot by calling Fvm. If
the time that is required for ballot generation, delay_gen, is equal to 0, then she
retrieves her ballot in the same round from Fvm and executes the Cast proce-
dure. Specifically, she authenticates the ballot by calling Felig and broadcasts it
by calling Fvm. In any other case, she returns Casting to Z. In case V receives
a clock advancement command from Z, she checks if her ballot is generated (e.g.
time delay_gen has elapsed) by sending Retrieve to Fvm. If this is the case,
she executes the Cast procedure as described above.

Finally, in the Tally phase, each voter V upon request from Z produces the
election outcome. Specifically, each voter verifies if each one of the cast ballots
has originated from eligible voters by calling Felig. She keeps the ballots that pass
the verification of Felig and drops the others. Next, for the remaining ballots, she
checks through Felig if more than one ballots are linked to the same voter (cf.
Link_Ballots command). If she finds ballots that are linked to the same voter
(without knowing exactly which one), then she keeps the first one in the order she
received them (note that the receiving order is the same for every voter). Last,
for the remaining ballots she requests a ballot opening by issuing the command
message Open to Fvm. The tally is the multiset T of all ballot openings that are
valid election preferences. In case V is provided with the multiset T̂ presented
as the election outcome by Z, she can verify it by checking it against her own
computed tally T.

Theorem 5. The protocol ΠFelig,Fvm

STE (SA,V, delay_gen, delay_cast) in Figure 18
UC-realizes FSTE(SA,V, delay_gen, delay_cast) in the (Felig,Fvm,Gclock)-hybrid
model.

Subsequently, we provide concrete realizations of Felig and Fvm which results
in E-cclesia, the first instantiation of Π

Felig,Fvm

STE . We make the following two
observations:
1. Felig(SA,V, delay_cast) can be realized in the (FCRS, FBC,Gclock)-hybrid model.

This stems from Theorem 3 and the facts that
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(i) Facc can be realized in the standard model (cf. Theorem 2),
(ii) FNIC can be realized in the FCRS-hybrid model (cf. [8, full version, The-

orem 4] and Supplementary material C.1),
(iii) FSOK can be realized in the FCRS-hybrid model (cf. [15] and Supplemen-

tary material C.2).
Let Π̃elig(SA,V,FCRS, FBC, delay_cast) be the UC realization of Felig that
derives from Πelig by replacing Facc,FNIC, FSOK with their realizations.

2. Fvm(SA,V, delay_gen, delay_cast) can be realized in the (Wq(F∗
RO),FRO,FBC,

Gclock)-hybrid model. This stems from Theorem 4 and the facts that
(i) FTLE can be realized in the (Wq(F∗

RO), FRO,FBC,Gclock)-hybrid model
(cf. [3, Theorems 1 and 2]),

(ii) Fan.BC can be realized in the (FRO,FBC,Gclock)-hybrid model (cf. Theo-
rem 1)

Let Π̃vm(SA,V,Wq(F∗
RO),FRO, FBC, delay_gen, delay_cast) be the UC real-

ization of Fvm that derives from Πvm by replacing FTLE,Fan.BC with their
realizations.

By the above two observations, Theorem 5, and the UC composition theorem,
we derive the following concluding theorem.

Theorem 6. Let E-cclesia be the protocol that results from Π
Felig,Fvm

STE (SA,V,
delay_gen, delay_cast) by replacing (i) the functionality Felig with the protocol
Π̃elig(SA,V,FCRS,FBC, delay_cast) and (ii) the functionality Fvm with the proto-
col Π̃vm(SA,V,Wq(F∗

RO),FRO,FBC, delay_gen, delay_cast). E-cclesia UC real-
izes FSTE(SA,V, delay_gen, delay_cast) in the (Wq(F∗

RO), FRO, FCRS,FBC,Gclock)-
hybrid model.
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Supplementary material

A Universal composable formalism

The Universal Composability (UC) paradigm introduced by Canetti in [11], is
the state-of-the-art cryptographic model for arguing about the security of pro-
tocols when run under concurrent sessions. In the UC framework, the parties
engage in a protocol session (labeled by a unique session ID, sid) modeled as
interactive Turing Machines (ITMs) that communicate in the presence of an ad-
versary ITM A that may control some of the parties. The protocol execution
is scheduled by an environment ITM Z that provides parties with inputs and
may interact arbitrarily with A. The intuition here is that (i) Z captures the
external “observer” that aims to break security by interacting with the protocol
interface during session sid, while (ii) A plays the role of the “insider” that helps
Z via any possible information it can obtain through engaging in the session in
the back-end of the current execution.

The UC security of a protocol Π follows the real-world/ideal-world indistin-
guishability approach. Namely, security is captured via a special ideal protocol
that has the same interface as Π that Z interacts with, but now the parties
are “dummy”, in the sense that they only forward their inputs provided by Z
to an ideal functionality F . The functionality F is in the center of the back-
end (i.e., the ideal protocol has a star topology) and does not interact with Z
directly. The ideal functionality F formalizes a trusted party carrying out the
task that Π intends to realize (e.g., secure communication, key agreement, au-
thentication, etc.). The functionality F interacts with the adversary present in
the ideal protocol, usually called a simulator S, and this interaction results in a
“minimum leakage of information” that determines the ideal level of security that
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any protocol realizing the said task should satisfy (not only Π). For instance, if
F formalizes an ideal secure channel, then the minimum leakage could be the
ciphertext length. In case that Z gives an input to a corrupted party P in the
ideal world, the functionality F passes that message to S and returns back to
P whatever it receives from S. Both in ideal-world and real-world executions, if
a party has the token and halts, then by convention the token is passed to the
environment. We say that the real-world protocol is UC-secure if no environment
Z can distinguish its execution from the one of the ideal protocol managed by F .
More formally, let EXECΠ

Z,A denote an execution of a real-world protocol Π in
the presence of the adversary A scheduled by an environment Z, and EXECF

Z,S
denote an execution of the ideal protocol managed by F in the presence of a
simulator S, again scheduled by Z. The UC security of Π is defined as follows.

Definition 1 (UC realization [11]). The protocol Π is said to UC-realize the
ideal functionality F if for any PPT adversary A, there exists a PPT simulator
S such that for any PPT environment Z, the random variables EXECΠ

Z,A and
EXECF

Z,S are computationally indistinguishable. More formally:

∣∣Pr[EXECF
Z,S(λ) = 1]− Pr[EXECΠ

Z,A(λ) = 1]
∣∣ = negl(λ)

Composition and modularity. Perhaps the most prominent feature of the
UC paradigm is the preservation of security of a protocol that runs concurrently
with other protocol instances, or as a subroutine of another (often more com-
plex) execution. In particular, assume a protocol Π that UC-realizes an ideal
functionality F according to Definition 1, and is used as a subroutine of a “larger”
protocol Π̃. Then, UC guarantees that if we replace any instance of Π with F ,
we obtain a “hybrid” protocol, denoted by Π̃Π→F , that enjoys the same security
as Π̃. Namely, if Π̃ UC-realizes some ideal functionality F̃ , then so does Π̃Π→F .

The power of composition facilitates the design and analysis of complex cryp-
tographic schemes with a high-degree of modularity. Namely, the scheme’s formal
description can be over the composition of ideal modules that are concurrently
executed as subroutines. When a protocol Π using the functionalities F1, . . . ,Fk

UC-realizes a functionality F , we say that it does so in the {F1, . . . ,Fk}-hybrid
model and we write ΠF1,...,Fk to clearly denote the hybrid functionalities. For in-
stance, an e-voting system Πvote can be described using the ideal functionalities
Fsc, Fauth and FBB that formalize the notions of a secure channel, an authenti-
cated channel, and a Bulletin Board, respectively. In this case, we say that Πvote

is UC-secure in the {Fsc,Fauth,FBB}-hybrid model and we write ΠFsc,Fauth,FBB
vote to

clearly denote the hybrid functionalities. Furthermore, composition allows us to
extend secure modular design into multiple (poly(λ) many) layers, since a proto-
col that uses a hybrid functionality as a subroutine may itself be the subroutine
of another protocol of an “upper layer” until we reach the level of the root ideal
protocol (in our example, an ideal e-voting functionality Fvote).
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B Common functionalities

We formally present the cryptographic building blocks listed in Subsection 3.1.
We stress than in the UC framework, hybrid functionalities may capture more
than the abstraction of a UC-secure real-world protocol, such as a trusted source
of randomness, or supposition about the network structure (e.g., as First In First
Out channels). Note that such specific functionalities may be global, meaning
that they may act as shared states across multiple instances and be accessed by
functionalities that do not belong to the current session.
The global clock functionality. This global clock (cf. [4]) can be read at
any moment by any involved entity. For each session, the clock advances only
when all the involved parties and functionalities in the session make an advance
request.

The Global Clock functionality Gclock(P,F).

The functionality manages the set P of registered identities, i.e., parties P =
(pid, sid) and the set F of registered functionalities (with their session identi-
fier) (F , sid). For every sid, let Psid = {(·, sid) ∈ P} ∩ {P ∈ P | P is honest}
and Fsid = {(·, sid) ∈ F}.

For each session sid, the functionality initializes the clock variable Clsid ←
0 and the set of advanced entities per round as Lsid.adv ← ∅.
■ Upon receiving (sidC ,Advance_Clock) from P ∈ Psid, if P ̸∈ Lsid.adv,
then it adds P to Lsid.adv. If Lsid.adv = Psid ∪ Fsid, then it updates Clsid ←
Clsid + 1, resets Lsid.adv ← ∅ and forwards (sidC ,Advanced_Clock, P ) to
A.
■ Upon receiving (sidC ,Advance_Clock) from F in a session sid such
that (F , sid) ∈ F, if (F , sid) ̸∈ Ladv, then it adds (F , sid) to Lsid.adv. If
Lsid.adv = Psid ∪ Fsid, then it updates Clsid ← Clsid + 1, resets Lsid.adv ← ∅
and sends (sidC ,Advanced_Clock,F) to this instance of F .
■ Upon receiving (sidC ,Read_Clock) from any participant (including the
environment on behalf of a party, the adversary, or any ideal (shared or lo-
cal) functionality), it sends (sidC ,Read_Clock,Clsid) to this participant,
where sid is the sid of the calling instance.

Fig. 8. The global clock functionality Gclock(P,F) interacting with the parties of
the set P, the functionalities of the set F, the environment Z and the adversary
A.

The random oracle functionality. The random oracle functionality (cf. [52])
can be seen as a trusted source of random input. Given a query, the functionality
returns a random value. It also updates a local variable LH in order to return the
same value to similar queries. This functionality can be seen as the “idealization”
of a hash function.
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The Random Oracle functionality FRO(A,B).

The functionality initializes a list LH ← ∅.
■ Upon receiving (sid,Query, x) from any party P , if x ∈ A, then:
1. If there exists a pair (x, h) ∈ LH, it returns

(sid,Random_Oracle, x, h) to P .
2. Else, it picks h ∈ B uniformly at random, and it inserts the pair (x, h)

to the list LH. Then, it returns (sid,Random_Oracle, x, h) to P .

Fig. 9. The random oracle functionality FRO with respect to a domain A and a
range B.

The common reference string functionality. This functionality (cf. [11])
draws a single random string r over an uniform distribution of strings, and then
delivers it upon request.

Note that the functionality waits for the simulator’s permission before send-
ing back r to the party, and leak Pi’s identity to S. This is often called public
delayed output in the literature. The intuition is the following: a concrete in-
stantiation of a CRS might be a string on a website. As the string is chosen
by the website maintainer, it can be seen by other parties as a random string.
Moreover, accessing the website may take some time because of the network, and
may leak one’s IP address. Both time and leakage are captured by the public
delayed output.

The Common Reference String functionality FD
CRS.

The functionality initializes a waiting list Lwait ← ∅.
■ Upon receiving (sid,CRS) from a party P , if no value r is recorded, it
samples r in D, adds P to Lwait and sends (sid,Allow, P ) to S.
■ Upon receiving (sid,Allowed, P ) from S. If P ∈ Lwait, it sends
(sid,CRS, r) to P and S and removes P from Lwait.

Fig. 10. The CRS functionality FCRS interacting with the simulator S, parame-
terized by distribution D.

The broadcast functionality. We use the (authenticated) broadcast function-
ality FBC in [31]. The realization of FBC in [31] utilizes the certification function-
ality in [12], which in turn, can be realized by deploying a certification authority
and digital signatures. In our setting, the role of the certification authority can
be played by the setup authority (cf. Subsection 3.2) that is active prior to the
voting period.
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The Broadcast functionality FBC(P).

■ Upon receiving (sid,Broadcast,M) from Pi ∈ P, it sends
and (sid,Broadcast, Pi,M) to all parties P1, . . . , Pn and S.

Fig. 11. The broadcast functionality FBC interacting with the parties in P =
{P1, . . . , Pn} and the simulator S.

The non-interactive commitment functionality. We provide the non in-
teractive commitment (NIC) functionality FNIC, as introduced in [8]. As shown
in [8], FNIC can be realized by using a standard commitment scheme that is
binding and has a trapdoor, such as the Pedersen NIC scheme [54]. Namely, a
party that (i) commits to a message cm cannot open the commitment to differ-
ent valid message cm′, and (ii) there is a trapdoor information tk that allows
the creation of commitments that can be opened to any message (this implies
that the commitment scheme is hiding, i.e., the commitment does not reveal any
information about the original message).

The non-interactive commitment functionality FNIC.

The functionality is parameterized by system parameters sp. The following
COM.TrapCom,COM.TrapOpen and COM.Verify are ppt algorithms.
■ Upon receiving (sid,Com_Setup_Ini) from a party Pi, it does:
1. If (sid, cparcom, COM.TrapCom, COM.TrapOpen, COM.Verify, ctdcom) is

already stored, it includes Pi in the set P, and sends a delayed out-
put (sid,Com_Setup_End,OK) to Pi.

2. Otherwise, it proceeds to generate a random ssid, stores (ssid, Pi) and
sends (sid,Com_Setup_Req, ssid) to S.

■ Upon receiving (sid,Com_Setup_Alg, ssid,m) from S, it does:
1. If no pair (ssid, Pi) for some Pi is stored, it aborts.
2. It deletes record (ssid, Pi).
3. If (sid, cparcom, COM.TrapCom, COM.TrapOpen, COM.Verify, ctdcom)

is already stored, it includes Pi in the set P and sends
(sid,Com_Setup_End,OK) to Pi.

4. Otherwise, it proceeds as follows:
(a) It parses m as (cparcom, COM.TrapCom, COM.TrapOpen,

COM.Verify, ctdcom).
(b) It stores (sid, cparcom, COM.TrapCom,

COM.TrapOpen, COM.Verify, ctdcom) and initializes both an
empty table Tblcom and an empty set P.

(c) It includes Pi in the set P and sends (sid,Com_Setup_End,OK)
to Pi.

■ Upon receiving (sid,Com_Validate_Ini, ccom) from a party Pi, it does:
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1. If Pi ̸∈ P, it aborts.
2. It parses ccom as (ccom′, cparcom′, COM.Verify′).
3. It sets v ← 1, if cparcom′ = cparcom and COM.Verify′ = COM.Verify.

Otherwise, it sets v ← 0.
4. It sends (sid,Com_Validate_End, v) to Pi.

■ Upon receiving (sid,Com_Commit_Ini, cm) from any honest party Pi,
it does:
1. If Pi ̸∈ P or if cm ̸∈ M, where M is defined in cparcom, it aborts.
2. It computes (ccom, cinfo)← COM.TrapCom(sid, cparcom, ctdcom).
3. If there is an entry [ccom, cm′, copen′, 1] in Tblcom such that cm ̸= cm′,

it aborts.
4. It computes copen← COM.TrapOpen(sid, cm, cinfo).
5. If COM.Verify(sid, cparcom, ccom, cm, copen) ̸= 1, it aborts.
6. It appends [ccom, cm, copen, 1] to Tblcom.
7. It sets ccom← (ccom, cparcom,COM.Verify).
8. It sends (sid,Com_Commit_End, ccom, copen) to Pi.

■ Upon receiving (sid,Com_Verify_Ini, ccom, cm, copen) from any honest
party Pi, it does:
1. If Pi ̸∈ P or if cm ̸∈ M or if copen ̸∈ R, whereM and R are defined in

cparcom, it aborts.
2. It parses ccom as (ccom′, cparcom′, COM.Verify′).
3. If cparcom′ ̸= cparcom or COM.Verify′ ̸= COM.Verify, it aborts.
4. If there is an entry [ccom′, cm, copen, u] in Tblcom, it sets v ← u.
5. Else, it proceeds as follows:

(a) If there is an entry [ccom′, cm′, copen′, 1] in Tblcom such that cm ̸=
cm′, it sets v ← 0.

(b) Else, it proceeds as follows:
i. It sets v ← COM.Verify(sid, cparcom, ccom′, cm, copen).
ii. It appends [ccom′, cm, copen, v] to Tblcom.

6. It sends (sid,Com_Verify_End, v) to Pi.

Fig. 12. The non-interactive commitment functionality FNIC interacting with the
simulator S.

The signature of knowledge functionality. A signature of knowledge (SoK)
allows any party who can prove a public statement to sign a message without
revealing anything except that the statement is true. A signature of knowledge
scheme consists of two algorithms, Sign and Verify. The algorithm Sign allows
anyone holding a witness w for a statement x in some language L such that
ML(x,w) = 1, where ML is the relation for L, to produce a signature σm,x,L on
a message m. The algorithm Verify verifies if a signature σ on message m with
statement x is valid. The latter implies that the signer is aware of a witness w
such that ML(x,w) = 1.
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In the UC framework, the notion of SoK is captured by the following func-
tionality (cf. [15]):

The Signature of Knowledge functionality FSOK(L).

■ Upon receiving (sid,Setup) from any party P , it verifies that sid =
(ML, sid

′) for some sid′. If not, then it ignores the request. Else, if this
is the first time that (sid,Setup) was received, then it sends (sid,Setup) to
S. Upon receiving (sid,Algorithms, Verify, Sign, SimSign, Extract from
S, where Sign, SimSign and Extract are descriptions of PPT TMs, and
Verify is a description of a deterministic polynomial time TM, it stores
these algorithms. It sends (sid,Algorithms, Sign, Verify) to P .
■ Upon receiving (sid,Sign,m, x, w) from P , it checks that ML(x,w) = 1. If
not, it ignores the requests. Else, it computes σ ← SimSign(m,x) and checks
that Verify(m,x, σ) = 1. If so, then it records the entry (m,x, σ) and sends
(sid,Signature,m, x, σ) to P . Else, it sends (sid,Completeness_Error)
to P and halts.
■ Upon receiving (sid,Verify,m, x, σ) from some party V , if (m,x, σ′) is
stored for some σ′, then it sends (sid,Verified,m, x, σ, Verify(m,x, σ))
to V . Else, it computes w ← Extract(m,x, σ); if ML(x,w) =
1, it sends (sid,Verified,m, x, σ, Verify(m,x, σ)) to V . Else, if
Verify(m,x, σ) = 0, it sends (sid,Verified,m, x, σ, 0) to V . Else, it sends
(sid,Unforgeability_Error) to V and halts.

Fig. 13. The signature of knowledge functionality FSOK for language L interacting
with the simulator S.

The time-lock encryption functionality. We use the time-lock encryption
(TLE) functionality from [3] to guarantee that no intermediate results leak before
the tally phase.

The time-lock encryption functionality F leak,delay
TLE .

It initializes the list of recorded messages/ciphertexts Lrec as empty and
defines the tag space TAG.
■ Upon receiving (sid,Corrupt,Pcorr) from S, it records the corrupted set
Pcorr.
■ Upon receiving (sid,Enc,m, τ) from P ̸∈ Pcorr, it reads the time Cl and
does:
1. If τ < 0, it returns (sid,Enc,m, τ,⊥) to P .
2. It picks tag $← TAG and it inserts the tuple (m,Null, τ, tag,Cl, P )→ Lrec.
3. It sends (sid,Enc, τ, tag,Cl, 0|m|) to S. Upon receiving the token back

from S it returns (sid,Encrypting) to P .
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■ Upon receiving (sid,Update, {(cj , tagj)}p(λ)j=1 ) from S, for all cj ̸= Null it
updates each tuple (mj ,Null, τj , tagj ,Clj , P ) to (mj , cj , τj , tagj ,Clj , P )

■ Upon receiving (sid,Retrieve) from P , it reads the time Cl from Gclock and
it returns (sid,Encrypted, {(m, c ̸= Null, τ)}∀(m,c,τ,·,Cl′,P )∈Lrec:Cl−Cl′≥delay)
to P .
■ Upon receiving (sid,Dec, c, τ) from P ̸∈ Pcorr:
1. If τ < 0, it returns (sid,Dec, c, τ,⊥) to P . Else, it reads the time Cl

from Gclock and:
(a) If Cl < τ , it sends (sid,Dec, c, τ,More_Time) to P .
(b) If Cl ≥ τ , then

– If there are two tuples (m1, c, τ1, ·, ·, ·), (m2, c, τ2, ·, ·, ·) in Lrec such
that m1 ̸= m2 and c ̸= Null where τ ≥ max{τ1, τ2}, it returns to P
(sid,Dec, c, τ,⊥).
– If no tuple (·, c, ·, ·, ·, ·) is recorded in Lrec, it sends (sid,Dec, c, τ)
to S and returns to P whatever it receives from S.
– If there is a unique tuple (m, c, τdec, ·, ·, ·) in Lrec, then if τ ≥ τdec,
it returns (sid, Dec, c, τ , m) to P . Else, if Cl < τdec, it returns (sid,
Dec, c, τ , More_Time) to P . Else, if Cl ≥ τdec > τ , it returns (sid,
Dec, c, τ , Invalid_Time) to P .

■ Upon receiving (sid,Leakage) from S, it reads the time Cl from Gclock
and returns (sid,Leakage, {(m, c, τ)}∀(m,c,τ≤leak(Cl),·,·,·)∈Lrec

) to S.
■ Whatever message it receives from P ∈ Pcorr, it forwards it to S and vice
versa.

Fig. 14. The functionality F leak,delay
TLE parameterized by λ, a leakage function leak,

a delay variable delay ,interacting with simulator S, parties in P, and global clock
Gclock.

The wrapper functionality. We recall the wrapper functionality Wq in [3],
for the special case where the wrapped evaluation functionality is the random
oracle FRO. The wrapperWq allows the parties to access FRO only up to q times
per round (clock tick).

The wrapper functionality Wq(FRO,Gclock,P).

■ Upon receiving (sid,Corrupt,Pcorr) from S, it records the corrupted set
Pcorr.
■ Upon receiving (sid,Evaluate, (x1, . . . , xj)) from P ∈ P \ Pcorr it reads
the time Cl from Gclock and does:
1. If there is not a list LP it creates one, initially as empty. Then it does:

(a) For every k in {1, . . . , j}, it forwards the message
(sid,Evaluate, xk) to FRO.
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(b) When it receives back all the corresponding oracle responses
y1, . . . , yj , it inserts the tuple-(Cl, 1) ∈ LP .

(c) It sends (sid,Evaluate, ((x1, y1), . . . , (xj , yj))) to P .
2. Else if there is a tuple-(Cl, jc) ∈ LP with jc < q, then it changes the

tuple to (Cl, jc + 1), and repeats the above steps 1a,1c.
3. Else if there is a tuple-(Cl∗, jc) ∈ LP such that Cl∗ < Cl, it updates the

tuple as (Cl, 1), and repeats the above steps 1a,1b,1c.
■ Upon receiving (sid,Evaluate, (x1, . . . , xj)) from P ∈ Pcorr it reads the
time Cl from Gclock and repeats steps 1,3 except that it maintains the same
list, named Lcorr, for all the corrupted parties.

Fig. 15. The Functionality wrapper Wq parameterized by a number of queries q,
functionality FRO, Gclock and the parties in P.

C Realizing FNIC and FSOK without trusted party

C.1 Realizing universally composable non-interactive commitments
without trusted party

In this section we recap the key contributions of [8] that presents a protocol that
UC realises FNIC (cf. Figure 12) in the CRS model.
Non-interactive commitments: A non-interactive commitment scheme (NIC)
consists of three algorithms name CSetup; generates the common parameters of
the commitment scheme, Com; computes the commitment of a committed value
and some auxiliary information necessary for verifying the opening of the com-
mitment VfCom; verifies if a value and a commitment are correlated by providing
the value the commitment and the auxiliary information given from Com.

We say that a NIC scheme is hiding when the commitment does not reveal
nothing about the committed value. Similar, it is said binding if the commitment
open to a unique value with high probability. Formally as presented in [9]:

Definition 2 (Binding [9]). A commitment scheme is binding if for any PPT
adversary A, it holds that:

Pr

[
parc ← CSetup(1λ); (com, x, open, x′, open′)← A(parc) :
(x, x′) ∈M2 ∧ 1 = VfCom(parc, com, x, open)∧
1 = VfCom(parc, com, x′, open′) ∧ x ̸= x′

]
= negl(λ)

Definition 3 (Hiding [9]). A commitment scheme is hiding if for any PPT
adversary A it holds that:

Pr

[
parc ← CSetup(1λ); (x0, x1, st)← A(parc);
b←↩ U [0, 1]; (com, open)← Com(parc, xb);
b′ ← A(com) : (x0, x1) ∈M2 ∧ b = b′

]
=

1

2
+ negl(λ)

39



where in the above definitions parc is the parameters of the NIC scheme, M is
the message space, U [0, 1] the uniform distribution on [0, 1], and com and open
are the resulting commitment and its opening respectively and ν is a negligible
function.
Trapdoor commitments: With a special type of NIC, which is called trapdoor
NIC, one can build dummy commitments that are not related to any message.
Then, by using the trapdoor information (if it is available to the user) can
produce a proof of valid opening to any value. This special type of commitment is
very useful in proving security properties (e.g in UC the simulator can equivocate
by using the trapdoor information) but at the same time the security breaches if
someone knows the trapdoor information (e.g binding properties does not hold).
Formally as presented in [9].

Definition 4 (Trapdoor NIC [9]). There exist PPT algorithms CSimSetup,
ComOpen and TrapOpen, where CSimSetup on input 1λ outputs parameters parc
with trapdoor tdc such that: (1) parc are indistinguishable from those produced
by CSetup, and, (2) for any x, x′ ∈M holds:

∣∣∣∣∣∣∣Pr
 (parc, tdc)← CSimSetup(1λ);
(com, open′)← Com(parc, x

′);
open← ComOpen(parc, tdc, x, x

′, open′) :
1 = A(parc, tdc, com, open)

 −
−Pr

[
(parc, tdc)← CSimSetup(1λ);
(com, open)← Com(parc, x));
1 = A(parc, tdc, com, open)

]∣∣∣∣∣ = negl(λ)

Below, we provide the theorem as presented in [8, full version, Theorem 4] that
links NIC’s security definition with the UC realization of FNIC.

Theorem 7 ([8]). The construction ΠNIC UC realizes FNIC in the FCSetup
CRS -hybrid

model if the underlying NIC scheme (CSetup, Com, VfCom) is binding and trapdoor
according to Definitions 2 and 4, respectively.

A binding and trapdoor NIC: In [8], it is shown that Pedersen’s NIC
scheme [54] satisfies both binding and trapdoor, and thus we have a concrete
instantiation of a protocol ΠNIC that UC realizes FNIC. The lemma is given below.

Lemma 1 ([8]). The Pedersen’s non-interactive commitment scheme (CSetup,
Com, VfCom) is binding and trapdoor as long as the discrete logarithm problem is
hard.

C.2 Realizing universally composable signature of knowledge
without trusted party

A signature of knowledge (SoK) allows any party who can prove a public state-
ment to sign a message without revealing anything except that the statement
is true. A signature of knowledge scheme consists of two algorithms, Sign and
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Verify. The algorithm Sign allows anyone holding a witness w for a statement
x in some language L such that ML(x,w) = 1, where ML is the relation for L,
to produce a signature σm,x,L on a message m. The algorithm Verify verifies if
a signature σ on message m with statement x is valid. The latter implies that
the signer is aware of a witness w such that ML(x,w) = 1.

In the UC framework, the notion of SoK is captured by functionality FSOK [15]
(cf. Figure 13).

In E-cclesia, we use signatures of knowledge for authenticating the eligible
ballots. Specifically, eligible voters in the casting phase sign their ballots with the
knowledge that they belong to the eligibility list without revealing their actual
identity. This step ensures that the privacy of the voter is preserved, as the ballot
and the voter’s identity cannot be linked.
UC realization of FSOK. We outline the realization of FSOK provided in [15]
denoted as ΠSOK. The supported language is the universal language Up, where
for some polynomial p, the statement x would contain a description of a TM
M and an instance x′ such that x ∈ Up iff there exists w such that M(x′, w)
halts and accepts in time at most p(|x|). The protocol design builds upon (i) a
SoK scheme Σ and (ii) the FCRS functionality (cf. Fig. 10), parameterized by the
distribution of Σ parameters’ generation. In [15, Theorem 2.2], it is shown that
the said protocol UC-realizes FSOK(Up) in the FCRS-hybrid model if and only if
Σ satisfies a gamed-based definition called SimExt-security [15, Definition 2.2].
Subsequently, the authors provide a construction of a SoK scheme with SimExt-
security based on two main building blocks: CPA-secure dense cryptosystems [25,
32] and simulation-sound non-interactive zero-knowledge proofs [57]. The latter
step completes the realization of FSOK(Up).

D Modular Design

D.1 The eligibility functionality Felig

Felig(SA,V, delay_cast).

The functionality initializes the lists of eligible voters Lelig ← ∅, of authenti-
cated ballots of eligible voters Lauth ← ∅, the value Stfin = 0. Upon receiving
(sid,Corrupt,Vcorr) from S, if Vcorr ⊆ V, it fixes Vcorr as the set of cor-
rupted voters.
■ Upon receiving (sid,Eligible,Velig,O, tcast, topen) from SA, if Velig ⊆ V
and tcast < topen, it sends (sid,Setup_Elig,Velig,O, tcast, topen) to S. Upon
receiving (sid, Setup_Elig, GenCred, AuthBallot, VrfyBallot, UpState,
Stgen) from S, then:
1. It sets t⃗ ← (tcast, topen, delay_cast) and reg.par := (Velig,O, t⃗, Stgen) as

registration parameters.
2. It sends (sid,Elig_Par, reg.par) to all voters in V and S.
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■ Upon receiving (sid,Gen_Cred) from V ∈ Velig \Vcorr, it reads the time
Cl from Gclock. If Status(Cl, t⃗,Cred) = ⊤, it executes the following steps:
1. If there is no tuple (V, cr′, ĉr′, aux′, 1) in Lelig, it runs (cr, ĉr, aux) ←

GenCred(1λ, reg.par). If there are tuples (·, cr, ·, ·, ·) or (·, ·, ĉr, ·, ·) in Lelig

or (cr, rc) = ⊥, it sends (sid, Gen_Cred,⊥) to V and halts. Else, it
adds (V, cr, rc, aux, 1) to Lelig after permission of S via delayed output
with (V, ĉr) as information leakage.

2. It sends (sid,Gen_Cred, V, ĉr, sender) to V and (sid,Gen_Cred, V, ĉr)
to all other voters in V \ {V } and S.

■ Upon receiving (sid,Gen_Cred) from V ∈ Velig ∩ Vcorr, it
forwards the message (sid,Gen_Cred, V ) to S. Upon receiving
(sid,Gen_Cred, V, cr, ĉr, aux) from S, it does:
1. If there are no tuples (V, cr′, ĉr′, aux′, 0), (·, cr, ·, ·, 1) or (·, ·, ĉr, ·, 1) in

Lelig, then it adds (V, cr, ĉr, aux, 0) to Lelig.
2. It sends (sid,Gen_Cred, V, ĉr) to all voters in V \ {V } and S.

■ Upon receiving (sid,Auth_Ballot, v) from V ∈ Velig \ Vcorr, then it
reads the time Cl from Gclock. If Status(Cl, t⃗,Cast) = ⊤, it executes the
following steps:
1. If Stfin = 0, then it runs Stfin ← UpState(Stgen, {ĉr|(·, ·, ĉr, ·) ∈ Lelig}).
2. If there is a tuple (V, cr, ĉr, aux, 1) ∈ Lelig but no (V, v′, cr, σ′, 1) ∈

Lauth, then it runs σ ← AuthBallot(v, cr, Stfin, reg.par, aux). If
VrfyBallot(v, σ, Stfin, reg.par) = 0, it sends (sid, Auth_Ballot, ⊥)
to V and halts. Else, it (i) adds (V , v, cr, σ, 1) to Lauth, and (ii) returns
(sid, Auth_Ballot, v, σ⃗ = (cr, σ)) to V .

■ Upon receiving (sid,Auth_Ballot, V, v, σ⃗ = (cr, σ)) from S, if there is a
tuple (V, cr, ĉr, aux, 0) ∈ Lelig, then it adds (V, v, cr, σ, 0) to Lauth. It returns
(sid,Auth_Ballot, V, v, σ⃗) to V .
■ Upon receiving (sid,Ver_Ballot, v, σ⃗ = (cr, σ)) from V ∈ V:
1. It computes x← VrfyBallot(v, (cr, σ), Stfin, reg.par).
2. If there is cr such that there are tuples (·, cr, ·, ·, ·, 1) ∈ Lelig and

(·, v, cr, σ, 1) ∈ Lauth, it sends (sid,Ver_Ballot, v, (cr, σ), 1) to V .
3. If x = 1 and there is no cr such that there are tuples (·, cr, ·, ·, ·, ·) ∈ Lelig

and (·, v, cr, σ, ·) ∈ Lauth, it sends (sid,Ver_Ballot, v, (cr, σ),⊥) to V
and halts.

4. If x = 1 and there are tuples (·, v, cr, σ, 0), (·, v′, cr′, σ′, 1) ∈ Lauth such
that cr = cr′ and v ̸= v′, it sends (sid,Ver_Ballot, v, (cr, σ),⊥) to V
and halts.

5. Else, it sends (sid,Ver_Ballot, v, (cr, σ), x) to V .
■ Upon receiving

(
sid,Link_Ballots, (v1, (cr1, σ1)), (v2, (cr2, σ2))

)
from

V ∈ V, if there are tuples (·, v1, cr1, σ1, ·), (·, v2, cr2, σ2, ·) ∈ Lauth such that
cr1 = cr2, then it sets x = 1. If there are such tuples but cr1 ̸= cr2, then it sets
x = 0. Then, it sends

(
sid,Link_Ballots, (v1, (cr1, σ1)), (v2, (cr2, σ2)), x

)
to V .
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Fig. 16. The eligibility functionality Felig parameterized by delay_cast, Status,
interacting with the voters in V, SA, and simulator S.

D.2 The vote management functionality Fvm

Fvm(SA,V, delay_gen, delay_cast).

The functionality initializes as empty the lists of generated ballots Lgball,
cast ballots Lcast, pending for reception ballots Lpend, and a list Ladv of the
(dummy) parties that have submitted an Advance_Clock message for the
current round. Upon receiving (sid,Corrupt,Vcorr) from S, if Vcorr ⊆ V,
it fixes Vcorr as the set of corrupted voters.

Each time the functionality receives a command message it executes the
delayed ballot casting procedure as described below:

Delayed ballot casting: Upon receiving (sid/sidC , I, input) from
V ∈ V \ Vcorr, where I ∈ {Gen_Ballot,Retrieve,Cast,Open,
Advance_Clock,Read_Clock}, it reads the time Cl from Gclock. If
V \ Vcorr ⊆ Ladv, it sends (sidC ,Advance_Clock) to Gclock to proceed
to the next round. Upon receiving (sidC ,Advanced_Clock,Fvm) from
Gclock, it does:
1. For every triple (M∗, V ∗,Cl∗) ∈ Lpend such that Cl − Cl∗ =

delay_cast, it sends (sid,Cast_Ballot,M∗, sender) to V ∗ and
(sid,Cast_Ballot,M∗) to all voters in V \ {V ∗} and S. Then, it
removes (M∗, V ∗,Cl∗) from Lpend.

2. It sets Ladv as empty.
Then, it executes (sid/sidC , I, input) as follows.

■ Upon receiving (sid,Election_Info,Velig,O, tcast, topen) from
SA for the first time, if Velig ⊆ V and tcast < topen it sets
t⃗ ← (tcast, topen, delay_cast) and vote.par := (Velig,O, t⃗) as voting pa-
rameters and sends (sid,Election_Info, vote.par) to SA and S.
■ Upon receiving (sid,Gen_Ballot, o) from V ̸∈ Vcorr, if o ∈ O, it reads
the time Cl from Gclock and does:
1. If there is no tuple

(
V, v′, o′, tag′,Cl′, 1

)
∈ Lgball, it (i) picks tag

$←
TAG and it inserts the tuple

(
V,Null, o, tag,Cl, 1

)
→ Lgball, (ii) sends

(sid,Gen_Ballot, tag,Cl, 0|o|) to S. Upon receiving the token back
from S, it returns (sid,Generating) to V .

2. Else, it returns (sid,Gen_Ballot, o,⊥) to V .
■ Upon receiving (sid,Gen_Ballot) from V ∈ Vcorr, it sends the message
(sid,Gen_Ballot, V ) to S. Upon receiving (sid,Gen_Ballot, o, v, V )
from S, it sends (sid,Gen_Ballot, o, v) to V .
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■ Upon receiving (sid,Update, {(vj , tagj)}p(λ)j=1 ) from S for all vj ̸= Null, if
there is a tuple (·, vj , ·, ·, ·, 1) ∈ Lgball or if there are j, j∗ ∈ [1, p(λ)] such that
vj = vj∗ , it returns (sid,Update, {(vj , tagj)}p(λ)j=1 ,⊥) to S. Else, it updates
each tuple (V,Null, oj , tagj ,Clj , 1) to (V, vj , oj , tagj ,Clj , 1).
■ Upon receiving (sid,Retrieve) from V ̸∈ Vcorr it reads the time Cl from
Gclock and does:
1. If there is a tuple

(
V, v, o, tag,Cl′, 1

)
∈ Lgball with v ̸= Null and Cl−Cl′ ≥

delay_gen, it returns (sid,Retrieve, (o, v)) to V .
2. Else, it returns (sid,Retrieve,⊥) to V .

■ Upon receiving
(
sid,Cast, v, σ⃗

)
from V , if V ∈ Velig \Vcorr it reads the

time Cl from Gclock. If Status(Cl, t⃗,Cast) = ⊤, it does:
1. If there is no tuple (V, v, ·, ·,Cl′, 1) ∈ Lgball or Cl − Cl′ < delay_gen, it

returns (sid,Cast, v, σ⃗,⊥) to V .
2. If there no tuple (V, v′, σ⃗′,Cl′, 1) in Lcast, it adds (V, v, σ⃗,Cl, 1) to Lcast

and ((v, σ⃗), V,Cl) to Lpend.
3. If there is a tuple (V, v′, σ⃗′,Cl′, 1) in Lcast, it returns (sid,Cast, v, σ⃗,⊥)

to V .
■ Upon receiving

(
sid,Cast, v, σ⃗, V

)
from S, if V ∈ Vcorr, it reads the time

Cl from Gclock. If Status(Cl, t⃗,Cast) = ⊤, it adds (V, v, σ⃗,Cl, 0) to Lcast and
((v, σ⃗), V,Cl) to Lpend.
■ Upon receiving (sidC ,Advance_Clock) from a voter V ∈ V \ Vcorr,
if P /∈ Ladv, it adds P to Ladv and forwards (sidC ,Advance_Clock) to
Gclock on behalf of P .
■ Upon receiving (sidC ,Read_Clock) from a voter V ∈ V\Vcorr, it reads
the time Cl from Gclock and returns (sidC ,Read_Clock,Cl) to P .
■ Upon receiving (sid,Open, v) from any party P ∈ V ∪ {S}, it reads the
time Cl from Gclock. If Status(Cl, t⃗,Tally) = ⊤, it does:
1. If there is a tuple (V, v, σ⃗, ·, ·) ∈ Lcast, and a unique (·, v, o, ·, ,̇1) ∈ Lgball,

it sends (sid,Open, v, o) to P .
2. Else, if there is a tuple (V, v, σ⃗, ·, ·) ∈ Lcast but there is no tuple

(V, v, o, , ·, ·, 1) ∈ Lgball, it sends (sid,Open, v) to S. Then, it sends the
reply it gets from S to P .

■ Upon receiving (sid,Leakage) from S, it reads the time Cl from GClock.
If Status(Cl, t⃗,Cred) = Status(Cl, t⃗,Cast) = Status(Cl, t⃗,Tally) = ⊥ or
Status(Cl, t⃗,Tally) = ⊤, then it returns to S all the triples (v, o, 1) such
that (·, v, o, ·, ·, 1) ∈ Lgball ∧ (·, v, ·, ·, 1) ∈ Lcast.

Fig. 17. The vote management functionality Fvm parameterized by
delay_gen, delay_cast, Status, interacting with the voters in V, SA and
simulator S.
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D.3 The hybrid STE protocol ΠFelig,Fvm

STE

Below we present the protocol ΠFelig,Fvm

STE that UC realizes FSTE in the (Fvm,Felig,
Gclock)-hybrid model (cf. Theorem 5). The protocol can be distinct into four
phases (similar to FSTE), Setup, Credential generation, Cast, Tally.

Π
Felig,Fvm

STE (SA,V, delay_gen, delay_cast).

Setup.

■ Upon receiving (sid,Election_Info,Velig,O, tcast, topen) from Z, if
Velig ⊆ V and tcast < topen, SA sends (sid,Setup_Info,Velig,O, tcast, topen)
to Fvm. Else, SA returns (sid,Election_Info,Velig, tcast, topen,⊥) to
Z. Upon receiving (sid,Election_Info, vote.par) from Fvm, SA sends
(sid,Eligible,Velig,O, tcast, topen) to Felig which sends reg.par to all voters
in V. Upon receiving reg.par from Felig, each voter V ∈ V stores reg.par as
the registration parameters and initializes a multiset T as empty. She also
sets t⃗← (tcast, topen, delay_cast).
Credential generation. This phase is completely managed by Felig.
■ Upon receiving (sid,Gen_Cred) from Z for the first time, V sends
(sid,Gen_Cred) to Felig, which in turn sends (sid,Gen_Cred, V, ĉr) to
all voters in V (or sends (sid,Gen_Cred,⊥) to V and halts).
Cast. Here, Fvm and Felig combined carry out the ballot generation, au-
thentication and casting tasks.
■ Upon receiving

(
sid,Cast, o

)
from Z for the first time, V executes the

following steps:
1. She sends (sid,Gen_Ballot, o) to Fvm which replies either with

(sid,Generating) or (sid,Gen_Ballot, o,⊥). In the second case, she
forwards the message to Z.

2. If delay_gen = 0 she sends (sid,Retrieve) to Fvm. Upon receiving
(sid,Retrieve, (o, v)) from Fvm she does the Cast step as described
below.

3. In any other case, she returns (sid,Casting) to Z.
■ Upon receiving (sidC ,Advance_Clock) from Z, V sends
(sid,Retrieve) to Fvm. Upon receiving (sid,Retrieve, (o, v)) from
Fvm she does the Cast step as described below.
– Cast: She sends (sid, Auth_Ballot, v) to Felig which replies with the

authentication receipt for v as (sid, Auth_Ballot, v, σ⃗) (or sends (sid,
Auth_Ballot, ⊥) to V and halts). Finally, she sends

(
sid,Cast, v, σ⃗

)
to Fvm which broadcasts the message to all voters in V after delay_cast
rounds. In turn, the voters store the received pair (v, σ⃗).

Then, she sends (sidC ,Advance_Clock) to Gclock.
Tally. In order for the voter to perform self-tallying, she accesses Felig for
ballot verification and linkability and Fvm for ballot opening.
■ Upon receiving a message

(
sid,Tally

)
from Z, if Status(Cl, t⃗,Tally) = ⊥,
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then V ignores the message. Otherwise, if T = ∅, V executes the following
steps:
1. For every tuple

(
sid, Cast_Ballot, v, σ⃗

)
she has obtained from

Fvm, V sends (sid, Ver_Ballot, v, σ⃗) to Felig which replies with (sid,
Ver_Ballot, v, σ⃗, x), where x ∈ {0, 1,⊥}.
If there is any ballot verification request such that Felig replied with
x = ⊥, then V discards that ballot. Otherwise, she includes in her tally
set all pairs (v, σ⃗) such that Felig replied with x = 1.

2. V discards multiple ballots as follows: for every pair (v, σ⃗), (v′, σ⃗′) in
her tally set, she sends

(
sid, Link_Ballots, (v, σ⃗), (v′, σ⃗′)

)
to Felig.

If she gets
(
sid, Link_Ballots, (v, σ⃗), (v′, σ⃗′), 1

)
as a response, then

she discards the ballot she received the last out of those two. Clearly,
after this pairwise check is completed, all except one of ballots that are
linked will be removed from the tally set, so that one voter-one vote is
guaranteed.

3. For every pair (v, σ⃗) in the tally set, V sends (sid, Open, v) to Fvm,
which replies with the opening (sid, Open, v, o). If o ∈ O, then V adds
o to the multi-set of all opened valid preferences (initialized as empty).

4. Finally, she sets the tally result T as the multi-set of all opened valid
preferences.

V returns (sid,Tally,T) to Z.
■ Upon receiving (sid,Verify, T̂) from Z, V reads Cl from Gclock. If
Status(Cl, t⃗,Tally) = ⊤, she does:
1. If T = ∅, she computes the tally multiset as if it received a (sid,Tally)

command.
2. If T̂ = T, she returns (sid,Verify, T̂, 1) to Z. Else, she returns

(sid,Verify, T̂, 0) to Z.

Fig. 18. Description of the protocol Π
Felig,Fvm

STE parameterized by
delay_gen, delay_cast, Status in the (Felig,Fvm,Gclock)-hybrid model.

Theorem 5. The protocol ΠFelig,Fvm

STE (SA,V, delay_gen, delay_cast) in Figure 18
UC-realizes FSTE(SA,V, delay_gen, delay_cast) in the (Felig,Fvm,Gclock)-hybrid
model.

Proof. For every adversary A we construct a simulator S such that every envi-
ronment Z cannot distinguish the real from the idea execution of the protocol.
Below follows the description of S.
S initializes as empty the lists of generated credentials LS

elig, generated ballots
LS
gball, authenticated ballots LS

auth, cast ballots LS
cast, and operates as follows:

Upon receiving (sid,Corrupt,Vcorr), S forwards the message to A as if it
was Z. Upon receiving (sid,Corrupt,Vcorr) from A as if it was Felig, S forwards
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the same message as if it was from Z to A. Upon receiving (sid,Corrupt,Vcorr)
from A as if it was Fvm, S forwards the message to FSTE.

Upon receiving (sid,Election_Info,Velig,O, tcast, topen) from FSTE, S sets
t⃗ ← (tcast, topen, delay_cast) and vote.par := (Velig,O, t⃗) as voting parameters
and sends (sid,Election_Info, vote.par) to A as if it was Fvm. Upon receiv-
ing the permission from A, S sends (sid, Setup_Elig,Velig,O, tcast, topen) to
A as if it was Felig. Upon receiving (sid, Setup_Elig, GenCred, AuthBallot,
VrfyBallot, UpState, Stgen) from A then:
1. It sets reg.par := (Velig,O, t⃗, Stgen) as registration parameters.
2. It sends (sid,Elig_Par, reg.par) to A as if it was Felig on behalf of every

corrupted party to A. If A returns the token back for every corrupted party
then S sends the message (sid,Election_Info_OK,Velig, tcast, topen) to
FSTE.

Upon receiving (sid,Gen_Cred, V ) from FSTE for V ̸∈ Vcorr, S does:
1. It runs (cr, ĉr, aux) ← GenCred(1λ, reg.par). If there are tuples (·, cr, ·, ·, ·) or

(·, ·, ĉr, ·, ·) in LS
elig or (cr, ĉr) = ⊥, it sends (sid, Gen_Cred, V,⊥) to FSTE.

Else, it adds (V, cr, ĉr, aux, 1) to LS
elig.

2. It sends (sid,Gen_Cred, V, ĉr) to A as if it was Felig. If A allows the broad-
cast then S sends (sid,Gen_Cred, V, ĉr) on behalf of every corrupted party
as if it was Felig to A. If A returns the token back for every corrupted party
then S sends (sid,Gen_Cred, V, ready) to FSTE.

Upon receiving (sid,Gen_Ballot, tag,Cl, 0|o|) from FSTE, S inserts the tuple(
V,Null, o, tag,Cl, 1

)
→ LS

gball for some V previously unused such that there is a
tuple (V, cr, ĉr, aux, 1) in LS

elig, and sends the message (sid,Gen_Ballot, tag,Cl, 0|o|)
to A as if it was Fvm. Upon receiving the token back from A it returns whatever
receives from A to FSTE.

Upon receiving (sid,Cast_Ballot,M) from FSTE it does:
1. It searches for a tuple

(
V,M, o, tag,Cl, 1

)
in LS

gball. For such a V , it picks
the tuple (V, cr, ĉr, aux, 1) from LS

elig and updates it as (V, cr, ĉr, aux, 1, used).
Observe that, the relationship between cr and V are only known to S.

2. If Stfin = 0, then it runs Stfin ← UpState(Stgen, {ĉr|(·, ·, ĉr, ·, ·) ∈ LS
elig}).

3. It runs σ ← AuthBallot(v, cr, Stfin, reg.par, aux). If VrfyBallot(v, σ, Stfin,
reg.par, aux) = 0, it sends (sid, Auth_Ballot,⊥) to FSTE. Else, it adds
(V, v, cr, σ, 1) to LS

auth.
4. It sends (sid,Cast_Ballot, (v, σ⃗ = (cr, σ))) to A as if it was Fvm.

Upon receiving (sid,Update, {(vj , tagj)}p(λ)j=1 ) from A as if it was Fvm, for all
vj ̸= Null, if there is a tuple (·, vj , ·, ·, ·, 1) or if there are j, j∗ ∈ [1, p(λ)] such that
vj = vj∗ it sends (sid,Update, {(vj , tagj)}p(λ)j=1 ,⊥) to A as if it was Fvm. Else, it
updates each tuple (Null, oj , tagj ,Clj , 1) to (vj , oj , tagj ,Clj , 1). Then it forwards
the message to FSTE. Upon receiving (sid,Opening, V ∗, v) from FSTE, it sends
(sid,Open, v) to A as if it was Fvm. Upon receiving (sid,Open, v, o) from A, it
sends (sid,Opening, V ∗, v, o) to FSTE.
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Upon receiving (sid,Tally) from FSTE on behalf of V ∈ Vcorr it forwards the
message to A as if it was V and replies back to FSTE whatever it receives from
A.

Upon receiving (sid,Leakage) from Z, S forwards the message to A as if
it was Z. Upon receiving (sid,Leakage) fromA as if it was Fvm, it reads the time
Cl from Gclock. If Status(Cl, t⃗,Cred) = Status(Cl, t⃗,Cast) = Status(Cl, t⃗,Open) =
⊥, S sends (sid,Tally) to FSTE. Upon receiving all the pairs (v, o) such that
(V, v, o, tag,Cl∗, 1) ∈ Lgball ∧ (V, o,Cl′, 1) ∈ Lcast from FSTE where Lgball and Lcast

lists that are maintained in FSTE, it returns them to A as if it was Fvm.
Observe that the distributions of messages in both executions are exactly the

same. This completes the proof.

E The anonymous broadcast protocol Πm,ℓ,t,B,p
an.BC

In Figure 19, we depict the stratified mix-net architecture for the special case
where m = ℓ = 3.

Fig. 19. The anonymous broadcast protocol Π3,3,t,B,p
an.BC over a 3× 3 stratified mix-net.

The blue, green, and red arrows illustrate the routing of each of the three message
shares.

E.1 Protocol description

The Anonymous BC protocol Πm,ℓ,t,B,p
an.BC (P,FBC,FRO).

The hybrid protocol runs over an m× ℓ stratified mix-net with mix servers
MXj,k ∈MX, j ∈ [m], k ∈ [ℓ] as described above. It is parameterized by a
public key encryption scheme ΣPKE = (PKE.Gen,PKE.Enc,PKE.Dec) and
Shamir’s (t,m)-TSS scheme Σtss [58]. Each party P initializes a counter
countP and a flag setupP as 0. Upon receiving a command message from Z
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and if setupP = 0, P executes the procedure Setup as described below and
then executes the command message based on her description.

Setup:
– Upon receiving (sid/sidC , I, input) from Z, where I ∈ {Broadcast,
Advance_Clock,Read_Clock}, P sends (sidP,MX,Broadcast, setup)
to FBC, where sidP,MX = (sid, {P} ∪MX).
– Upon receiving (sidP,MX,Broadcast, P, setup) from FBC for the first
time, the mix server MXj,k reads the time Cl from Gclock and initializes a
local time clock variable as Clj,k ← Cl. It also initializes a list of received
messages per round, Lj,k

pool and a list of all received messages Lj,k
rec , as

empty. Next, it runs PKE.Gen(1λ) and obtains a pair of a secret and
a public key (skj,k, pkj,k). Then, it provides all parties with its public
key by sending (sidMXj,k,P,Broadcast, (setup, pkj,k)) to FBC, where
sidMXj,k,P = (sid,MXj,k ∪P).
– Upon receiving (sidMXj,k,P,Broadcast,MXj,k, (setup, pkj,k))
from FBC, P ∗ stores the pair (MXj,k, pkj,k). Once she has stored
the public keys from all mix servers, P ∗ sets statusP∗ to 1.

Subsequently, P executes (sid/sidC , I, input) as described below.

■ Upon receiving (sid,Broadcast,M) she reads the time Cl from Gclock. If
statusP = 1, P ∈ P does:
1. If countP = B or |M | > p(λ) or the tuple (Cl, 1) is recorded, then she

ignores the message. Else, she increases countP by 1 and proceeds as
follows.

2. She pads M so that |M | = p(λ).
3. She randomly chooses a value r from some randomness

space R and sends (sid,Query, r) to FRO. Upon receiving
(sid,Random_Oracle, r, h) from FRO, where |h| = p(λ), she
computes the pair (r, h⊕M).

4. She splits (r, h⊕M) into m shares [(r, h⊕M)]1, . . . , [(r, h⊕M)]m.
5. She randomly chooses tag from a space TAG of exponential size with

respect to the security parameter λ.
6. For j = 1, . . . ,m, she computes an ℓ-level layered encryption of

(tag, [(r, h⊕M)]j) as

cj ←PKE.Enc
(
pkj,1, . . .

. . . , (PKE.Enc(pkj,ℓ, (tag, [(r, h⊕M)]j)))
)

4. She stores tag in an, initially empty, list of transmitted tags LP
send and

stores (pkj,1, cj) in an, initially empty, list of pending ciphertexts LP
pool.

■ Upon receiving (sidC ,Advance_Clock) from Z, P reads the time Cl
from Gclock and records the tuple (Cl, 1).Then she does:
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1. While LP
pool is not empty,

(a) She picks the first pair (pkj∗,1, cj∗) in LP
pool.

(b) She sends (sidP,MX,Broadcast, (transmit, pkj∗,1, cj∗)) to FBC,
where sidP,MX = (sid, {P} ∪MX).

(c) She removes (pkj∗,1, cj∗) from LP
pool.

2. She creates as many dummy ciphertexts as to cause a cover traffic effect,
i.e., to broadcast exactly B times during the current round. Namely, for
b = 1, . . . , B − countP :
(a) She chooses a random tagb from space TAG.
(b) She creates the pair (rb, hb ⊕ Null) for the special message ‘Null’ of

length p(λ) via FRO as if it was an original message.
(c) She splits (rb, hb⊕Null) into m shares [(rb, hb⊕Null)]1, . . . , [(rb, hb⊕

Null)]m.
(d) For j = 1, . . . ,m:

i. She computes an ℓ-level layered ciphertext

cb,j ←PKE.Enc
(
pkj,1, . . .

. . . , (PKE.Enc(pkj,ℓ, (tagb, [(rb, hb ⊕ Null)]j)))
)

ii. She sends (sidP,MX,Broadcast, (transmit, pkj,1, cb,j)) to FBC.
3. She resets countP as 0.
4. She sends (sidC ,Advance_Clock) to Gclock and completes her round.

■ Upon receiving either (i) (sidP,MX,Broadcast, P, (transmit, pkj,k, c
∗
j,k))

from FBC (if k = 1), or (ii) (sidMX,Broadcast,MXj,k−1, (transmit, c∗j,k))
from FBC, where sidMX = (sid,MX) (if 2 ≤ k ≤ ℓ), the server MXj,k does:
1. If c∗j,k ∈ Lj,k

rec , then it ignores the message. Else, it adds c∗j,k to Lj,k
rec and

proceeds as follows.
2. Consider that the ℓ− (k − 1)-level layered ciphertext c∗j,k is denoted as

c∗j,k :=PKE.Enc
(
pkj,k, . . . , (PKE.Enc(pkj,ℓ, (tag

∗, [C∗]j)))
)
.

MXj,k decrypts one layer using skj,k such that if k < ℓ, the decryption
results in a ℓ− k-level layered ciphertext

c∗j,k+1 :=PKE.Enc
(
pkj,k+1, . . . , (PKE.Enc(pkj,ℓ, (tag

∗, [C∗]j)))
)
,

whereas if k = ℓ (exit server), the decryption results in the plaintext
pair (tag∗, [C∗]j).

3. It reads the time Cl from Gclock.
4. If Cl = Clj,k + 1 (i.e., the beginning of a new round occurred), then it

does:
(a) It parses Lj,k

pool as ⟨R1, . . . , R|Lj,k
pool|
⟩, where |Lj,k

pool| is the size of Lj,k
pool.

(b) It performs a random permutation π : [|Lj,k
pool|] −→ [|Lj,k

pool|]
on the entries of Lj,k

pool, i.e., it randomly reorders Lj,k
pool as

⟨Rπ(1), . . . , Rπ(|Lj,k
pool|)
⟩.
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(c) For κ = 1, . . . , |Lj,k
pool|:

- If k < ℓ (no exit point), then MXj,k sends
(sidMX,Broadcast, (transmit, Rπ(κ))) to FBC, where Rπ(κ) is
an ℓ− k-level layered ciphertext.

- If k = ℓ (exit point), then the exit server MXj,ℓ

sends (sidMXj,ℓ,P,Broadcast, (transmit, Rπ(κ))) to FBC where
sidMXj,ℓ,P = (sid, {MXj,ℓ} ∪ P) and Rπ(κ) is a pair of a tag and
the linked share.

(d) It resets Lj,k
pool as empty.

(e) It advances its local time, i.e., it updates Clj,k ← Cl.
5. It adds the decryption of c∗j,k (that is either c∗j,k+1, if k < ℓ, or

(tag∗, [M∗]j), if k = ℓ) to Lj,k
pool.

■ Upon receiving (sidMXj,ℓ,P,Broadcast,MXj,ℓ, (transmit, R)) from FBC,
the party P ∈ P does:
1. She parses R as (tag, [(r, C)]j and checks if a triple (tag, ·,MXj,ℓ) is

already recorded in LP
rec. If so, she aborts.

2. She adds (tag, [(r, C)]j ,MXj,ℓ) to an, initially empty, list of received mes-
sages LP

rec.
3. She checks if there are at least t tuples of the form (tag, [(r, C)]∗,MX∗)

in LP
rec. If so, she reconstructs the pair (r, C) from these tuples, and

removes every message (tag, ·, ·) from LP
rec.

4. She sends (sid,Query, r) to FRO. Upon receiving
(sid,Random_Oracle, h) from FRO, she recovers the message
by computing M ← h⊕ C and removing the pads.

5. If M = Null, then she takes no further action. Else, if tag ∈ LP
send,

then she returns (sid,Broadcast,M, sender) to Z. Else, she returns
(sid,Broadcast,M) to Z.

Fig. 20. The anonymous broadcast functionality Πm,ℓ,t,B,p
an.BC (P,FBC,FRO) param-

eterized by the mix-net m× ℓ stratified topology, the corruption threshold t < k,
and the bound B.

E.2 Security analysis

Theorem 1. Let m, ℓ, t, B be non-negative integers such that m, ℓ,B ≥ 1 and
t ≤ m. Let p(·) be some polynomial. Let ΣPKE be a public key encryption scheme
that is IND-CPA secure. Then, the protocol Πm,ℓ,t,B,p

an.BC (P,FBC,FRO) described
in Figure 20 over ΣPKE UC-realizes Fℓ,B,p

an.BC(P) in the (FBC,FRO,Gclock)-hybrid
model against all adversaries that (i) are global, (ii) can corrupt parties, and
(iii) can corrupt mix servers in a fail-stop manner, according to the following
restrictions:
1. For every j ∈ [m], there is at least a kj ∈ [ℓ] such that MXj,kj

is honest (i.e.,
in every cascade, not all mix servers are corrupted).
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2.
∣∣{j | ∃k such that MXj,k is corrupted}

∣∣ ≤ m − t (i.e, there are at least t
cascades with no corrupted mix servers)7.

3.
∣∣{j | MXj,ℓ is corrupted}

∣∣ < t (i.e., the number of corrupted exit servers is
less than t).

Proof. First, we construct a simulator that successfully emulates an execution
of Πm,ℓ,t,B,p

an.BC (P,FBC,FRO) (except from some negligible probability of failure).
Then, we will reduce the protocol’s security to the IND-CPA security of the
underlying encryption scheme ΣPKE.
Constructing the simulator S. We define the simulator S that operates as
follows:

- It emulates a real-world execution for A, itself playing the role of the honest
parties and FBC,FRO while acting as a proxy between A and the environ-
ment.

- It normally follows the protocol on behalf any honest mix server.
- It manages the following data structures:(i) the list of random oracle graph

pairs LRO, (ii) the list of activity records Ltable, (iii) the list of pending mes-
sages of corrupted parties Lcorr, (iv) the list of allocated messages for honest
parties Lhon, and (v) the list of all pending messages Lpend, all initialized as
empty. Let P \Pcorr be the set of the (emulated) honest parties.

- Upon receiving (sid,Setup, P ) from Fℓ,B,p
an.BC, if P ∈ P\Pcorr, then it initiates

the Setup procedure of Πm,ℓ,t,B,p
an.BC by sending (sidP,MX,Broadcast, P, setup)

to A as if it was FBC. If A allows completion of Setup, then S sends
(sid,Setup_OK) to Fℓ,B,p

an.BC, else it sends (sid,Setup_NO) to Fℓ,B,p
an.BC. If

P ∈ Pcorr, then it allows the Setup of Fℓ,B,p
an.BC, only if A allows the Setup of

the emulated execution via the corrupted party P and the corrupted mix
servers.

- The simulator upon receiving a broadcast request from Z for a corrupted
party P it forwards the message to A as if it was Z. Then, upon receiving the
token back from A it randomly chooses a random tag from TAG, reads the
time Cl from Gclock, records the tuple (tag, P,Cl) and sends (sid,Broadcast,
tag, P ) to Fℓ,B,p

an.BC. When S receives from Fℓ,B,p
an.BC a request for the message that

corresponds to the value tag, it forwards it to A as if it was a corrupted mix
server and returns back to Fℓ,B,p

an.BC whatever receives from A.
- Upon receiving (sidC ,Advanced_Clock, P ) from Gclock, if P ∈ P \Pcorr,

then it reads the time Cl from Gclock and emulates a transmission carried by
P at time Cl as follows. For b = 1, . . . , B:
1. It chooses a random tagb from TAG. If tagb has been reused in a trans-

mission of a (either honest or corrupted) party during the period [Cl −
ℓ,Cl − 1], then it aborts and simulations fails. This is because reuse of
tags within this period causes obvious correctness errors during message
reconstruction. Note that we can allow the reuse of tags that correspond
to messages whose delivery time has passed without any correctness risks

7 This restriction can be removed if we consider only semi-honest adversaries where
fail-stops do not happen.
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(delivered tagged shares are removed from the parties’ lists of received
messages).

2. It randomly chooses a value rb from the exponential-sized domain (query)
space and a value Cb of length p(λ) from the exponential-sized image
(response) space of FRO. If there is a pair (rb, ·) in LRO, it aborts and
simulation fails. The reason is that the value rb should be fresh in order
to be the medium for equivocation, i.e. the “decryption” of Cb to some
desired message that S will receive at time Cl+ℓ.Else, it records the pair
(rb, empty) to LRO.

3. It splits (rb, Cb) into m shares [(rb, Cb)]1, . . . , [(rb, Cb)]m.
4. It adds (rb, Cb,Cl+ ℓ) to Ltable.
5. For j = 1, . . . ,m: it computes an ℓ-level layered encryption, cb,j , of

(tagb, [(rb, Cb)]j) and sends (sidP,MX,Broadcast, (transmit, pkj,1, cb,j))
to A as if it was FBC.

IfA controls the entry server, then S forwards the message (sidP,MX,Broadcast,
(transmit, pkj,1, cb,j)) to A as if it was the corrupted server that corresponds
to the public key pkj,1 and does whatever A instructs. Note that A can abort
due to fail-stop behavior, so the next mix server will not receive the corre-
sponding encrypted share. Despite that, the message can still be retrieved
as enough shares are available based on threat model restriction ii) in the
theorem statement.
In addition, S keeps track of the message flow in the simulated stratified mix-
network and activates A when a message reaches a corrupted mix-server and
does whatever A instructs. This is possible because S knows which servers
are corrupted. Again, observe that A can abort but because of restriction
2), the message will still be retrievable.

- At any moment of the execution,Amay submit queries for the emulated FRO,
so S, who programs the RO, should respond consistently. Upon receiving a
query x, S reads the time Cl from Gclock, it responds by checking the following:
1. If there is a triple (r∗, C∗,Cl∗) ∈ Ltable such that (i) r∗ = x and (ii)

Cl < Cl∗. If so, then A has managed to guess (or extract by breaking
the underlying crypto) a query necessary for equivocation before the ex-
pected message delivery time Cl∗, which means that when the parties
will receive the messages at time Cl∗ this tuple cannot be used for equiv-
ocation by S, thus S aborts and simulation fails.

2. If there is a triple (r∗, C∗,Cl∗) ∈ Ltable such that (i) r∗ = x and (ii)
Cl ≥ Cl∗, then this means that A makes the query after the expected
message delivery time, so S can use this tuple for equivocation, as we
will explain later.

3. If there is no triple (x, ·, ·) ∈ Ltable, then if there is a pair (x, y) in
LRO, then it responds with (sid,Random_Oracle, x, y) to A. Else, it
chooses a random y∗ from the image space of FRO, adds (x, y∗) to LRO,
and responds with (sid, Random_Oracle, x, y∗) to A.

- In case that S receives a ciphertext instead of a message from A to be
broadcast for a corrupted party P , it generates at random a tag and reads
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the time Cl from Gclock. Then it sends (sid,Broadcast, tag, P ) to Fℓ,B,p
an.BC.

When the functionality requests the actual message from S when the time
has come, S either reconstructs the message or requests the message from A
and returns to Fℓ,B,p

an.BC whatever it receives.
- Upon receiving a sequence (sid,Broadcast,M1), . . . , (sid,Broadcast,MNCl

)

of messages from Fℓ,B,p
an.BC, it reads the time Cl from Gclock and creates a ran-

dom permutation of the messages that will be assigned to honest senders by
running the procedure below:

Allocation(P \Pcorr, B, Lcorr, (M1, . . . ,MNCl
),Cl)

1. Set Lpend ←
(
(M1,Cl) . . . , (MNCl

,Cl)
)
.

2. While Lcorr does not contain any (·,Cl) entry:
(a) Pick the first message (M∗,Cl) in Lcorr. This refers to a message M∗

that was transmitted ℓ clock ticks earlier by some corrupted party.
(b) Find the first j∗ s.t. (Mj∗ ,Cl) = (M∗,Cl). Such occurrence is guar-

anteed since Fℓ,B,p
an.BC broadcasts all messages from corrupted parties

when instructed by S.
(c) Remove (M∗,Cl) from Lcorr and (Mj∗ ,Cl) from Lpend.

3. Apply padding so that all messages in Lpend are of length p(λ).
4. Repeatedly insert ‘Null’ messages to Lpend until the list contains exactly
|P \Pcorr| ·B entries.

5. Randomly permute the |P \Pcorr| ·B entries in Lpend.
6. Set Lhon ← Lpend.

- It remains to explain how S handles RO queries that A makes after expected
delivery time has passed and are necessary for message recovery (e.g., on be-
half of a corrupted recipient that has reconstructed the equivocation pairs
from the corresponding shares). Upon receiving a query x fromA, if there is a
triple (r∗, C∗,Cl∗) ∈ Ltable such that (i) r∗ = x and (ii) Cl ≥ Cl∗, then S picks
the first pair formed as (M∗,Cl∗) in Lhon. The existence of such pair follows
by the facts that (i) after the Allocation procedure for time Cl∗ is completed,
there are exactly |P\Pcorr| ·B pairs (·,Cl∗) ∈ Lhon, and (ii) ℓ clock ticks ear-
lier, exactly B triples (·, ·,Cl∗) ∈ Ltable were created by S during transmission
emulation of every party or every party P ∈ P \Pcorr. By picking (M∗,Cl∗),
S maps (r∗, C∗) to M∗ in a 1-1 manner8. Next, S replies to the query r∗ = x
by using equivocation as follows: if a pair (r∗, y) is already recorded in LRO,
then it responds with y, else it computes h∗ ← C∗⊕M∗ (observe that since
C∗ is random, h∗ is also random), adds (r∗, h∗) to LRO and responds with
h∗. This ensures that A will recover the message M∗ ← h∗⊕C∗, as desired.

8 Note that, implicitly by the description of the Allocation procedure, if (r∗, C∗) was
created during the transmission of some party P ∗, then P ∗ has been randomly
assigned as presumed sender of M∗ among the honest parties.
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Analysis of the simulation. We observe that for every message M , the distribu-
tion

{r $← RO_Domain;h
$← RO_Range : (r, h⊕M)}

is identical to the distribution

{r $← RO_Domain;C
$← RO_Range : (r, C)} .

Therefore, the equivocation that S applies by programming the RO allows for
the perfect emulation of the honest transmission of any message M , unless the
following happens: S aborts because at some point of the emulated transmission
for an honesty party it chooses a randomness that is already in LRO, or it chooses
tag that was reused up to ℓ rounds earlier.

In addition, another possible deviation of Πm,ℓ,t,B,p
an.BC from the perfect cor-

rectness that Fℓ,B,p
an.BC offers, is the event where a mix server discards a ciphertext

that has received in the past, although it happened that this new ciphertext was
honestly generated using the same randomness.

We denote the union of the above events by Fail_Repeat. Clearly, since the
randomness and tag domains are of exponential size and the execution runs in
polynomial time, we have that Pr[Fail_Repeat] = negl(λ).

By threat model restriction (i) in the theorem statement, the existence of at
least one honest mix server, hence of at least one permutation unknown to the
adversary A, in each of the m cascades, guarantees the unlinkability of all the
shares of each transmitted value. The latter along with the random allocation
of honest transmitted messages during the Allocation process, ensures that the
said messages are broadcast in random order, just as in Fℓ,B,p

an.BC.
By threat model restriction (ii),the adversary A, even when it acts in fail-

stop manner, cannot block the routing of at least t shares per message. Thus,
message reconstruction is always feasible on the recipient side.

It remains to show that simulation will not fail because A managed to query
the RO for some randomness by recovering a transmitted value before all its
tagged shares are eventually broadcast to the parties. Unless A simply guesses
the randomness correctly (which happens only with negl(λ) probability), the lat-
ter could be achieved if A managed to break the underlying crypto. However, by
the information theoretic security of Shamir’s TSS and threat model restriction
(iii), the shares that the corrupted exit servers obtain do not suffice for recon-
structing the secret. Therefore, A’s strategy should rely on breaking the security
of the underlying encryption scheme, ΣPKE. In the following, we show that with
overwhelming probability this cannot happen, given that ΣPKE is IND-CPA se-
cure.

Reduction to IND-CPA security. We will reduce the security of Πm,ℓ,t,B,p
an.BC

to the security of a public key encryption scheme denoted by Σ
(z)
PKE that naturally

derives from z “iterations” of ΣPKE. Formally, for some z that is polynomial in
λ, Σ(z)

PKE is defined as follows:
– PKE.Gen(z)(1λ): run PKE.Gen(1λ) z times and obtain the pairs of keys (sk1, pk1),

. . . , (skz, pkz). Set sk := (sk1, . . . , skz) and pk := (pk1, . . . , pkz).

55



– PKE.Enc(z)(pk,M := (M1, . . . ,Mz)): for j ∈ [z], run cj ← PKE.Enc(pkj ,Mj)
and set c := (c1, . . . , cz).

– PKE.Dec(z)(sk, c := (c1, . . . , cz)): for j ∈ [z], run Mj ← PKE.Dec(skj , cj)
and set M := (M1, . . . ,Mz).
By using a standard hybrid argument, in the following claim, we show that

the security of ΣPKE suffices for the security of Σ(z)
PKE.

Claim 1 Let z be polynomial in λ. If ΣPKE is IND-CPA secure, then Σ
(z)
PKE is

also IND-CPA secure.

Proof of Claim 1. We use a contradiction argument for the proof. Let us assume
that B be an IND-CPA adversary against Σ

(z)
PKE that wins with probability 1

2 +
β(λ). For j∗ = 1, . . . , z, we construct an IND-CPA adversary Bj∗ against ΣPKE

that emulates the IND-CPA game against Σ
(z)
PKE as follows:

1. On input a public key pk, for j ∈ [z]\{j∗}, it runs (skj , pkj)← PKE.Gen(z)(1λ).
Then, it sets pkj∗ ← pk. It provides B with pk := (pk1, . . . , pkz).

2. It receives two distinct message vectors (M0
1 , . . . ,M

0
z ), (M1

1 , . . . ,M
1
z ) from

B.
3. For j < j∗, it creates an encryption of M1

j under pkj , c1j .
4. For j = j∗, it sends (M0

j∗ ,M
1
j∗) to the IND-CPA challenger and receives an

encryption, cbj∗ , of M b
j∗ .

5. For j > j∗, it creates an encryption of M0
j under pkj , c0j .

6. It replies to B with (c11, . . . , c
1
j∗−1, c

b
j∗ , c

0
j∗+1, . . . , c

0
z).

7. It returns whatever B outputs.
By the description of Bj∗ , the following hold:

Pr[B1(pk)→ 1|b = 0] = Pr[B(pk)→ 1|b = 0]

Pr[Bz(pk)→ 1|b = 1] = Pr[B(pk)→ 1|b = 1]

Pr[Bj∗(pk)→ 1|b = 1] = Pr[Bj∗+1(pk)→ 1|b = 0]

Thus, by the assumption for B, we have that

1

2
+ β(λ) =

=Pr[B(pk)→ 1 ∧ b = 1] + Pr[B(pk)→ 0 ∧ b = 0] ≤
≤
∣∣Pr[B(pk)→ 1 ∧ b = 1] + Pr[B(pk)→ 0 ∧ b = 0]

∣∣ =
=
1

2
·
∣∣Pr[B(pk)→ 1|b = 1] + Pr[B(pk)→ 0|b = 0]

∣∣ =
=
1

2
·
∣∣Pr[B(pk)→ 1|b = 1] + 1− Pr[B(pk)→ 1|b = 0]

∣∣ ≤
≤1

2
+

1

2
·
∣∣Pr[B(pk)→ 1|b = 1]− Pr[B(pk)→ 1|b = 0]

∣∣ =
=
1

2
+

1

2
·
∣∣Pr[Bz(pk)→ 1|b = 1]− Pr[B1(pk)→ 1|b = 0]

∣∣.
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Therefore, we get that

2β(λ) ≤
≤
∣∣Pr[Bz(pk)→ 1|b = 1]− Pr[B1(pk)→ 1|b = 0]

∣∣ =
=
∣∣Pr[Bz(pk)→ 1|b = 1]−

z∑
j∗=2

Pr[Bj∗(pk)→ 1|b = 0]+

+

z∑
j∗=2

Pr[Bj∗(pk)→ 1|b = 0]− Pr[B1(pk)→ 1|b = 0]
∣∣ =

=
∣∣Pr[Bz(pk)→ 1|b = 1]−

z∑
j∗=2

Pr[Bj∗(pk)→ 1|b = 0]+

+

z−1∑
j∗=1

Pr[Bj∗(pk)→ 1|b = 1]− Pr[B1(pk)→ 1|b = 0]
∣∣ =

=
∣∣Pr[Bz(pk)→ 1|b = 1]− Pr[Bz(pk)→ 1|b = 0]−

−
z−1∑
j∗=2

Pr[Bj∗(pk)→ 1|b = 0] +

z−1∑
j∗=2

Pr[Bj∗(pk)→ 1|b = 0]+

+Pr[B1(pk)→ 1|b = 1]− Pr[B1(pk)→ 1|b = 0]
∣∣ =

=
∣∣∣ z∑
j∗=1

(Pr[Bj∗(pk)→ 1|b = 1]− Pr[Bj∗(pk)→ 1|b = 0])
∣∣∣ ≤

≤
z∑

j∗=1

∣∣∣Pr[Bj∗(pk)→ 1|b = 1]− Pr[Bj∗(pk)→ 1|b = 0]
∣∣∣.

By the above inequality and an averaging argument, we get that there exists a
j∗0 ∈ z such that∣∣∣Pr[Bj∗0 (pk)→ 1|b = 1]− Pr[Bj∗0 (pk)→ 1|b = 0]

∣∣∣ ≥ 2β(λ)

z
.

We study the two following cases:
If it holds that

Pr[Bj∗0 (pk)→ 1|b = 1]− Pr[Bj∗0 (pk)→ 1|b = 0] ≥ 2β(λ)

z
,

then this directly implies that Bj∗0 wins the IND-CPA security game with prob-
ability at least 1

2 + β(λ)
z .

Else, if it holds that

Pr[Bj∗0 (pk)→ 1|b = 0]− Pr[Bj∗0 (pk)→ 1|b = 1] ≥ 2β(λ)

z
⇔

⇔Pr[Bj∗0 (pk)→ 0|b = 1]− Pr[Bj∗0 (pk)→ 0|b = 0] ≥ 2β(λ)

z
,

57



then the adversary B̄j∗0 , that operates exactly like Bj∗0 but flips Bj∗0 ’s output bit,
wins the IND-CPA security game with probability at least 1

2 + β(λ)
z .

In any case, if β(·) is a non-negligible function, then we devise an adversary
that wins the IND-CPA game against ΣPKE with non-negligible distinguishing
advantage β(λ)

z , which contradicts to the security of ΣPKE.
(End of Proof of Claim 1) ⊣

Reduction to the IND-CPA security of Σ(m−t̂)
PKE . We assume for the sake of con-

tradiction (cf. Definition 1), that there is an adversary A∗ under the mix server
corruption restrictions of the theorem statement, and an environment Z∗ such
that for some non-negligible function α(·), it holds that∣∣∣Pr [EXECF ℓ,B,p

an.BC

Z∗,S (λ) = 1
]
− Pr

[
EXEC

Πm,ℓ,t,B,p
an.BC

Z∗,A∗ (λ) = 1
]∣∣∣ ≥ α(λ). (1)

Let T ∗(λ), or simply T ∗, be the running time of Z∗. Let MX∗
exit.corr be the set

of exit mix servers that A∗ corrupts. Let t̂ = |MX∗
exit.corr|, where t̂ < t. For

notation simplicity assume that MX∗
exit.corr = {MX1,ℓ, . . . ,MXt̂,ℓ}. We construct

a sequence of IND-CPA adversaries D1, . . . ,DT∗ against Σ
(m−t̂)
PKE , where Dτ op-

erates as follows:
- On input pk := (pk1, . . . , pkm−t̂) ← PKE.Gen(m−t̂)(1λ), it emulates an ex-

ecution of Πm,ℓ,t,B,p
an.BC (P,FBC,FRO) in the presence ofA∗ and Z∗, by assigning

pk1, . . . , pkm−t̂ as the public key of the honest exit server MXt̂+1,ℓ, . . . ,MXm,ℓ,
respectively. If A∗ disallows the completion of the Setup procedure, then Dτ

stops the emulation and returns a random bit to the IND-CPA challenger.
Otherwise, for any honest mix server that is not an exit server, it normally
creates a pair of a public and a secret key by running PKE.Gen(1λ).

- For some execution, let M1, . . . ,MT ′ be the number of messages that are
broadcast by the honest parties (including ‘Null’ messages), as scheduled by
Z∗. Here, T ′ is upper bounded by T ∗B (this bound is reached in case Z∗

always instructs parties to Advance_Clock). If T ′ = 0, then Dτ stops the
emulation and returns a random bit to the IND-CPA challenger. If T ′ ≥ 1,
then it emulates honest transmission of Mw, w = 1, . . . , T ′ as follows:
∗ If w < τ , then it transmits Mw as the instructed honest party would do

by following the steps in Πm,ℓ,t,B,p
an.BC .

∗ If w = τ , then it does:
1. Like in Πm,ℓ,t,B,p

an.BC , it (i) chooses a random value r0τ and (ii) programs
FRO by choosing a random value hτ and recording the pair (r1τ , hτ ).

2. It normally creates the shares of (r1τ , hτ ⊕Mτ ) according to Shamir’s
secret sharing scheme; namely, it chooses a random t − 1 degree
polynomial f(x) = a0 + a1x + · · · + at−1x

t−1 and sets each share
as [(r1τ , hτ ⊕ Mτ )]j = (j, f(j)), j ∈ [m]. Here, f(0) = a0 encodes
(r1τ , hτ ⊕Mτ ).

3. It creates the shares of another random pair (r0τ , Cτ ) in a consistent
way w.r.t. the shares that the corrupted exit servers will receive. For
j = t̂ + 1, . . . , t, it chooses some random image values ŷj . Then, it
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computes the unique polynomial f̂(x) = â0+â1x+· · ·+ât−1x
t−1 that

is determined by the t points (1, f(1)), . . . , (t̂, f(t̂)), (t̂+1, ŷt̂+1), . . . ,

(t, ŷt) via Lagrange interpolation. If the degree of f̂(x) is lower than
t − 1, then it stops the emulation and returns a random bit to the
mIND-CPA challenger. Otherwise, it computes the points (t+1, f̂(t+

1)), . . . , (m, f̂(m)). It sets as (r0τ , Cτ ) the value that â0 encodes. The
m shares of (r0τ , Cτ ) are formed as:

[(r0τ , Cτ )]j =

{
(j, f(j)), if 1 ≤ j ≤ t̂

(j, f̂(j)), if t̂ < j ≤ m

4. It chooses a random tag tagτ .
5. It sends

(
(tagτ , [(r

0
τ , Cτ )]t̂+1), . . . , (tagτ , [(r

0
τ , Cτ )]m)

)
and

(
(tagτ , [(r

1
τ ,

hτ ⊕Mτ )]t̂+1), . . . , (tagτ , [(r
1
τ , hτ ⊕Mτ )]m)

)
as challenge lists of mes-

sages to the mIND-CPA challenger and receives a list of ciphertexts
cb
t̂+1

, . . . , cbm.
6. It creates ℓ-level layer encryptions c1, . . . , ct̂ for the tagged shares

(tagτ , (1, f(1)), . . . , (tagτ , (t̂, f(t̂)) (common for (r0τ , Cτ ) and (r1τ , hτ⊕
Mτ )), respectively. These encryptions are intended for the corrupted
exit servers MX1,ℓ, . . . ,MXt̂,ℓ.

7. It creates ℓ-level layer encryptions ct̂+1, . . . , cm that correspond to
cb
t̂+1

, . . . , cbm (i.e., it adds (ℓ−1 more layers per ciphertext). These en-
cryptions are intended for the honest exit servers MXt̂+1,ℓ, . . . ,MXm,ℓ

with public keys pk1, . . . , pkm−t̂.
8. It normally transmits ((pk1,1, c1), . . . , (pk1,m, cm)) to the mix servers.
9. When the honest exit server MXj,ℓ receives cbj (recall that Dτ can-

not decrypt this ciphertext in the emulation), it always broadcasts
(tagτ , [(r

1
τ , hτ ⊕Mτ )]j) to the parties.

∗ If w > τ , then it acts like S; namely, it (i) chooses random values rw, Cw;
(ii) splits (rw, Cw) into m shares [(rw, Cw)]1, . . . , [(rw, Cw)]m; (iii) trans-
mits the shares associated with a random tag tagw. During the execution,
it responds to A∗’s query rw to FRO as if it was S in order to equivocate
for the message Mw when message delivery comes.

- Like S, if at any point of the execution it chooses a random value rw multiple
times, then it stops emulation and returns a random bit to the IND-CPA
challenger.

- It responds to the IND-CPA challenger with whatever Z∗ returns.
In the description of Dτ , emulation may stop if A∗ does not even allow the

beginning of the execution (completion of the Setup procedure fails) or if Z∗

does not request the broadcast of any messages. Let Abstain denote the event
that any of the above two events happen. Clearly, it holds that∣∣∣Pr [EXECF ℓ,B,p

an.BC

Z∗,S (λ) = 1
∣∣Abstain]− Pr

[
EXEC

Πm,ℓ,t,B,p
an.BC

Z∗,A∗ (λ) = 1
∣∣Abstain]∣∣∣ = 0,

i.e., Z∗ has no distinguishing advantage when Abstain happens. Assuming that
Eq. (1) holds and w.l.o.g., we may assume that Pr[Abstain] = 0, namely, the
execution under A∗,Z∗ is never trivial.
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Next, we analyze the case where w = τ . By the information theoretic se-
curity of the (t,m)-threshold secret sharing scheme, we have that the t̂ <
t common shares (1, f(1)), . . . , (t̂, f(t̂)) do not reveal any information about
the values (r0τ , Cτ ) and (r1τ , hτ ⊕Mτ ). In addition, by choosing t − t̂ random
points (t̂ + 1, ŷt̂+1), . . . , (t, ŷt) for the generation of f̂(x), we have that f̂(0) =
â0 is random so the pair (r0τ , Cτ ) that â0 encodes is also random. As a re-
sult, the tagged shares (tagτ , [(r

1
τ , hτ ⊕ Mτ )]t̂+1), . . . , (tagτ , [(r

1
τ , hτ ⊕ Mτ )]m)

broadcast by the exit servers follow the same distribution as the tagged shares
(tagτ , [(r

0
τ , Cτ )]t̂+1), . . . , (tagτ , [(r

0
τ , Cτ )]m).

Observe that the transmission schedule in the emulation of Dτ given that the
IND-CPA challenge bit b = 1, is similar to the one of Dτ+1 given b = 0, with the
following exception: for w = τ+1,Dτ finally broadcasts (tagτ+1, [(rτ+1, Cτ+1)]1), . . . ,
(tagτ+1, [(rτ+1, Cτ+1)]m) while Dτ+1 finally broadcasts (tag′τ+1, [(r

1
τ+1, hτ+1 ⊕

Mτ+1)]1), . . . , (tag′τ+1, [(r
1
τ+1, hτ+1 ⊕ Mτ+1)]m). Since these two message se-

quences follow the same distribution, we get that unless emulation stops (either
for the same reasons that S fails or because a polynomial f̂(x) of degree less than
t−1 was randomly chosen during the secret sharing process), the two algorithms
behave similarly. Clearly, the probability that emulation stops is negl(λ), so it
holds that for some negligible function δτ (·):

∣∣Pr[Dτ (pk)→ 1|b = 1]− Pr[Dτ+1(pk)→ 1|b = 0]
∣∣ ≤ δτ (λ). (2)

Following the same reasoning as above, we can deduce that the behavior of D1

given b = 0 is similar to the one of S with the difference thatD1 finally broadcasts
(tag1, [(r

1
q , h1 ⊕M1)]1), . . . , (tag1, [(r

1
1, h1 ⊕M1)]m) instead of the tagged shares

of a random pair (r, C). So, we get that for some negligible function δ0(·):

∣∣∣Pr [EXECF ℓ,B,p
an.BC

Z∗,S (λ) = 1
]
− Pr[D1(pk)→ 1|b = 0]

∣∣∣ ≤ δ0(λ). (3)

Besides, by the description of DT ′ , we directly get that

∣∣∣Pr [EXECΠm,ℓ,t,B,p
an.BC

Z∗,A∗ (λ) = 1
]
− Pr[DT ′(pk)→ 1|b = 1]

∣∣∣ = 0. (4)
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By Eq. (1), (2), (3), and (4), we get that

α(λ) ≤

≤
∣∣∣Pr [EXECΠm,ℓ,t,B,p

an.BC

Z∗,A∗ (λ) = 1
]
− Pr

[
EXEC

F ℓ,B,p
an.BC

Z∗,S (λ) = 1
]∣∣∣ ≤

≤
∣∣∣Pr [EXECΠm,ℓ,t,B,p

an.BC

Z∗,A∗ (λ) = 1
]
−

T ′∑
τ=1

Pr[Dτ (pk)→ 1|b = 1]+

+

T ′∑
τ=1

Pr[Dτ (pk)→ 1|b = 0]− Pr
[
EXEC

F ℓ,B,p
an.BC

Z∗,S (λ) = 1
]∣∣∣+

+
∣∣∣ T ′∑
τ=1

Pr
[
Pr[Dτ (pk)→ 1|b = 1]−

T ′∑
τ=1

Pr[Dτ (pk)→ 1|b = 0]
∣∣∣ ≤

≤
∣∣∣Pr [EXECΠm,ℓ,t,B,p

an.BC

Z∗,A∗ (λ) = 1
]
− Pr[DT ′(pk)→ 1|b = 1]−

−
T ′−1∑
τ=1

Pr[Dτ (pk)→ 1|b = 1] +

T ′∑
τ=2

Pr[Dτ (pk)→ 1|b = 0]+

+ Pr[D1(pk)→ 1|b = 0]− Pr
[
EXEC

F ℓ,B,p
an.BC

Z∗,S (λ) = 1
]∣∣∣+

+

T ′∑
τ=1

∣∣∣Pr [Pr[Dτ (pk)→ 1|b = 1]− Pr[Dτ (pk)→ 1|b = 0]
∣∣∣ ≤

≤
∣∣∣Pr [EXECΠm,ℓ,t,B,p

an.BC

Z∗,A∗ (λ) = 1
]
− Pr[DT ′(pk)→ 1|b = 1]

∣∣∣+
+

T ′−1∑
τ=1

∣∣∣Pr[Dτ (pk)→ 1|b = 1]− Pr[Dτ+1(pk)→ 1|b = 0]
∣∣∣+

+
∣∣∣Pr[D1(pk)→ 1|b = 0]− Pr

[
EXEC

F ℓ,B,p
an.BC

Z∗,S (λ) = 1
]∣∣∣+

+

T ′∑
τ=1

∣∣∣Pr [Pr[Dτ (pk)→ 1|b = 1]− Pr[Dτ (pk)→ 1|b = 0]
∣∣∣ ≤

≤0 +
T ′−1∑
τ=1

δτ (λ) + δ0(λ)+

+

T ′∑
τ=1

∣∣∣Pr [Pr[Dτ (pk)→ 1|b = 1]− Pr[Dτ (pk)→ 1|b = 0]
∣∣∣ =

=

T ′−1∑
τ=0

δτ (λ) +

T ′∑
τ=1

∣∣∣Pr [Pr[Dτ (pk)→ 1|b = 1]− Pr[Dτ (pk)→ 1|b = 0]
∣∣∣.

(5)
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Thus, by Eq. (5) and an averaging argument, we have that there is a τ∗ ∈ [T ′]
such that∣∣∣Pr [Pr[Dτ∗(pk)→ 1|b = 1]− Pr[Dτ∗(pk)→ 1|b = 0]

∣∣∣ ≥ α(λ)−∑T ′−1
τ=0 δτ (λ)

T ′ .

Since α(·) is a non-negligible function, δ0(·), . . . , δT ′−1(·) are negligible functions,

and T ′ is polynomial in λ, we have that γ(λ) :=
α(λ)−∑T ′−1

τ=0 δτ (λ)

T ′ is a non-
negligible function.

We study the two following cases:
Case 1. If it holds that

Pr
[
Pr[Dτ∗(pk)→ 1|b = 1]− Pr[Dτ∗(pk)→ 1|b = 0] ≥ γ(λ),

then we directly get that Dτ∗ wins the IND-CPA game against Σ
(m−t̂)
PKE with

probability 1
2 + γ(λ)

2 .
Case 2. Else, if it holds that

Pr
[
Pr[Dτ∗(pk)→ 1|b = 0]− Pr[Dτ∗(pk)→ 1|b = 1] ≥ γ(λ)⇔

⇔Pr
[
Pr[Dτ∗(pk)→ 0|b = 1]− Pr[Dτ∗(pk)→ 0|b = 0] ≥ γ(λ),

then the adversary D̄τ∗ , that operates exactly like Dτ∗ , but flips Dτ∗ ’s output
bit, wins the IND-CPA game against Σ

(m−t̂)
PKE with probability 1

2 + γ(λ)
2 .

In any case, we can devise an adversary that breaks the IND-CPA secu-
rity of Σ(m−t̂)

PKE . By Claim 1, this contradicts to the IND-CPA security of ΣPKE.
Therefore, Eq. (1) does not hold and the proof is complete.

F Accumulators

The realization of E-cclesia, especially its eligibility feature, relies on a UC
secure accumulator that is additive (i.e., it supports only addition of elements to
the set) and positive (i.e., it supports membership proofs). In Subsection F.1, we
describe our ideal accumulator functionality Facc. In Subsection F.4, we prove
that Πacc UC-realizes Facc, if the underlying accumulator scheme of Πacc satis-
fies the standard correctness and soundness properties, such as the hash-based
scheme in [55]. In addition, the initialization of the scheme in [55] allows the
execution of Πacc without the involvement of a trusted party such as a CRS.

F.1 The ideal functionality Facc

We describe the ideal accumulator functionality Facc that is inspired by the accu-
mulator functionality in [5] with some modifications that fit our purposes. Most
importantly, the accumulator’s operations (e.g. addition) are managed by Facc

in a way that abstracts a real-world scenario where these operations are handled
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by the parties themselves in a local manner, instead of having an accumulator
manager that is in control of a shared accumulator state.

The functionality Facc initializes a mapping SP with SP [0] = ∅ for every
honest party P , which maps the number of elements in the multiset or list
to the actual multiset or list of the accumulated elements. In case the quasi-
commutativity security property [10] is captured by Facc then SP maps elements
to a multiset, else it maps them to a list. We make this distinction clear by indi-
cating with red the text that corresponds to the version of Facc which captures
quasi-commutativity, and with blue the version that does not capture it.

Moreover, Facc initializes as 0 the counter tP which shows the total number
of the added elements in the accumulated multiset or list for the party P . The
counter tP also indicates the number of operations of that specific time for a
given accumulator and because we use only addition operations it coincides with
the total number of elements in it. It initializes as empty the list LP

state which
contains tuples that include the accumulated value along with some auxiliary
information (depending on the actual construction of the accumulator), the “up-
date” message that is needed for updating the witnesses of the older elements
for previous accumulated values, the set or list of elements of the previous ac-
cumulated value, the last accumulated value, the corresponding witness of that
value and the total number of elements in the current accumulator. Moreover,
the functionality initializes the shared parameters vector shared_params, that
consists of the accumulation algorithms and a generated initialization triple, as
∅. Finally, it initializes a set Pready of parties ready to engage as empty.

The simulator S provides the set of the corrupted parties Pcorr. Each time
the functionality receives a command message from a corrupted party it handles
it to the simulator and waits for its response and returns whatever receives from
S.

Upon receiving Setup from a party P , if no algorithms are stored, Facc

requests the accumulation algorithms from S. Specifically, S returns the follow-
ing PPT algorithms: (i) Gen, which generates the accumulator’s parameters; (ii)
Update, which updates the accumulated value after the addition of a new ele-
ment along with other parameters essential for the other operations; (iii) WitUp,
which updates the witness wx

old for an element x to wx
new after the addition of

new elements in the accumulator; and (iv) VerStatus, which verifies if an ele-
ment is part of the accumulated value by providing its witness. The functionality
generates the initial accumulated value along with some auxiliary information
by executing the function Gen. Then, it checks via the function VerStatus that
the first accumulation value indeed corresponds to the empty set (if not, it sets
shared_params to ⟨⊥⟩). Here, we capture the sound operation of the accumula-
tor. It sets shared_params as the vector that contains the initialization values
and the accumulator algorithms Update, WitUp, and VerStatus. Moreover, when
P becomes “ready” to engage, if she is honest, then Facc inserts the initial tuple
in LP

state. Here, we capture that each honest party shares the same view on the
initial accumulated value. In addition, the fact that for each honest party P the
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functionality maintains P ’s own list illustrates that the accumulation operations
take place locally rather than in a shared state setting.

Upon receiving Update along with an accumulated value α and an element
x from an honest ready party P , the functionality checks if that party has pre-
viously recorded such an α, which means that P has obtained this accumulated
value in a past interaction with Facc as a result of another element addition.
Here, we capture the fact that parties only accumulate elements in known ac-
cumulated values that have been obtained before, rather than arbitrary ones
that the parties do not know their history with respect to their element rep-
resentation. Next, Facc: (1) increases the counter tP by 1, which means that
a new element is accumulated; (2) computes the new accumulated value αtP ,
an auxiliary message mtP , the witness wx

tP that x is part of the accumulator
αtP , and an update message upmsgtP that can be used to update witnesses of
other values after the addition of x in the accumulator. Then, it stores the tuple
(αtP ,mtP , vtP , upmsgtP ,S

P [tP − 1], x, wx
tP , tP) in LP

state, where the value SP [tP − 1]
equals with the previous accumulated multiset or list without the element x, for
tracking. Then, it verifies if the new accumulated state is generated correctly
by executing the algorithm VerStatus. If not, then a correctness error occurred
and Facc returns this error message to P . If no error occurred, then it returns
the new accumulated value along with the witness of x and the update message.

Upon receiving the command message Wit_Up from an honest ready party
P , the functionality updates an old witness wold for a given element x. Specifi-
cally, it accepts the old accumulated value αold (e.g., before the addition of new
elements by the time x was inserted), the target element x, its old witness, the
target accumulator with which we want to make compatible the old witness,
αnew, and some series of update messages that are the result of the addition of
new elements into the accumulator. Facc returns to P the updated witness for the
element x for the accumulator αnew after it checks that the updated witness is
compatible with the functions VerStatus. If it is not, it returns ⊥ as correctness
property has been breached.

Finally,upon receiving the verification command Ver_Status, from an hon-
est party P , Facc verifies if an element x with witness w is part of the accumulated
value α. In case the verification returns true but the element is not accumulated
into a recorded α then a soundness error occurred and the functionality returns
an error message to the party. It is worth mentioning that the functionality
not only searches for the input values into the stored data based for P , but for
all honest parties. This means that the for every honestly generated values no
forgery should occur (soundness). In contrast, the correctness property is only
meaningful for each party individually. This is why the functionality returns
a ⊥ symbol in the previous cases by only considering each party’s data base
individually.

F.2 The protocol Πacc

The protocol Πacc(P, Σacc) is presented in Figure 5 and, briefly, it operates as
follows: Each party P has hard-coded the accumulator algorithms (Gen,Update,
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WitUp,VerStatus), and maintains the mapping SP from the number of accu-
mulated elements to the accumulated multiset or list and an operation counter
tP . Note that Gen always return the empty set, thus does not required to be
executed by a trusted party like CRS.

When a party receives a Setup command from Z, she returns the setup
parameters by executing Gen. We stress that in our hash-based instantiation, we
use the Gen algorithm that always returns the empty set. Thus, no an FCRS is
required as parties trivially return ∅ upon the Setup request from Z.

If a party receives the Update command from Z along with an accumulated
value α and an element x, she checks in her records if the value α has previously
occurred. If not, she returns ⊥ (like FAcc, honest parties deny accumulating val-
ues for previously unknown accumulators). Then, she updates the accumulator
and her records, and returns the new accumulator value along with the witness
for the value x.

Upon receiving a Wit_Up command along with the old accumulator value
αold, the accumulator value in which the new witness must be compatible with,
αnew, the accumulated value x, the old witness for x and a series of update
messages, the party P searches if in her database for these accumulator values,
the value x and the series of update messages are already registered. If so, then
she checks that there is an “update path” from the value αold to αnew. This means
that there is a chain of tuples from αold to αnew with: (i) The operation counter tP
increases by one in each part-tuple of the chain; (ii) The data SP are increasing
in a progressive way in each tuple of the chain including previous values. If so,
she computes and returns the new witness by using the Wit_Up function.

Finally, when P receives Ver_Status along with an accumulator α, a value
x and a witness w, she checks that x is part of α by using w and function
Ver_Status. Note that, these values are not necessary to be registered in the
party’s database, enabling us to cross-check values between parties. Then, P
returns whatever she receives from Ver_Status.

F.3 Definitions of secure accumulator

In [55], a Merkle-tree [14] is deployed to store the accumulated values. The
Gen(1λ) procedure always returns an empty string. The witness that a value x
has been accumulated is the path from the leaf of the Merkle-tree to the top
hash. For more information and a detailed description of the actual construction
we refer the reader to [55, Section 4].

The aforementioned hash-based construction in [55] is proven secure under
a game-based framework that captures two security properties: Correctness [55,
Definition 1] and Soundness [55, Definition 2]. Informally, Correctness states
that for every accumulated element x we added at some point between a series
of sequential additions in the accumulator, we get its witness wx. After all ad-
ditions have taken place, we update wx by using the WitUp algorithm for each
one of these additions after x. The property requires that the verification via
VerStatus that x is part of the accumulator with the final witness wx

t , where
t indicates the total number of added elements, returns 1 with probability 1.
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Moreover, Soundness informally states that the adversary has negligible proba-
bility of succeeding in the following experiment: it adds to the accumulator an
arbitrary set of elements. Then, it attempts to find an element and a witness of
it such that: (i) that element is not part of the resulting accumulator; (ii) the
VerStatus algorithm with input the resulting accumulator, that element and its
witness returns true.

Below are the definitions of Correctness and Soundness as appear in [55].

Definition 5 (Correctness [55]). An accumulator (Gen, Update, WitUp, VerStatus)
is correct, if an up-to-date witness wx corresponding to value x can always be
used to verify the membership of x in an up-to-date accumulator α. More for-
mally, for all security parameters λ, all values x and additional sets of values
[y1, . . . , ytx−1], [ytx+1, . . . , yt], it holds that

Pr


α0 ← Gen(1λ);
(αi, w

yi
i , upmsgi)← Update(αi−1, yi) for i ∈ [1, . . . , tx − 1];

(αtx , w
x
tx , upmsgtx

)← Update(αtx−1, x);
(αi, w

yi
i , upmsgi)← Update(αi−1, yi) for i ∈ [tx + 1, . . . , t];

wx
i ← WitUp(x,wx

i−1, upmsgi) for i ∈ [tx + 1, . . . , t] :
VerStatus(at, x, w

x
t ) = 1

 = 1.

Definition 6 (Soundness [55]). An accumulator (Gen, Update, WitUp, VerStatus)
is sound (or secure), if it is hard to fabricate a witness w for a value x that has
not been added to the accumulator. More formally, for any PPT stateful adver-
sary A there exists a negligible function µ(·) such that:

Pr



α0 ← Gen(1λ); t = 1;x1 ← A(1λ, α0);
while xt ̸= ⊥

(αt, w
xt
t , upmsgt)← Update(αt−1, xt);

t = t+ 1;

xt ← A(αt−1, w
xt−1
t−1 , upmsgt−1);

(x,w)← A :
x ̸∈ {x1, . . . , xt} and VerStatus(αt−1, x, w) = 1


≤ µ(λ).

F.4 Proof of Theorem 2

We instantiate the accumulator algorithms Gen, Update, WitUp, VerStatus with
the ones in the hash-based construction as presented in [55] with the excep-
tion that the syntax algorithms Add, MemWitUpOnAdd, VerMem in [55] are named
Update, WitUp, VerStatus, respectively to match the syntax of [5]. From [55,
Theorem 1], we get the following Lemma.

Lemma 2. [55, Theorem 1] The hash-based construction Σacc = (Gen, Update,
WitUp, VerStatus) presented in [55], satisfies Correctness (cf. Definition 5) and
Soundness (cf. Definition 6), as long as the underlying hash function is collision
resistant.
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Armed with Lemma 2 , we prove that the protocol Πacc, when instantiated by
an accumulator scheme that satisfies the security properties in [55], UC realizes
Facc as stated in the next theorem.

Theorem 2. The protocol Πacc(P, Σacc) in Figure 5 UC-realizes Facc(P) if
and only if Σacc = (Gen, Update, WitUp, VerStatus) satisfies Correctness (cf.
Definition 5) and Soundness (cf. Definition 6) properties defined in [55].

In particular, if Σacc is instantiated with the scheme in [55], then Πacc(P, Σacc)
UC-realizes Facc(P) without relying on any trusted party for executing Gen9.

Proof. (⇒)For proving the first direction, let us assume that Σacc does not sat-
isfy Correctness or Soundness. We construct an environment Z∗ such that for a
dummy adversary (cf. Definition 1 and [11, section 4.3.2]) Adummy and for every
simulator S our Z∗ distinguishes the real from the ideal execution with prob-
ability β̃(λ) where λ the security parameter and β̃ a non-negligible function.
Formally:∣∣∣Pr [EXECFacc

Z∗,S(λ) = 1
]
− Pr

[
EXECΠacc

Z∗,Adummy
(λ) = 1

]∣∣∣ ≥ β̃(λ). (6)

Specifically, let us assume that Soundness property is not satisfied. This
means that there is an adversary B that wins the game in [55, definition 2,
p.7] with probability greater than β(λ), where β() a non-negligible function. We
construct Z∗ as follows:

Initially, Z∗ asks for the accumulator’s algorithms by sending (sid,Retrieve)
to an uncorrupted party. If S does not provide Facc with the ones in Σacc, then
Z∗ can trivially distinct the two settings with probability 1 and this completes
the proof for the first direction.

In the case that S provides Facc with the same algorithms as in Σacc, Z∗

does: It executes internally the adversary B as if it was the challenger of the
Soundness property. Initially Z∗ sends (sid,Setup) to an uncorrupted party P
and gets back the initial accumulator value α0. Then, Z∗ provides α0 to B as
if it was the challenger of the game. For every xl ̸= ⊥ element Z∗ gets from B
along with the current accumulated value αl, it sends (sid,Update, αl, xl) to the
same honest party P . Upon receiving (sid,Update, αl, xl, αl+1, w

xl

l+1, upmsgl+1)
from P , Z∗ sends (αl+1, w

xl

l+1, upmsgl+1) to B as if it was the challenger of the
game and repeats until it receives an x∗

l = ⊥ from B. Let us assume that B
sends x∗

l = ⊥ after tfin queries. In that case, B sends (x,w) to Z∗. We know that
this x is not previously queried but still the algorithm VerStatus(αtfin , x, w)
will return 1 with probability greater that β(λ) from our assumption. Based
on that, Z∗ sends (sid,Ver_Status, αfin, x, w) to any honest party P . Observe
that, if we are in the ideal setting, with probability more than β(λ), P will
return (sid,Ver_Status, αfin, x, w,⊥) to Z∗. On the contrary, if we are in the
real setting, P will return (sid,Ver_Status, αfin, x, w, x), where x ∈ {0, 1}. As
a result, Z∗ will distinct the real from the ideal setting with probability more
than β(λ), thus non-negligible.
9 Unlike the constructions in [26, 34, 10] that rely on a CRS.
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Lets us assume that the Correctness property is not satisfied. This means that
there is an x and an additional set of values [y1, . . . , ytx−1], [ytx+1, . . . , yt] that
after updating the witness of x with the most recent addition in the accumulator,
the algorithm VerStatus(αt, x, w

x
t ) returns 0 with at least non-negligible proba-

bility β′(λ) (where αt the latest accumulated value, and wx
t the updated witness

of x). It is easy to observe that, if Z∗ sends that x and the mentioned additions in
the ideal execution, Facc will return ⊥ with probability β′(λ). Specifically, if the
number of added elements after x are 0, then Z∗ sends (sid,Update, α, x) to an
honest party P for a previously returned accumulated value α and Facc returns
(sid,Update, α, x,⊥) message with probability at least β′(λ). In the case that
the added elements after x are not 0, Z∗ adds the element x and the remaining
elements by sending an Update command message. Next, Z∗ updates the initial
witness of x by sending a Wit_Up command message along with the update
messages after the addition of x. Observe that Facc will return a ⊥ message with
probability at least β′(λ). On the contrary, in the real setting the Z∗ receives
back the updated witness. This completes the first direction of the proof.

(⇐) For proving the second direction, assume that Πacc(P, Σacc) does not UC-
realize Facc. This means that for a dummy adversary Adummy and for every
simulator S there exists an environment Z such that equation 6 holds. We show
that Σacc does not satisfy either Correctness or Soundness.

If Σacc satisfies Correctness, we construct an adversary B that wins the sound-
ness game with probability greater than β(λ), where β is a non-negligible func-
tion. Given that Σacc satisfies Correctness, observe that the probability Facc to
return a⊥message from the command messages (Update,Wit_Up,Retrieve)
given by Z is negligible. The only way for Facc to return a ⊥ message given
that S provides the algorithms in Σacc, is when Z sends the command message
(sid,Ver_Status, α, x, w) to an honest party for a value x and the witness of
it w such that it has not been accumulated before and the verification algorithm
VerStatus(α, x, w) returns 1.

We define S∗ as follows: Upon receiving the corruption vector from Z it for-
wards it to Adummy as if it was form Z. Upon receiving it back from Adummy it
forwards it to Facc. Upon receiving (sid,Gen) from Facc, S∗ returns the algo-
rithms in Σacc. Whatever message receives from Z or from Facc from behalf of
a corrupted party, it forwards it to Adummy as if it was that party.

From our assumption we know that for such an S∗ there is an environment
Z∗ such that equation 6 holds.

Given that Z∗ we construct an adversary B that internally executes Z∗

to win the Soundness game with non-negligible probability. B picks at ran-
dom an honest party P (we know that there exist at least one honest party,
else the real from the ideal execution would be indistinguishable). Whatever
(sid,Update, α, x) command Z∗ sends to B as if it was the honest party P ,
B forwards x to the challenger of the Soundness game and receives back the
new accumulated value αt, the witness wx, and the update message upmsgt.
Then B returns (sid,Update, α, x, αt, w

x
, upmsgt) to Z as if it was P . At some

point, from our hypothesis, Z∗ sends (sid,Ver_Status, α, VerStatus, x, w) to
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B playing the role of an honest party (not necessary the honest party P ), such
that x was not queried before by Z∗ and VerStatus(α, x, w) = 1 for a returned
accumulated value α received before with probability β̃(λ). The probability this
party to be P is equal with 1/|Pcorr|. Given that it was P , B, after checking that
VerStatus(α, x, w) = 1 for an unqueried x for an existing accumulated value
α, sends the special symbol ⊥ to the challenger and then sends (x,w). Observe
that the probability for B to win the game is β̃(λ)/|Pcorr|, thus non-negligible.
This completes the proof.

G Proof of Theorem 3

Theorem 3 The protocol Πelig(SA,V, Facc,FNIC,FSOK,FBC, delay_cast) in Fig-
ure 6 UC-realizes Felig(SA,V, delay_cast) in the (Facc, FNIC,FSOK,FBC,Gclock)-
hybrid model.

Proof. We show that for every adversary A there is a simulator S such that for
every environment Z cannot distinguish the ideal from the real execution except
with negligible probability (cf. Definition 1). More formally:∣∣∣Pr [EXECFelig

Z,S(λ) = 1
]
− Pr

[
EXEC

Πelig

Z,A(λ) = 1
]∣∣∣ = negl(λ). (7)

We construct such an S as follows:
Setup: Upon receiving (sid,Setup_Elig,Velig, tcast, topen) from Felig, S sends
(sid,Gen) to A as if it was Facc. Upon receiving (sid,Gen, Gen, Update, WitUp
, VerStatus) fromA, it computes the initialization triple (α0,m0, v0)← Gen(1λ).
If VerStatus(α0,Null, v0) = 0, it returns⊥ to Felig. Else, it sets Stgen = (α0,m0, v0).

Next, S sends (sid,Com_Setup_Req, ssid) for a random ssid to A as if
it was FNIC. Upon receiving (sid,Com_Setup_Req, ssid,m) from A, S parses
m as (cparcom, COM.TrapCom, COM.TrapOpen, COM.Verify, ctdcom) and stores all
algorithms.

It sends (sid,Setup) toA as if it was FSOK . Upon receiving (sid,Algorithms
, Verify, Sign, SimSign, Extract) as if it was FSOK, it stores all algorithms.

It sets reg.par ← (Velig, t⃗ := (tcast, topen, delay_cast), Stgen) and provides A
with (sid, Broadcast, reg.par) as if it was FBC. Upon receiving the token back
from A, S defines the algorithms (GenCred, AuthBallot, VrfBallot, UpState)
as follows:

GenCred(1λ, reg.par)
1. The parameters cparcom, ctdcom are hard-coded.
2. It picks cr

$← {0, 1}p4(λ).
3. It computes (ĉr, cinfo)← COM.TrapCom(sid, cparcom, ctdcom).
4. It computes copen← COM.TrapOpen(sid, cr, cinfo).
5. It returns (cr, ĉr, copen).
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AuthBallot(v, cr, Stfin, reg.par, copen)
1. It computes σ ← SimSign(v, (cr, Stfin)).
2. If Verify(v, (cr, Stfin), σ) = 1, it returns σ, else it returns ⊥.

VrfBallot(v, σ⃗ = (cr, σ), Stfin, reg.par)
1. The relation ML is hard-coded.
2. It computes w ← Extract(v, (cr, Stfin), σ)
3. If ML((cr, Stfin), w) = 1, it returns Verify(v, (cr, Stfin), σ).
4. If ML((cr, Stfin), w) = 0 and Verify(v, (cr, Stfin), σ) = 1, it returns ⊥.
5. In any other case it returns Verify(v, (cr, Stfin), σ).

UpState(Stgen, {ĉrj}p5(λ)
j=1 )

1. For each j = 1 to p5(λ) it computes (αj ,mj , wj , upmsgj) ←
Update(αj−1,mj−1, ĉrj) and it stores all the resulting values.

2. It returns Stfin = αp5(λ)

Then, S sends (sid,Set_Up, GenCred, AuthBallot, VrfyBallot, UpState, Stgen)
to Felig. Upon receiving (sid,Elig_Par, reg.par) from Felig it stores reg.par.
Credential generation: Upon receiving (sid,Gen_Cred, ĉr, V ) from Felig, S
sends (sid,Broadcast, (V, ĉr)) to A as if it was FBC. Upon receiving the token
back from A, it sends (sid,Gen_Cred, ĉr, V ) to Felig.

Whatever command/message received on behalf of a corrupted party from
Felig, S forwards it to A as if it was that party and returns whatever message it
receives from A for that party to Felig.

As can be seen, the algorithm AuthBallot uses the algorithm SimSign in-
stead of the Sign exactly as FSOK does. With this, we can guarantee that the
distribution of signed messages between Felig and Πelig are the same. Observe
that, if a party requests the signature for a message from FSOK, if the verifi-
cation returns “false” then FSOK returns ⊥. This behaviour is integrated into
AuthBallot algorithm and thus the same happens in Felig so that the real and
ideal executions match. Note that this does not mean that Felig does not capture
the correctness of a signed ballot and that the property depends on the algo-
rithms; the correctness of an authenticated ballot is captured with the command
message Auth_Ballot as can be seen in Figure 16.

Similarly, the algorithm GenCred integrates a part of what FNIC does so that
to match both real and ideal execution and specifically the distributions of the
credential generation. The same applies for the algorithm UpState and Facc.
Next, we show that the algorithms GenCred, AuthBallot, VrfBallot, UpState
that S defines are such that the steps followed in Πelig when a Auth_Ballot,
Ver_Ballot, or Link_Ballots command is sent by Z, preserve the respec-
tive properties captured by Felig. Recall that Felig captures eligibility (only the
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ballots authenticated via the command Auth_Ballot pass the verification test
via the command Ver_Ballot); one-voter-one-vote (multiple ballots from an
eligible voter are dropped all except one via the command Link_Ballots). Be-
low we show how each command message in Πelig is related with the algorithms
S provides Felig so to match both executions.

– Auth_Ballot: In Πelig, the party P computes the final accumulated value
by providing Facc with the list of all public credentials. Next, for the resulting
accumulated value, she requests the witness of her credential from Facc.
Finally, P requests from FSOK the signature of knowledge defined for the
relation ML for the requested ballot. Observe that FSOK signs the ballot via
the algorithm SimSign only if P provides a valid witness. A valid witness can
be provided if and only if a party is eligible. The only way for a non-eligible
party to get access to a valid witness is by extracting it from the signature
or the commitment, which is impossible as the SimSign and COM.TrapCom
does not accept the witness or the credential as input.
In case the witness is not valid or the resulting signature does not pass the
verification test of FSOK, FSOK returns ⊥. This is exactly what Felig captures
except the case of a valid signature and an invalid verification test as in
FSOK. We include this case in the algorithm AuthBallot. Thus, both real
and ideal execution behave the same for that command message.

– Ver_Ballot: This command is handled solely by FSOK. Specifically, FSOK

returns true if it previously has recorded the input signature (meaning that
the signature is issued by an eligible voter, item 2) in Felig), exactly like Felig.
In case the signature is not a legitimate one, meaning that it was not previ-
ously recorded in FSOK, then FSOK checks if a valid witness can be extracted
by applying the Extract function. If yes, then it returns true. We included
that check in VrfBallot so to capture the case that the verification returns
“true” but there is no recorded signature for corrupted parties (item 3) in
Felig). Observe that if a party is corrupted still can be eligible and thus
provide a signature under a valid witness.
In the case that FSOK cannot extract any witness, a forgery has occurred
and it returns ⊥. This means that either the party is not eligible (item 3) in
Felig) or the adversary managed to make a forgery (item 4) in Felig). Thus,
both real and ideal execution behave the same for this command message.

– Link_Ballots: Finally, in Πelig the voter checks if the input signatures
are valid by forwarding them in FSOK. In turn, FSOK checks the validity
of the signatures similar to the case that the voter receives the command
Ver_Ballot as described before. If this is the case and the providing cre-
dentials are the same (meaning that the valid ballots are originated from the
same voter) then the voter returns 1, meaning that the ballots are related.
Similarly, in Felig the functionality checks if there are tuples both from cor-
rupted and uncorrupted, yet eligible, voters with the same credential. If this
is the case, Felig returns 1. The only way for these commands to not behave
the same is FSOK to verify as true a signature for a non-eligible party. This
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case is impossible as we explained in the previous paragraph. Thus, both
real and ideal execution behave the same for this command message.
By the above, the distributions of real and ideal setting are exactly the same

thus the proof is complete.

H Proof of Theorem 4

Theorem 4. The protocol Πvm(SA,V,F leak,delay_gen
TLE ,FBC,Fℓ,1,p

an.BC) in Figure 7
UC-realizes Fvm(SA,V, delay_gen, delay_cast) in the (F leak,delay_gen

TLE ,FBC,F l,1,p
an.BC,

Gclock)-hybrid model, where leak(Cl) = Cl+1, delay_cast = ℓ+1, and p(λ) is the
length of a pair of a ballot v and authentication data σ⃗.

Proof. In cases where a corrupted party receives input and we do not describe
her behaviour, we assume that the message is sent to S from Fvm and S forwards
that message to A as if it was from that party. Then S returns to Fvm whatever
it receives from A.

We describe the ideal adversary S. When S receives the corruption vector
from Z, S forwards it to A as if it was from Z. When S receives back the
corruption vector from A playing the role of both of FTLE,FBC, S forwards it to
Fvm. When S receives the election information (sid,Election_Info, vote.par)
from Fvm, S sends (sid,Broadcast, (SA, vote.par)) to A as if it was FBC.

Upon receiving a Gen_Ballot request from Fvm on behalf of a voter V , S
forwards the message to A as if it was from FTLE and it returns the response of
A to Fvm. Upon receiving an Advance_Clock command from Gclock on behalf
of a voter V , S forwards the message to A as if it was Gclock. Upon receiving an
Update command as if it was FTLE from A, it forwards the message to Fvm.

Upon receiving (sid,Cast_Ballot, (v, σ⃗)) from Fvm it sends (sid,Broadcast,
(v, σ⃗)) to A as if it was Fdelay_cast,1,p

an.BC .
When S receives a Cast request from Fvm on behalf of a corrupted voter

V , it forwards the message as a Broadcast request to A as if it was from
Fdelay_cast,1,p

an.BC and it returns the message it received from A back to Fvm.
Upon receiving (sid,Open, v) from Fvm (where v is a ballot not generated by

Fvm), S sends (sid, Dec, v, topen) to A as if it was from FTLE. When S receives
(sid, Dec, v, topen, o) from A, it returns the message (sid, Open, v, o) to FTLE.

Upon receiving (sid,Leakage) from Z, S forwards the message to A as
if it was from Z. Upon receiving (sid,Leakage) from A as if it was FTLE it
forwards the message to Fvm and returns to A whatever receives. Observe that
the simulation fails only in case that the provided tuples from Fvm are not the
same as the provided one from FTLE. Due to the fact that all honest parties
encrypt with time topen and delay_cast ≥ 1 this never occurs. Specifically, A
expects to receive all pairs of plaintexts/ciphertexts from FTLE at time Cl ≥
topen − 1 (because leak = 1). By that time it holds that Status(Cl, t⃗,Cred) =
Status(Cl, t⃗,Cast) = Status(Cl, t⃗,Tally) = ⊥ or Status(Cl, t⃗,Tally) = ⊤. Thus,
S can retrieve also all the pairs of plaintexts/ciphertexts from Fvm at time Cl =
topen − 1. S reads the time Cl from Gclock. Then S playing the role of FTLE
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returns to A all the maliciously generated ciphertexts with time labelling until
time leak(Cl).

The distribution of messages is the same in both the ideal and the hybrid
setting. As a result, the simulation is perfect.
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