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Abstract. In this paper we introduce the strictly zero-correlation at-
tack. We extend the work of Ashur and Posteuca in BalkanCryptSec
2018 and build a 0-correlation key-dependent linear trails covering the
full DES. We show how this approximation can be used for a key recovery
attack and empirically verify our claims through a series of experiments.
To the best of our knowledge, this paper is the first to use this kind of
property to leverage a meaningful attack against a symmetric-key algo-
rithm.
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1 Introduction

Linear cryptanalysis is one of the most important tools used in the security
evaluation of block ciphers. It was introduced in 1993, by Mitsuru Matsui, and
used to attack the DES cipher. The technique became intensively studied, the
formalism of linear cryptanalysis being extended in e.g., [Bih94, Nyb94]. This
approach is widely applicable and produced many variants and generalizations
such as multiple linear cryptanalysis [JR94, BCQ04], differential-linear crypt-
analysis [CV94], zero-correlation linear cryptanalysis [BR11], etc.

Usually, linear cryptanalysis is used to launch a known-plaintext attack. The
setting of a known-plaintext attack is that the attacker has a set of plaintexts
and their corresponding ciphertexts, enciphered using a fixed key. The goal of
the attack is to recover information regarding the secret key that was used.

Matsui’s initial idea was to analyze probabilistic linear relations between a
set of plaintexts, their ciphertexts, and the secret key. In order to distinguish a
particular linear relation (called linear approximation), its probability should be
observably different from 0.5. Estimating the quality of a linear approximation,
usually measured by its correlation or bias, is one of the open problems in linear
cryptanalysis and it is directly related to the success probability and the data
complexity of the attack.
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In order to construct a linear approximation of an iterated cipher, Matsui
proposed to sequentially linearize each round. The resulting set of linear approx-
imations is called a linear trail. The correlation of a linear trail is computed by
multiplying the correlations of each 1-round linear approximation.

1.1 Related Work

In [Nyb94] it was first observed that in some cases, there could be more than
a single linear trail involving the same plaintext and ciphertext bits. This phe-
nomenon is called the linear hull effect, a linear hull being defined as the set of
all linear trails with the same input and output bits. The correlation of a linear
hull is computed by summing up all underlying linear trails’ correlations. Thus,
the correlation of the linear hull may be significantly different from that of any
of the underlying trails. When a linear attack is used, both the success rate and
the data complexity of the attack are closely related to the hull’s correlation and
not to that of the trail.

In [AR16], Ashur and Rijmen showed that the linear hull effect can appear
already within a single round of a cipher. All their experiments and key-recovery
attacks were applied to the lightweight block cipher Simon. Following up on this
work, Ashur and Posteuca analyzed in [AP18] this phenomenon for the Data
Encryption Standard (DES). They showed that under certain constraints, the
f -function of DES exhibits 0-correlation key-dependent one-round linear hulls.

1.2 Our Contribution

In this paper we present a new type of zero-correlation attack, which we call
“strictly zero-correlation” and apply it to the full DES. The attack uses a 1-
round 0-correlation linear hull and embeds it into Matsui’s 8-round linear trail.
This results in a 16-round 0-correlation linear trail for DES under certain con-
ditions for particular key bits. We then show how this linear trails can be used
for key recovery by exploiting the key-dependent behavior of the correlation.

The contribution of the paper is therefore threefold:

1. We introduce a new type of attack based on linear cryptanalysis, called
“strictly zero-correlation” attack;

2. We present a new attack covering the full DES;
3. We show how the key-dependent behavior of a linear trail can be used for

key recovery.

1.3 Structure of this Paper

In section 2, we introduce our notation, revisit some terminology regarding lin-
ear cryptanalysis, including the notion of poisonous round, and briefly describe
the block cipher DES. In section 3 we introduce strictly zero-correlation linear
approximation covering the full DES and show how it can be used for key re-
covery. In section 4 we present a series of experiments validating our analysis.
Section 5 offers future research directions and concludes the paper.
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2 Preliminaries

In this section we introduce the notation used in the rest of this paper and
recall some terminology regarding linear cryptanalysis. We also present the DES
cipher.

2.1 The Data Encryption Standard

The Data Encryption Standard (DES) [DES] is a block cipher developed by
IBM during the early 1970’s and published as an NBS (now NIST) standard in
1977.

DES has a Feistel structure with a round function which employs a non-linear
function f . The overall structure of DES consists of an initial permutation, 16
enciphering rounds and a final permutation. The plaintext and the key are 64-bit
each, even though only 56 out of 64 key-bits are actually used by the algorithm.

The input to the round function is a 48-bit round key (denoted by k) and
two 32-bit intermediate cipherwords (denoted by x and y).

The round function is then given by:

Rk(x, y) = (y ⊕ f(x, k), x)

.

The f -function consists of four layers:

1. Expansion: the 32-bit input x is expanded into a 48-bit output in the form
presented in Figure 1a. The reader may notice that after applying the ex-
pansion function, 16 out of 32 input bits are used twice. We will use this
observation for our attack. In the sequel, we denote the expansion function
by E.

(a) The expansion function E (b) The permutation P

Fig. 1: DES round operations - Expansion (E) and Permutation (P)



4 Tomer Ashur, Raluca Posteuca, Danilo Šijačić, and Stef D’haeseleer

2. Key addition: the output of the expansion function is XORed with the 48-bit
round key. We denote the most significant bit of the subkey in round i by
ki0 and the least significant bit by ki47; when the round number is clear from
context we may omit the superscript;

3. Substitution: the output of the key addition is divided into eight 6-bit chunks.
Each of these blocks is given as an input to a different 6 × 4-bit S-box,
resulting in eight 4-bit outputs. The specification of the S-boxes can be
found in [DES]. We denote the substitution layer by S.
Note that due to the expansion function a single input bit may influence two
adjacent S-boxes. In this paper, we consider the first and the last S-boxes as
being adjacent (i.e., we view the property of being adjacent as circular).

4. Permutation: a fixed 32-bit permutation is applied to the output of the
substitution layer. This permutation, denoted by P, is described in Figure 1b.

The key schedule The key schedule of DES is a linear function where the
round keys are basically obtained by selecting 48 out of the 56 bits of the master
key. For a description of the key schedule we refer the interested reader to [DES].

Decryption Since DES has a Feistel structure, the decryption function,DES−1,
uses the same structure as the encryption, but with the keys used in reverse or-
der.

2.2 Masks and Approximations

Let a be a binary value of length n and let atx =
⊕n−1

i=0 aixi, where ai and xi
are the ith bit of a and x, respectively. We then say that a is the mask of x.
Given that applying a mask to a bit-string represents, in essence, a selection of
bits of x, we will also use the description of a mask as a set of positions:

X = {i1, i2, . . . , iv} ⇔

{
xj = 1,∀j ∈ X
xj = 0,∀j /∈ X

The bits in positions {i1, i2, . . . , iv} are called active bits, while the remaining
bits of x are said to be inactive.

Let Rk(x) = y denote the round function of a block cipher, where x, y and k
are the plaintext, the ciphertext and the key, respectively. A linear approximation
for Rk is a tuple (α, β, κ), where α, β and κ are the input mask, the output
mask and the key mask, respectively. Let p be the probability that the equation
αtx ⊕ βty ⊕ κtk = 0 holds for a uniformly selected x. Then the correlation of
the linear approximation (α, β, κ) is defined as corr(α, β, κ) = 2p−1. In general,
both p and corr(α, β, κ) are key-dependent (see, e.g., [AÅBL12])

A pair of masks (α, β) is said to be connectable if and only if β can be
obtained from α using the rules of propagation introduced in [Bih94, Mat93].
Otherwise, the pair (α, β) is said to be non-connectable.
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2.3 Linear Hulls and Trails

An iterated block cipher with r rounds can be described as the composition
of r − 1 round functions, i.e. Enck = Rkr−i ◦ . . . ◦ Rk0 , where ki denotes the
round key and k denotes the encryption key. A linear trail covering r rounds of
a block cipher is a sequence of r + 1 linear approximations such that the mask
corresponding to the output of round i is the same as the one corresponding to
the input of round i+1. Hence, a linear trail can be viewed as an (r+1)-dimension
vector (λ1, λ2, . . . , λr+1), where the pair (λi, λi+1) denotes the input and output
masks at round i, respectively. The correlation of the linear trail is computed by
multiplying the correlation of all single-round linear approximations:

corr(λ1, . . . , λr+1) =

r∏
i=1

corr(λi, λi+1)

A linear hull covering r rounds is a pair (α, β) which represents the set of all
linear trails with input mask α and output mask β (i.e., the input and output
masks are fixed, but intermediate round masks may vary). The correlation of a
linear hull is computed by summing the correlations of all linear trails in the set:

corr(α, β) =
∑

λ1=α,λr+1=β

corr(λ1, . . . , λr+1)

The round function of a block cipher can also be viewed as a composition
of its atomic operations. Thus, the methods described above for computing the
correlation of a linear trail can also be applied on a smaller scale to these atomic
operations. In [AR16], the authors observed that, in some cases, it is possible to
construct more than a single linear trail covering the round function. Likewise,
in [AP18], the authors showed that this is specifically true for DES’ f -function,
and hence that the linear hull effect may appear already inside one round of
DES. Our paper uses the latter observation to construct an attack on the full
cipher.

2.4 One-Round Key-Dependent Linear Hulls in DES

Following the notations of [AP18] we describe a linear approximation of the f -
function as a tuple (α, β, κ, τ, λ, γ), where α, β, κ are the input mask, the output
mask and the key mask, respectively. The remaining components represent the
intermediate masks of the trail: τ is the output mask of the expansion layer, and
λ, γ are the input and the output masks of the substitution layer, respectively.
Given the parallel nature of the S-boxes, we consider λ and γ as a concatenation
of eight components of equal size. For example, the input mask λ = (λ1, . . . , λ8)
is viewed as a concatenation of 6-bit masks and the output mask γ = (γ1, . . . , γ8)
is viewed as a concatenation of 4-bit masks. Figure 2 depicts the propagation of
linear masks through the f -function.

The rules of propagation for linear masks impose some constraints on these
masks:
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P

E

S1 S2 S3 S4 S5 S6 S7 S8

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

α κ

β

τ

Fig. 2: A linear trail through the f -function of DES

1. τ, κ and λ must all be the same;

2. each pair (λi, γi) must be connectable respective to the ith S-box, more
precisely, the linear approximation table (LAT) of Si must contain a non-
zero entry at the intersection of λi and γi;

3. β = P (γ).

Definition 1. Si is an active S-box if and only if the input and the output masks
are nonzero, more precisely λi, γi 6= 0.

Per [AP18], in the case of DES the linear hull effect may appear already
within one round if at least one pair of adjacent S-boxes is active. This leads to
the following observation:

Observation 1 Given the constraints imposed by the rules of propagation for
linear masks, two trails that are contained in the same 1-round hull (α, β) share
the form (α, β, τi, τi, τi, P

−1(β)), where P−1 is the inverse of P . Thus, the only
difference between two trails in the same 1-round linear hull is given by the
intermediate mask τ .

Corollary 2 Given that each trail has a different mask after applying the expan-
sion layer, the key masks will also be different, leading to the hull’s correlation
being key-dependent.
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2.5 Zero-Correlation Linear Approximations

Due to the presence of the linear hull effect, linear trails may interfere with each
other, influencing the correlation of the hull in a constructive or destructive
manner or, in some cases, even canceling out.

An example of a one-round linear hull containing four linear trails was de-
scribed in [AP18] with the correlation of each of these trails having the same
absolute value. One may notice that for certain values of the key, two linear trails
will have a positive correlation, while the other two have a negative one. In this
case, the value of the hull’s correlation will be strictly zero, hence the name of
our new attack.

Definition 2. A one-round linear hull that leads to a zero correlation is said
to be a “poisonous round”. A trail containing at least one “poisonous” round is
said to be a “poisonous trail”.

Recall that in order to compute the correlation of a trail, individual round
correlations are multiplied. The term “poisonous” is used to emphasize that a
single “bad” approximation (i.e., a strictly 0-correlation approximation) in a
certain round “spoils” this product, resulting in strictly 0-correlation trail.

2.6 Matsui’s trail

In [Mat93], Matsui presented a linear approximation of the full DES, obtained
by using an 8-round iterative linear trail with correlation 2−12.71. By replacing
the linear masks of the first and the last round with locally better ones, a 16-
rounds linear approximation with correlation 2−22.42 is obtained. Figure 3 depicts
Matsui’s 8-round iterative linear trail when circularly moved down by two rounds
such that the last round of the original trail is now the second round. Since
Matsui’s 8-round trail is iterative, it can start in any of the trail rounds and
extend naturally over the next seven rounds.

3 Constructing Poisonous Trails for DES

In this section we introduce a new linear trail for DES, containing a key-
dependent poisonous round. This linear trail is obtained by replacing the last
two rounds in Matsui’s iterative trail, where the new last round is a poisonous
round. This new linear approximation allows to take advantage of the key con-
straints that are imposed by the poisonous round, thus leading directly to a
key-recovery attack.

The structure of this section is as follows: In subsection 3.1 we introduce a
1-round poisonous trail for DES. We extend this into a 2-round linear trail in
subsection 3.2 and connect it to Matsui’s trail in subsection 3.3. In subsection 3.4
we present some particular properties of our 16-round trail and discuss how
different correlations can be distinguished. Finally, in subsection 3.5 we describe
a key recovery attack based on our approach. Empirical validation of this analysis
is provided in section 4.
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corr = −0.0625
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corr = 0.3125
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corr = −0.625
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Fig. 3: Matsui’s 8-round iterative linear approximation circularly moved down
by 2 rounds
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Table 1: The trails within the 1-round hull (0x01CF8000, 0x00440000) of the
f -function of DES. The correlations overlook the key contribution.

Trail τi Correlation Key masks
No.

Trail 1 (0, 0, 0x39, 0x0F, 0, 0, 0, 0) 2−8 · 5 {12, 13, 14, 20, 21, 22, 23} ∪ {17}
Trail 2 (0, 0, 0x3B, 0x2F, 0, 0, 0, 0) 2−8 · 5 {12, 13, 14, 20, 21, 22, 23} ∪ {16, 17, 18}
Trail 3 (0, 0, 0x38, 0x1F, 0, 0, 0, 0) 2−8 · 12 {12, 13, 14, 20, 21, 22, 23} ∪ {19}
Trail 4 (0, 0, 0x3A, 0x3F, 0, 0, 0, 0) −2−8 · 2 {12, 13, 14, 20, 21, 22, 23} ∪ {16, 18, 19}

3.1 A Strictly Zero-Correlation 1-Round Linear Hull for DES

In [AP18] the authors introduced the first strictly zero-correlation 1-round linear
hull for the f -function of DES. In their example, the hull is defined by the input-
output masks pair (0x65000000, P(0x5A000000)).

We introduce a new 1-round key-dependent poisonous round for the f -function.
This hull is defined by the input-output masks pair (0x01CF8000, 0x00011000)
and contains four linear trails of the form

(0x01CF8000, 0x00011000, τi, τi, τi, 0x0044000),

with S3 and S4 active. The possible values of τi, the correlation of each of
the trails, and the key bits involved in the computation of the correlation are
described in Table 1.

As always, the correlation of a single trail is computed by multiplying the
correlations of each atomic operation of the round function. For a linear function
(such as E and P), the correlation between the input and the output mask is either
1 or 0. If the output mask can be obtained from the input mask using the rules
of propagation of linear trails, thus the masks are connectable, the correlation
is 1; otherwise, it is 0. For the substitution layer, the correlation is given by the
LAT of each active S-box. The correlation of the key addition is (−1)

⊕
i∈κ ki , for

ki’s corresponding to the positions of the key mask.
Depending on the bits of the round key, the correlation formula for each trail

within our strictly zero-correlation linear hull is
Trail 1: corr = 5 · 2−8 · (−1)l⊕k17

Trail 2: corr = 5 · 2−8 · (−1)l⊕k16⊕k17⊕k18

Trail 3: corr = 12 · 2−8 · (−1)l⊕k19

Trail 4: corr = −2 · 2−8 · (−1)l⊕k16⊕k18⊕k19

where l = k12 ⊕ k13 ⊕ k14 ⊕ k20 ⊕ k21 ⊕ k22 ⊕ k23.
Given that the correlation of the hull is computed by summing the correlation

of the four trails, the hull correlation is
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corr = 2−8·(−1)l·[5·(−1)k17+5·(−1)k16⊕k17⊕k18+12·(−1)k19−2·(−1)k16⊕k18⊕k19 ]

Note that the key bits in positions k12, k13, k14, k20, k21, k22, and k23 (i.e., the
key bits shared among all 1-round trails) influence the sign of the correlation,
while the key bits in positions k16, k17, k18, and k19 (i.e., the key bits defining
the individual 1-round trails) influence its magnitude.

The correlation of the 1-round linear hull, depending on the values of the
round key, is

corr =


±2−8 · 14 k16 6= k18

±2−8 · 20 k16 = k18 and k17 = k19

0 otherwise

(1)

3.2 A 2-Round Poisonous Trail for DES

In order to connect it to Matsui’s trail we extend the above 1-round linear hull
into a 2-rounds linear trail, where the input mask is one of the masks used in
Matsui’s trail. This 2-round linear trail is described in Figure 4.

F

F

0x00011000 0x00CB8080

corr =


0

±2−8 · 20

±2−8 · 14

0x00011000 0x01040080

corr = 0.5

0x01040080 0x00000000

0x00000000

0x01CF8000

Fig. 4: A 2-round poisonous trail of DES. The last round is the poisonous one.

The correlation for the trail described above, depending on the values of the
second round key, is:

corr =


±2−9 · 14 k16 6= k18

±2−9 · 20 k16 = k18 and k17 = k19

0 otherwise

(2)
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3.3 A Poisonous 16-Round Trail for DES

We now adapt Matsui’s trail into a poisonous 16-round trail by replacing the
last two rounds with the trail described in Section 3.2. Since the last round of
the new trail is poisonous, the entire trail becomes poisonous. The last 8 rounds
of our new trail are presented in Figure 5.

Given that the last round of the new trail is the poisonous one, the correlation
of the 16-round trail depends on the bits in positions 16, 17, 18 and 19 of the
last round key. Taking into account the key schedule, the correlation depends in
the bits on positions 51, 0, 1 and 8 of the master key, and we get

corr =


±2−24.95 k51 6= k1

±2−24.42 k51 = k1 and k0 = k8

0 otherwise

(3)

We note that now the last two rounds of the trail presented in Figure 3 have
the smallest correlation, and that our 2-round trail from Section 3.2 has the same
input mask. Thus, by replacing the last two rounds with our 2-round poisonous
trail we improve the correlation. Whereas the correlation of the two rounds that
we just replaced was 2−5.67, the new 2-round trail has a correlation that is 1.38
times better (for some keys).

3.4 Distinguishing

Up until this point, we introduced the first linear poisonous trail on 16-rounds of
DES. The particular interesting fact about our trail is that it divides the set of
master keys into three key-classes, depending on the correlation. More precisely,
just by observing the correlation we already obtain an information regarding
the master key, i.e. the relation between k51 and k1 and, eventually, the relation
between k0 and k8.

Learning one relation between the master key bits is equivalent to obtaining
one key bit, i.e. in both cases the exhaustive search space is halved. Therefore,
the ability to distinguish between the three key classes can trivially be converted
into a key-recovery attack.

While in theory the computation of the correlation is straightforward, in
practice there are some issues that we need to take into account. One of them
is the data complexity required to compute the correlation.

Generally speaking, to detect a correlation c, an adversary needs to encrypt
roughly 2 · c−2 plaintexts. As per [Mat93], the larger the size of data sample, the
more accurate the results are.

In order to gain the ability to distinguish between the three key-classes,
i.e. between the three correlations, we choose the data size in accordance to
the smallest non-zero correlation, that is, 2−24.95, and encrypt 250.9 random
plaintexts.

After computing the empirical correlation, we compare it to each of the three
expected values. In the case of the non-zero correlations, we compare the empir-
ical value to the theoretical one. For the zero-correlation case, we compare the
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0
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0x010400800x00011000

corr = 0.5
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corr = 1

0x010400800x00000000
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0x00000000 0x21040080

corr = −0.625

0x21040080 0x00008000

Fig. 5: The last eight rounds of our new linear approximation

empirical correlation to the inverse of the squared root of the data complexity;
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this is a good approximation for the expected empirical correlation for a sample
with correlation 0.

For example, if we use 251 data and get the empirical correlation c, we com-
pute the following values:

c1 = | c− 2−24.95 |
c2 = | c− 2−24.42 |
c3 = | c− 0 | .

Then, min(c1, c2, c3) is used to determine the right key class.

3.5 Key Recovery

We now propose a key-recovery attack based on the linear approximation de-
scribed in Section 3.3. Since the correlation depends on the values of k0, k1, k8,
and k51 of the master key, we can infer a relation between these key bits by
observing the correlation of the 16-round linear approximation.

In order to launch an attack, we need a set of 251 plaintexts and their cor-
responding ciphertexts. We compute the correlation of the trail described above
and compare the empirical correlation to each of the three expected values. The
expected correlation that is the closest to the empirical correlation indicates the
key constraints that are met by the master key. For example, if the correlation
is closest to 2−24.95, then the key satisfies the constraint k51 6= k1.

4 Experimental Verification

We performed a series of experiments in order to test the validity of our analysis.

4.1 Experiments on round-reduced DES

We started by performing experiments on round-reduced versions of the trail.
Therefore, our initial experiments targeted up to nine rounds of the trail where
all our round-reduced trails have the same, poisonous, last round. Since the data
complexity in this setting was 238, we were able to perform the experiments
using a software implementation.

For each experiment we chose a master key that satisfies one of the key con-
straints imposed by the poisonous round. We then computed the correlation
of the round-reduced trail with the appropriate amount of data. The empiri-
cal correlation was always very close to the expected one, thus supporting our
hypothesis.

In Table 2 we present the results of our experiments on a trail covering 9
rounds using 238 data. The expected correlation of the trail, depending on the
bits of the 9th round key is:

corr =


±2−16.245 k16 6= k18

±2−15.714 k16 = k18 and k17 = k19

0 otherwise

(4)
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The smallest non-zero correlation of the trail is 2−16.245, thus the minimum
amount of data needed is 235. We chose to use 238 to improve the significance of
the results. The weights of the expected and the empirical correlations are given
in Table 2.

Table 2: Experimental results of the last 9 rounds from the trail presented in
subsection 3.3

Expected weight Empirical correlation Key constraint on RK9

−∞ -18.608 k16 = k18 and k17 6= k19

-16.245 -16.055 k16 6= k18

-15.714 -15.631 k16 = k18 and k17 = k19

4.2 Experiments on full DES

In order to empirically verify the validity of our analysis on the full DES, we
used a custom hardware design. A brief description of the experimental setup
can be found in subsection 4.3 with a detailed description in [D’h19].

Taking into consideration that the smallest correlation of the trail on the
full DES is 2−24.95, the minimum amount of data needed for our experiments
is 250.9. We approximated this to 251 data. For a better understanding of our
results, we have empirically computed the correlation for the full DES using 144
different keys, as follows:

– 48 keys satisfy the constraint k51 6= k1; thus, their expected correlation is
±2−24.95;

– 48 keys satisfy the constraint k51 = k1 and k0 = k8; hence their expected
correlation is ±2−24.42;

– 48 keys satisfy the constraint leading to strictly zero-correlation.

In order to interpret our results, for each key-class we computed the log2
of the absolute value of the mean of the empirical correlations, the results of
this experiment are presented in Table 3. In Figure 6 we depict in green the
full distribution together with the respective expected distribution in blue. Note
that Figure 6b and Figure 6c use the absolute value of the correlations while this
is not necessary for Figure 6a due to the convergence of ±0 into a single case.

All our experiments, both on round-reduced and on full DES, support the
hypothesis that different key-classes can be distinguished, therefore the correla-
tion discloses the constraints that the key fulfils.
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Table 3: Experimental results of the full DES using the trail described in sub-
section 3.3

Expected weight Average weight Key constraint (respective to Success
(empirical) the master key) probability

−24.95 -24.90 k51 6= k1 62.5%

−24.42 -24.41 k51 = k1 and k0 = k8 66.6 %

−∞ -26.39 k51 = k1 and k0 6= k8 39.5 %

Average success probability: 51.9%

(a) Expected correlation = 0. Each of
the 7 bins is of size 2−25.57 starting
from −2−23.76.

(b) Expected correlation = ±2−24.42.
Each of the 7 bins is of size 2−25.73

starting from 2−25.72.

(c) Expected correlation = ±2−24.95. Each of the 7 bins is of size 2−25.69 starting from
2−24.83.

Fig. 6: The distribution of the empirical correlations from 3 × 48 experiments
(green) compared against histograms of the respective expected values (blue).
Absolute values of the correlations are used in the top-right and bottom plots.
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4.3 Experimental Setup

We design and implement a custom DES accelerator to speed up the exper-
iments. Figure 7 depicts the architecture of our computing system. It fits on
a single instance of Zynq UltraScale+ MPSoC ZCU102. We boot PetaLinux
on its hardwired quad-core Arm Cortex-A53 to make it an easily controllable
standalone computing system, controllable through a flexible Python interface.
We use the AXI interface provided by Xilinx to map 128 cryptanalitic cores as
peripherals. This design is easily portable and expandable. Running at a clock
speed of 250MHz the throughput of each core is 227.89 encryptions per second,
requiring 19.17 hours to run a single experiment consisting of 251 encryptions
using 128 cores.

Host PC

Control

ZCU102

Arm Cortex-A53 AXI

Core 0
Peta Linux

Core 1 Core 127

ASIC CPU

Programable logic

𝚙𝚢𝚝𝚑𝚘𝚗 >>

Fig. 7: Architecture of the accelerator for cryptanalysis ofDES.

Figure 8 depicts architecture of each core. A core contains a round-pipelined
implementation of DES with the supporting logic for cryptanalysis. Said logic
includes: pseudo-random plaintext generation, masking the plaintext and the ci-
phertext values, evaluating the linear approximation and keeping the correlation.
We increase flexibility and usability of the platform by allowing runtime recon-
figuration of: masks, keys, pseudo-random number generation and the number
of experiments. Therefore, experiments are performed fully in hardware. To the
best of our knowledge, this is the first application of hardware for cryptanalysis
of this sort.

We generate plaintexts using 64-bit Linear Feedback Shift Registers (LFSRs).
LFSR hardware allows us to configure each with a different polynomial and
starting value (seed). We ensure that pseudo-random sequences do not repeat by
using primitive 64-bit polynomials—leading to sequence length of 264—for each
LFSR. For more implementation details and source code we refer the interested
reader to [D’h19].

5 Discussion

Matsui’s linear attack against DES, and especially Algorithm 1, was not familiar
with the linear hull effect, thus it trivially assumed that it does not exist. In fact,
many subsequent works like [Jun01, BV17] assume that either the DES cipher
does not exhibit the linear hull effect or that every hull of DES contains one
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Cryptanalysis DES-specific Datapath Configuration

Fig. 8: Architecture of a cryptanalytic core.

dominant linear trail, and therefore, any other trails can be treated as noise.
Moreover, [Jun01] presents a series of experiments in which the mean of the
empirical correlation is not perceptibly greater than the theoretical one, the
author concluding that the linear hull effect is not visible for DES.

In section 4 we presented experimental verification for our distinguisher. As
can be seen in Tables 2–3, while the empirical results are indeed “close enough”
to their expected values, they are not quite the same. These small differences may
be ignored as sample error (see also [BT13]) but they may also mean that another
trail exists within Matsui’s hull. As per Ashur and Rijmen in [AR16] ignoring
some of the linear trails inside the hull leads to an over- or under-estimation of
the expected correlation, leading in turn to a different success probability than
what the adversary expects.

In our research we questioned the presence of the linear hull effect for the
DES cipher. Since it can be challenging to identify another trail for the full DES,
we restricted our search to round-reduced versions of the cipher. We performed
our search by trial and error, starting by analyzing the existence of a second trail
for two rounds of DES. We imposed the constraints that the input and output
masks are equal to the ones defining the last two rounds of the trail presented
in subsection 3.3. This search lead to a contradiction, therefore we increased the
number of rounds. We stopped at 5 rounds, when we found a second trail. Since
we didn’t use any automatic tool for this analysis, more linear hulls might exist.

The existence of the second 5-round linear trail, presented in Figure 9, proves
that DES exhibits the linear hull effect. The correlation of this second trail is
2−21.19, which is indeed significantly smaller than 2−10.89 , the correlation of the
original trail (in both cases we consider the correlation of the last round equal
to ±2−8 · 14). Therefore, it can be treated as noise.
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F
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0x00008000 0x21040080

Fig. 9: The second 5-round linear trail

We stress that, even though DES exhibits the linear hull effect, our experi-
ments on the full DES support the hypothesis that any other existing trail has
a negligible contribution to the hull correlation. More precisely, an adversary
is able to distinguish between the three key-classes and, therefore, gaining an
information regarding the master key.

5.1 Conclusion

In this paper we extended the work in [AP18] by constructing a 0-correlation
key-dependent linear trails that cover more than a single round of DES. First,
we presented a 2-round linear approximation where the last round may have
correlation 0, depending on the key. We showed how to connect these two rounds
to Matsui’s trail, resulting in 0-correlation key-dependent trails covering the full
DES.

The work described can be extended in different directions. For example,
it will be interesting to identify other block ciphers that exhibit “poisonous”
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linear trails and revisit, if exist, the linear attacks published against them. It
also remains to be investigated if and how the attacks presented in this paper
can be improved in term of both data and time complexity and how they affect
the security of 3DES. Future research should also consider the extension of these
attacks to the case of multiple linear cryptanalysis.
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