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Abstract. In this paper for elliptic curves provided by Huff’s equation
Ha,b : ax(y2 − 1) = by(x2 − 1) and general Huff’s equation Ga,b :

x(ay2 − 1) = y(bx2 − 1) and degree 2 compression function f(x, y) = xy
on these curves, herein we provide formulas for doubling and differential
addition after compression, which for Huff’s curves are as efficient as
Montgomery’s formulas for Montgomery’s curves By2 = x3 + Ax2 + x.
For these curves we also provided point recovery formulas after com-
pression, which for a point P on these curves allows to compute [n]f(P )
after compression using the Montgomery ladder algorithm, and then re-
cover [n]P . Using formulas of Moody and Shumow for computing odd
degree isogenies on general Huff’s curves, we have also provide formulas
for computing odd degree isogenies after compression for these curves.
Moreover, it is shown herein how to apply obtained formulas using com-
pression to the ECM algorithm. In the appendix, we present examples
of Huff’s curves convenient for the isogeny-based cryptography, where
compression can be used.

Keywords: general Huff’s curves · Huff’s curves · compression on ellip-
tic curves · isogeny-based cryptography · ECM method

1 Introduction

Compression on elliptic curves is a standard approach, for example, for the
reduction of key sizes and protection against side-channel attacks. The clear
presentations of results on x-coordinate compression, one can find, for example,
in [1] and [2]. In general, if E is an elliptic curve over a field K and f : E → K is a
degree 2 rational function such that f(P ) = f(−P ) for all P ∈ E, then f is called
a degree 2 compression function and we have induced from E the multiplication
of values f by integers provided by [k]f(P ) = f([k]P ) for k ∈ Z. As an example,
on Weierstrass and Montgomery’s curves f(x, y) = x is a compression function.
In general for degree 2 compression function f : E → K there exist rational
functions for doubling D(x) ∈ K(x) and differential additions A1, A2 ∈ K(x, y)
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such that

f([2]P ) = D(f(P )), (1)

f([2]P ) = D(f(P )), (2)

f(P +Q) + f(Q− P ) = A2(f(P ), f(Q)) (3)

for generic points P,Q ∈ E. If one determines functions D and A1 or A2,
the Montgomery ladder algorithm allows to compute [k]f(P ) using values of f .
There also exists a rational map B : E ×K ×K → E such that

Q = B(P, f(Q), f(P +Q)) (4)

for generic points P,Q ∈ E, which we call the point recovery formula. This allows
for P ∈ E computation [k]f(P ) using the Montgomery ladder algorithm, which
also gives [k+1]f(P ), and to recover point [k]P on E given P, [k]f(P ), [k+1]f(P )
substituting Q = [k]P to the formula (4).

Peter Montgomery [3] provided very efficient formulas for doubling and dif-
ferential addition using x-coordinates for curves of the form By2 = x3 +Ax2 +x
called Montgomery’s curves. Formulas (1) and (2) or (3) were also given for other
standard models of elliptic curves: Weierstrass [4], Edwards [5], [6], Hessian [7],
Jacobi quartic [8], [9], twisted Hessian and Huff’s [9] curves. Formulas for point
recovery (4) were given for Weierstrass [8], [10], Edwards [6], generalized and
twisted Hessian, Huff’s and Jacobi quartic [9] curves.

In this paper we consider Huff’s curves Ha,b : ax(y2 − 1) = by(x2 − 1)
described by Joye, Tibouchi and Vergnaud in [11] and general Huff’s curves
Ga,b : x(ay2 − 1) = y(bx2 − 1) described by Wu and Feng [12] over a field K
of char(K) 6= 2. Formulas similar to the Montgomery formulas for differential
addition were given in [13], Appendix B] for the extended Huff’s model

EHa,c,d : y(1 + ax2) = cx(1 + dy2) (5)

with compression function f(x, y) = x differential addition is of the form

f(P +Q)f(P −Q) =
f(P )2 − f(Q)2

1− a2f(P )2f(Q)2
. (6)

Moreover, formulas for doubling and differential addition after compression were
also given for binary Huff’s curves [14].

In this paper for Huff’s curves and general Huff’s curves over a field K
of char(K) 6= 2 using compression function f(x, y) = xy, we introduce new
formulas for doubling and differential addition, which for Huff’s curves are as
efficient as Montgomery’s formulas for the curves By2 = x3 + Ax2 + x (note
that in [9] we used compression function y/x on Huff’s curves). These formulas
and formulas for point recovery are provided in Theorems 1 and 2. We provide
a proof of Theorem 1, and Theorem 2 follows by carrying formulas for Huff’s
curves applying an isomorphism from a general Huff’s curve to a suitable Huff’s
curve.
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In Section 3, we apply formulas of Moody and Shumow [15] and provide in
Corollaries 1 and 2 formulas for compression of odd degree isogenies for general
Huff’s and Huff’s curves.

In Section 4, we summarize the costs of computations of presented formulas
using compression.

Moreover, we present application of computed formulas for obtaining efficient
formulas for computation of general odd-degree isogeny and applications to the
ECM method.

Additional Magma codes, where the correctness of provided formulas is checked,
may be found on https://github.com/Michal-Wronski/Huff-compression.

git.

2 Point compression on Huff’s and general Huff’s curves

In this section using compression function f(x, y) = xy, we provide formulas for
doubling, differential addition and point recovery for Huff’s and general Huff’s
curves. We assume that K is a field with char(K) 6= 2.

2.1 Huff’s curves

Joye, Tibouchi and Vergnaud in [11] described the group law and pairing compu-
tation on Huff’s elliptic curves. Huff’s curve over K is provided by the equation

Ha,b : ax(y2 − 1) = by(x2 − 1), (7)

where a2 6= b2 and a, b 6= 0. The point O = (0, 0) is the neutral element, and the
opposite point −(x, y) = (−x,−y). For two points P = (xP , yP ) , Q = (xQ, yQ)
on Ha,b their sum P +Q = (xR, yR) is provided by{

xR =
(xP+xQ)(1+yP yQ)
(1+xP xQ)(1−yP yQ) ,

yR =
(yP+yQ)(1+xP xQ)
(1−xP xQ)(1+yP yQ) .

(8)

Before we provide a results on compression, note that if f : E → K is a
degree 2 compression function on an elliptic curve E, then the field extension
K(f) ⊂ K(E) is of degree 2 and K(f) consists exactly of functions in K(E)
which are constant with respect to [−1] (i.e., functions g ∈ K(E), such that
g ◦ [−1] = g).

We provide the following formulas for Huff’s curves for doubling, differential
addition and point recovery after compression.

Theorem 1. On Huff’s curves Ha,b (7) the function f(x, y) = xy is a degree 2
compression function. We have the following formulas for doubling and differ-
ential addition:

f([2]P ) =
4f(P )(f(P )2 +

(
b
a + a

b

)
f(P ) + 1)

(f(P )2 − 1)2
, (9)

f(P +Q)f(P −Q) =

(
f(P )− f(Q)

f(P )f(Q)− 1

)2

. (10)

https://github.com/Michal-Wronski/Huff-compression.git
https://github.com/Michal-Wronski/Huff-compression.git
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We also have the following formulas for point recovery. For generic points P =
(xP , yP ), Q = (xQ, yQ) on Ha,b if we are given P, f(Q), f(P + Q), then coordi-
nates of Q are provided byxQ = f(Q)

(yP f(P+Q)+xP )(bf(Q)+a)+(af(Q)+b)(xP f(P+Q)+yP )

(bf(Q)+a)(f(P+Q)−f(Q)+xP yP (f(Q)f(P+Q)−1))
,

yQ =
f(Q)
xQ

.
(11)

Proof. Clearly f(P ) = f(−P ) for P ∈ Ha,b and f : E → K is of degree 2,
because for generic α ∈ K (the algebraic closure of K) the system{

xy = α,

ax(y2 − 1) = by(x2 − 1)
(12)

has two solutions, since substituting in the second equation xy = α and y =
α/x we have aα α

x − ax = b α x − bαx , hence x satisfies the quadratic equation
(b α+a)x2 = aα2 +b α.

Let r = xy. In the proof, we will use the formulas which express x2 and y2 as
rational functions of r, which exist because x2 and y2 are constant with respect
to [−1]. Substituting y = r

x to the equation of Ha,b we have

ax
(
r2

x2 − 1
)

= b rx
(
x2 − 1

)
. (13)

Hence,
x2 (br + a) = ar2 + br, (14)

and

x2 =
r(ar + b)

br + a
. (15)

We have

y2 =
r2

x2
=
r(br + a)

ar + b
. (16)

We first show the formula for doubling after compression. From (8) for P =
(x, y) ∈ Ha,b the point [2]P has the following coordinates{

x[2]P = 2x(y2+1)
(x2+1)(1−y2) ,

y[2]P = 2y(x2+1)
(1−x2)(y2+1) .

(17)

Hence,

f([2]P ) = 2x(y2+1)
(x2+1)(1−y2)

2y(x2+1)
(1−x2)(y2+1)

= 4xy
(1−x2)(1−y2) .

(18)

From (15) and (16) we have

f([2]P ) = 4r

(1− r(ar+b)
br+a )(1− r(br+a)

ar+b )
= 4r

a−ar2

br+a
b−br2

ar+b

= 4r(br+a)(ar+b)
ab(1−r2)2 =

4r(r+ a
b )(r+

b
a )

(r2−1)2 =
4r(r2+( a

b +
b
a )r+1)

(r2−1)2 ,
(19)

which yields formula (9).



5

From (8) we have

f(P +Q) =
(xP+xQ)(1+yP yQ)
(1+xP xQ)(1−yP yQ)

(yP+yQ)(1+xP xQ)
(1−xP xQ)(1+yP yQ)

=
(xP+xQ)(yP+yQ)

(1−xP xQ)(1−yP yQ) ,

f(P −Q) =
(xP−xQ)(1−yP yQ)
(1−xP xQ)(1+yP yQ)

(yP−yQ)(1−xP xQ)
(1+xP xQ)(1−yP yQ)

=
(xP−xQ)(yP−yQ)

(1+xP xQ)(1+yP yQ) .

(20)

Hence

f(P +Q)f(P −Q) =
(x2P − x2Q)(y2P − y2Q)

(1− x2Px2Q)(1− y2P y2Q)
. (21)

Let rP = f(P ), rQ = f(Q). From (15) and (16) we have

f(P +Q)f(P −Q) =

=

(
rP (arP +b)

brP +a −
rQ(arQ+b)

brQ+a

)(
rP (brP +a)

arP +b −
rQ(brQ+a)

arQ+b

)
(
1− rP (arP +b)

brP +a

rQ(arQ+b)

brQ+a

)(
1− rP (brP +a)

arP +b

rQ(brQ+a)

arQ+b)

) . (22)

Simplifying and factoring the last expression (for example using Magma), we

obtain
(
rP−rQ
rP rQ−1

)2
, which is (10).

To obtain point recovery formula (11) assume that we are given P = (xP , yP ),
f(Q) and f(P + Q). Let rQ = f(Q), rR = f(P + Q). Substituting yQ = rQ/xQ
to the right hand side of (20) we have

rR =
(xP + xQ)(yP +

rQ
xQ

)

(1− xPxQ)(1− yP rQ
xQ

)
. (23)

Multiplying by the denominator and xQ we have

rR(xQ − yP rQ − xPx2Q + xPxQyP rQ) =

= xPxQyP + xP rQ + x2QyP + rQxQ.
(24)

We can now compute from this equation xQ and substitute (15) for x2Q, and we
have

xQ =
yP rQrR+xP rQ+x2

Q(xP rR+yP )

rR+xP yP rQrR−xP yP−rQ

=
yP rQrR+xP rQ+

rQ(arQ+b)

brQ+a (xP rR+yP )

rR−rQ+xP yP (rQrR−1) .
(25)

Multiplying the numerator and denominator by brQ + a we obtain (11).

In projective coordinates formulas (9) and (10) can be computed as efficiently
as formulas [3] for Montgomery curves

By2 = x3 +Ax2 + x. (26)
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Let f(P ) = (Xf(P ) : Zf(P )) for P ∈ Ha,b. Then{
Xf([2]P ) = 4Xf(P )Zf(P )((Xf(P ) − Zf(P ))

2 +AXf(P )Zf(P )),

Zf([2]P ) = (Xf(P ) + Zf(P ))
2(Xf(P ) − Zf(P ))

2,
(27)

where A = a
b + b

a + 2 and 4Xf(P )Zf(P ) can be computed as 4Xf(P )Zf(P ) =

(Xf(P ) + Zf(P ))
2 − (Xf(P ) − Zf(P ))

2. The cost of these formulas is equal to
3M+2S+c, whereM,S, c are costs of multiplication, squaring and multiplication
by a constant in K, respectively. Cost c can be made small, if coefficients a, b
are chosen such that A is small. Moreover, computing 4Xf(P )Zf(P ) = (Xf(P ) +

Zf(P ))
2 − (Xf(P ) − Zf(P ))

2 for B = A/4, we obtain

Xf([2]P ) = 4Xf(P )Zf(P )((Xf(P ) − Zf(P ))
2 + B(4Xf(P )Zf(P ))) (28)

and in this way doubling requires 2M+2S+c. Similarly, the differential addition
in projective representation is provided by

Xf(P+Q) = Zf(P−Q)

(
(Xf(P ) − Zf(P ))(Xf(Q) + Zf(Q))

−(Xf(P ) + Zf(P ))(Xf(Q) − Zf(Q))
)2
,

Zf(P+Q) = Xf(P−Q)

(
(Xf(P ) − Zf(P ))(Xf(Q) + Zf(Q))

+(Xf(P ) + Zf(P ))(Xf(Q) − Zf(Q))
)2
,

(29)

and has cost 4M + 2S.

2.2 General Huff’s curves

In [12] Wu and Feng introduced general Huff’s curves. General Huff’s curves are
provided by the equation

Ga,b : x(ay2 − 1) = y(bx2 − 1) (30)

where a 6= b and a, b 6= 0. Similarly as for Huff’s curve the point O = (0, 0) is
the neutral element, and the opposite point −(x, y) = (−x,−y). For two points
P = (xP , yP ) , Q = (xQ, yQ) on Ha,b their sum P +Q = (xR, yR) is provided by

xR =
(xP+xQ)(ayP yQ+1)

(bxP xQ+1)(1−ayP yQ)
,

yR =
(yP+yQ)(bxP xQ+1)

(1−bxP xQ)ayP yQ+1)
.

(31)

Lemma 1. Every Huff’s curve over a field K given by the equation (7) is also
a general Huff’s curve.

Proof. By the substitutions:

x = ax, y = by, a = 1
b2 and b = 1

a2
(32)

we can transform equation (7) into the following general Huff’s curve equation

Ga,b : x(ay2 − 1) = y(bx2 − 1). (33)
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If a and b are squares in K we can transform the general Huff’s curve with
equation (33) into the Huff’s curve (7) by substitutions

x = x
√
b, y = y

√
a, a =

1√
b

and b =
1√
a
. (34)

Theorem 2. On general Huff’s curves (30) with a degree 2 compression func-
tion f(x, y) = xy, we have the following formulas for doubling and differential
addition

f([2]P ) =
4f(P )(abf(P )2+(a+b)f(P )+1)

(abf(P )2−1)2 , (35)

f(P +Q)f(P −Q) =

(
f(P )−f(Q)

abf(P )f(Q)−1

)2

. (36)

We also have the following formulas for point recovery. For generic points P =
(x1, y1), Q = (x2, y2) on Ga,b, if we are given P , f(Q), f(P +Q), then the coor-

dinates of Q are provided byx2 = f(Q)
(ay1f(P+Q)+x1)(bf(Q)+1)+(af(Q)+1)(bx1f(P+Q)+y1)

(bf(Q)+1)(f(P+Q)−f(Q)+x1y1(abf(Q)f(P+Q)−1)
,

y2 =
f(Q)
x2

.
(37)

Proof. Formula (35) can be mechanically obtained from (9) by substitutions
(32). Similarly we can derive the doubling formula (36) from (10) and the point
recovery formula (37) from (11).

3 Applications to the isogeny-based cryptography

In general, if ψ : E → E1 is an isogeny of elliptic curves, and f : E → K,
f1 : E1 → K are degree 2 compression functions, then there exists an induced
rational function ψ̃ : K → K, which we call compression of isogeny ψ, such that
f1 ◦ ψ = ψ̃ ◦ f , because the function f1 ◦ ψ ∈ K(E1) is constant with respect to
[−1], so it is of the form ψ̃ ◦ f for some rational function ψ̃. In this section we
present applications of formulas obtained in the previous sections.

3.1 General Huff’s isogenies computation using compression
techniques

Moody and Shumow in [15] gave formulas on isogenies for general Huff’s curves.
Because to compute values of f(x, y) at points of order 2 at infinity requires to
take another representation of compression function f : Ga,b → K, we consider
isogenies of odd degrees.

Let F = {(0, 0), (αi, βi), (−αi,−βi) : i = 1 . . . s}, where
−(αi, βi) = (−αi,−βi), is the kernel of an isogeny ψ of degree `, where ` = 2s+1.
Let A =

∏s
i=1 αi and B =

∏s
i=1 βi.
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Theorem 3. ([15], Theorem 5.) Define

ψ(P ) =
(
xP
∏
Q6=(0,0)∈F

−xP+Q

xQ
, yP

∏
Q 6=(0,0)∈F

−yP+Q

yQ

)
. (38)

Then ψ is an `-isogeny with kernel F from the curve Ga,b to the curve Ga′,b′ ,

where a′ = a`B
4

and b
′

= b
`
A

4
.

Now we present how to compute isogeny f(ψ) using point compression.

Corollary 1. Let R ∈ Ga,b and let (Xf(R) : Zf(R)) be projective representation

of f(R), where R is the point defining kernel F of the isogeny ψ. Let Ord(R) be
the odd number. Let’s note that f(ψ(P )) is provided by

f(ψ(P )) =

=
(
xP
∏
Q 6=(0,0)∈F

−xP+Q

xQ
· yP

∏
Q 6=(0,0)∈F

−yP+Q

yQ

)
,

(39)

which is equal to

f(ψ(P )) =
(
xP yP

∏
Q 6=(0,0)∈F

xP+QyP+Q

xQyQ

)
=
(
f(P )

∏
Q∈F+

f(P+Q)f(P−Q)

f(Q)2

)
,

(40)

where F
+

is the set {(αi, βi) : i = 1 . . . s}. Having generator R of the kernel
of the isogeny ψ, provided by projective compression (Xf(R) : Zf(R)), it is easy

to obtain other elements of the F
+

, using for example a ladder method. Let J

be the set of compressions in projective representation of F
+

, so J = {(Xf(P i)
:

Zf(P i)
) : i = 1 . . . s}. The value of f(ψ) using point compression may be provided

by

f(ψ(P )) =

(
Xf(P )

Zf(P )

∏s
i=1

Xf(P+Qi)
Xf(P−Qi)

Z
2
f(Qi)

Zf(P+Qi)
Zf(P−Qi)

X
2
f(Qi)

)
. (41)

Having compression f(P ) of point P , provided in projective compression rep-

resentation by (Xf(P ) : Zf(P )) and the set J , one can compute
Xf(P+Q)Xf(P−Q)

Zf(P+Q)Zf(P−Q)

using identities
Xf(P+Q)Xf(P−Q) =

(
Xf(P )Zf(Q) −Xf(Q)Zf(P )

)2
,

Zf(P+Q)Zf(P−Q) =
(
abXf(P )Xf(Q) − Zf(P )Zf(Q)

)2
,

(42)

and therefore one can obtain f(ψ(P )).

To find the coefficients a′ and b
′

of general Huff’s curve Ga′,b′ , one can use

similar transformations as for formulas (15) and (16) and obtain

x2
P

=
Xf(P )(aXf(P )+Zf(P ))
Zf(P )(bXf(P )+Zf(P ))

,

y2
P

=
Xf(P )(bXf(P )+Zf(P ))
Zf(P )(aXf(P )+Zf(P ))

.
(43)
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Finally,

a′ = a`B
4

= a`
s∏

i=1

yP i

4

= a`
s∏

i=1

(
X

f(Pi)

(
bX

f(Pi)
+Z

f(Pi)

)
Z

f(Pi)

(
aX

f(Pi)
+Z

f(Pi)

)
)2

,

b
′

= b
`
A

4
= b

` s∏
i=1

xP i

4

= b
` s∏
i=1

(
X

f(Pi)

(
aX

f(Pi)
+Z

f(Pi)

)
Z

f(Pi)

(
bX

f(Pi)
+Z

f(Pi)

)
)2

.

(44)

3.2 Huff’s isogenies computation using compression techniques

In this subsection, it will be shown how to obtain formulas for computation of
isogeny on Huff’s curves using Theorem 3 and sequence of isomorphisms and
isogenies between Huff’s and general Huff’s curves.

Theorem 4. Let F = {(0, 0), (αi, βi), (−αi,−βi) : i = 1 . . . s}, where −(αi, βi) =
(−αi,−βi), be the kernel of an isogeny ψ. Let A =

∏s
i=1 αi and B =

∏s
i=1 βi.

Let’s define

ψ(P ) =
(
xP (−1)s

∏
Q6=(0,0)∈F xP+Q,

yP (−1)s
∏
Q6=(0,0)∈F yP+Q

)
.

(45)

Then ψ is a `-isogeny with kernel F , from the curve Ha,b, to the curve Ha′,b′ ,
where a′ = a

A2 = a∏s
i=1 x

2
Qi

and b′ = b
B2 = b∏s

i=1 y
2
Qi

Proof. To prove the Theorem 4 we will use the following composition τ ◦ ψ ◦ ξ,
where:

– ξ is an isomorphism from Huff’s curve Ha,b to general Huff’s curve Ga,b,

where a = 1
b2 , b = 1

a2 and where for P = (x, y) the isomorphism ξ using

lemma 1 has the form P = ξ(P ) = (ax, by) = (x, y),
– ψ is an isogeny from general Huff curve Ga,b to general Huff curve Ga′,b′ ,

where the kernel F = {(0, 0), ξ(αi, βi), ξ(−αi,−βi)} = {(0, 0), (αi, βi), (−αi,−βi)}
and for P = (x, y) the isogeny ψ has the form

P
′

= ψ(P )

=
(
xP
∏
Q6=(0,0)∈F

−xP+Q

xQ
, yP

∏
Q 6=(0,0)∈F

−yP+Q

yQ

)
=
(
axP

∏
Q6=(0,0)∈F

−axP+Q

axQ
, byP

∏
Q6=(0,0)∈F

−byP+Q

byQ

)
=
(
axP

∏
Q6=(0,0)∈F

−xP+Q

xQ
, byP

∏
Q6=(0,0)∈F

−yP+Q

yQ

) (46)

where
a′ = a`B

4
= a`

(∏s
i=1 βi

)4
,

b
′

= b
`
A

4
= b

`
(
∏s
i=1 αi)

4
.

(47)

– τ is an isomorphism from general Huff curve Ga′,b′ to the Huff curve Ha′,b′ ,
where
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–

a′ = 1√
b′

= 1√
1

a2`

(
s∏

i=1
axQi

)2 = 1

a2s

a`

(
s∏

i=1
xQi

)2 = a(
s∏

i=1
xQi

)2 ,

b′ = 1√
a′

= 1√
1

b2`

(
s∏

i=1
byQi

)2 = 1

b2s

b`

(
s∏

i=1
yQi

)2 = b(
s∏

i=1
yQi

)2

(48)

and

P ′ = τ(P
′
)

=
(

a
a′ xP

∏
Q6=(0,0)∈F

−xP+Q

xQ
, b
b′ yP

∏
Q 6=(0,0)∈F

−yP+Q

yQ

)
=
(
xP
(∏s

i=1 xQi

)2∏
Q6=(0,0)∈F

−xP+Q

xQ
,

yP
(∏s

i=1 yQi

)2∏
Q 6=(0,0)∈F

−yP+Q

yQ

)
=

(
xP (−1)s

∏
Q6=(0,0)∈F

xP+Q, yP (−1)s
∏

Q6=(0,0)∈F
yP+Q

)
.

(49)

Corollary 2. Let R ∈ Ha,b and let (Xf(R) : Zf(R)) be projective representation
of f(R), where R is the point defining the kernel F of the isogeny ψ. Let Ord(R)
be the odd number. Let’s note that f(ψ(P )) is given by

f(ψ(P )) =

xP (−1)s
∏

Q6=(0,0)∈F

xP+Q · yP (−1)s
∏

Q 6=(0,0)∈F

yP+Q

 , (50)

which is equal to

f(ψ(P )) =
(
xP yP

∏
Q6=(0,0)∈F xP+QyP+Q

)
=
(
f(P )

∏
Q∈F+ f(P +Q)f(P −Q)

)
,

(51)

where F+ is the set {(αi, βi) : i = 1, . . . , s}. Having generator R of the kernel of
the isogeny ψ, given by projective compression representation (Xf(R) : Zf(R)), it
is easy to obtain other elements of the F+, using for example a ladder method.
Let J be the set of projective representations of F+, so J = {(Xf(Qi) : Zf(Qi)) :

i = 1, . . . , s}. In a projective representation f(ψ) using point compression may
be provided by

f(ψ(P )) =
(
Xf(P )

Zf(P )

∏s
i=1

Xf(P+Qi)
Xf(P−Qi)

Zf(P+Qi)
Zf(P−Qi)

)
. (52)

To find the coefficients a′ and b′ of Huff’s curve Ha′,b′ , if f(P ) =
Xf(P )

Zf(P )
, one

can use formula (53)

x2P =
Xf(P )(aXf(P )+bZf(P ))
Zf(P )(bXf(P )+aZf(P ))

,

y2P =
Xf(P )(bXf(P )+aZf(P ))
Zf(P )(aXf(P )+bZf(P ))

,
(53)
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and finally

a′ = a

(
∏s

i=1 xQi)
2 = a∏s

i=1

(
Xf(Qi)(aXf(Qi)

+bZf(Qi))
Zf(Qi)(bXf(Qi)

+aZf(Qi))

)

=
a
∏s

i=1 Zf(Qi)(bXf(Qi)
+aZf(Qi))∏s

i=1Xf(Qi)(aXf(Qi)
+bZf(Qi))

,

b′ = b

(
∏s

i=1 xQi)
2 = b∏s

i=1

(
Xf(Qi)(bXf(Qi)

+aZf(Qi))
Zf(Qi)(aXf(Qi)

+bZf(Qi))

)

=
b
∏s

i=1 Zf(Qi)(aXf(Qi)
+bZf(Qi))∏s

i=1Xf(Qi)(bXf(Qi)
+aZf(Qi))

.

(54)

4 Efficiency of obtained formulas

Formulas obtained in the previous sections may be used, for example, in the
isogeny-based cryptography, like in the SIDH algorithm, and may be the alter-
native for Montgomery curves’ arithmetic.

Efficient algorithms for isogeny-based cryptography using compression on
Montgomery curves have been presented in [16] and [17].

As follows from (27) and (29), the computation of f(P+Q)f(P−Q), addition
and doubling in all cases of (Huff’s and Montgomery curves) costs 4M + 2S,
2M + 2S and 2M + 2S+ c respectively. For general Huff’s curves computational
costs are 4M + 2S + c, 6M + 2S + c and 2M + 3S + 2c.

It is worth noting that, e.g., in the SIKE algorithm, only coefficient A of
the Montgomery curve MA,B provided by equation (26) is required, and this
coefficient may be obtained having x-coordinates of three distinct points on
MA,B . It costs 8M+3S. It is an open issue to use a similar approach to (general)
Huff’s curves.

4.1 Huff’s curves

Cost of `-isogenous curve computation At first, one needs to compute the
projective representation of elements Qi, for i = 1, s of the kernel of the isogeny.
This may be computed having the first element of the kernel (generator of the
subgroup) in projective representation

(
Xf(Q1) : Zf(Q1)

)
and making doubling to

obtain
(
Xf(Q2) : Zf(Q2)

)
and s−2 times differential addition to obtain other ele-

ments of the kernel
(
Xf(Q3) : Zf(Q3)

)
,
(
Xf(Q4) : Zf(Q4)

)
, . . . ,

(
Xf(Qs) : Zf(Qs)

)
.

Moreover, let’s note, that in both formulas for a′ and b′ (54), there appears
aXf(Qi), bXf(Qi), aZf(Qi), bZf(Qi) for every i = 1, s. The computation of these
elements requires 4 multiplications by constants. Additionally, in both nomina-
tors and denominators, there are required multiplications by Zf(Qi) and Xf(Qi)

respectively, which results in 4 additional multiplications. Product multiplica-
tions require additional 4(s−1) multiplications. Finally, there are required other
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multiplications by a and b. So finally, to compute a′ and b′ one requires

Doub+ (s− 2)DiffAdd+ 4s(c+M) + 4(s− 1)M + 2M
= (s− 1)(4M + 2S) + 4s(c+M) + 4(s− 1)M + 2M
= 2sS + 4sc+ 12sM − 2S − 6M,

(55)

where Doub and DiffAdd are the costs of doubling and differential addition
respectively. In the most interesting cases for us, computation of the 3-isogenous
and 5-isogenous curve, one obtains that computing the isogenous curve Ha′,b′

costs 6M + 4c and 2S + 8c+ 18M respectively.

Cost of odd `-isogeny evaluation, where ` = 2s+1 Let’s note, that every
computation of Xf(P+Qi)Xf(P−Qi) and Zf(P+Qi)Zf(P−Qi) for i = 1, s requires
2M + 2S every. Additionally, there are required 2(s−1) product multiplications
(in the nominator and denominator). Moreover, there are required 2 additional
multiplications by Xf(P ) and Zf(P ). So finally, ` = 2s+1 isogeny evaluation cost
is

s(2M + 2S) + 2(s− 1)M + 2M
= 2sS + 4sM.

(56)

In the most interesting cases, evaluation of 3-isogeny and 5-isogeny, one ob-
tains that such evaluation costs 4M + 2S and 8M + 4S respectively.

4.2 General Huff’s curves

Cost of `-isogenous curve computation Similarly to Huff’s curves at the
beginning, one needs to compute projective representation of the isogeny ele-
ments Qi, for i = 1, s of the kernel of the isogeny. This may be computed having
the first element of the kernel (generator of the subgroup) in projective repre-

sentation
(
Xf(Q1)

: Zf(Q1)

)
and making doubling to obtain

(
Xf(Q2)

: Zf(Q2)

)
and s − 2 times differential addition to obtain other elements of the kernel(
Xf(Q3)

: Zf(Q3)

)
,
(
Xf(Q4)

: Zf(Q4)

)
, . . . ,

(
Xf(Qs)

: Zf(Qs)

)
. Moreover, let’s

note, that in both formulas for a′ and b
′

(44), there appears aXf(Qi)
, bXf(Qi)

,

aZf(Qi)
, bZf(Qi)

for every i = 1, s. The computation of these elements requires
4 multiplications by constants. Additionally, in both nominators and denomina-
tors, there are required multiplications by Zf(Qi)

and Xf(Qi)
respectively and

squarings, which results in 4 additional multiplications and 4 squarings. Prod-
uct multiplications require additional 4(s− 1) multiplications. Finally, there are

required other multiplications by a` and b
`
. Computing both a` and b

`
requires

len(`)−1 constant doubling and hwt(`)−1 constant squaring respectively, where
len(`) denotes binary length of ` and hwt(`) the Hamming weight of `. So finally,

to compute a′ and b
′

one requires

Doub+ (s− 2)DiffAdd+ s(4c+ 6M + 2S)
+ 4(s− 1)M + 2M + 2((len(`)− 1)d+ (hwt(`)− 1)c)
= 4M(4s− 3) + S(4s− 1) + c(5s+ 2hwt(`)− 3)
+ 2d(len(`)− 1),

(57)
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where, Doub and DiffAdd are the costs of doubling and differential addition
respectively and d is a cost of constant squaring. In the most interesting cases for
us, computation of 3-isogeny and 5-isogeny, one obtains that computing isoge-
nous curve Ga′,b′ costs 4M + 3S+ 6c+ 2d and 20M + 7S+ 11c+ 4d respectively.
Performing a constant squaring simply as a multiplication we obtain for the
`-isogeny

4M(4s− 3) + S(4s− 1) + c(5s+ 2hwt(`) + 2len(`)− 5). (58)

For the computation of 3-isogenous and 5-isogenous curves, one obtains 4M +
3S + 8c and 20M + 7S + 15c respectively.

Cost of odd `-isogeny evaluation, where ` = 2s + 1 Let’s note, that

every computation of Xf(P+Qi)
Xf(P−Qi)

Z
2

f(Qi)
and Zf(P+Qi)

Zf(P−Qi)
X

2

f(Qi)

for i = 1, s requires 4M + 4S every. Additionally, there are required 2(s − 1)
product multiplications (in the nominator and denominator). Moreover, there
are required 2 additional multiplications by Xf(P ) and Zf(P ) and 4 squarings.
So finally, the ` = 2s+ 1 isogeny evaluation cost is

s(4M + 4S) + 2(s− 1)M + 2M
= 4sS + 6sM.

(59)

In the most interesting cases, evaluation of 3-isogeny and 5-isogeny, one ob-
tains that such evaluation costs 6M + 4S and 12M + 8S, respectively.

5 ECM algorithm using Huff’s and general Huff’s curves

In this subsection we will show how to generate Huff’s and general Huff’s curves
convenient for the use in ECM algorithm, where compression techniques pre-
sented in this paper may be used.

In [18] the Theorem 5 was proven.

Theorem 5. ([18], Theorem 4.10.) Let K = Q
(√
−1,
√
t4 − 6t2 + 1

)
with t ∈ Q

and t 6= 0,±1 and let E be an elliptic curve defined by the equation

E : y̆2 + x̆y̆ −
(
v2 − 1

16

)
y̆ = x̆3 −

(
v2 − 1

16

)
x̆2, (60)

where v = t4−6t2+1
4(t2+1)2 . Then, the torsion subgroup of E over K is equal to Z/4Z⊕

Z/8Z for almost all t.

We will show how to find Huff’s curve Ha,b isomorphic to the curve E.
At first, the isomorphic short Weierstrass curve E1 to the curve E is equal

to
E1 : ẏ2 = ẋ3 + (−432s2 − 432s− 27)ẋ

+(−3456s3 + 6480s2 + 1296s+ 54),
(61)
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where s =
(
v2 − 1

16

)
. Now it is necessary to find the x-coordinate of three points

of order 2, which are the roots of f(u) = u3+(−432s2−432s−27)u+(−3456s3+
6480s2 + 1296s+ 54). They are equal to

r0 = 3t8−12t6+66t4−12t2+3
t8+4t6+6t4+4t2+1 ,

r1 = − 6t8−24t6−12t4−24t2+6
t8+4t6+6t4+4t2+1 ,

r2 = 3t8−12t6−78t4−12t2+3
t8+4t6+6t4+4t2+1 .

(62)

Substituting,
R0 = 0, R1 = r1 − r0, R2 = r2 − r0,

one obtains isomorphic elliptic curve

E2 : ŷ2 = x̂3 − (R1 +R2)x̂2 +R1R2x̂. (63)

The roots R0, R1, R2 are equal to:
R0 = 0,

R1 = − 9(t−1)4 (t+1)4

(t2+1)4
= −

(
3(t−1)2(t+1)2

(t2+1)2

)2
,

R2 = − 144t4

(t2+1)4
= −

(
12t2

(t2+1)2

)2
.

(64)

Using isomorphism between Weierstrass and Huff’s curve given in [11]

Ha,b : ax(y2 − 1) = by(x2 − 1) ∼= E2 : ŷ2 = x̂(x̂+ a2)(x̂+ b2) (65)

and isomorphism between general Huff’s and Weierstrass curve [12]

Ga,b : x(ay2 − 1) = y(bx2 − 1) ∼= E2 : ŷ2 = x̂(x̂+ a)(x̂+ b), (66)

one can find the coefficients of the isomorphic Huff’s curve whose are therefore
equal to

a =
3(t− 1)2(t+ 1)2

(t2 + 1)2
, b =

12t2

(t2 + 1)2
. (67)

and the coefficients of the isomorphic general Huff’s curve whose are therefore
equal to

a =
9(t− 1)4(t+ 1)4

(t2 + 1)4
, b =

144t4

(t2 + 1)4
. (68)

6 Conclusion

This paper presents formulas for doubling and differential addition on Huff’s
and general Huff’s curves of odd characteristic and the degree 2 compression
function. For Huff’s curves, the efficiency of those formulas is similar as for the
Montgomery curve and formulas for general Huff’s curves are not so efficient.
Moreover, these formulas seem to be new for these models of elliptic curves.
Additionally, formulas for point recovery after compression were presented.
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Recently formulas as efficient as Montgomery’s were given by Farashahi [5]
for twisted Edwards curves, who used a compression function E → K of degree
8.

The important part of the paper is the presentation of formulas for general
odd-isogeny computation on Huff’s curves, which seem to be new for this model.
Additionally, it is shown how to apply these formulas to the isogeny-based cryp-
tography using a proposed compression function.

The applications of obtained formulas for Huff’s and general Huff’s curves
to the isogeny-based cryptography and ECM method have been shown.

It is an open issue, if for the presented formulas for Huff’s curves it is possible
to use a similar scheme as in [16] and [17] for Montgomery curves to obtain better
efficiency.
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1..1 Comparison of computational costs

In the Table 1 computational costs of operations on Huff’s curve using compres-
sion function f(x, y) = xy, general Huff’s curve operations using compression
function f(x, y) = xy and Montgomery curve operations using compression func-
tion f(x, y) = x are presented.

Operation Ha,b Ga,b MA,B

f(P +Q)f(P −Q) 2M + 2S 4M + 2S + c 2M + 2S [3]

Differential addition f(P +Q) 4M + 2S 6M + 2S + c 4M + 2S [3]

Doubling f([2]P ) 3M + 2S + c 2M + 3S + 3c 3M + 2S + c [3]

Doubling

( (a+b)2

4ab
, ab and A−2

4

are constant)

2M + 2S + c 2M + 3S + 2c 2M + 2S + c [3]

2-isogenous curve - - 2S [17]

2-isogenous curve - - w [17]

3-isogenous curve 6M + 4c 6M + 2S + 8c 2M + 3S

5-isogenous curve
the full kernel is not given

18M + 2S + 8c 20M + 7S + 15c 8M + 3S [16][Eq. 16]

`-isogenous curve
the full kernel is not given

6M(2s− 1)+
S(2s− 1) + 4sc

4M(4s− 3)+
S(4s− 1)+

c(5s+ 2hwt(`)+
2len(`)− 5)

8M + 3S [16][Eq. 16]

2-isogeny evaluation - - 4M [17]

3-isogeny evaluation 4M + 2S 6M + 4S 2M + 3S [17]

5-isogeny evaluation 8M + 4S 12M + 8S 8M + 2S [16][Alg. 3]

`-isogeny evaluation 4sM + 2sS 6sM + 4sS 4sM + 2S
Table 1. Computational costs of operations on Huff’s curve using compression function
f(x, y) = xy, general Huff’s curve operations using compression function f(x, y) = xy
and Montgomery curve operations using compression function f(x, y) = x, where costs
of operations in field K are denoted as: M for multiplication, S for squaring, c for
multiplication by constant.
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Appendix 1.A Example of Huff’s curves sufficient to the
SIDH (SIKE) algorithm

In this appendix we present examples of Huff’s curves sufficient to the SIDH
(SIKE) algorithm.

1.A.1 Supersingular Huff curves with #E(Fp2) = (p + 1)2

All Huff’s curves are given in form H/Fp2 : ax(y2 − 1) = by(x2 − 1), where
the field characteristic p is p = 2k3m5n− 1 and the defining polynomial f of the
field Fp2 has a form f(t) = t2 + 1. The coefficients a and b are a = t, b = 1. The
binary length of p is denoted as l (l = blog2 pc+ 1). Additionally we give binary
lengths lm = blog2 3mc+ 1 and ln = blog2 5nc+ 1. The group generator of order
r = 3m5n is a point P = (x1 · t+ x0, y1 · t+ y0).

Huff curve with l = 438

k = 2

m = 137, lm = 218

n = 94, ln = 219

l = 438

x1 = 0x0

x0 = 0xd46de8889b08d5638b90ca837d4224980558052dfd27f25bd030ff04898

ee10f03fd1d298b17f08d7668a9a17b724f363a4f127ce1a77

y1 = 0x22e494735b8efc23d7dbd425873bc958af2a1fad5fbdff5fb5d45584098

39fa3a6dbaa15d6ed1c7748a766bc8fc08d42ae679b2f13ef04

y0 = 0x0

r = 0xa906b869ab471b86ce23a2ae536f7efe269e3423d803cd9afd80ffefe1e

d712236ad0d0581896b3d9e5bc6148decbf665f667e90ce9db

Huff curve with l = 606

k = 2

m = 193, lm = 306

n = 128, ln = 298

l = 606

x1 = 0x0

x0 = 0x54b3c452e59da9f32b03e8fdb83d79999a7e8ba59d0d04ee3b2080e051d

4d539025b8fba6961cc0224cc4bc7b2eb681cfeba3c89bbb5427ecd2e5248

31325aeb286c9240b939f9803c3b5da

y1 = 0x13f769b16767b2d90e361989a147bb2272c66540fe68cd392f6e476fb77

a7112582c3934ce64edce6eb2c2e00cd6bc7c6a40e1d63d65058b4a8f4909

fe129ddbf8b04860cd94c1f2eeace648

y0 = 0x0

r = 0x899f0620bca00d6ab2977e1e513f3c719f9b5303590ecb7b133228b193e

6ca793a3b04c16f18e9189ab232802a7208bd8d8d4c0d25281278f872bf09

1d43325b2c30357d717ddd37afb5f03
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Huff curve with l = 778

k = 2

m = 243, lm = 386

n = 168, ln = 391

l = 778

x1 = 0x0

x0 = 0x708a9cca6751c88d0da3e92b63bf18518629d0a7a8af61f479df636f615

20a5c26137191f5ed0f8996bca16c022657c55c42bf5c6f73aca487d307f5

4d3567ab040b78bb56dcbfc52b0d1354385a50cd1f899e150baf5968aa64c

d5fec3144bad4

y1 = 0x1f3387f6e2f61e4f1b04364b2cb3c636a24df98852a0826fa64cd82830d

fe75fddf100a7d78d15280ede4fb55a56a704a98d3c064cb8f0a0b9727f62

1eceb7e39f831580f4b4a6a77dd7b4a7fb5fb85eb58da7dbe054874ac5fc8

a2830b1fbaca6d

y0 = 0x0

r = 0x961a54c3fd38fb39272b2b4fa8b8d16657b11c52c4b90de3cb469cc1087

7f15819f17297b0f7ff9f9043aeae443c7349ff5ebe4d01095047a7c2fd05

fc76ebeb76364d7ef80c93b60226769f564fd837a0c139bc96170b779dd46

cc558b5513b7b

Huff curve with l = 984

k = 2

m = 310, lm = 492

n = 211, ln = 490

l = 984

x1 = 0x0

x0 = 0x51713c7837710f62243b9fe3abecb7b73f0e1bcaa59d9c16522062b545c

17ed3aa573bd66cad50855dc20512ab2007a4c6e1f0b91441c32eeeef1c53

8d15ca379ceb7651fa4ba2d233ba42a1ea7360eed760af020eae58d2cc590

d97a6b80c5fbf868896e09225ca06ebfd276689f4f103a7fe8dc54b54a965

d6a

y1 = 0x46616d22015e1dca61ac0d50f1348ce2f88b1b9a9ab25dfba05c3dd1006

0de954712699a880f865e081d59dd878c6b9e94689daed31ccd782c83c2bf

32f3fab2ded444cb56991a0514814e67a3b431b432c1d80b8e3e1595550d9

c405e2f105328aa41e9e5b6cb35a097bb1adb0081c03ee7d01685cafb1a6b

cc9a

y0 = 0x0

r = 0x2675307c42f76ca189217941ff01465670f9596c46902ed930566d6c7b6

d1feacdeb08fa70a88770cf3e5d3be80510f9ff5a19ee3793587bee4cf2e4

3e24c2552f45eac8f6150a0a3da09dda9abf496670a8dd6a7c5342fffeca0

84689d36b91479ff037819bb22885fd463f4bdf7b69849684a3b639a24b08

1c75

Huff curve with l = 437
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k = 3

m = 137, lm = 218

n = 93, ln = 216

l = 437

x1 = 0x0

x0 = 0xfb556024b224f26858c587863917321731a98e0671105d72073af29df6e

cbca2350afdbdc5cfdc58879def2dc3547c57df0ea86e0987c

y1 = 0x667931d08a99f7a02f3e2e11da2685c1325df3430de8f13ad6f3863295d

f69f150e9fdd8f67f22c7a4d2a64743e41945fbb98c892919b

y0 = 0x0

r = 0x21ce24e1ef0e38b48fa0ba22dd7cb2ffa152d73a5e67291eff80332ff9f

c49d3a489029ab381e23f86125ad0e92f597adfe14c835c85f

Huff curve with l = 495

k = 3

m = 155, lm = 246

n = 106, ln = 247

l = 495

x1 = 0x0

x0 = 0x14be109c0dadebc16931f7f48d36d10c14b3ae9bf5431859d096906d335

eccf2df8055cae7fc757f7ef3dd4608e3f58b9d5a37d223faa91606b7f21d

297f

y1 = 0x5214ab5207fcd92f2f07fdcae005cfdaff882a734642d6cb9bd0b61abb2

c124f892259b630f020dd5468bff85ed9e43ba1d218f9b9a2903214b3f87a

3a2e

y0 = 0x0

r = 0xddde84a3e7944b68f8c1d88cbe1cbc236b178d3fbe96fac3dd946973cbf

1adb3d898ffbd3e3bfa53cc1a577defab5d32fdc8d65fee632c9ccef47473

c63

Huff curve with l = 829

k = 3

m = 260, lm = 413

n = 178, ln = 414

l = 829

x1 = 0x0

x0 = 0x1101b3829732b77eb7bf32b78860c6daa32b7ccec442f4d569dcf2c7f1b

08df6212b803cca13e1514b2c176a7a0e77e88e4fb02e2cce2786af7332e3

73a74dd3d7751428a481488f914a6215bc09f91e4c33ec9b09c3dcfb7ef7a

35e40492615eae42482f6f7767a

y1 = 0x118c03e2c8d3023c42c0e0c127892867f8cd5d116c85a0d579109fa83d8

8529a37c247dd24125e7fdab9b1bdb4be23a7d39e1e800a9bd24645b8fa24

708c31cb3e68e05debf9d26506c6070785d431f06907aeab37ca1a880f32e

07976f039b42fc8ec358e4d6bf2
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y0 = 0x0

r = 0x2a0873bec233634e591f4fbd3d78d2de3aabfd9a2478ebc2269aea248af

722c70ce9248620051fd7e32577128888f57e2e52deb2a3fda4270b0cde39

c97ada3f79637a6cd25377b6641ca1230086adefa8454beb27bc017762c8e

17a522815b05f521e4e6899b29

Huff curve with l = 802

k = 3

m = 256, lm = 406

n = 169, ln = 393

l = 802

x1 = 0x0

x0 = 0xc475424d1acf4960fb616016318b6b12e2cf83f0b71151c11358d2d4fdc

6cb25bda8d991187ad1920b4f3368e1a181e3fdbcfcf8015dfe1e3771230f

22238ef0a305bc6fc9e6eb4189d999320204fed7a53c785d20c3e7506846b

30c65fc8423f9343285

y1 = 0xe76c9477bbc4dc6c9373698e9228f8796ebe3fe5becec6f371cb3f7b263

4926864f190b9ddd8eb955ca63817c7314bf714463c11ab6e0dd08b59bfe1

ff4597f833415043f627edcfe95ac9a3451a04a2760f867f5c13373e94e93

56834720311ec0bc4b9

y0 = 0x0

r = 0x47521701cbbde5afdf5343b374b66e1514f7f0c69a1cbf36ebcd63aa98e

47577d5954f09e61b442835bd2b20c95d1f3eb3c75732099063001ca3a80f

8bc7aecce85d7284ee7841dc99ca96d17f9cfd7ca1956bc94c024b44a1266

1c741c11495cad884e5

Huff curve with l = 768

k = 3

m = 248, lm = 394

n = 160, ln = 372

l = 768

x1 = 0x0

x0 = 0x19e958151bee30f7310e8ba7252ab6d9821502ac3a15186b555da162b4b

ac8ffe197a11c06a15c34399bd054a59f1c8cd9aeb7f464fe5df0a3f12977

8d98d574609d0547ff5d1eeb027c7b769f4f09c09ab617d5457120100e23d

0721a52ba7f

y1 = 0x5dbf665640e0b1a7a3574a186a11ce3ca1ae4366d368746b116d025162e

33813388af95c50ef8f5bc7bb8e8337c3152402d59775feb4de07de56feb5

da6c23a2d5f737aca61b95c357e20571876198d3da362ab12b5a9a5c0c00e

9971f043bb

y0 = 0x0

r = 0x17e77d10229c90d8e08916437db4c940d76ae5772af9442c089a847249f

611ee5a002e9a46bce43d14b0c6a9af06a39ad99be53eb7a00e05a7ea1813

ba62b7d889a26d14ecb49c077dfa6cb1e49105ab881d013a3d26cc988bca9
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46deea3bbe1

Huff curve with l = 982

k = 3

m = 310, lm = 492

n = 210, ln = 488

l = 982

x1 = 0x0

x0 = 0x1ffddb1e76a07d1bac2c799ce36eb35c92da896c171c8d85a191078e6d5

f749dc716b06dea18baae87adcc2b4e3c99cbf0e456455bd6b6bd90a4a2ab

f9b1bed30e797c9421c4dff75912f0b6055c4013be5b2e5a7997f0c55756c

91d76512853ed1d354017d3f6dedb846cf5c9560536cef114bc27c4096c6c

403f

y1 = 0x1fa017bfccddc5ef6f6f39fac0d2d85343339388b2c049efc9486d9bf63

f6b8eb5fd4c01c2c467a66ed42f5a603919a337611ad0cb93d1ab2ed5ef3c

057a0bb23071639fc7f9a4964ef580b054ec86c47591a3d57bcfc1939035a

a0f2be77393042f8c63bffa0674936c896a13005bfd83bcf2fcccf10ba70a

40b

y0 = 0x0

r = 0x7b109b273cb15b9e839e50d330041447cfeab7c0e1cd62b70114915b249

0662292f01cbb021b4b02972df72619a9cfeccab9ec93e50ab4bfc75ca2da

6075a11097462283137686872b9b92bb88ca847b021c5e218dd73cccc8ece

7481f7158374b99671805256d4e7990e0ca8c64be1e7514dba57a52075680

5b1

Huff curve with l = 429

k = 4

m = 133, lm = 211

n = 92, ln = 214

l = 429

x1 = 0x0

x0 = 0xa07c7dc83f95999fc189b467e5d645f1d6e3334a9f7ff466aadcefb248e

41ad7af8513e4a451e2b506b189fbb22d7707a29d4e3b8e2

y1 = 0x178356537157dbf278ac4763841656b32e31b7b4c5d8e05286598252eb1

673d80b27ef3ddd434c21c6764a250d360acbf8ece716c17

y0 = 0x0

r = 0x155e4616b6b62f389c8676ebb00806f3c1a073d1753167bda0dea00a194

6586261ae77376f91f0fc89d7c5193a451ea4e60215d0d23

Huff curve with l = 518

k = 4

m = 164, lm = 260
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n = 109, ln = 254

l = 518

x1 = 0x0

x0 = 0x19bbf19fe3e3fc84fbbfa3213b64a3461d89203b35ca7d73c07192ce788

8108541f931b42e16b77430a9abfda4f37f37f6b48e79eb4b71908144625d

4b1bb20906

y1 = 0x6bf8c87e78c95a0ebfba11ddf877864a99c67eaa99127b2eb437cd9d88e

c8ffb18bb1f8a410430542cf40a5323c38b8429bbeff6931d91a83c414aaf

64a025295

y0 = 0x0

r = 0x20897d751238ec545ddf45b5e036d658ab93e10d228918b249366456397

61eaa9a22ea58b4ca26c76ce835427d01bb218770a8631935681e00e8966a

cfdb01525

Huff curve with l = 604

k = 4

m = 189, lm = 300

n = 129, ln = 300

l = 604

x1 = 0x0

x0 = 0x2eaa540d453ff088919990eccefedf7291d52d27b5183b5f118ded546a4

d2f7c9227911a645dafe1eb2a202117d828715422d4827afb291093f4a61d

711784a1c5bd3f0ff844c9339af8e94

y1 = 0x3e5431ea00eee5f9c069cfbd201e82ebd1a0ac129a2fdb8b1901054ce35

90227dbc1ae11a33b749e225121d234b3c19b72570a6c6cb8c0fcee18bd4c

12cbc17996c6732b64c0f45424f1510

y0 = 0x0

r = 0x87ec12b1b722d133a6e7cb92e1a06e43f94a64f3810b73a2a4577734204

c3ce98233f80e0ee93211fac2f5d3eab6283ccb03a6c44a9fad1bd29d9397

39587d9618ae08952db85c1112ad5f

Huff curve with l = 788

k = 4

m = 247, lm = 392

n = 169, ln = 393

l = 788

x1 = 0x0

x0 = 0x59d52abcadc0213415f22ad0a7627b46eea7c0fbbd8a78baaa8823ac562

3f40a45922fb75c562297b15ba4504117a2da71ae300ed06ac55660842f9e

bd5610dd074a33badf30ce9c25823140a0ebdfa5a6a116242511ed05965d6

231ec4015fb76cb9

y1 = 0x84c8895e5bc807686f0a9f6fc8e5d685beb815b1740a085705c553fd1dd

121579c7ab1ffbddc247344f07b5697617133f9b28e6f266311d24ee7a001

31d0ea197cdec090e3762cd5d55c93130d2d3f98a51a565544ac5044b233f
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2b1f2b151fc6fbec

y0 = 0x0

r = 0xed77a81a0f9b25716af74b8505ec6346e8bb31cef138c2f96096b5fd626

5c0d0610afa49faf857676f3b1359b1f3a2641100e30fd2a3bc015c677a4a

7868233b8203e899de6be5aef166d9aa138c51100151b057597275243cb11

0143556d9831997

Huff curve with l = 799

k = 4

m = 251, lm = 398

n = 171, ln = 398

l = 799

x1 = 0x0

x0 = 0x6143ecbad5dd0820ed3e745ef5aaf57b252a08a7a2dc45ddb3179a852a6

58ba4c867e2fd7a8a9fc1464dc61d75aecb7140d599828577e911a45bb25e

80598956041f271b10b2093d4ae0bd7c88ad484a0cf1b6a6e7ef060d6a6ee

7af9e20f757488f3233

y1 = 0x676accd4d0da6c850114e72700f17e9665b9d787080f3c2b446359dfb74

b76459cbd42766492aa8da34e398b268a629622810d3f624d8eda056df31c

9f361c3b4d745130fed49fec1c4c5ed01b65c927c6d95495843a1d7a0b1ba

4dc9e0fef44cba40b3

y0 = 0x0

r = 0x7566780b625723b2e271e245f3bdadd4be6f0bcfdf219fe469d0825914f

56e2304f9fd5d332366b612eda4c1080a02f898a80041829312a26c3ee865

7126fbeb1b770eae920637bd4d3868fc254a0ed379a6f2be2f28a609ba414

982fd9ebfe8e056b6f

1.A.2 Supersingular Huff curves with #E(Fp2) = (p − 1)2

All Huff’s curves are given in form H/Fp2 : ax(y2− 1) = by(x2− 1), where the
field characteristic p is p = 2k3m5n+1 and the defining polynomial f of the field
Fp2 has a form f(t) = t2 + c. The coefficients a and b have a form a = a1 · t+a0,
b = b1·t+b0. The binary length of p is denoted as l (l = blog2 pc+1). Additionally
we give binary lengths lm = blog2 3mc + 1 and ln = blog2 5nc + 1. The group
generator of order r = 3m5n is a point P = (x1 · t+ x0, y1 · t+ y0).

Huff curve with l = 523

k = 2

m = 166, lm = 264

n = 111, ln = 258

l = 523

c = 2

a1 = 0x58061a9599eaa399283efc26845558943549831e531a477436f1f79554e
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4b6fa78a34d9c236a538ba5005cdddc85d6346d8623dcc3660ec1129b981a

281fe4c987b

a0 = 0x4675259bcb33db8c1fa26e8cd75873170bfb1144fbe103ae183c0f5f1e5

bfe4619113a5d596e5bc8941a83e8d485ab2e215c0c01202b334245235037

c49b2d42af6

b1 = 0x605c14e219dade557f8ebee51f0a20687853dbbea096cd511527941cf62

01ce1d4b5eaeec59fa156a300cb664242552a007e0ccf727db00c132de3b5

40bfdf57343

b0 = 0x65c60204ea02ecbc1a36a4fb34f5e78bbdf46ad53dfaa5939f2fc3506dd

71a583a7db8469b280c8d8f437d2346f5b85eaf25fccbcaa635a3b9e3d0c0

d9dcf055306

x1 = 0x5647094c932293944381b6ba24f231c3264b29ed7c8d41a8105c372f7b9

d08efa6dc287c43655b761df3a18955b7176573414ef65cb40b8a4efe008f

40845691b3a

x0 = 0x46a0628d70699e7596bc864ba273b7fc79087abb339ecd0dd2589dc5999

5b2ac7a873404aaa015d115adb78beb63900d9d8721613d9a86059b753738

5c2a990273d

y1 = 0x585e501a89d83cada9763c003711517cf72133dbf50c1dd1e0c04aa1d1b

602d49e923b39267bb898b173392b682e0e79b1ef0a669ec2abe348239fab

57a7156b7f7

y0 = 0x2e37f8acee7c6808c525f38ef81e35553188d308daf80fa29055cbe52f9

8238b60f4af36d6f54942a0a27ddbed9d50d9b9a4f10e258322a20dd4446a

a21febcc3b3

r = 0x1c98d743e50407b626813c44da103263eeccf8cc8b5a7eb4b258ce2fc88

0d0f3f178aff7f6e5ac1546b816cf6fde8578780a03ff1927f0825ecc6c33

e0af7c29585

Huff curve with l = 547

k = 2

m = 172, lm = 273

n = 117, ln = 272

l = 547

c = 2

a1 = 0x2c02ee06ff8d2b542a952492699f49d3e4dcc02a8c49bd0cb5477aea424

dd63d50cf9cf08b5d5105936f459c99f3490436087a9d956201cc1a16827e

309dc3b8f6125edd1

a0 = 0x4af11afa137d47ffe2887b3d581919242e1cf48ea97eb7f0524101dace6

018275198e9cc99d27760b9abb0c287e07021273455deb10b63751509ba15

211ad6c240f380323

b1 = 0x2a3c0ed65f5e66a0b988e9362342a8aea026c663cdeedb6ff01d3294514

38ad02dd2055e1dd6bb0f2a36968f27baf0cfae0cf67acf6d9d277cc128e0

864d804116a0a3c89

b0 = 0x32446f016f074e359fc1466893c97d6e2ec752ad86c0f266d9c75c5148b

4eaabde2041ba6d7b8bc6bd0ef2ed0b2011e7e59c036598aa87ee463b9fe6

9111c575d10175c88
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x1 = 0x3bb598658eac57fb08aaf0d3987ac6262aa0042bb5f0fb76f43be81d8f5

caf296e67f1cbb9e0b3225b040e0592eb2ffa70dd71a9b18b7f449080560c

5590c7e7e547646fd

x0 = 0x29c0ad3f199440305876e72bfe3ba5c3e904ee9d19d40dcb0e4c06ac6fe

d82b6c4dea4fcff43d3b453e6e34dd9d92f2826a05c800df1faf63dbb126d

a0e3a4590547915ae

y1 = 0x1966bf92d14d3af8077048d8ba9fe88e0ae2c06b06384652e19465ff7a8

8d59bc49926f00a4d542845c6cdfd0a252cba93b7afd0a7b1d10185d79c06

18d364123d92fbe8b

y0 = 0x25f742b2404db42f22a88205eed117ed748ae654145edf194a4886a433b

45fae44f0eae81f55e7890ebcf8d574e306a540086b7806d8ebb32c3c6347

ba556285ec6fcfc2f

r = 0x136a5e7239c7b57bd571dff04dabb83a447b8641573cee15fb9d2af60e9

e71f601e448e5120cd4614b22b1064fddda9cc2002040e7c9aa7dc13a6b3c

b0a2046c370920ea5

Huff curve with l = 758

k = 2

m = 238, lm = 378

n = 163, ln = 379

l = 758

c = 2

a1 = 0x12c3b9888c699077491bd6f0e001856db43e2ae3d410ff41bfa68d0c62a

a530917c7d002d914a04fa4c67e9386a8bcdd27cd45373f5b919fc56206ed

102c3753800afdb476a1dc0c121218e0f091887695e7ce902225f174dc413

a25042944

a0 = 0x236718f4bca662f6b96a5ab5a2eaf1cb9b3eaf8682816b10fa80a3d3163

a9b30fe7215cf6879bddeffeb556671d86507e5b8913cef709f80aa7fc901

e0e4d7764ecabb4848f49467ceba5cedc940d73499908cf9012b0271b7aa1

45b444996

b1 = 0x26f6a88845f2d848818dee259c08964bc931bbbf1daa193351bd098dbe6

10ca9c9b7c5a939b2245369995356130deda928662f3ea62c9f81909f6a9f

429d8e0ce17e0e17716c12f4251d88639e1876b3cadf32aa60c5d37243dcb

47ebaecb4

b0 = 0x31c51d938f4ca0bfbcb0226e6312e291813648830e8540f9c71331ad8f7

d92936cba5b91da93fa175b8272354c168e7bfb4e5caa84a7d9028a6c5284

684660d2a8f337441b1f09cf3d08917703ce89c148b111611235277714c67

2df5328e9

x1 = 0x2469d774777d67fa638c3e062f42fc19fef15182035b3b4cf5dff1d7fea

8881a9f8860a6f8ca58bdded9a354cfd0e2cf13dc730746e25116584df688

4a60acb917e7b01b73d10fc50d287ec6146dae91e92fcb10fd944a0fa4ae6

d7fe774d6

x0 = 0x1876661c4066f24ef7abe094bc5cc1cb9eeef7d029e3df54e190df9d41a

68537dfb9f3d0ede6a316ce222a1c161727bccb72d0bb393f421a930d105a

d12a94166e3eea82f373ca056252e8f58b62ca4f2e8f30fe2f340026603ce
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91c9d7b

y1 = 0x5ff8ad852727551e23c8a38f048d3b5bed9dee71fb482bdfce478c4c514

c2979d822d00eb7b6f7e828a7c8593a63424b765cb83b5a049c4e59fd7055

03e302cd01721fb94b56ae0fe96e878e6322c7457929eae59ffa4ab758382

8723b01e

y0 = 0xf9a4e74b04e55b88a69a4021abcf07cb2423a8a9a7e9053510e3ac9713d

994d9172355c839bdbe0d3cf921ce0425f479cd74ba112fab36f51a6d6e9e

3cf41f6ee40d433ad9899d1612695bd74a2c562ee39a79ceb2e809524f71d

58f84359

r = 0xcf44a58d18c5eacf67ce6dcfe51ae05520011ce64fcb5efbe41807a6c4b

4f1203663a2d8cc43bfe04e8b5d8d3d6254de519773c012ab85ea9bc6262b

5412a0471d4c5e5ecd8db4cac68071f57d58322b608e4fbd9b5ac7c3c5fc9

ba70e915

Huff curve with l = 780

k = 2

m = 243, lm = 386

n = 169, ln = 393

l = 780

c = 2

a1 = 0x450dd8d469680cea90f9ffad7c5e9a8ed0b5dcb79fb04799a71038c4759

4f1382820989f3a3694ea28333d9976f837908233d0479b4ffd7dc52e79d0

ce2fd9feb8e7df31d9724c8c73313e9ac430f156202fd940e791ee1e79908

e824af2cef1336

a0 = 0xb06eab4e2aa0be70c6d3ed16bb10aba23617e670be2870b93b5e416a76b

4c7cfe508697497fd3d31b01aabe69d5e49929cc59adeb110c330dff4e2cf

dde22742084989d54c212b2b06268e53f0a9550514f4fa89afa049b2b4959

b1f60b89bf7289

b1 = 0x2ed49a9696908b6acf6549ce2562978ccb157cdf2415a9744c9b64437ed

919b56540eeb0d0333f96fd03d53383e261ac3cc99a7a3e85c967550d77c4

66e5b66b156c946fbe37e3da4908f769c4cb4d78a11eaeb5fd341d1752986

6745b25cc7ef19

b0 = 0x8e2b1548e1776f44237701f3bc1a6730ad814365b82ce322d2e526ae869

3fb8c39a1ff1270b364be67c957bc7c1c4b4390431a6d0dac022aa1617c1a

55dd9fe66297960f39e63319f2e82dd3dee637c8a5580012ad1d367af0212

3ac695bd4b1f0e

x1 = 0x5f01754e4d9a872a8c9e5e1440a02da24741ddde7ef7ff0bb985d08c9c0

a0945c89cf174b291939a28f6c35aa032277c35b35074ae411712da5d80f3

42ed0c486e125e6c78c80a5aa0d28f47500e64c3d8ca74de51865e516068e

2fce554c2df2c3

x0 = 0xa296819ad30368ade85794a81bb3fa1360f6de710a54ac608dc5f448d79

e11457533049ebe355a98c83b1c6ff736fac782b3203c79f9db1b878907cf

8d462f4ad0aae88d38bf9255e0f663011ee7256b92f442e637377bb7e3caa

2344c5f3870298

y1 = 0x8e5caa867913f350cf4082490d0563aa88050599a91f7f66eed4e7f7feb
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9307b1b73f40638c1125feabec3fc8a61828564df1efb314b363ed680f2e7

4190930702dbba2ae2997e90e67ee09a9f4fc248a4f1936afe38f8bffaddd

804826b2001dc0

y0 = 0x92438846376cb80c032af57b8439e77dc8e3c98ebd6e5b99e98b2f48ff2

38778db060e3e8b0632dc75a7588ba2da1e1dad4bcf90b6b3503ebd8cab17

6a158132c5853d6cde1d8761490f850b2651d8c8f34aba0e59166a6647f80

bb8333a0b2c391

r = 0x2ee83a7d3f21ce81dc3d7d88e4b9c16ffb6758d9dd79d4572f8610fc52a

57b6b881b73cf674d7fe1dd1526967552e4071fcd9b781052e916646cef11

dee529b994f0f837ad83ee28e0ac0511caf8f391623c620aeee7339561526

1fdabb8a962967

Huff curve with l = 832

k = 2

m = 261, lm = 414

n = 179, ln = 416

l = 832

c = 2

a1 = 0x5c83e9c10a2e00682f29f9b110db31a747f924dc47c322e980aabb58dc8

203e5d08036138262549c5e4802475f9fe21380963597bd3fd061f521ecb2

6e7c3b45ad6b9d3a57be2e16f8241089f4fc45361ec071dd17ff297949ae2

fef7ac413f9f826f7a26de3caa6

a0 = 0x468bc40a9151ba7b2e34dd600fd73c97f0ec9a8b2d0692bb5d39b9a8a5f

106eb238fb4c8484fe9c223a80a26efea171c5efb48a77d8e637b69eac466

6a65284f4eb0634dc91b0785ffbfee52e801a905932c5c04cd3c4f096e72f

fdffc87cee6398d264cfe6d19cc

b1 = 0x2a522da3883e93ef7c21e27849fbd0b1b5962f5416115a4987a276da6bd

26b846af70ea32ecf9b21439ffb97acfe0c5a63cac2bc084717a151fdb987

02caeb0e45484fbe9cfc4fb0544dbb0c76f6e7208b070ff0c0ff4727bf6c4

e79abf5c4a268daa9604c9a6d2e

b0 = 0x881eb5041c085e2c2547425fe884542f422c3616d9e9e49fafc0e242eac

0078f1525e069133fd40e0e7da7a07e934be897b4ddedba81a9cedb555b34

f686cee8906236f14799a5a5b14b2267326af39f18bc8db6226b4f5f26b6b

73235fa5405e7f9d6ad38b9af4b

x1 = 0x3b0132e1c7866314491df3c23af85dd9c81324bc02956755133511f5d7d

703b16fbdda1f1f27786ed403f50087c6521c9739c452232780a6b42d6315

8c2d472cf0c755f781d2b7f463ae9374a1f5f6e322df9373407e6c326bfaf

cdecfb13c80387f1c6080bb1a5

x0 = 0x4d413c66e47f04ee630f0dbf2caf3cb21af2e3a896586ad840fa285363e

e9410add6237e9563ead427b96ff4b829e674ef711c0eb09a88751e4794c9

d7d36dce7c0464431fa1c9cbb619391ff2ecea9d0c88685ef52bf95dae347

63850b7005e207e601a871cd9c6

y1 = 0x300d6a034d289aea5553cb2a032fbb4cbc5947cf1396e4fd5955790698d

d91f6f09a256d4e50a0dc134939f1fb664cfc22b6bbd6814c1b836eaec1aa

45c87172229cde6b620df4e66905d9deab25e9540d92a1ebce6d3c33b02c3
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5f58380adba2588e0695040bb9b

y0 = 0x8178d91d6940233a7fb9df117363ce14d7898f6f2dc5e421bcde28db206

3fc38bf76753519ed7e45072ea0eed20a9c2208434178966781d193fd4837

821e8ea97ccb4d50d810300a0640212dce3c29725b30527df781bffc587bf

0d0a61d7ba4f545dc009542b0f6

r = 0x2767ec82d6102d19738d5ac169a145b057013dc082315d0604313b82424

7b09a9c1a923dbe04cdda64f31fa1600066264b6db0c779bdc9e49a5c1056

2ce32c9b81cd42c6052e403afddad710d07e4310adc0f72c7540415fec9c5

362ad059455595cfc6982101767

Huff curve with l = 972

k = 2

m = 304, lm = 482

n = 210, ln = 488

l = 972

c = 2

a1 = 0x640e07dc1dcc0b7e698ed728761dee6d30d59ca07d7da9ddf0be88955de

ed6a97150146611d940c16d632e810479ff818904236d4e7f9d242a2e4cd7

c5efe03017fdf3062c4ebfa8c6fdfb3253a03ff2f270b983301da023d5984

ff774e7432362e3aa975f7bef114fb725438a34c0d80b082927c7b032479c

e

a0 = 0x88e07aad7f062622973b62e0146f2dc8dda2870ccd8dee7ae3b765b6021

bdeb0d82833f4d3d68843bff6c070afdd33c47b936f8415f15d0b8b33e5d5

6c07a52ca67b45d8494d2ad0ae1bcad83c705efeb9b68363d2ad74e47f438

58a5a41e743fe062f8574418d91c5910302d47c282aede246405434666208

1

b1 = 0xa36c28995de00b28d4312835a8f0de1b04a962cb0046712907d0b4749db

1e24993c0562b93e58ce2f0b7314abea4d76709a041e193934f8524108cf7

dd072a68be750cba599953efaedda16a3a0cd5acaca477e19745242fac1ef

e7332697750bf34a97e1a9b58e6b2931801593ddfee18c6a1aa9a5a7543fe

8

b0 = 0x88fa4a5462344cd23b0430cc56d690c77cce3aefbdb39e91584abea613e

9d97cd1c76965087e4460794f5b8b2adff22835f88e24b5523f6f4d05406a

7be2732be7d800f1856ee05b9bd4909a82e2fc4bb2055587cb534d69ecf17

dd976f822c9f5fdc4f601a39ded93d2a97f02819cc8b31238a4ad8464c36d

d

x1 = 0x296696151ea34aeb8043de652214b6586aed37f9886e143c10d65ba1cc7

89b4b7bc1e79d4f1d2069f98548f6c470f09e52684188a814fdc67506e67e

96e69c679e81708d729a31a31b91ebe628c31f6a52512119a4a5ba1cc3b37

d386fd071e8cc6332d896b39faaa5d70d1603de32f1eae38eee8a13d461b2

f

x0 = 0x528ca5dea792755ac405e17612d2f273cf1a4fbd53c34425df0f99f3a0a

bab71a5d5af371563b81e94271325dcc613cc19ab9a8adffcfe7531c0a4c2

c42b88723d9186f6d77547614320f06f85a8cd5b6be2826bcb3ade096e581

5e8c2872d4d4b973ac6723041c035c7723a1703770f66d2330eb8e148c794
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1

y1 = 0x47bdc124aa45ed4d7423a178ae7b4b7150a7abbb2417b1f75de1e64cd9b

3eaebacb83b9350da69de4fe379c3bf2a9b345f998484ab1c42f44fcf1746

4cedcf96ea3c9571d219f303c2e9908530392f1d16eac3ad699869be2549c

006ad51f2cac69aa2abff1e9ee4e9563db0c3c1b3e1cd45b5371ff3daf765

9

y0 = 0x3fefb528e90ce62c6de5d402c742a77cd83804024507dfb5c0418a0509e

74c0423d4ac03162ddda1d9679de9fe77b77da2ee660959865227531c69e1

e5c1502d27e937a6104a3434566b174c60a5961edd798045fa5f4ea5f2199

1a9b8b98d9af8b0ed47fe9aa9c91ca0bfbd20ed07126a7233e66b683502bf

d

r = 0x2b37588c32cfaa2e88d21bae3e835d285170f9f18f8eb573e2e1a5e0181

3ce2e8e334f44d4d811e9bb95ef8c2682915b3ae65696f6e26619e89954ee

390cdce7fa205ac7d7137fa89e96d9faeb8f1b35614fd8035ae56510c7c98

90dbd1530e34edf21beb0b015875d9bdff87788dd46beb6348cfc3fec1a29

9
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