
 1

Blockchain Stealth Address Schemes

Gary Yu
gary.yu@gotts.tech

July 3, 2020

Abstract. In a blockchain system, address is an essential primitive which is used in transaction.
The Stealth Address, which has an underlying address info of two public keys (𝐴, 𝐵), was
developed by Monero blockchain in 2013, in which a one-time public key is used as the
transaction destination, to protect the recipient privacy. At almost same time, hierarchical
deterministic wallets scheme was proposed as bip-32 for Bitcoin, which makes it possible to
share an extended public key (𝐾, 𝑐) between sender and receiver, where 𝐾 is a public key and
𝑐 is a 256-bits chain code, and only receiver knows the corresponding private key of this 𝐾.
With the bip-32 scheme, the sender may derive the child public key 𝐾! with the child number
𝑖 by him/herself, without needing to request a new address for each payment from the receiver,
make each transaction have a different destination key for privacy. This paper introduces an
improved stealth address scheme (and some enhanced variants) which has an underlying
address data of (𝐴! , 𝐵! , 𝑖), where 𝑖 is a child number and 𝑖 ∈ [0, 2"# − 1]. The sender gets the
receiver’s address info (𝐴! , 𝐵! , 𝑖), generates a random secret number 𝑟	 ∈ 	 [0, 2$% − 1] and
calculate a Pedersen commitment 𝐶 = 𝐴!𝐵!ℎ&

!.(where 𝑅) = 𝐵!*, then the sender may use this
commitment 𝐶 or 𝐻𝑎𝑠ℎ(𝐶) as the destination key for the output and packs the (𝑅, 𝑖)
somewhere into the transaction. This improved stealth address scheme makes it possible to
manage multiple stealth addresses in one wallet, therefore the user is able to share different
addresses for different senders.

Keywords: Stealth address, Bitcoin, Mimblewimble, Pedersen commitment, Gotts

1 Introduction

Stealth Address. The concept of Stealth Address was firstly developed by a Bitcoin Forum
member ‘ByteCoin’ [Byt11], then improved by Nicolas van Saberhagen in CryptoNote’s white
paper[Sab13], later adapted by Peter Todd in 2014 [Tod14], and finally used in Monero
blockchain, which is the concatenation of a public spend key and a public view key. The main
purpose of the Stealth Address design is to protect recipient privacy. According to CryptoNote
whitepaper, a one-time public key is used as the transaction destination key, as illustrated in
Figure 1, comprising the steps of:

- Receiver publish an address which contains two public keys (𝐴, 𝐵).
- Sender generate a random 𝑟	 ∈ 	ℤ+ and calculate a one-time public key 𝑃 =

𝐻𝑎𝑠ℎ(𝑟 ∗ 𝐴) ∗ 𝐺 + 𝐵.
- Sender use 𝑃 as the destination key for the output and also packs 𝑅 = 𝑟 ∗ 𝐺 (as a part

of Diffie-Hellman exchange) somewhere into the transaction.
The receiver checks every passing transaction with his/her private key (𝑎, 𝑏) and computes
𝑃) = 𝐻𝑎𝑠ℎ(𝑎 ∗ 𝑅) ∗ 𝐺 + 𝐵, to collect the payments if 𝑃) = 𝑃, thanks to the truth that 𝑎 ∗ 𝑅 ≡
𝑟 ∗ 𝐴. With the sharing private key of 𝐴, an auditor for example can also computes this 𝑃)
therefore is capable to view every incoming transaction for that Stealth Address.

 2

Fig.1 Monero Stealth Address scheme. The receiver publishes a stealth address (𝐴, 𝐵) and the
sender use this address to generate a one-time public key 𝑃 for a transaction 𝑇𝑋, then the
receiver collects it from the chain.

The pros are obviously on the recipient privacy, which only open the one-time key on the
public chain data and keep the recipient’s address as a secret only known between sender and
receiver. The cons are mainly at:

- One wallet is only be able to manage one address, meaning the user has to share same
address to different senders. In case that two senders meet each other and find they’re
sending to same address, they will know they have the same receiver. This harms the
privacy.

- In contrast to a typical Bitcoin address which is just a 20-bytes length hash160 data, the
Monero Stealth Address is much longer, which contains 2 public keys therefore at least
need 65-bytes data length.

- It’s non-trivial in some thin transaction solution to pack the 𝑅 as the additional load
into the transaction, which costs 33-bytes data. For instance, a typical Bitcoin
transaction with single input and double outputs may only cost 225 bytes, this 33-bytes
data will increase 15% transaction bandwidth.

Hierarchical Deterministic Wallets Address. At almost same time as the Monero Stealth
Address scheme was finalized, another optional solution “HD (Hierarchical Deterministic)
Wallets” is proposed as bip-32 for Bitcoin [Wui13], which can also be used as a stealth address
solution. With the bip-32 solution, the sender and receiver can share an extended public key,
and both sides can derive the public child keys without requesting the new address for each
payment. For example, a possible solution, as illustrated in Figure 2, may comprise the steps
of:

- Sender and receiver share an extended public key as (𝐾, 𝑐), where 𝐾 is a public key, 𝑐
is a 256-bits data which is named as “chain code” in bip-32.

- 𝑖 is a 4-bytes integer which is named as “child number” in bip-32, 𝑖 ∈ [0, 2"# − 1].
- The derivation algorithm is defined as 𝐾! = 𝐾 + 𝐼, ∗ 𝐺, where 𝐼, is the first 32-bytes

sequence when splitting 𝐼 into two 32-byte sequences, and 𝐼 =
𝐻𝑀𝐴𝐶_𝑆𝐻𝐴512(𝑐, 𝐾, 𝑖).

 3

- The sender increases 𝑖 sequentially starting from 0, each time when making a new
payment to the receiver, calculates a new public key 𝐾! as the transaction destination
address.

Fig.2 BIP-32 address scheme. The receiver publishes a stealth address (𝐾, 𝑐) and the sender
use this address to generate a one-time public key 𝐾! for a transaction 𝑇𝑋, then the receiver
collects it from the chain. To make it work, both parties have to synchronize to the same child
number 𝑖.

With this solution, the recipient privacy is protected by the one-time key 𝐾!. But the cons
are obviously at:

- The receiver has to get a secure communication channel with the sender for the sharing
of the address info (𝐾, 𝑐), meaning the address must not open for any third party,
otherwise the third party is capable to view every transaction with this address.

- At least 65-bytes address info, i.e. (𝐾, 𝑐), need to be shared in advance between sender
and receiver, which has the same length as Monero Stealth Address.

- In case the receiver loses the local stored info of current child number 𝑖, a painful grind
calculation is needed to search from 0 until (2"# − 1). Or in other words, the receiver
has to synchronize the child number 𝑖 with the sender, either by using 𝑖 sequentially or
by the communication outside the chain.

- According to bip-32, this is only proposed for recurrent business-to-business
transaction use case, obviously inconvenient for the receiver to maintain multiple
random senders, since the receiver has to check every passing transaction on the chain
for each maintained extended public parent key (𝐾, 𝑐), with its suitable derivation
public child key 𝐾!.

There is a known vulnerability to the author of the bip-32 standard, the attacker could easily
recover the master private key given the master public key and any child private key [GS14].

Robust Multi-Key Stealth Address. Nicolas T. Courtois and Rebekah Mercer proposed an
improved Stealth Address technique [CM17] which is more robust against a variety of attacks,
with the idea of a multi-key multiplicative technique of [GS14]. The recipient will have 𝑚 +
1	private/public keypairs: one ‘view key’ 𝑉 = 𝑣. 𝐺 and m different ‘spend’ public keys 𝐵! =
𝑏! . 𝐺. The price to pay for this is an m-fold increase in the size of the address.

 4

All above stealth address solutions are still a little bit far from the idealistic goal of a
blockchain address: shorter length and wider usability. Unfortunately, without the new
progress on related cryptography research, it looks like these stealth address solutions are
already the best choice. It is therefore an object of this paper to provide a similar stealth address
solution as Monero Stealth Address scheme for blockchains, given essentially the same security
guarantees as prior arts, with a little improvement so as to manage multiple addresses in one
wallet, in comparison to known cryptographic methods.

2 The New Stealth Address Scheme

2.1 A Naive Scheme

A naive scheme, with a strong assumption on a secure communication channel between the
sender and the receiver for the sharing of the address info, as illustrated in Figure 3, uses (𝑲𝒊, 𝒊)
as the stealth address data, where 𝐾! is a recipient public child key which is generated from an
extended public parent key (𝑲, 𝒄) extended with a child number 𝒊.

The sender gets the receiver’s stealth address info (𝐾! , 𝑖), generates a random number 𝑟	and
calculates a Pedersen commitment [Ped91] 𝐶 = K! + 𝑟 ∗ 𝐻. The sender may use this Pedersen
commitment 𝐶	as the destination key for the output and packs the encoded (𝑟), 𝑖) somewhere
into the transaction.

The receiver checks every passing transaction, gets the transaction destination key 𝐶 and
the encoded info (𝑟), 𝑖) from the transaction, derives the public child key 𝐾! with the extended
public parent key (𝐾, 𝑐) and the child number 𝑖 , decodes the 𝑟 , computes the Pedersen
commitment 𝐶) = K! + 𝑟 ∗ 𝐻, to collect the payments if 𝐶) = 𝐶.

Fig.3 A naive stealth address scheme. The receiver publishes a stealth address (𝐾! , 𝑖) and the
sender use this address for a transaction 𝑇𝑋, then the receiver collects it from the chain.

With this new stealth address scheme, the address data is a little bit bigger than prior arts

described above, because of the child number 𝑖, and need a little bit more additional payload
data into the transaction, increasing 4 bytes data (37-bytes for (𝑅, 𝑖) comparing to 33-bytes in
Monero Stealth Address solution for packing that 𝑅). These increased sizes are the cost to get

 5

the advantage to furtherly protect the privacy, meaning the wallet can manage multiple
addresses in the same time, therefore the user can share different address for different sender.

The pros of this naive scheme are the compact address data and the minimal additional
payload. The cons are obviously on the strong assumption, which is not practical for common
people to get a secured communication channel to share the address info.

2.2 The Basic Scheme

The basic stealth address scheme, is parameterized by group parameters (𝔾, 𝑝, 𝑔, ℎ) where 𝑝 is
a 𝑘-bit integer, 𝔾 is a cyclic group of order 𝑝, and 𝑔 is a generator of 𝔾, and let ℎ be an element
of group 𝔾 such that nobody knows 𝑙𝑜𝑔.ℎ, and by a hash function Hash.

This new stealth address scheme use (𝑨𝒊, 𝑩𝒊, 𝒊) as the address data, where 𝐴! is the public
spend key and 𝐵! is the public view key, as illustrated in Figure 4, comprising the steps of:

- The receiver generates a random private key 𝑘	 ∈ 	ℤ+ and computes the corresponding
public key 𝐾 = 𝑔/, and generates a random 256-bits chain code 𝑐 to build the extended
public parent spend key (𝐾, 𝑐), with the corresponding extended private key (𝑘, 𝑐).

- With this (𝑘, 𝑐) , the receiver generates a corresponding (𝑘), 𝑐)) with one hash
algorithm, for example (𝑘), 𝑐)) = 𝐻𝑎𝑠ℎ0123#4(𝑘, 𝑐) , computes the corresponding
public key 𝐾) = 𝑔/!, and builds the extended public parent view key (𝐾), 𝑐)).

- The receiver publishes an address to a sender with address data (𝐴! , 𝐵! , 𝑖) which
contains a public child spend key 𝐴!, a public child view key 𝐵!, and a child number 𝑖 ∈
[0, 2"# − 1].

o The child key derivation function 𝑓(𝐾, 𝑐, 𝑖) may be defined as bip-32 HD
wallets algorithm: 𝐾! = 𝐾𝑔5", where 𝐼 = 𝐻𝑀𝐴𝐶_𝑆𝐻𝐴512(𝑐, 𝐾, 𝑖) and 𝐼, is the
first 32-bytes sequence when splitting 𝐼 into two 32-byte sequences. The
corresponding private key 𝑘! of the public child key 𝐾! will be: 𝑘! = 𝑘 + 𝐼,.

o The receiver may derive different public child key for different sender, by
changing the child number 𝑖.		𝑖 may be changed sequentially starting from 0,
meaning 𝑖 may increment by 1 each time when generating a new address; or 𝑖
may be selected from a random number.

- The sender gets the receiver’s address info (𝐴! , 𝐵! , 𝑖), and
o The sender generates a random 𝑟	 ∈ 	ℤ+, calculates 𝑅 = 𝑔* and 𝑅) = 𝐵!*, then

use this 𝑅) to furtherly calculate a one-time Pedersen commitment 𝑃 =
𝐴!𝐵!ℎ&

!.(.
o The sender uses this one-time commitment 𝑃, or 𝐻𝑎𝑠ℎ(𝑃) as the destination

key for the output and packs the (𝑅, 𝑖) somewhere into the transaction. If using
𝐻𝑎𝑠ℎ(𝑃) as the destination key for the output, the 𝐻𝑎𝑠ℎ function here may be
the SHA-256, or Hash160 which means 𝑅𝐼𝑃𝐸𝑀𝐷160(𝑆𝐻𝐴256(𝑃)), or any
other feasible hash function.

 6

Fig.4 The basic stealth address scheme. The receiver publishes a stealth address (𝐴! , 𝐵! , 𝑖) and
the sender uses this address to generate a one-time public key for a transaction 𝑇𝑋, attaches the
(𝑅, 𝑖) to the 𝑇𝑋, then the receiver collects it from the chain.

 The receiver checks every passing transaction, gets the transaction destination key 𝑃 and
(𝑅, 𝑖) from the transaction data, derives the public child keys 𝐴! and 𝐵!, devices the private
child view key 𝑏! ,	calculates the nonce 𝑅) = 𝑅6# ,	computes 𝑃) = 𝐴!𝐵!ℎ&

!.(, to collect the
payments if 𝑃) = 𝑃, or if 𝐻𝑎𝑠ℎ(𝑃)) = 𝐻𝑎𝑠ℎ(𝑃) depending on which format is been using in
the transaction data.

Thanks to Pedersen commitment ’s perfect hiding property and computational binding
property [MD17, MRK03], with a one-time public key (in fact a Pedersen commitment) 𝑃 =
𝐴!𝐵!ℎ&

!.(as the transaction destination key, nobody can deduce the original address info
(𝐴! , 𝐵!) from 𝑃 without the knowledge of private nonce 𝑟 or private view key 𝑏!. Therefore,
this stealth address solution has a well privacy protection for the recipient real address.

The benefit of packing the child number 𝑖 into the transaction is that the receiver will be
very easy to maintain multiple child addresses in one wallet account, so as to encourage the
receiver to publish random child public key (i.e. recipient address) for every single sender, to
minimize the probability of address reuse for the recipient privacy. This is secure only on a
strong assumption where there are huge on-chain transactions volume to expect a lot of
duplication of same 𝑖, but obviously this assumption is too idealistic. Therefore, it is a flaw
about this 𝑖, since this 𝑖 is part of the recipient address info (𝐴! , 𝐵! , 𝑖), it is possible for anyone
to map this 𝑖 to a complete address (𝐴! , 𝐵! , 𝑖), especially for a young system which has not
much on-chain transactions happening. When there are multiple transactions to same address,
they could be detected by the same 𝑖 on the transaction outputs.

The fix solution for this flaw, which will be discussed in next chapter as an enhanced
scheme, is to use an encoded 𝑖) as the transaction data instead of the original 𝑖, and let this 𝑖)
only decodable for the transaction parties. Whereas before that, we should realize that above
flaw only exists in the payment output, meaning in the transaction output for the receiver. For
change output/s of a transaction, the sender is always able to generate a new random address
for that, therefore the mapping between the 𝑖 and the address (𝐴! , 𝐵! , 𝑖) is almost impossible,
since the random 𝑖 could come from anyone and the probability to reuse a (𝐴! , 𝐵! , 𝑖) is quite
low. So, this basic scheme is still usable for the change output.

 7

2.3 The Enhanced Scheme

As a fix for above flaw, an enhanced scheme, as illustrated in Figure 5, may be defined here
comprising the following steps of:

- The receiver publishes an address to a sender with address data (𝐴! , 𝐵! , 𝑖) which
contains a public child spend key 𝐴!, a public child view key 𝐵!, and a child number 𝑖 ∈
[0, 2"# − 1].

o The child key derivation function is still the 𝑓(𝐾, 𝑐, 𝑖), but when using it to
derive 𝐵! only the limited bits of 𝑖 are used. Meaning 𝐵! = 𝑓(𝐾, 𝑐, 𝑖&𝐿), where
𝐿 = 27 − 1, and 𝑙 is a consensus constant for example with an initial value as 8.
The consensus constant 𝑙 may be increased by soft forks from time to time when
the on-chain transaction volume big enough.

o 𝑖 is proposed to be selected from a random number.
- The sender gets the receiver’s address info (𝐴! , 𝐵! , 𝑖), and

o The sender generates a random 𝑟	 ∈ 	ℤ+, calculates 𝑅 = 𝑔* and 𝑅) = 𝐵!*, then
use this 𝑅) to furtherly calculate a one-time public key (in fact a Pedersen
commitment) 𝑃 = 𝐴!𝐵!ℎ&

!.(.
o The sender uses this one-time public key 𝑃, or 𝐻𝑎𝑠ℎ(𝑃) as the destination for

the output and packs the (𝑅, 𝑖)) somewhere into the transaction.
o The encoded 𝑖) is computed with 𝑖) = (((𝑖 ≫ 𝑙)	𝑋𝑂𝑅	ℎ) ≪ 𝑙) + (𝑖&𝐿) where

ℎ = 𝐻𝑎𝑠ℎ(𝑅)).
The receiver checks every passing transaction, gets the transaction destination key 𝑃 , or
𝐻𝑎𝑠ℎ(𝑃) , and (𝑅, 𝑖)) from the transaction data, derives the private child view key 𝑏! =
𝑓(𝑘), 𝑐), 𝑖)&𝐿) and the corresponding public child view key 𝐵! = 𝑔6# ,	calculates the nonce
𝑅) = 𝑅6# 	and	ℎ = 𝐻𝑎𝑠ℎ(𝑅)) , decodes 𝑖 = (((𝑖) ≫ 𝑙)	𝑋𝑂𝑅	ℎ) ≪ 𝑙) + (𝑖)&𝐿) , derives the
public child spend key 𝐴! = 𝑓(𝐾, 𝑐, 𝑖), computes 𝑃) = 𝐴!𝐵!ℎ&

!.(, to collect the payments if
𝑃) = 𝑃, or if 𝐻𝑎𝑠ℎ(𝑃)) = 𝐻𝑎𝑠ℎ(𝑃).

Fig.5 The enhanced stealth address scheme. The receiver publishes a stealth address (𝐴! , 𝐵! , 𝑖)
and uses this address to generate a one-time public key for a transaction 𝑇𝑋, attaches the (𝑅, 𝑖))
to the 𝑇𝑋, then the receiver collects it from the chain.

 8

With this enhanced scheme, most of the higher bits of encoded child number 𝑖) are random
because of the random secret 𝑟, even for same 𝑖. Only part of the least bits of 𝑖 are leaked as
transparent on the chain. Since the initial consensus constant 𝑙 is a small value for example 8,
we can expect enough duplications of 𝑙 bits of 𝑖 in the on-chain transactions, even for a young
system, such that the mapping between 𝑖) and the real address (𝐴! , 𝐵!) is not applicable.

The cons of this enhanced scheme are the limited numbers of available 𝐵! for one wallet
(𝐾, 𝑐) , since 𝑙 bits of 𝑖 only give 27 different 𝐵! . But this can be improved during the
progressive adoption procedure with increased on-chain transaction volume, by increasing this
𝑙 with soft forks from time to time.

2.4 The Mixed Scheme

In the production environment, both the basic scheme and the enhanced scheme will be used.
The enhanced scheme is for payment outputs, but the basic scheme is for change outputs.
Without an indicator for the type of the output, a double test and try, with (𝑅, 𝑖) and (𝑅, 𝑖)), has
to be used to recover a wallet, during the checking on every UTXO in the chain. The missing
of such kind of output type indicator is purposely for the privacy.

2.5 The Simplified Version

For most of personal users, the view key for the audit purpose does not have any practical
meaning. A simplified version of this stealth address scheme can be used in this case, to avoid
the meaningless cost of the long address.

The simplified version may be designed as (𝑨𝒊, 𝒊) for the address data instead of (𝑨𝒊, 𝑩𝒊, 𝒊),
where 𝐴! is the public spend key, and the public view key 𝐵! is dismissed. In the all remaining
parts of above stealth address scheme, the 𝐵! is simply replaced by the 𝐴!. Or in other words,
the simplified version can be looked as the original version of (𝑨𝒊, 𝑩𝒊, 𝒊) but where 𝐵! = 𝐴!.

2.6 Payment Proof

Payment proof means a proof to the third party (normally an arbiter) to prove the payment was
made, when someone sends money to a party who then disputes the payment was made. The
payment proof in Bitcoin is simple since the recipient address is recorded in the chain and open
to anyone, but for a blockchain which uses the stealth address scheme, the payment proof is
not so straight.

A simple, which is being used in Monero, is to use the secret nonce 𝑟 since only the sender
knows this secret. Either directly revealing this 𝑟 value to the third party or providing a
signature on a message from the third party with this 𝑟 as the secret key.

In a payment proof with signature, the following info will be provided as the payment proof:
1. The transaction id for Bitcoin and similar blockchains, or the transaction output for

Mimblewimble[Mw16] blockchains, which can be used to get that corresponding
public nonce 𝑅;

2. The transaction Merkle proof for Bitcoin and similar blockchains, or the transaction
output MMR[Tod12] proof for Mimblewimble blockchains;

3. The receiver’s address but please note the third party arbiter will also need to know this
address to assert it all ties together;

4. A message from the third party and the corresponding signature from the sender. The
signature can be verified with above 𝑅 as the public key.

 9

The pros of this first method are obviously the simplicity of proof construction. The cons
are mainly on the reliability, meaning the sender is incapable to create the proof once the info
𝑟 is lost, since this private nonce 𝑟 is only stored in local wallet and not quarriable on the chain.

To avoid losing the info 𝑟, as a workaround, the wallet should provide some automatic
backup features to regularly backup the payment records.

3 Applications to Blockchain Transaction

3.1 Bitcoin-Style Transaction

In a transaction-output-based blockchain system, where each transaction spends UTXOs (the
previously Unspent Transaction Outputs), a user must provide a signature, or more precisely a
𝑠𝑐𝑟𝑖𝑝𝑡𝑆𝑖𝑔 for Bitcoin [Bit08], either with ECDSA presently or with Schnorr signature in the
future [WNR18], to spend an UTXO, which proves the ownership of the spending output.

When spending an UTXO with Pedersen commitment 𝑃 = 𝐴!𝐵!ℎ&
!.(or 𝐻𝑎𝑠ℎ(𝑃) as the

owner key info, a problem is nobody, including the exact owner of this output, knows the
private key of a Pedersen commitment, and therefore the user cannot provide that
corresponding signature. A naive solution, to solve this problem, is attaching that 𝑅). 𝑥 into the
spending transaction, so that the owner can sign with the corresponding private key (𝑎! + 𝑏!)
and the validator can calculate the public key by 𝑃ℎ8&!.(. With Pay-to-PubkeyHash transaction
type in Bitcoin as an example, the original script is like this:

𝑠𝑐𝑟𝑖𝑝𝑡𝑃𝑢𝑏𝐾𝑒𝑦: 𝑂𝑃9:;	𝑂𝑃<=><#$? < 𝑝𝑢𝑏𝐾𝑒𝑦𝐻𝑎𝑠ℎ > 	𝑂𝑃@A:=,B@&5CD	𝑂𝑃E<@EF>5G
𝑠𝑐𝑟𝑖𝑝𝑡𝑆𝑖𝑔:< 𝑠𝑖𝑔 >	< 𝑝𝑢𝑏𝐾𝑒𝑦 >

With above said naive solution, the scripts may be revised as:
𝑠𝑐𝑟𝑖𝑝𝑡𝑃𝑢𝑏𝐾𝑒𝑦: 𝑂𝑃9:;	𝑂𝑃<=><#$? < 𝑃𝐻𝑎𝑠ℎ > 	𝑂𝑃@A:=,B@&5CD	𝑂𝑃E4F𝑂𝑃E<@EF>5G
𝑠𝑐𝑟𝑖𝑝𝑡𝑆𝑖𝑔:< 𝑠𝑖𝑔 >	< 𝑅). 𝑥 >	< 𝑃 >

Where,
𝑂𝑃E4F means the calculation of 𝑃ℎ8&!.(.

With above descripted naive solution, the pros are obviously on the recipient privacy, which
only open the Pedersen commitment (or its hash) on the public chain and keep the recipient’s
address (𝐴! , 𝐵! , 𝑖) as a secret only known between sender and receiver, and all unspent outputs
will keep the recipient address hidden until the owner spend it. The cons are mainly at:

- The transaction will reveal the 𝑅). 𝑥 of the spending output, also meaning reveal the
hidden public key(𝐴! , 𝐵!), i.e. the recipient address info.

- The additional info 𝑅). 𝑥 in 𝑠𝑐𝑟𝑖𝑝𝑡𝑆𝑖𝑔 will increase the transaction payload size with
32 bytes.

This naive solution will implicitly reveal the hidden address info for all spent outputs, it will
be a major infection on the core value of this stealth address scheme.

Fortunately, there is a ComSig signature scheme [Yu20] which is able to keep the recipient
address always hidden, both for unspent and spent outputs, to directly use the Pedersen
commitment 𝐶 as the signature public key. With the said ComSig signature scheme, the Pay-
to-PubkeyHash transaction in Bitcoin may be revised as:

𝑠𝑐𝑟𝑖𝑝𝑡𝑃𝑢𝑏𝐾𝑒𝑦: 𝑂𝑃9:;	𝑂𝑃<=><#$? < 𝑃𝐻𝑎𝑠ℎ > 	𝑂𝑃@A:=,B@&5CD	𝑂𝑃E<@EF>5G
𝑠𝑐𝑟𝑖𝑝𝑡𝑆𝑖𝑔:< 𝑠𝑖𝑔 >	< 𝑃 >

With this revised transaction scheme, the pros are the strict recipient privacy and the identical
format to the Bitcoin Pay-to-PubkeyHash transaction script, because the commitment 𝑃 is also
a 𝑝𝑢𝑏𝐾𝑒𝑦. The cons are mainly at:

 10

- The ComSig signature has a bigger size than ECDSA or Schnorr signature, which has
a form as (𝑅, 𝑢, 𝑣) instead of (𝑅, 𝑠) . Therefore, the 𝑠𝑐𝑟𝑖𝑝𝑡𝑆𝑖𝑔 will increase the
transaction payload size with 32 bytes.

Since the increased 32-bytes payload is not trivial in a current Bitcoin transaction, this stealth
address scheme is not optimal for Bitcoin blockchain, but indeed for the similar transaction-
output-based blockchain systems in which the ComSig signature scheme is being or planned to
be used, for example the Gotts [Got20].

3.2 Mimblewimble-Style Transaction

With this stealth address scheme, the non-interactive transaction in Gotts may be designed as:

- 𝑇𝑋:< 𝑔(#ℎH# >	< 𝑔($ℎH$ > 	< 𝐶* >
- 𝑎! = 𝑎I + 𝑎* + 𝑓𝑒𝑒
- 𝐶* = 𝐴!𝐵!ℎ&

!.(
Where,

- 𝐶* is the output commitment for receiver, calculated with the stealth address (𝐴! , 𝐵! , 𝑖),
- 𝑅) = 𝐵!* ≡ 𝑅6#, where 𝑟 is the private nonce selected by sender, 𝑅 = 𝑔* is the public

nonce, 𝑏! is the receiver’s private view key, 𝑅). 𝑥 is the 𝑥 coordination of point 𝑅),
- < 𝑔(#ℎH# > is the input commitment owned by sender,
- < 𝑔($ℎH$ > is the change commitment for sender,
- 𝑥! , 𝑥I are the sender’s private keys,
- 𝑎! , 𝑎I , 𝑎* are the amounts; 𝑓𝑒𝑒 is the transaction fee.

Furthermore, as a mandatory info of this transaction, the (𝑅, 𝑖)) must be packed somewhere
into the transaction, where 𝑖) is the encoded 𝑖 with the encoding method described at above
enhanced stealth address scheme.

Regarding the change output 𝑔($ℎH$, considering the universal output format both for
change and the payment outputs, the 𝑤I must also be recoverable with a 𝑅I attached to the
output, meaning 𝑤I = 𝑅I) . 𝑥 where 𝑅I) = 𝑅I+% and 𝑝J is the sender’s private view key. To
manage this 𝑝J on the wallet, a random address (𝐴J , 𝐵J , 𝑗) is generated by a random number 𝑗.
The sender attaches the (𝑅I , 𝑗) into the change output, where the attached 𝑗 is the original child
number value, instead of an encoded value as in the receiver’s output. In a short brief, the
enhanced stealth address scheme is used for the receiver’s output, but the basic stealth address
scheme is used for the change output.

Reference

Byt11 user ‘bytecoin’. Untraceable transactions which can contain a secure message

are inevitable. 2011. https://bitcointalk.org/index.php?topic=5965.0
Sab13 Nicolas van Saberhagen. CrypoNote v 2.0. 2013.

https://cryptonote.org/whitepaper.pdf
Tod14 Peter Todd. [Bitcoin-development] Stealth addresses. 2014. http://www.mail-

archive.com/bitcoin-development@lists.sourceforge.net/msg03613.html
GS14 Gus Gutoski, Douglas Stebila. Hierarchical Deterministic Bitcoin Wallets that

Tolerate Key Leakage. In Financial Cryptography, volume LNCS 8975, pages
497-504. https://eprint.iacr.org/2014/998

CM17 Nicolas T. Courtois, Rebekah Mercer. Stealth Address and Key Management
Techniques in Blockchain Systems. In Proceedings of the 3rd International
Conference on Information Systems Security and Privacy (ICISSP 2017),
pages 559-566.

 11

Wui13 Pieter Wuille. Hierarchical deterministic wallets. 2013.
https://github.com/bitcoin/bips/commits/master/bip-0032.mediawiki

Ped91 Torben Pryds Pedersen. Non-interactive and information-theoretic secure
verifiable secret sharing. In Crypt, volume 91, pages 129-140. Springer, 1991.

MD17 Roberto Metere, Changyu Dong. Automated Cryptographic Analysis of the
Pedersen Commitment Scheme. MMM-ACNS 2017. Lecture Notes in
Computer Science, vol 10446.

MRK03 S. Micali, M. Rabin, J. Kilian. Zero-knowledge sets. 44th Annual IEEE
Symposium on Foundations of Computer Science, 2003. Proceedings.

Tod12 Peter Todd. Merkle Mountain Range. 2012.
https://github.com/mimblewimble/grin/blob/master/doc/mmr.md

Bit08 Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, 2008.
http://bitcoin.org/bitcoin.pdf

WNR18 Pieter Wuille, Jonas Nick, Tim Ruffing. Schnorr signatures for secp256k1,
2018. https://github.com/sipa/bips/blob/bip-schnorr/bip-schnorr.mediawiki

Yu20 Gary Yu. Simple Schnorr signature with Pedersen commitment as Key. 2020.
https://eprint.iacr.org/2020/061.pdf

Got20 Gary Yu. Introduction to MimbleWimble, Grin & Gotts. 2020.
https://github.com/gottstech/gotts/blob/master/docs/intro.md

MW16 Tom Elvis Jedusor. Mimblewimble. 2016.
https://github.com/mimblewimble/docs/wiki/Mimblewimble-origin

