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Abstract. The MixColumns operation is an important component pro-
viding diffusion for the AES. The branch number of it ensures that any
continuous four rounds of the AES have at least 25 active S-Boxes, which
makes the AES secure against the differential and linear cryptanalysis.
However, the choices of the coefficients of the MixColumns matrix may
undermine the AES security against some novel-type attacks. A particu-
lar property of the AES MixColumns matrix coefficient has been noticed
in recent papers that each row or column of the matrix has elements that
sum to zero. Several attacks have been developed taking advantage of
the coefficient property.

In this paper we investigate further the influence of the specific coefficient
property on the AES security. Our target, which is also one of the targets
of the previous works, is a 5-round AES variant with a secret S-Box. We
will show how we take advantage of the coefficient property to extract
the secret key directly without any assistance of the S-Box information.
Compared with the previous similar attacks, the present attacks here are
the best in terms of the complexity under the chosen-plaintext scenario.

Keywords: AES · MixColumns · Exchange Attack · Key Recovery At-
tack · Secret S-Box .

1 Introduction

The Advanced Encryption Standard (AES) [7] is designed to achieve good
resistance against the differential [3] and linear cryptanalysis [13]. This
includes the selection of the S-Box and linear components such as the
MixColumns matrix. For the AES, the branch number of its MixColumns
matrix is chosen as five then it ensures that any four continuous rounds
of differential (linear) characteristics have at least 25 active S-Boxes [7,8].
Considering that the maximum correlation and the maximum difference
propagation probability over the AES S-Box are 2−3 and 2−6, respectively,
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there are no effective differential or linear characteristics for four or more
rounds of the AES.

For the performance reasons, the coefficients of the AES MixColumns
are chosen from a group of low-weight numbers. Therefore it is not sur-
prising that there are elements in each row or column that will add up
to zero. For example, its first row is

[
02, 03, 01, 01

]
thus 01 ⊕ 01 = 0

and 01 ⊕ 02 ⊕ 03 = 0. Several attacks have been developed facilitated
by this property and show that the property can be a potential weak-
ness [2,9,10,12,15]. For convenience, we conclude it into two types con-
cretely as follows as did in [12],

Property 1. Each row or column of the MixColumns matrix has two
elements that sum to zero.

Property 2. Each row or column of the MixColumns matrix has three
elements that sum to zero.

At Crypto 2016, Sun et al. noticed Property 1 for the first time and
established the first zero-correlation linear hull and the first integral dis-
tinguisher for the 5-round AES [15]. The two attacks exploited the exist-
ing 4-round corresponding properties and extended them one more round
based on the MixColumns coefficient property. We take the 5-round zero-
correlation linear hull as an example. As is well-known, the previous zero-
correlation linear hull can cover at most 3.5 rounds of the AES (without
last MixColumns) [4] which is illustrated in Fig. 1 3. Let the first col-

correlation = 0

3.5-round existing zero-correlation

MC 5-th R

extension based on Property 1

Fig. 1. Extending 3.5-round zero-correlation linear hull for AES to 5 rounds exploiting
Property 1

umn of the input mask and the output mask of the MixColumns after
the 3.5-round zero-correlation linear hull be Γin and Γout, respectively.
According to the propagation of the mask over a linear map [4], we have

3 In [4], the output mask of the 3.5-round zero-correlation linear hull has only one
active byte, but it is easy to check that with 3 active byte in the output mask it is
still a zero-correlation linear hull.
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Γin = MT
AESΓout, where MT

AES is the transpose of the matrix used by
the AES MixColumns. Then if we can ensure that the two active masks
of Γout are equal, we can make certain that Γin has only three active
bytes like Fig. 1. Finally, the zero-correlation linear can be extended to 5
rounds.

Although the two distinguishers in [15] cost the whole codebook, they
spawned a sequence of new fundamental results that are based on Prop-
erty 1 or 2. Soon after, two following improvements were proposed which
aimed to reduce the complexities [6,12]. At FSE 2017, Grassi et al. took
Property 1 proposing the first impossible differential distinguisher for the
5-round AES [10]. Later at CT-RSA 2018, the impossible differential dis-
tinguisher was further improved by Grassi exploiting Property 2 [9]. In
the same paper, he also discussed the attacks on an AES variant with
a secret S-Box. By combining the MixColumns coefficient property and
the multiple-of-n attack [11], Grassi managed to extract the secret key
from the 5-round AES without knowing any information of the S-Box or
recovering it in advance as it was done in [16].

The security of the AES variant with a secret S-Box was firstly studied
by Tiessen et al. at FSE 2015 [16]. Assuming that the choice of the S-Box
is made uniformly at random from all 8-bit S-Boxes and keeping all other
components unchanged, the size of the secret information increases from
128 bits to 1812 bits 4 (we focus on the AES-128). Generally speaking,
a key-recovery attack requires the details of the S-Box since we have to
peel off some key-involved components. Consequently, the authors of [16]
needed to recover an equivalent S-Box by the square attack [16] and then
found the equivalent secret key. However, the works in [9] showed that it
is possible to recover the key information directly without recovering the
S-Box in advance if we take advantage of Property 1 or 2 appropriately.
At Africacrypt 2019, Bardeh and Rønjom further studied the influence
of Property 1 under the adaptive-chosen-ciphertext scenario, which is the
newest result in this direction. The AES variant with a secret S-Box has
been a popular target for studying the MixColumns coefficient property.
In this paper, we also study how to take the MixColumns coefficient
property to extract the key information without any knowledge of the
S-Box.

4 The number of all the 8-bit S-Boxes is 28! which is about log
(28!)
2 ≈ 1684 bits

information. Totally, the security information is about 1684 + 128 = 1812 bits.
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1.1 Our Contribution

To explore the influence of the MixColumns coefficient property on the
security of the AES, in this paper we propose two new attacks on the
5-round AES variant with a secret S-Box based on Property 1 and 2 re-
spectively. Our attacks are developed upon the newest technique called
the exchange attack [1], we manage to transform the 5-round exchange
attack to two key-recovery attacks. Compared with those previous at-
tacks based on the MixColumns coefficient property, our 5-round attacks
need only 242.6 or 246 chosen plaintexts, which are new records under the
chosen-plaintext scenario. All the attacks on the 5-round AES related to
the MixColumns coefficient property are listed in Table 1 for a convenient
comparison.

Table 1. Attacks on the 5-Round AES Taking the MixColumns Coefficient Property

Attack Round Data Computation Reference

Integral 5 2128 CC 2129.6 XOR [15]
Impossible Differential 5 2102 CP 2107 M ≈ 2100.4 E? [10]
Impossible Differential 5 276.4 CP 281.5 M ≈ 274.9 E [9]

Integral 5 296 CP 296 E [12]
Multiple-of-n 5 253.6 CP 255.6 M ≈ 248.86 E [9]

Zero difference 5 229.19 CP+232ACC 231 XOR [2]

Exchange 5 242.6 CP 242.6 E Sect. 3
Exchange 5 246 CP 246 E Sect. 4

CC: chosen ciphertexts, CP: chosen plaintexts, ACC: adaptive chosen ciphertexts
M: memory access, XOR: XOR operation, E: 5-round AES encryption
?: In [10,9], the authors used the scale that 100 times of memory access are approximately
equivalent to 1 times of 5-round AES. In this paper, we use the same scale.

Organization of This Paper.

In Sect. 2, we introduce some background knowledge needed in this paper.
In Sect. 3 and 4, we present two new attacks exploiting Property 1 and
Property 2, respectively. We conclude this paper in Sect. 5.

2 Preliminary

2.1 Description of the AES

The AES (Advanced Encryption Standard) [7] is an iterated block cipher
with the substitution-permutation network (SPN). It has three versions
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with the key size 128, 192, 256 bits and the number of rounds is 10,
12, 14, respectively. The length of the block cipher is 128-bit and it will
be initialized as a 4 × 4 matrix of bytes as values in the finite field F28

defined over the the irreducible polynomial x8 + x4 + x3 + x + 1 (AES
finite field). The round function of the AES, except the last one, applies
four operations to every state matrix:

– SubBytes(SB) - each of the 16 bytes in the state matrix is replaced by
another value getting from an 8-bit S-Box. In our attack the adversary
does not know the exact information about the S-Box.

– ShiftRows(SR) - the i-th (0 ≤ i ≤ 3) row of the state matrix is rotated
to the left by i position(s).

– MixColumns(MC) - each column of the state matrix is multiplied by
an MDS matric MAES from the left over the AES finite field. The
invertible matrix MAES is shown as follows, each byte of matrix is
presented as hexadecimal.

MAES =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

 (1)

– AddRoundKey(AK) - the state of the AES is XORed with the 128-bit
round key.

In the first round an additional AK will be applied to the plaintext ahead
the SB operation. And in the last round the MixColumns operation is
omitted for convenient decryption. In this paper, we focus on the 5-round
AES variant where we consider the five full rounds of the AES keeping
the last MC only for convenient description.
The AES Variant with A Secret S-Box. The target of this paper is
an AES variant with a secret S-Box, i.e., the S-Box is replaced by a secret
one and other structure and components are as the same as the original
AES.

2.2 Notations

Let x denote a plaintext, a ciphertext, an intermediate state or a key. Then
xi,j with i, j ∈ {0, 1, 2, 3} denotes the byte located at the intersection of
the i-th row and the j-th column. The secret key is usually denoted by
k. We denote one round of the AES by R and denote r full rounds of
the AES by Rr 5. In this paper, we will also adopt the notations of the

5 For the unity of description, we do not omit the last MC of Rr when we metion Rr.
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subspaces for the AES proposed initially in [10]. For a pair (x, x′), its dual
pair (x̂, x̂′) is generated by exchanging the first diagonal between x and
x′. We call a pair and its dual pair, i.e., (x, x′, x̂, x̂′) a pair-of-pair. For a
matrix or a vector v, we denote its transpose by vT .

Subspaces of the AES. The subspace trial of the AES works with
vectors and vector spaces over F4×4

28
. We denote the unit vectors of F4×4

28

by e0,0, e0,1, ..., e3,3 where ei,j has a single 1 in the intersection of the i-th
row and the j-th column.

Definition 1 (Column Space [10]). The column space Ci are defined
as Ci = 〈e0,i, e1,i, e2,i, e3,i〉.

Definition 2 (Diagonal and Inverse-Diagonal Space [10]). The di-
agonal spaces Di and inverse-diagonal spaces IDi are defined as Di =
SR−1(Ci) and IDi = SR(Ci).

Definition 3 (Mixed Space [10]). The i-th mixed spaces Mi are de-
fined as Mi = MC(IDi).

Definition 4 ([10]). For I ⊆ {0, 1, 2, 3} where 0 < |I| ≤ 3, let CI , DI , IDI

and MI defined as

CI =
⊕
i∈I

Ci, DI =
⊕
i∈I

Di, IDI =
⊕
i∈I

IDi,MI =
⊕
i∈I

Mi.

We refer readers to [10] for more details.
Next we introduce a useful one round subspace trail.

Lemma 1 ([10]). For any coset DI⊕a there exists a unique b ∈ C⊥I such
that after one round R(DI ⊕ a) belongs to a coset of column space, i.e.,
R(DI⊕a) = CI⊕b. In other words, if x⊕x′ ∈ DI , then R(x)⊕R(x′) ∈ CI .

2.3 Exchange Attack.

The exchange attack is a new distinguisher proposed at Asiacrypt 2019
which can be used to attack the 5- and 6-round AES [1]. Since this paper
only use the distinguishing attack on the 5-round AES, we only introduce
some basic ideas about its application to the 5-round AES.

For a pair of states, if we exchange their first diagonals between the
two values and get its dual pair, it is equivalent to swap the corresponding
column after one round encryption. Furthermore, in some special cases, to
exchange a column is equivalent to exchange a diagnoal. For example, if
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the difference of the state pair behaves like the rightmost state in Fig. 2,
exchanging its first column is equivalent to exchange its first diagonal,
because only the byte at the intersection of the first column and the first
diagnoal is active.

exchange exchange exchange exchange exchangeexchange exchange exchange exchange exchange

AK SB SR MC AK

Fig. 2. Swapping the first column is equivalent to swap the first diagonal.

In [1], the authors modified a theorem from [14], which states an
exchange-difference relation over 4 rounds of the AES.

Theorem 1 (4-round Exchange-Difference Relation [14]). Let x, x′ ∈
F4×4
28

, exchange some diagonals between x and x′ and get x̂, x̂′, then for
J ⊆ {0, 1, 2, 3} and 0 < |J | ≤ 3,

Pr(R4(x̂)⊕R4(x̂′) ∈MJ |R4(x)⊕R4(x′) ∈MJ) = 1.

According to the exchange attack illustrated in Fig. 2 [1], we choose a pair
of plaintext x, x′ ∈ DJ ⊕ a where J = {0, 1}, and exchange the first diag-
onal to get its dual pair x̂, x̂′ ∈ CI ⊕ a. With some probability x⊕ x′ and
x̂ ⊕ x̂′ may satisfy a special difference pattern making that it is equiv-
alent to exchange some diagonals of (R(x), R(x′)) to get (R(x̂), R(x̂′)).
Then it meets the starting condition of Theorem 1, we can get a 5-round
exchange-equivalent relation for the AES.

3 Improved Key-Recovery Attack Based on Property 1

In this section, we show how to combine Property 1 with the exchange
attack to establish an improved key-recovery attack on the 5-round AES
with a secret S-Box. The basic idea of this attack is to extend the 4-round
exchange-difference relation (Theorem 1) to 5 rounds. In the attack, we
first choose two plaintexts p, p′ from a subspace S0 = a ⊕ DI where
I = {0, 1}, and expect that R(p), R(p′) will be in a specific subspace
S1 = b⊕ CI as follows,

S1 ,

b⊕

x1 x2 0 0
0 0 0 0
0 x3 0 0
0 x4 0 0


∣∣∣∣∣∣∣∣x1, x2, x3, x4, b ∈ F28

 . (2)
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For two randomly drawn plaintexts p, p′ ∈ S0, the probability that R(p)⊕
R(p′) ∈ S1 is 2−32. However, taking Property 1 into consideration and
choosing p, p′ carefully according to some secret key information, we can
vary the probability of R(p) ⊕ R(p′) ∈ S1 between the wrong and right
key guess.

Once R(p)⊕R(p′) ∈ S1, we can exchange the first diagonal between p
and p′ and get its dual pair (p̂, p̂′), thus (R(p), R(p′)) and (R(p̂), R(p̂′)) are
two pairs satisfying the starting condition of Theorem 1. Hence, R5(p)⊕
R5(p′) and R5(p̂) ⊕ R5(p̂′) will be always in the same MJ for certain
J ⊆ {0, 1, 2, 3} at the same time. For sake of convenience, in this section
we call such pair-of-pair (p, p′, p̂, p̂′) a right pair-of-pair.

Details. Based on Property 1, if the four input bytes of MC have two
zero-difference values and the difference of the remaining two bytes are e-
qual, the output vector will have one zero-difference byte with probability
1. Without loss of generality, we assume the input difference is [a, 0, 0, a]T ,
then 

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

×

a
0
0
a

 =


3a
0
2a
a

 . (3)

It can be seen that the second value of the output difference must be
zero. Then if the second column of the input difference of MC is really
the patten such as [a, 0, 0, a]T where a ∈ F28\{0}, the probability that
R(p) ⊕ R(p′) ∈ S1 (Equation 2) will be 2−24 rather than 2−32. For this
reason, we define the set Az,δ as follows,

Az,δ ,

a⊕


y0 z 0 0
0 y1 0 0
0 0 y2 0

z ⊕ δ 0 0 y3


∣∣∣∣∣∣∣∣∀y0, y1, y2, y3, a ∈ F28

 where z, δ ∈ F28 ,

(4)
and then choose two different plaintexts p ∈ Az0,δ and p′ ∈ Az1,δ where
z0 6= z1.

Let the two secret key bytes which are XORed with p0,1 (Resp. p′0,1)

and p3,0 (Resp. p′3,0) be k0,1 and k3,0, respectively. After f , SR ◦SB ◦AK
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operation, the second column of f(p)⊕ f(p′) is

(f(p)⊕ f(p′))C1 =


S-Box(z0 ⊕ k0,1)⊕ S-Box(z1 ⊕ k0,1)

0
0

S-Box(z0 ⊕ δ ⊕ k3,0)⊕ S-Box(z1 ⊕ δ ⊕ k3,0)

 .
To meet the condition shown in Equation 3, Equation 5 should be met,

S-Box(z0⊕k0,1)⊕S-Box(z1⊕k0,1) = S-Box(z0⊕δ⊕k3,0)⊕S-Box(z1⊕δ⊕k3,0)
(5)

Since the S-Box is a secret permutation, Equation 5 has only two solu-
tions, i.e.,

δ = k0,1 ⊕ k3,0 or δ = z0 ⊕ z1 ⊕ k0,1 ⊕ k3,0.

If we let δ run through all values in F28 , we can guarantee that there
are at least two values of δ leading that Equation 5 holds. For sake of
simplicity, we call the two δ right δ and other values wrong δ. For right
δ, the probability that R(p) ⊕ R(p′) ∈ S1 will be 2−24. For wrong δ, the
probability is still 2−32. Combinining with Theorem 1, we conclude the
following proposition,
Proposition 1. Let p ∈ Az0,δ and p′ ∈ Az1,δ. (p̂, p̂′) is the dual pair of
(p, p′). If δ is right, for certain MJ with |J | = 3,

Pr(R5(p)⊕R5(p′) ∈MJ ∧R5(p̂)⊕R5(p̂′) ∈MJ) ≈ 2−54.

While for wrong δ,

Pr(R5(p)⊕R5(p′) ∈MJ ∧R5(p̂)⊕R5(p̂′) ∈MJ) ≈ 2−62.

Proof. If two pairs satisfy the starting condition of Theorem 1, they will
be in the same MJ at the same time after 4 rounds of encryption. Let
|J | = 3, the probability for the two pairs being a right pair-of-pair is 2−30

since we have four choices of J .
For wrong δ, the starting condition of Theorem 1 is statisfied with

probability 2−32. Then, the probability for the two pairs being a right
pair-of-pair is about 2−62, which is consistent with the random case. While
for right δ, the starting condition is met with probability 2−24, so the
probability for the two pairs being a right pair-of-pair is 2−54. ut

Finding δ Candidates. We can take advantage of Proposition 1 to find
the right δ that implies k0,1⊕k3,0. The process for finding δ is illustrated in
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Algorithm 1. For each candidate δ ∈ F28 , we find collision pairs and check
whether there is at least one collision pair satisfying that its dual pair is
also a collision pair. We explain briefly some crucial lines in Algorithm 1.
Line 4. For Az0,δ and Az1,δ, we require that the i-th plaintexts in Az0,δ

and Az1,δ should have the same value in the first diagonal. In this way,

(ciz0 , c
j
z1) must be the dual pair of (ciz1 , c

j
z0). We can prepare a subset of

D0 with size 2N and use it to generate the two sets Az0,δ and Az1,δ where
z0 6= z1.

Line 14. Since we have stored all the ciphertexts in tables, we only need
to store the indexes of ciphertexts into the two hash tables. If the i-th
lines of Tz0 and Tz1 are not empty simultaneously, we find a collision pair
pointed by the corresponding indexes.

Line 20. (ciz0 , c
j
z1) and (ciz1 , c

j
z0) are dual pairs, then we need to check if

ciz1 ⊕ c
j
z0 ∈Mk.

Determine the Size of Az0,δ And Az1,δ. For Az0,δ and Az1,δ with
2N elements, we can obtain 22N pairs (p, p′) by choosing p ∈ Az0,δ and
p′ ∈ Az1,δ. By exchanging the first diagonal, we get 22N−1 pair-of-pairs
such as (p, p′, p̂, p̂′).

For 5-round AES, these 22N−1 pair-of-pairs can be regarded as 22N−1

Bernoulli trials, and the number of right pair-of-pairs should obey Bino-
mial distribution B(22N−1, 2−54) when δ is right. Otherwise, it will obey
B(22N−1, 2−62). Let Nr and Nw be the number of right pair-of-pairs for
right and wrong δ, respectively.

For right δ,

Pr(Nr ≥ 1) = 1−Pr(Nr = 0) = 1−(1−2−54)2
2N−1 ≈ 1−exp(−22N−1−54).

For wrong δ,

Pr(Nw ≥ 1) = 1−Pr(Nw = 0) = 1−(1−2−62)2
2N−1 ≈ 1−exp(−22N−1−62).

When we take N = 29, Pr(Nr ≥ 1) ≈ 0.9997 while Pr(Nw ≥ 1) ≈ 0.0308,
which means we can distinguish the right δ from the wrong δ.

Determining the exact k0,1 ⊕ k3,0. Either of the right δ including
δ = k0,1 ⊕ k3,0 and δ = k0,1 ⊕ k3,0 ⊕ z0 ⊕ z1 will bring at least one right
pair-of-pair with probability about 0.9997. Therefore, they will be both
returned by Algorithm 1 with probability 0.99972 ≈ 0.9994. At the same
time, the probability for a wrong δ being recommended is 0.0308. For all
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Algorithm 1 Finding δ Candidates (Property 1)

1: procedure Core(z0, z1, r, c) . Return a set containing the possible right δ
2: for Each δ ∈ F28 do
3: Initialize 2 sequence tables Cz0 , Cz1 , 1 table ∆
4: Prepare two sets Az0,δ, Az1,δ with 229 plaintexts . Make sure
Az0,δ[i]D0 = Az1,δ[i]D0 , according to Equation 4

5: for i = 0; i < 229; i = i+ 1 do
6: for j = 0; j < 2; j = j + 1 do
7: cizj ← R5(pizj ) . pizj is the i-th plaintext in Azj ,δ

8: Czj [i]← cizj . Store cizj
9: end for

10: end for
11: for k = 0; k < 4; k = k + 1 do . For each Mk space, search for collisions
12: Initialize 2 hash tables Tz0 , Tz1
13: for i = 0; i < 229; i = i+ 1 do
14: for j = 0; j < 2; j = j + 1 do
15: Tzj [MC−1(cizj )IDk ]← index(cizj ) . index(cizj ) = i
16: end for
17: end for
18: for i = 0; i < 232; i = i+ 1 do . For each line of Tz0 and Tz1
19: if there is a collision pair with indexes (i0, i1) and i0 6= i1 then
20: ci1z0 ← Cz0 [i1], ci0z1 ← Cz1 [i0] . (ci0z0 , c

i1
z1) and (ci1z0 , c

i0
z1) are dual

pairs
21: if ci1z0 ⊕ c

i0
z1 ∈Mk then . (ci1z0 , c

i0
z1) is also collided

22: ∆← δ
23: end if
24: end if
25: end for
26: end for
27: end for
28: return ∆
29: end procedure

Algorithm 2 Remove wrong δ
1: procedure Remove( ∆, z0, z1)
2: for δ ∈ ∆ do
3: if δ ⊕ z1 ⊕ z2 /∈ ∆ then
4: Remove δ from ∆
5: end if
6: end for
7: return ∆
8: end procedure
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the 28 − 2 wrong δ, on average there will be (28 − 2)× 0.0308 ≈ 8 wrong
δ which are also recommended. All the δ candidates are inserted into a
set ∆, which is returned by Algorithm 1 finally.

To remove the wrong δ from ∆, we XOR z0⊕z1 with each value in ∆.
For right δ, δ⊕ z0⊕ z1 should be also in ∆ in a high probability (0.9994)
while for wrong δ, the probability is about 2−8. The method of removing
wrong δ is shown in Algorithm 2.

Now the set ∆ contains only k0,1 ⊕ k3,0 and k0,1 ⊕ k3,0 ⊕ z0 ⊕ z1.
To determine the exact right key byte, we have to call Algorithm 1 and
Algorithm 2 again with (z2, z3) where z2 ⊕ z3 6= z0 ⊕ z1. With ∆′ =
{k0,1 ⊕ k3,0, k0,1 ⊕ k3,0 ⊕ z2 ⊕ z3} returned, we can easily determine the
right k0,1 ⊕ k3,0 by comparing ∆ and ∆′. Therefore we recover one byte
key information with 0.99942 ≈ 0.9988 success probability. The process
is illustrated in Algorithm 3.

The procedure RecoverKeyByte(r, c) (Algorithm 3) can be used to re-
cover kr,c ⊕ kr+1,c+1

6. Since the equal bytes in MC matrix are all adja-
cent, for the i-th diagonal of the key state, we can recover k0,i ⊕ k1,i+1,
k1,i+1 ⊕ k2,i+2, k2,i+2 ⊕ k3,i+3 and k3,i+3 ⊕ k0,i. However, from any three
out of the four values we can derive the remaining one, which means we
can recover three bytes of useful key information for one diagonal. For the
four diagonals of key state, we can recover 12 bytes of key information,
i.e. we can get the secret key up to 232 variants.

Data Complexity. From Algorithm 1, for every δ ∈ F28 we use four
sets Azi,δ for i = 0, 1, 2, 3 each with 229 plaintexts. Therefore we need
229 × 28 × 4 = 239 chosen plaintexts to recover one byte key. In order to
recover 12 key bytes, the total data complexity is 239 × 12 ≈ 242.6 chosen
plaintexts.

Computation Complexity. Firstly, we evaluate the complexity of Al-
gorithm 1. For each possible δ ∈ F28 we encrypt two sets Az0,δ and Az1,δ
each with 229 plaintexts, this operation needs 229 × 2 = 230 5-round en-
cryptions. After obtaining 230 ciphertexts, we insert them into Cz0 and
Cz1 with 230 table-lookups. To insert all the ciphertexts to Tz0 and Tz1 ,
we need 230 table-lookups again. Then we compare each line of Tz0 and
Tz1 to find collision pairs, it requires 2× 232 = 233 table-lookups. For the
two sets Az0,δ and Az1,δ each with 229 chosen plaintexts, on average we
can obtain 229 × 229 × 2−32 = 226 collision pairs. Once we find a colli-
sion pair (ciz0 , c

j
z1), we need a time of XOR to check whether (ciz1 , c

j
z0) is

6 In this paper, the addition of indexes are modulo 4.
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Algorithm 3 Recover the real key kr,c ⊕ kr+1,c+1 (Property 1)

1: procedure RecoverKeyByte(r, c) . Recover kr,c ⊕ kr+1,c+1 with 99.88%
probability

2: Allocate z0, z1, z2, z3 s.t. z0 ⊕ z1 6= z2 ⊕ z3
3: ∆0 ← Core(z0, z1, r, c)
4: if |∆0| == 0 then
5: return ⊥
6: else
7: ∆0 ← Remove( ∆0, z0, z1)
8: end if
9: ∆1 ← Core(z2, z3, r, c)

10: if |∆1| == 0 then
11: return ⊥
12: else
13: ∆1 ← Remove( ∆1, z0, z1)
14: end if
15: if ∆0,∆1 have the same value then
16: return δ ← (∆0,∆1) . Right kr,c ⊕ kr+1,c+1 must lie in both set
17: else
18: return ⊥
19: end if
20: end procedure

collided. These memory operations above need about 233 table-lookups.
Considering we have four possible Mk, the whole memory operations cost
235 table-lookups. We use the convention that 100 times of table look-
ups are equivalent to one time 5-round encryption. Hence, encrypting the
plaintexts is dominant in the time complexity, which requires 230 5-round
encryptions for each δ.

To determine the exact one byte information of key (Algorithm 3),
the time complexity is 28×2×230 = 239 5-round encryptions. Recovering
12 bytes key requires 239 × 12 ≈ 242.6 times of 5-round encryption.

Memory Complexity. We allocate 2 sequence tables with size 229 and
2 hash tables with size 232. Since these tables can be reused, the total
memory complexity is about 232 × 2 + 229 × 2 ≈ 233 128-bit blocks.

Practical Verification. Using C/C++ implementation, we practically
verified our key-recovery attack on a small-scale variant of the AES as
presented in [5]. The block size of the small-scale AES is 64 bits, and each
word is a 4-bit nibble in the state matrix. We simply recover one byte of
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the secret key XOR in our experiment. The experimental result supports
our theory. 7

4 Improved Key-Recovery Attack Based on Property 2
Similar to the exchange attack based on Property 1, we can also combine
Property 2 of MC matrix with exchange attack to realize the key recovery
attack with a secret S-Box. To exploit Property 2, we focus on another
subspace S′1 that two plaintexts p, p′ ∈ DI , I = {0, 1} should fall into
after the first round encryption.

S′1 ,

b⊕

a1 0 0 0
0 0 0 0
0 a3 0 0
a2 a4 0 0


∣∣∣∣∣∣∣∣a1, a2, a3, a4, b ∈ F28

 . (6)

If we exchange the first diagonal between p and p′, it is equivalent to
exchange the first column between R(p) and R(p′). Since R(p), R(p′) ∈ S′1,
it is also equivalent to exchange the first and the fourth diagonals between
R(p) and R(p′).

Details. Property 2 of MC says that three elements in each row can be
XORed to zero. If the input difference of the four bytes of MC has three
equal values and the remaining one value is zero, the output difference
will have two zero-difference byte with probability 1. Without loss of
generality, we assume the input difference is [a, a, a, 0]T , then

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

×

a
a
a
0

 =


0
0
2a
3a

 (7)

It can be seen that there are two zero-difference values in the output
difference with probability 1. Then if the input difference of MC is really
the pattern such as [a, a, a, 0]T for any a ∈ F28\{0}. To achieve it, we
define the set Aw,δ1,δ2 as follows,

Aw,δ1,δ2 ,

a⊕

y1 w 0 0
0 y2 w ⊕ δ1 0
0 0 y3 w ⊕ δ2
0 0 0 y4


∣∣∣∣∣∣∣∣∀y0, y1, y2, y3 ∈ F28


where w, δ1, δ2 ∈ F28 .

(8)

7 https://github.com/anxin19/5-round-AES-keyrecoveryattack.git.

https://github.com/anxin19/5-round-AES-keyrecoveryattack.git
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We choose two different plaintexts p ∈ Aw0,δ1,δ2 , p
′ ∈ Aw1,δ1,δ2 . Let the key

bytes XORed with p0,1, p1,2, p2,3 (Resp. p′0,1, p
′
1,2, p

′
2,3) are k0,1, k1,2, k2,3,

respectively. After the operation f = SR ◦SB ◦AK, the difference between
the second column of f(p) and f(p′) is

f(p)C1 ⊕ f(p′)C1 =


S-Box(w0 ⊕ k0,1)⊕ S-Box(w1 ⊕ k0,1)

S-Box(w0 ⊕ δ1 ⊕ k1,2)⊕ S-Box(w1 ⊕ δ1 ⊕ k1,2)
S-Box(w0 ⊕ δ2 ⊕ k2,3)⊕ S-Box(w1 ⊕ δ2 ⊕ k2,3)

0

 (9)

To meet the condition shown in Equation 7, the following equation should
be satisfied (denote S-Box(·) by S(·) for short),{

S(w0 ⊕ k0,1)⊕ S(w1 ⊕ k0,1) = S(w0 ⊕ δ1 ⊕ k1,2)⊕ S(w1 ⊕ δ1 ⊕ k1,2)
S(w0 ⊕ k0,1)⊕ S(w1 ⊕ k0,1) = S(w0 ⊕ δ2 ⊕ k2,3)⊕ S(w1 ⊕ δ2 ⊕ k2,3)

(10)
Since the S-Box is a secret permutation, there can be only four kinds of
solutions,

(δ1, δ2) = (k0,1 ⊕ k1,2, k0,1 ⊕ k2,3) or

(δ1, δ2) = (k0,1 ⊕ k1,2, w0 ⊕ w1 ⊕ k0,1 ⊕ k2,3) or

(δ1, δ2) = (w0 ⊕ w1 ⊕ k0,1 ⊕ k1,2, k0,1 ⊕ k2,3) or

(δ1, δ2) = (w0 ⊕ w1 ⊕ k0,1 ⊕ k1,2, w0 ⊕ w1 ⊕ k0,1 ⊕ k2,3)

(11)

Similar with the attack in Sect. 3, we let (δ1, δ2) run through all possible
values in F28×F28 . There will be at least four values of (δ1, δ2) that make
Equation 10 hold. We call the four (δ1, δ2) in Equation 11 right (δ1, δ2)
and the other values wrong (δ1, δ2). For right (δ1, δ2), the probability of
R(p1)⊕R(p2) ∈ S′1 is 2−16 while for wrong (δ1, δ2) the probability is still
2−32. Combining with Theorem 1, we conclude the following proposition.

Proposition 2. Let p ∈ Aw0,δ1,δ2 and p′ ∈ Aw1,δ1,δ2. (p̂, p̂′) is generated
by exchanging the first diagonal between p and p′. If (δ1, δ2) is right, for
certain MJ with |J | = 3,

Pr(R5(p)⊕R5(p′) ∈MJ ∧R5(p̂)⊕R5(p̂′) ∈MJ) ≈ 2−46,

while for wrong (δ1, δ2),

Pr(R5(p)⊕R5(p′) ∈MJ ∧R5(p̂)⊕R5(p̂′) ∈MJ) ≈ 2−62.

The proof of Proposition 2 is similar to the Proposition 1, we omit it here.
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Finding (δ1, δ2) Candidates. We can also take advantage of Propo-
sition 2 to find the right (δ1, δ2) which implies the key byte information
k0,1 ⊕ k1,2 and k0,1 ⊕ k2,3. The process for finding (δ1, δ2) candidates is
similar to Algorithm 1 except we need to guess two key byte difference.
The process is illustrated in Algorithm 4.

Determine the Size of Aw0,δ1,δ2 And Aw1,δ1,δ2. If the size of Aw0,δ1,δ2

and Aw1,δ1,δ2 are both 2M , we can obtain 22M pairs of (p, p′) by choosing
p ∈ Aw0,δ1,δ2 and p′ ∈ Aw1,δ1,δ2 . By exchanging the first diagonal, we can
get totally 22M−1 pair-of-pairs such as (p, p′, p̂, p̂′). If R5(p)⊕R5(p′) ∈MJ

and R5(p̂)⊕R5(p̂′) ∈MJ for |J | = 3 hold at the same time, then we call
such (p, p′, p̂, p̂′) a right pair-of-pair. Consider the number of right pair-
of-pairs,

For right (δ1, δ2),

Pr(Mr ≥ 1) = 1−Pr(Mr = 0) = 1−(1−2−46)2
2M−1 ≈ 1−exp(−22M−1−46).

For wrong (δ1, δ2),

Pr(Mw ≥ 1) = 1−Pr(Mw = 0) = 1−(1−2−62)2
2M−1 ≈ 1−exp(−22M−1−62).

When we take M = 25, Pr(Mr ≥ 1) ≈ 0.9997 while Pr(Mw ≥ 1) ≈
0.0001 which means we can distinguish the right (δ1, δ2) from the wrong
ones.

Determining k0,1 ⊕ k1,2 and k0,1 ⊕ k2,3. In this attack, we also

have a probability 1 − (1 − 0.0001)2
16−4 ≈ 0.9986 nearly close to 1 to

return at least one wrong (δ1, δ2). On average, approximately (216− 4)×
0.0001 ≈ 7 wrong (δ1, δ2) will be returned. To remove the wrong (δ1, δ2)
from ∆, we XOR w0⊕w1 with the two components of each value in ∆ and
check whether the result is in ∆ or not as Algorithm 5. To determine the
exact (k0,1⊕ k1,2, k0,1⊕ k2,3), we need to use additional two sets Aw2,δ1,δ2

Aw3,δ1,δ2 where (w0, w1) 6= (w2, w3) with 225 plaintexts and do the same.
Finally, the probability that we succeed to recover the two key bytes with
probability 0.99974×2 ≈ 0.9976. The process is illustrated in Algorithm 6.

After we recover two key bytes information, we can take the same
strategy to recover another different key byte information in the same
diagonal. At last we can recover 12 key byte difference, i.e., we can get
the entire secret key up to 232 variants.
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Algorithm 4 Finding (δ1, δ2) Candidates (Property 2)

1: procedure Core′(w0, w1, r, c) . Return a set containing possible (δ1, δ2)
2: for Each (δ1, δ2) ∈ F28 × F28 do
3: Initialize 2 sequence tables Cw0 and Cw1 , 1 table ∆
4: Prepare two sets Aw0,δ1,δ2 , Aw1,δ1,δ2 with 225 plaintexts each as Equation 8
5: for i = 0; i < 225; i = i+ 1 do
6: for j = 0; j < 2; j = j + 1 do
7: ciwj

← R5(piwj
)

8: Cwj [i]← ciwj
. Push back ciwj

into sequence table
9: end for

10: end for
11: for k = 0; k < 4; k = k + 1 do
12: Initialize 2 hash tables Tw0 , Tw1

13: for i = 0; i < 225; i = i+ 1 do
14: for j = 0; j < 2; j = j + 1 do
15: Twj [MC−1(ciwj

)IDk ]← index(ciwj
) . Insert the index of ciwj

into
hash table

16: end for
17: end for
18: for i = 0; i < 232; i = i+ 1 do
19: if there is a collision pair with indexes (i0, i1) and i0 6= i1 then
20: ci1w0

← Cw0 [i1], ci0w1
← Cw1 [i0] . (ci0w0

, ci1w1
) and (ci1w0

, ci0w1
) are

dual pairs
21: if ci1w0

⊕ ci0w1
∈Mk then . (ci1w0

, ci0w1
) is also collided

22: ∆← δ
23: end if
24: end if
25: end for
26: end for
27: end for
28: return ∆
29: end procedure

Algorithm 5 Remove wrong (δ1, δ2)

1: procedure Remove′( ∆,w0, w1)
2: for each (δ1, δ2) ∈ ∆ do
3: if (δ1 ⊕ w0 ⊕ w1, δ2 ⊕ w0 ⊕ w1) /∈ ∆ then
4: Remove′ (δ1, δ2) from ∆
5: end if
6: end for
7: return ∆
8: end procedure
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Algorithm 6 Recover kr,c ⊕ kr+1,c+1 and kr,c ⊕ kr+2,c+2 (Property 2)

1: procedure RecoverKeyByte′(r, c, t) . Recover kr,c ⊕ kr+1,c+1 and
kr,c ⊕ kr+2,c+2 with 99.76% success probability

2: Allocate w0, w1, w2, w3 s.t. w0 ⊕ w1 6= w2 ⊕ w3

3: ∆0 ← Core′(w0, w1, r, c)
4: if |∆0| == 0 then
5: return ⊥ . Fail
6: else
7: ∆′0 ← Remove′(∆0, w0 ⊕ w1)
8: end if
9: ∆1 ← Core′(w2, w3, r, c)

10: if |∆1| == 0 then
11: return ⊥
12: else
13: ∆′1 ← Remove′(∆1, w2 ⊕ w3)
14: end if
15: if ∆′0,∆

′
1 have the same value then

16: return (δ1, δ2)← (∆′0,∆
′
1) . Right kr,c ⊕ kr+1,c+1 and kr,c ⊕ kr+2,c+2

must lie in both sets
17: else
18: return ⊥
19: end if
20: end procedure

Data Complexity. According to Algorithm 4, for each (δ1, δ2) we use
two sets Aw0,δ1,δ2 and Aw1,δ1,δ2 each with 225 plaintexts. Additional two
sets Aw2,δ1,δ2 and Aw3,δ1,δ2 are also required to find the exact two key byte
information. Therefore, totally we need 225 × 216 × 2 × 2 = 243 chosen
plaintexts to recover two key bytes. To find the 12 bytes key information,
the total data complexity is about 243 × 8 = 246.

Computation Complexity. Encrypting two sets with 225 plaintexts
we need 225 × 2 = 226 5-round encryption which is the donimant in the
complexity of Algorithm 4. The total time complexity is about 226×216×
2× 8 = 246 5-round encryption.

Memory Complexity. We allocate two sequence tables with size 225

to store the two ciphertext sets and additionally 2 hash tables with size
232. The memory complexity is finally 233 128-bit blocks.

5 Conclusion
In this paper, we explore the impact of the MC coefficient property on the
security of the AES variant with a secret S-Box. We provide two attacks
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based on Property 1 and Property 2 respectively and achieve the best
record in terms of the complexity under chosen-plaintext scenario. Such
attacks remind us to notice the choice of MC matrix for AES-like ciphers.

To our best knowledge, no previous attacks on the AES have taken
advantage of other properties except the branch number of the MC matrix.
It means that we may substitute any other MDS matrix free of Property
1 or 2 8 for the AES MC matrix without hazarding its security against
other attacks. In [9], Grassi showed that about only 6.87% among all the
MDS matrices have the two kinds of properties. Nevertheless, the choice
of MC is still a difficult work since we should consider the performance
of the cipher. The MC matrix of AES is already qualified for its pretty
low weight, thus it is an interesting open question how to choose a proper
MDS matrix without the particular coefficient property and achieve the
same or even higher efficiency simultaneously.
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