
Splitting Payments Locally While Routing Interdimensionally
Lisa Eckey

lisaeckey@googlemail.com

Deutsche Telekom

Germany

Sebastian Faust

sebastian.faust@tu-darmstadt.de

TU Darmstadt

Germany

Kristina Hostáková

kristina.hostakova@ethz.ch

ETH Zürich

Switzerland

Stefanie Roos

s.roos@tudelft.nl

TU Delft

The Netherlands

ABSTRACT
Payment Channel Networks (PCNs) enable fast, scalable, and cheap

payments by moving transactions off-chain, thereby overcoming

debilitating drawbacks of blockchains. However, current algorithms

exhibit frequent payment failures when a payment is routed via

multiple intermediaries. One of the key challenges for designing

PCNs is to drastically reduce this failure rate. In this paper, we

design a Bitcoin-compatible protocol that allows intermediaries to

split payments on the path. Intermediaries can thus easily adapt the

routing to the local conditions, of which the sender is unaware. Our

protocol provides both termination and atomicity of payments and

provably guarantees that no participant loses funds even in the pres-

ence of malicious parties. An extended version of our basic protocol

further provides unlinkability between two partial payments be-

longing to the same transaction, which – as we argue – is important

to guarantee the success of split payments. Besides formally model-

ing and proving the security of our construction, we conducted an

in-depth simulation-based evaluation of various routing algorithms

and splitting methods. Concretely, we present Interdimensional

SpeedyMurmurs, a modification of the SpeedyMurmurs protocol

that increases the flexibility of the route choice combined with

splitting. Even in the absence of splitting, Interdimensional Speedy-

Murmurs increases the success ratio of transactions drastically in

comparison to a Lightning-style protocol by close to 50%.

KEYWORDS
payment channels, payment networks, Bitcoin, routing

1 INTRODUCTION
One of the most pressing technical obstacles to mass adoption

of cryptocurrencies like Bitcoin [22] and Ethereum [39] is their

limited transaction throughput, which leads to long delays and

high fees [8]. One powerful tool to mitigate these scalability chal-

lenges are payment channels [21, 28]. They allow two users to send

funds to each other off-chain by locking coins on the blockchain

and only requiring interaction with the blockchain during chan-

nel creation and closure. To further improve scalability, multiple

channels can be connected to form a payment channel network

(PCN), where payments can be routed via (several) intermediaries

to the receiver [1, 9, 10, 28]. Currently, the most widely adopted

PCN is the Lightning network (deployed over Bitcoin) with more

than 37, 000 nodes and over 84, 000 open channels
1
.

1
https://1ml.com/statistics

To successfully route a payment of 𝑣 coins through a large PCN,

it is crucial to find one or several routes with sufficient capacities on

every link between the sender and the receiver. While there exists

a multitude of single or multi-path PCN routing protocols [12, 15,

17, 32, 34, 37, 41], most of them rely on source routing, where the

sender selects the payment route.

We argue that leaving it to the sender to determine the paths,

or at least the number of paths, is a key reason for the high failure

rate of PCNs. While the sender knows the channels in the network

and their initial funding, the sender has no knowledge about the

current channel capacities that may have resulted from previous

off-chain payments (the sender only knows the current capacities

of the channels in which they are involved). Therefore, a sender

can only guess which routes will be successful. Especially when the

transaction value is high, it is likely that channel capacities on the

chosen path are insufficient and hence the payment fails. Indeed,

simulations of the Lightning network indicate that payments only

succeed with a probability between 46% and slightly above 65%,

depending on the transaction size [7].
2

Our contribution. To address the shortcomings mentioned above,

in this work, we follow a more flexible and adaptable approach

similar to SpeedyMurmurs [32]. Concretely, we let intermediaries

on the path freely choose the next hop of the payment based on their

local view of the channel balances. Moreover, our novel protocol

allows intermediaries to split the payment into multiple smaller

ones on the fly. This option enables the intermediaries to route an

incoming payment of 𝑣 coins, even if they do not have a single

outgoing channel with sufficient funds, thus increasing the success

probability. If the routing of all payment parts succeeds, the receiver

recombines all partial payments and obtains the 𝑣 coins.

We formally define suitable security properties and prove that

our protocol satisfies them. Concretely, our protocol guarantees, in

addition to the standard properties of correctness and termination,
that no honest party loses coins. The latter is formalized through

two properties: bounded loss for the sender and balance neutrality,
protecting the receiver and intermediaries, respectively. The atom-
icity property guarantees that if an honest sender loses coins, they

obtain a valid payment receipt that could, e.g., be used as a proof

of payment in a higher-level protocol. At the same time, an honest

receiver will never issue a valid receipt without getting the correct

amount of coins in exchange.

2
Due to the privacy features of payments in the Lightning network, no real-world

data on the success probability of payments is available.

1

Furthermore, we extend our basic protocol to provide unlink-
ability between split payments. This additional security property

guarantees that even if intermediaries collude, they cannot link

parts of the same split payment. Unlinkability prevents intermedi-

aries from censoring split payments, which – as we argue – they

might do to optimize the amount of earned fees from payment

forwarding. Moreover, our unlinkability property also improves the

case when no splitting occurs; namely, it protects againstWormhole

attacks [19], where two malicious intermediaries steal forwarding

fees from another intermediary. Our extended construction achieves

unlinkability by utilizing a preimage-resistant hash function that is

additively homomorphic and an additively homomorphic encryp-

tion scheme. It can be instantiated using exponentiation in a group

for which discrete logarithm (Dlog) is hard and Paillier’s encryption.

We stress that both our protocols are Bitcoin-compatible.

Our protocol description follows a modular approach that al-

lows instantiating the protocol with a variety of routing algorithms,

thereby making it easy to evaluate new routing algorithms. To

this end, the sender (and each intermediary) can choose between

multiple options for (i) determining a suitable set of candidates

to route a payment over and (ii) appropriately splitting the pay-

ment into multiple subpayments that are routed via some subset

of these candidates. The candidate set is selected via the Closer
algorithms, for which we design two options. The first is similar to

Lightning’s routing protocol, with candidates being selected such

that the routing takes a shortest path. As a second algorithm, we

design Interdimensional SpeedyMurmurs, a variant of the tree-based
routing protocol SpeedyMurmurs [32], that combines the infor-

mation from multiple spanning trees. Based on this information,

Interdimensional SpeedyMurmurs offers a high number of paths

towards the receiver and hence high flexibility in choosing the

candidate set. Given the candidate set, the algorithm Split selects
a subset of candidates over which the splitting is carried out. We

compare three variants: (a) no splitting, (b) splitting over the candi-

dates with the shortest paths to the receiver, and (c) splitting only

if the payment fails otherwise.

To compare all possible routing combinations, we measured the

success ratio and communication overhead of the algorithms in a

simulation, based on data from a real-world Lightning snapshot.

Our simulation considers a wide range of scenarios with regard to

channel capacities, transactions, network dynamics, and routing

algorithms. For all considered scenarios, we find that Interdimen-

sional SpeedyMurmur’s flexibility in routing choice drastically in-

creases the success ratio. Strategic splitting variants increase the

success ratio, in particular when we apply (b) splitting over the

candidates with the shortest paths to the receiver. For instance,

when using an average payment value of 25 EUR, Interdimensional
SpeedyMurmurs with splitting reaches a success ratio of over 90%,

whereas Lightning-style algorithms only succeed in around 77%.

In the considered scenarios, Interdimensional SpeedyMurmurs also
achieves a higher success ratio than other state-of-the-art PCN

routing algorithms.

In summary, we design a novel modular payment routing pro-

tocol supporting local splitting that is compatible with existing

systems (e.g., Bitcoin). We follow a holistic approach by formally

proving the security of our protocol and confirming its superior

performance with an in-depth evaluation.

2 PRELIMINARIES
Notation. We denote by 𝑥 ←

$
X the uniform sampling of the

variable 𝑥 from the set X. Throughout this paper, 𝑛 denotes the

security parameter. A function negl : N → R is negligible in 𝑛 if

for every 𝑘 ∈ N, there exists 𝑛0 ∈ N s.t. for every 𝑛 ≥ 𝑛0, it

holds that |negl(𝑛) | ≤ 1/𝑛𝑘 . By writing 𝑥 ← A(𝑦), we mean that a

probabilistic polynomial time (ppt) algorithm A on input 𝑦, outputs

𝑥 . If A is deterministic, we write 𝑥 := A(𝑦). We use the following

arrow notation. Instead of “Send a message𝑚 to party 𝑃”, we write

“𝑚 ↩−→ 𝑃”. Similarly, “Upon receiving a message𝑚 from party 𝑃” is

denoted by “𝑚 ←−↪ 𝑃”.

Graphs. A directed graph G is a tuple (V, E), whereV is a non-

empty finite set of nodes and E ⊆ {(𝑈 ,𝑉) | 𝑈 ,𝑉 ∈ V} is a set of
edges. If (𝑈 ,𝑉) ∈ E, 𝑈 and 𝑉 are neighbors. A path between two

nodes 𝑉1,𝑉𝑚+1 is a finite sequence of edges (𝑒1, . . . , 𝑒𝑚) for which
there is a sequence of vertices (𝑉1, . . . ,𝑉𝑚+1) s.t. 𝑒𝑖 = (𝑉𝑖 ,𝑉𝑖+1) for
𝑖 ∈ [1,𝑚] and 𝑉𝑖 ≠ 𝑉𝑗 for 𝑖 ≠ 𝑗 . The number of edges in the path is

called the length of the path. In this paper, we assume that all graphs

are connected, i.e., there is a path between all distinct𝑉 ,𝑈 ∈ V . We

define the hop-distance function of G as 𝑑G : V ×V → N0 that on
input two nodes 𝑉 ,𝑈 ∈ V , outputs the length of a shortest path

between 𝑉 and𝑈 .𝑈 = 𝑉 iff 𝑑G (𝑈 ,𝑉) = 0.

A graphG′ = (V′, E′) is a subgraph ofG ifV′ ⊆ V and E′ ⊆ E.
A spanning tree ST of a connected graph G is a subgraph (V, E′)
of G that is a tree, i.e., a graph s.t. there exists exactly one path

between every pair of nodes. We consider rooted trees, i.e., trees
with one designated root node 𝑟𝑜𝑜𝑡 ∈ V . A neighbor𝑈 of a node𝑉

within a tree is called𝑉 ’s parent if𝑈 is closer to the root in terms of

the hop distance restricted to the tree. Otherwise,𝑈 is called a child
of𝑉 . We call a rooted spanning tree 𝑆𝑇 of a graph G a Breadth-First
Search (BFS) spanning tree if the path between the root and each

node in the tree is a shortest path in G.

Cryptographic primitives. A public key encryption scheme Ψ
with message space M and ciphertext space C is a triple of ppt

algorithms (Gen, Enc,Dec) s.t. for every message𝑚 ∈ M it holds

that Pr[Decsk (Encpk (𝑚)) = 𝑚 | (pk, sk) ← Gen(1𝑛)] = 1. We

use encryption schemes that are indistinguishable under chosen
plaintext attack (IND-CPA), guaranteeing, at a high level, that a ppt

adversary is not able to distinguish the encryption of two messages

of their choice. We say that Ψ is additively homomorphic if for every
𝑥,𝑦 ∈ M and public key pk, Encpk (𝑥)+CEncpk (𝑦) ≡ Encpk (𝑥+M𝑦),
where ≡ denotes equality of probability distributions.

A digital signature scheme Σ is a triple of ppt algorithms (Gen,
Sign,Vrfy), where Pr[Vrfypk (Signsk (𝑚)) = 1 | (pk, sk) ← Gen(1𝑛)] =
1 holds for every message𝑚. In this work, we use signature schemes

that are existentially unforgeable under chosen message attack (EUF-

CMA secure for short), guaranteeing, at a high level, that a ppt

adversary, learning polynomially many signatures of messages of

their choice, cannot produce a valid signature for a new message.

A functionH : P→ H is called a preimage-resistant hash function
if it is polynomial-time computable and for every ppt adversary A,

given 𝑦 = H(𝑥), for a randomly sampled 𝑥 ∈ P, the probability that
the adversaryA outputs 𝑥 ′ ∈ P s.t.H(𝑥 ′) = 𝑦 is negligible. We say

thatH is additively homomorphic ifH(𝑥 +P 𝑦) = H(𝑥) +H H(𝑦)
for every 𝑥,𝑦 ∈ P. To simplify the exposition, we drop the subscript

2

in +M, +C, +P, +H when the set is clear. For the formal definitions

and instantiations of the recalled primitives, see Appxs. A and C.

Payment channels and networks. To create a payment channel,

two parties 𝑃1 and 𝑃2 lock a certain amount of coins on the blockchain.

Parties can then perform an arbitrary amount of payments off-chain
by exchanging authenticated messages. Note that this implies that

only 𝑃1 and 𝑃2 are aware of the current assignment of coins in

the channel. After completing their trades, parties announce the

final outcome to the blockchain, which distributes the locked coins

accordingly. Many payment channel constructions support not only

simple payments but also conditional payments with a time-lock. Let
us explain the concept on the commonly used Hash-Time-Locked-

Contracts (HTLCs) [28]. Briefly, a HTLC in a channel allows one

channel user, say 𝑃1, to send 𝑣 coins to 𝑃2 conditioned on 𝑃2 present-

ing a preimage of a certain hash value (i.e., unlocking the hash-lock).

If 𝑃2 does not redeem the conditional payment within a certain

time (i.e., the time-lock expires), 𝑃1 can claim a refund of the 𝑣 coins.

If both parties behave honestly, redeeming (resp. refunding) takes

place off-chain. If one of the parties refuses to collaborate off-chain,

the honest party can place the HTLC on the blockchain and redeem

(resp. refund) the conditional payment there.

Payment channels can be grouped into PCNs to enable payment
routing. Namely, as long as there is a path of payment channels

between a sender 𝑆 and a receiver 𝑅, 𝑆 can pay 𝑣 coins to 𝑅 off-chain.

The main technique for payment routing is to use a conditional

payment for each involved channel. In Lightning [28], which uses

only one path chosen by 𝑆 , the atomicity of these conditional pay-

ments follows from the use of HTLCs. At a high level, 𝑅 sends a

hash ℎ𝑅 := H(𝑥𝑅) of a random value 𝑥𝑅 to 𝑆 . Using ℎ𝑅 , the sender

𝑆 sets up a HTLC payment of 𝑣 coins in the channel with the first

intermediary 𝐼1 on the path. Thereafter, the intermediary 𝐼1 uses ℎ𝑅
to initiate a HTLC payment of 𝑣 coins in the channel with the next

intermediary on the path and so on, until 𝑅 is reached. The receiver

then reveals the preimage 𝑥𝑅 , which allows for a step-by-step set-

tling of all HTLCs on the path. We formalize the functionality of

PCNs in the next section.

While the main purpose of PCNs is to improve scalability of

blockchains, we note that they could also be built over any other

payment systems (even centralized one) that supports verification

of signed transactions and HTLCs.

3 SECURITY MODEL
Modeling PCNs. We model a PCN as a connected directed graph

G = (V, E) together with a capacity function C : E → R+. The
set of verticesV represents the parties involved in the PCN, the

set of edges E represents payment channels open between parties,

and the capacity function assigns coins to parties in a channel. To

simplify the notation in our formalization, we represent a payment

channel as two uni-directional channels and require that (𝑃,𝑄) ∈
E ⇔ (𝑄, 𝑃) ∈ E. Hence, the value C(𝑃,𝑄) represents the amount

of coins that party 𝑃 has in the channel between 𝑃 and 𝑄 and

C(𝑄, 𝑃) represents the number of coins that 𝑄 has in that channel.

This is equivalent to modeling a PCN as an undirected graph with a

capacity function that on input of edge {𝑃,𝑄} and party 𝑅 ∈ {𝑃,𝑄}
outputs the balance party 𝑅 in the channel. We define E𝑃 := {𝑒 ∈
E | ∃𝑄 ∈ V s.t. 𝑒 = (𝑃,𝑄)} as the set of all channels in which

𝑃 ∈ V has locked coins and useC𝑃 := C
��
E𝑃 to denote the restriction

of the capacity function to E𝑃 .
Recall that our goal is to design a protocol allowing parties to

securely route payments through a PCN. For this, we do not need to

fix one PCN implementation. In fact, we want our protocol to apply

to any PCN in which parties can perform conditional payments and

payment routing. To this end, we abstractly specify the minimal

functionality and input/output behavior of a PCN, and allow parties

in our protocol to interact with such a PCN in a black-box way.

As we work with stand-alone security definitions and assume a

static network topology, we do not need to capture certain payment

channel mechanics such as channel creation and closure. We stress

that more accurate PCN abstractions exist in the literature [16, 18].

We choose not to rely on them to keep our protocol description as

simple as possible. Our abstraction is described below, the formal

definition and possible instantiations over Bitcoin are discussed in

Appxs. B and C.

We model the functionality of payment channels using an ideal
functionality F (G, C0,Δ), parameterized by a connected directed

graph G = (V, E), where (𝑃,𝑄) ∈ E ⇔ (𝑄, 𝑃) ∈ E, and the initial

capacity function C0 : E → R+. The set of verticesV defines the

parties from which the functionality can receive messages. Fur-

thermore, the functionality has a timing parameter Δ representing

the upper bound on the blockchain delay. Every party 𝑃 ∈ V can

instruct the functionality to perform a payment of 𝑣 coins from 𝑃 to

𝑄 by sending a message “pay”. If 𝑃 has a sufficiently funded channel

with 𝑄 , the functionality subtracts 𝑣 coins from (𝑃,𝑄) and adds

them to (𝑄, 𝑃). We assume that all such payments take 1 round.
3

In addition to standard payments, the functionality supports

conditional payments with a time-lock. Such a payment can be ini-

tiated by a party 𝑃 ∈ V via the message “cPay”. Besides specifying

the channel (𝑃,𝑄) and amount of coins 𝑣 being conditionally trans-

ferred to𝑄 , party 𝑃 needs to define the condition𝜑 : {0, 1}∗ → {0, 1}
and the time-lock 𝑇 ∈ N of the payment. Furthermore, 𝑃 has the

option of attaching some auxiliary information info ∈ {0, 1}∗. If the
channel is sufficiently funded, the functionality subtracts 𝑣 coins

from the channel (𝑃,𝑄) and informs 𝑄 about the conditional pay-

ment. If the party 𝑄 submits, via the message “cPay–unlock”, a

witness 𝑤 s.t. 𝜑 (𝑤) = 1, 𝑣 coins are added to the channel (𝑄, 𝑃).
After the round specified by the time-lock 𝑇 , party 𝑃 can request

a refund via the message “cPay–refund” in which case the func-

tionality adds 𝑣 coins back to the channel (𝑃,𝑄). In order to model

the fact that operations triggered by the unlock and refund instruc-

tions might require blockchain interaction, their execution may

be delayed by at most Δ rounds. The state of the functionality con-

sists of a capacity function C : E → R+ storing balances in the

network (initially set to C0) and a function Θ : {0, 1}∗ → {0, 1}∗
keeping track of conditional payments currently being executed in

the network.

Protocol execution. We consider a protocol 𝜋 whose execution

is parameterized by a graph G = (V, E), whereV defines the set

of parties running the protocol and E defines the payment chan-

nels that exist between parties from the setV; an initial capacity

3
Payments typically require more than 1 off-chain communication round. Hence, it

would be more accurate to use a parameter 𝛿 (which would always be a constant w.r.t.

Δ). We choose 𝛿 = 1 to simplify the exposition.

3

function C defines the amount of coins in each payment channel;

a party 𝑆 ∈ V being the sender of a payment of 𝑣 ∈ R+ coins to
a receiver 𝑅 ∈ V . The protocol is executed in presence of a ppt

adversary A who can corrupt an arbitrary number of parties from

V at the beginning of the protocol (i.e., we consider so-called static

corruption). The adversary takes full control over the actions of a

corrupt party (i.e., we consider a Byzantine adversary).

The protocol execution begins with a setup phase during which

the following steps take place. (1) The ideal functionalityF (G, C,Δ),
representing the PCN functionality, is initialized by the graph

G = (V, E) and the initial capacity function C. (2) Every party

𝑃 ∈ V gets as input the graph G and the capacity of its channels,

i.e., the partial function C𝑃 . Moreover, each party 𝑃 ∈ V gets their

public secret key pair (pk𝑃 , sk𝑃) and public keys of all other parties,
i.e., {pk𝑄 }𝑄∈V . The sender 𝑆 and the receiver 𝑅 additionally get as

input the tuple (𝑆, 𝑅, 𝑣). (3) The adversary A, learning G, decides
which parties from the setV it corrupts, learns their secret keys

and capacity functions and sets the inputs of these parties. We

denote by Honest the set of all parties inV not corrupted by A.

After the setup phase, parties can arbitrarily interact with each

other and the ideal functionality F (G, C,Δ). The protocol termi-

nates once all honest parties produce an output 𝑚 ∈ {0, 1}∗ ∪ {⊤}.
The special symbol ⊤ signals that a party wants to terminate with-

out producing any particular output. Looking ahead, this is the

case for all parties in our protocol except for the sender 𝑆 who

outputs a receipt when the payment is successful. The set of hon-

est parties, the output of the sender and the final state of the

functionality form the output of the protocol which we denote

EXECF
𝜋,A (G, C,Δ, 𝑆, 𝑅, 𝑣).

4

We consider synchronous communication, i.e., the protocol exe-

cution happens in rounds. If a party 𝑃 sends a message𝑚 to party

𝑄 in round 𝑡 ,𝑄 receives𝑚 in round 𝑡 + 1. For simplicity, we assume

that local computation takes 0 rounds.

Security definitions. We now define the security properties that

our protocol should satisfy. Before we state the properties formally,

let us give a high-level explanation of each of them. Firstly, we want

the protocol to terminate, meaning that all honest parties produce

an output in finitely many rounds. Secondly, we want the protocol

to guarantee that no honest party
5
loses money. This requirement

is formalized by two properties: balance neutrality that says that

no honest intermediary or receiver loses any coins, and bounded
loss for the sender that says the monetary loss of an honest sender

is never more than the 𝑣 coins they wanted to send. Moreover,

we want the protocol to satisfy payment atomicity. Briefly, this
property guarantees to an honest sender that if they lose any coins,

then they hold a receipt signed by the receiver that they paid 𝑣

coins; and it guarantees to an honest receiver that if a sender holds

a valid receipt over 𝑣 coins, then the receiver earned at least 𝑣 coins.

Finally, to exclude trivial protocols where payments always fail,

we require the protocol to satisfy correctness, meaning that if all

4
If the sender is malicious and does not produce any output before the protocol

terminates, it is automatically set to ⊤.
5
Let us stress that we only protect parties following the protocol. In particular, crashed

parties that cannot react to on-chain events are considered malicious and hence no

security guarantees are provided to them.

parties are honest and the capacity of all channels is at least 𝑣 , the

payment is successful.

In order to formalize the properties above, we need to pre-

cisely describe what valid receipt means. To this end, we define

a validation function Valid : V ×V × R+ × {0, 1}∗ → {0, 1} that
takes as input a sender 𝑆 , a receiver 𝑅, an amount 𝑣 and a re-

ceipt rec ∈ {0, 1}∗, and outputs a 0/1 to signal the validity of

the receipt. Moreover, for every graph G, we define a family of

functions {netC,C′ }C,C′ , where C and C′ are two capacity func-

tions of G and the function net𝑐,𝑐′ : V → R is defined as follows:

netC,C′ (𝑃) :=
∑
𝑊 ∈V:(𝑃,𝑊) ∈E C′ (𝑃,𝑊) − C(𝑃,𝑊). Hence, the

value of netC,C′ (𝑃) represents the difference between the amount

of coins 𝑃 owns according to the capacity function C compared to

the capacity function C′.
Definition 3.1 (Secure payment protocol). We say that a protocol 𝜋

executed among a set of partiesV is a secure payment protocol with
respect to a validation function Valid if for every connected graph

G = (V, E), where (𝑃,𝑄) ∈ E ⇔ (𝑄, 𝑃) ∈ E, every capacity func-

tion C : E → R+, every 𝑆, 𝑅 ∈ V , s.t. 𝑆 ≠ 𝑅, every 𝑣 ∈ R+, everyΔ ∈
N and every ppt adversary A, the protocol terminates in finitely

many rounds with (Honest, rec, C′) ← EXECF
𝜋,A (G, C,Δ, 𝑆, 𝑅, 𝑣)

satisfying the following properties with overwhelming probability.

Balance neutrality: ∀𝑃∈Honest\{𝑆 } netC,C′ (𝑃) ≥ 0.

Bounded loss for sender: 𝑆 ∈ Honest⇒ netC,C′ (𝑆) ≥ −𝑣,
Atomicity: We have

(i) 𝑆 ∈ Honest ∧ netC,C′ (𝑆) < 0⇒ Valid(𝑆, 𝑅, 𝑣, rec) = 1,

(ii) 𝑅 ∈ Honest ∧ Valid(𝑆, 𝑅, 𝑣, rec) = 1⇒ netC,C′ (𝑅) ≥ 𝑣 .

Correctness: (Honest = V ∧ ∀𝑒∈EC(𝑒) ≥ 𝑣) ⇒ netC,C′ (𝑆) =
−𝑣 ∧ netC,C′ (𝑅) = 𝑣 ∧ ∀𝑃∈V\{𝑆,𝑅} netC,C′ (𝑃) = 0.

We stress that our notion of a secure payment protocol captures

routing of one payment between sender 𝑆 and receiver 𝑅 only and

hence does not consider multiple parallel executions of a payment

protocol. We leave the extension of our security model to the con-

current setting as an interesting direction for future research. Note

that while we do not consider parallel executions of the protocol,

corrupt parties might still perform arbitrary payments during the

single protocol execution.

Finally, let us briefly comment on fees that incentivize interme-

diaries to forward payments and thus play an important role for

the PCN ecosystem. We choose not to explicitly add fees into our

protocol description as (i) a simple fee mechanisms can easily be in-

tegrated (e.g., as the difference between the incoming and outgoing

payments similar to the Lightning network), but would further con-

volute the protocol description; (ii) existing studies show that the

currently used fee model in the Lightning network enables attacks

and sub-optimal network topologies for routing [3, 36]. Hence, the

design and game-theoretic analysis of fees (similar to [3]) in terms

of their impact on routing success is an overall challenge of PCNs

and important problem for future work.

4 PAYMENT PROTOCOL
The idea of our protocol is fairly simple. A receiver first samples a

random preimage 𝑥𝑅 and sends its hash ℎ𝑅 := H(𝑥𝑅) to the sender.
The sender uses this hash value to initiate a conditional transfer of

𝑣 coins to the receiver. In contrast to many other PCN protocols,

the sender does not specify the entire path from the sender to

4

the receiver, which the payment has to take. In fact, the sender

only chooses the first hop of the payment and attaches routing

information (such as the identity of the receiver) to the conditional

payment. Moreover, the sender can decide to split the payment of

𝑣 coins into multiple smaller payments and send each of them via a

different first hop. In our simple protocol, we assume that the same

hash value is used for all conditional payments.

Once an intermediary receives a conditional payment with at-

tached routing information, the intermediary can freely decide how

to split and route the payment based on their local view of the

current capacities of their channels. If the intermediary receives

multiple conditional payments with the same condition and the

same routing information, the partial payments can be combined

into one (and potentially split again).

A receiver waits until they receive sufficiently many conditional

payments locked by the hash value ℎ𝑅 such that their values add

up to 𝑣 . Then the receiver uses the preimage 𝑥𝑅 to unlock all the

payments and receive the promised 𝑣 coins.

Routing. The main question that we study in this paper is how

the sender and the intermediaries decide on the local routing, i.e.,

to which neighbors should they route the payment and how many

coins should they send through each link. We identify several con-

crete options in Sec. 5 and evaluate and compare their performance

in Sec. 6. For the purpose of the formal protocol description, we

assume an algorithm RouteG that takes as input the amount of

coins 𝑣 to be routed, the identifier of the party 𝑃 performing the

routing, 𝑃 ’s local view on the capacity function C𝑃 , routing in-

formation consisting of the identifier of the receiver 𝑅, and the

set excl containing all nodes that were already visited on the pay-

ment path between the sender and the party 𝑃 . The algorithm

outputs either ⊥ (signaling that routing failed), or 𝑘 edge/value

pairs {(𝑒 𝑗 , 𝑣 𝑗)} 𝑗∈[𝑘] ⊆ (E𝑃 × R+)𝑘 satisfying the following three

conditions: (i) C𝑃 (𝑒 𝑗) ≥ 𝑣 𝑗 for every 𝑗 ∈ [𝑘], (ii) 𝑒 𝑗 = (𝑃,𝑄 𝑗) s.t.
𝑄 𝑗 ∉ excl for every 𝑗 ∈ [𝑘] and (iii)

∑
𝑗∈[𝑘] 𝑣 𝑗 = 𝑣 . In other words,

the algorithm decides how to split the 𝑣 coins among 𝑃 ’s neighbors

and excludes neighbors that are in the set excl.
The purpose of the set excl is to prevent routing back to previ-

ously visited nodes. This set is used by some considered routing

algorithms that do not prevent loops by design. We chose this

straightforward technique to keep the protocol description clean.

Other, more advanced, loop detection techniques [35, 38] can triv-

ially be used instead when there is a demand for different properties,

e.g., privacy. When malicious nodes do not update the set excl cor-
rectly, loops can still occur, leading to failed payments. However,

creation of loops is not an effective attack, since malicious nodes al-

ready have the power to fail any (split or non-split) payment routed

over them. Additionally, an upper bound on the number of hops

prevents endless loops which means this attack is not a suitable

means to create network congestion, as starting new payments

would be more effective.

Providing a receipt. In order to turn our simple protocol into a

secure payment protocol satisfying atomicity (as defined in Def. 3.1),

we need to discuss when and how the receiver provides a receipt to

the sender. Obviously, the receiver does not want to give a receipt

before they are sure that 𝑣 coins are routed to them. On the other

hand, the sender does not want to start the conditional transfer of

𝑣 coins before they have a guarantee that the receiver provides the

receipt if at least part of the transfer completes successfully. Hence,

we need a method that allows the receiver to provide the receipt

conditionally s.t. (a) the sender can verify that the conditional receipt
can be turned into a valid receipt if a preimage for ℎ𝑅 is known, and

(b) the receiver has the guarantee that the sender cannot generate

a valid receipt without knowing a preimage of ℎ𝑅 .

Valid(𝑆, 𝑅, 𝑣, rec)
Parse (ℎ, 𝜎, 𝑥) := rec

return Vrfypk𝑅 ((𝑆, 𝑅, 𝑣,ℎ), 𝜎) ∧ (H(𝑥) = ℎ)

Figure 1: Receipt validation function.

To this end, the receiver signs (using their secret key sk𝑅) a
statement saying that they received 𝑣 coins from the sender if a

preimage of the hash value ℎ𝑅 is attached. They send this signature

to the sender, together with the hash value ℎ𝑅 , at the beginning of

the protocol. Using the public key of the receiver pk𝑅 , the sender
can verify the receiver’s signature and use the hash value ℎ𝑅 for the

conditional payments. If at least one of them is unlocked, the sender

can attach the revealed preimage 𝑥𝑅 to the receiver’s signature and

output a valid receipt. See Fig. 1 for the formal definition of the

receipt validation function.

Time-locks. An intermediary forwarding a conditional payment

must decrease the time-lock to be sure that they never lose coins.

More precisely, let𝑇 be the time-lock of the incoming payment and

𝑇 ′ the time-lock of the outgoing payment. The difference |𝑇 −𝑇 ′ |
must be such that if the outgoing payment completes, i.e., if the

intermediary loses coins but learns a witness 𝑥𝑅 , there is enough

time to submit 𝑥𝑅 to the functionality F and unlock the incoming

payment. The intermediary can learn𝑥𝑅 in round𝑇 ′+(Δ+1) at latest
and submission of the witness takes at most (Δ + 1) rounds. Hence,
the time-lock for the outgoing payment is set to𝑇 ′ := 𝑇 −2 · (Δ+1).

Ideally, the sender sets the time-lock of its conditional payments

to now + ℓ · (1 + 2 · (Δ + 1)), where ℓ is the length of the payment

path and now is the current round. Recall that it takes 1 round to

set up a conditional payment and at most 2 · (Δ + 1) rounds for an
intermediary to unlock a conditional payment as discussed above.

In contrast to source routing, computation of the ideal time-locks

might be impossible for the sender since they do not know the paths

partial payments take. To this end, we instruct an honest sender to

set ℓ = |V| since the longest possible path between two nodes in a

graph is upper bounded by the number of nodes in the graph (recall

that a path never visits the same node twice). Hence, payments

never fail due to time-outs. Let us stress that once a concrete routing

algorithm is chosen and the graph topology is fixed, tighter upper

bounds can be used to increase the efficiency of the protocol. To

keep our formal protocol description generic and simple, we do not

include these optimizations.

Termination. In order to prove that our protocol satisfies Def. 3.1,

we need to define when honest parties terminate and what they

output. An honest sender terminates with ⊤ if the receiver does not

provide a valid signature 𝜎 on a tuple (𝑆, 𝑅, 𝑣, ℎ𝑅) in round 𝑡0 + 1,
5

where 𝑡0 is first round of the protocol execution. Furthermore,

the sender terminates with ⊤ if all conditional payments expire

and get successfully refunded. If at least one of the conditional

payments is unlocked, the honest sender learns a preimage 𝑥𝑅
of ℎ𝑅 and hence can output a valid receipt, i.e., the hash value

ℎ𝑅 , signature of the receiver 𝜎 and the preimage 𝑥𝑅 . Let us now

discuss termination for the receiver. Since setting up a conditional

payment via the PCN functionality takes at most 1 round, the

receiver should receive all partial payments latest in the round

𝑡0 + |V| + 1. Hence, if until then they do not receive conditional

payments whose values add up to 𝑣 , they terminate with ⊤, and
do not unlock any payment. If 𝑣 coins are promised by this round,

the receiver unlocks all the payments and once they receive all the

coins, they terminate with ⊤. It remains to define the termination

of honest intermediaries. If a payment should be routed via an

intermediary, it must happen before round 𝑡0 + |V|. Therefore,
we instruct an honest intermediary to stop forwarding payments

after this round, wait until all outgoing conditional payments are

unlocked or refunded, unlock all forwarded incoming payments

and terminate with ⊤.

4.1 Extended protocol with unlinkability
Recall that the primary purpose of our work is to increase the

success ratio of large payments by allowing intermediaries to split

them into multiple smaller payments on the fly. This argumentation

quietly assumes that intermediaries treat payment shares in the

same way as monolithic payments of the same value. An interme-

diary might, however, want to prioritize payments that have not

been split. Such a situation occurs when multiple transactions com-

pete to be routed through a channel with limited capacity. Assume

that an intermediary needs to choose between two payments of

the same value, time-lock, receiver, and routing fee. While one of

the payments, 𝑝𝑚 , is monolithic, the other one, 𝑝𝑠 , is a share of a

larger payment that has previously been split. Since the conditions

of the two payments are identical, the probability of reaching the

receiver is the same for 𝑝𝑚 and 𝑝𝑠 . However, this does not guar-

antee payment success for 𝑝𝑠 since all other shares of the larger

payment must reach the target as well. Hence, if an intermediary is

to choose between 𝑝𝑚 and 𝑝𝑠 , they prefer to route 𝑝𝑚 as its success

probability does not rely on any external payments and, therefore,

the risk of failure is lower.

As intermediaries typically do not encounter the exact situa-

tion above, with two payments of the same value arriving at the

same time, intermediaries might start dropping partial payments

by default in order to have free collateral for monolithic payments.

In doing so, they drop payments that might have been successful.

Such behavior can easily negate the advantages of our approach. To

make our splitting approach effective, we need to make sure that

intermediaries cannot distinguish monolithic payments from pay-

ments that have been split. Unfortunately, in our simple protocol,

the hash-locks on all partial payment paths are identical, making

it trivial for colluding intermediaries to identify two parts of the

same large payment. Censorship of payments that have been split

is hence possible. Appx. D substantiates this claim by simulating

the attack and finding that it indeed severely reduces the success

ratio.

To overcome this issue, we present an extension to our protocol

that remains secure but addresses the linkability issue caused by the

identical hash-locks. Our approach is to design a splitting algorithm

that produces 𝑘 partial payments with hash values (ℎ1, . . . , ℎ𝑘)
satisfying the following.

(1) The vector (ℎ1, . . . , ℎ𝑘) is computationally indistinguishable

from a vector (ℎ′
1
, . . . , ℎ′

𝑘
), where ℎ′

𝑖
:= H(𝑥 ′

𝑖
) is a hash of a

randomly chosen preimage 𝑥 ′
𝑖
.

(2) In order to learn a preimage 𝑥𝑅 for the hash valueℎ𝑅 , the sender

only needs to learn a preimage 𝑥𝑖 for one of the hash values ℎ𝑖
(analogously for an intermediary splitting a payment); hence,

the atomicity property is fulfilled.

(3) The receiver is able to compute a witness for all received partial

payments; hence, correctness is preserved.

To achieve all these properties simultaneously, we utilize a hash

function that is additively homomorphic. For each partial payment

𝑖 ∈ [𝑘], the sender first samples a random 𝑥𝑖 , sets the hash-lock to

ℎ𝑖 := ℎ𝑅 +H (𝑥𝑖) = H(𝑥𝑅 +𝑥𝑖) and attaches 𝑐𝑖 ← Encpk (𝑥𝑖) to the
payment, where pk is a fresh public key provided by the receiver

at the beginning of the protocol. The corresponding secret key sk
is kept secret by the receiver. Property (1) follows from the fact

that the values 𝑥𝑖 are independent and uniformly distributed, hence

so are the values 𝑥𝑅 + 𝑥𝑖 . Moreover, the IND-CPA security of the

encryption scheme guarantees that attaching 𝑐𝑖 to the conditional

payment does not affect the unlinkability. Property (2) is satisfied as

well since upon learning a value 𝑥 s.t.H(𝑥) = ℎ𝑖 , for some 𝑖 ∈ [𝑘],
the sender can compute a preimage of ℎ𝑅 as 𝑥 − 𝑥𝑖 (this follows
from the homomorphism ofH). Finally, correctness holds as the

receiver can decrypt 𝑐𝑖 , learn 𝑥𝑖 , and compute a preimage of ℎ𝑖 as

𝑥 := 𝑥𝑖 + 𝑥𝑅 .
Assume now that an intermediary receives a conditional pay-

ment with a hash-lock ℎ and attached ciphertext 𝑐 , where ℎ =

ℎ𝑅 +H (𝑥) and 𝑐 = Encpk (𝑥) for some 𝑥 . The intermediary can split

the payment into 𝑘 parts by sampling (𝑥1, . . . , 𝑥𝑘) and computing

(ℎ1, . . . , ℎ𝑘) exactly as the sender; namely, for every 𝑖 ∈ [𝑘] they
choose random 𝑥𝑖 and compute ℎ𝑖 := ℎ+H (𝑥𝑖) = H(𝑥𝑅 +𝑥 +𝑥𝑖). It
remains to discuss how the intermediary reveals the value 𝑥𝑖 to the

receiver without breaking unlinkability. To this end, we make use of

an additively homomorphic encryption scheme allowing the inter-

mediary to compute a ciphertext 𝑐𝑖 ← 𝑐+Encpk (𝑥𝑖) = Encpk (𝑥+𝑥𝑖).
We would like to argue that the value 𝑥𝑅 +Decsk (𝑐𝑖) = 𝑥𝑅 +𝑥+𝑥𝑖 ,

computed by the receiver, is a preimage of ℎ𝑖 , hence correctness

holds. The problem with this argument is that it assumes 𝑥𝑅 +M
𝑥 +M 𝑥𝑖 = 𝑥𝑅 +P 𝑥 +P 𝑥𝑖 , where M is the message space of the

encryption scheme and P is the domain ofH . Unfortunately, we

do not know how to instantiate the primitives such that this holds.

Hence, in our solution, we assume that M = Z𝑁 and P = Z𝑝 for

𝑝 < 𝑁 = 𝑞 · 𝑞′ and 𝑞, 𝑞′, 𝑝 coprime primes since this is the case

for the encryption scheme of Paillier and hash function defined

as exponentiation in a group where Dlog is hard (see Appx. C for

discussion about instantiations). Under this assumption, we know

that ((𝑥𝑅 +M 𝑥 +M 𝑥𝑖) + 𝑗 · 𝑁) mod 𝑝 = 𝑥𝑅 +P 𝑥 +P 𝑥𝑖 , where 𝑗 is

upper bounded by the length ℓ of the payment path, i.e., the number

of times we added values in Z𝑁 . Thus, the receiver can simply try

to hash each of the ℓ ≤ |V| possible preimages and compare the

result to the hash-lock ℎ𝑖 .

6

Sender 𝑆 (G, C𝑆 , 𝑆, 𝑅, 𝑣)
out := ∅, rec := ⊤

In round 𝑡0 + 1 // Split and send payments

if (init, ℎ𝑅 , 𝜎, pk) ←−↪ 𝑅 ∧ Vrfypk𝑅 ((𝑆, 𝑅, 𝑣,ℎ𝑅), 𝜎) then
𝑇 := 𝑡0 + 1 + |V | · (1 + 2 · (Δ + 1)), excl := {𝑆 }
{ (𝑒 𝑗 , 𝑣𝑗) } 𝑗 ∈ [𝑘] ← RouteG (𝑣, 𝑆, 𝑅, excl, C𝑆)
{ (ℎ 𝑗 , 𝑐 𝑗 , 𝑥 𝑗) } 𝑗 ∈ [𝑘] ← HLocks(ℎ𝑅 , Encpk (0), 𝑘, pk)
for 𝑗 ∈ [𝑘] do
pid 𝑗 ←$

{0, 1}∗, out := out ∪ (pid 𝑗 , 𝑥 𝑗)
(cPay, pid 𝑗 , 𝑒 𝑗 , 𝑣𝑗 , ℎ 𝑗 ,𝑇 , (𝑐 𝑗 , 𝑅, excl, pk)) ↩−→ F

else TerminateS()

(cPay–unlocked, pid, 𝑥) ←−↪ F // Complete receipt

Let 𝑥 ′ s.t. (pid, 𝑥 ′) ∈ out, out := out \ { (pid, 𝑥 ′) }
rec := (ℎ𝑅 , 𝜎,Wit(𝑥, 𝑥 ′))
if out = ∅ then TerminateS()

In round𝑇 // Refund remaining payments

foreach pid ∈ out do (cPay–refund, pid) ↩−→ F
wait for Δ + 1 rounds to TerminateS()

TerminateS() :
return rec

HLocksb (ℎ, 𝑐, 𝑘, pk)
for 𝑖 ∈ [𝑘] do
ℎ𝑖 := ℎ

𝑐𝑖 := 𝑐

return { (ℎ𝑖 , 𝑐𝑖 , 0) }𝑖∈ [𝑘]

HLocksext (ℎ, 𝑐, 𝑘, pk)
for 𝑖 ∈ [𝑘] do
𝑥𝑖 ←$

P

ℎ𝑖 := ℎ +H H(𝑥𝑖)
𝑐𝑖 := 𝑐 +C Encpk (𝑥𝑖)

return { (ℎ𝑖 , 𝑐𝑖 , 𝑥𝑖) }𝑖∈ [𝑘]

Intermediary 𝐼 (G, C𝐼)
fw := ∅

(cPaid, pid, 𝑒, 𝑣′, ℎ,𝑇 , (𝑐, 𝑅, excl, pk)) ←−↪ F
if now > 𝑡0 + |V | then abort // too late to route

else // Split and forward payment

𝑇 ′ := 𝑇 − 2(Δ + 1), excl := excl ∪ {𝐼 }
{ (𝑒 𝑗 , 𝑣𝑗) } 𝑗 ∈ [𝑘] ← RouteG (𝑣′, 𝐼 , 𝑅, excl, C𝐼)
{ (ℎ 𝑗 , 𝑐 𝑗 , 𝑥 𝑗) } 𝑗 ∈ [𝑘] ← HLocks(ℎ, 𝑐, 𝑘, pk)
for 𝑗 ∈ [𝑘] do
pid 𝑗 ←$

{0, 1}∗

(cPay, pid 𝑗 , 𝑒 𝑗 , 𝑣𝑗 , ℎ 𝑗 ,𝑇
′, (𝑐 𝑗 , 𝑅, excl, pk)) ↩−→ F

fw [𝑇 ′] := fw [𝑇 ′] ∪ (pid 𝑗 , pid, 𝑥 𝑗)

(cPay–unlocked, pid, 𝑥) ←−↪ F
// Unlock corresponding incoming payment

Let 𝑥 ′, pid′,𝑇 s.t. (pid, pid′, 𝑥 ′) ∈ fw [𝑇]
𝑥∗ := Wit(𝑥, 𝑥 ′), (cPay–unlock, pid′, 𝑥∗) ↩−→ F
fw [𝑇] := fw [𝑇] \ { (pid, pid′, 𝑥 ′) }

In every round // Check for expired time locks

foreach (pid, pid′, 𝑥 ′) ∈ fw [now] do
(cPay–refund, pid) ↩−→ F
fw [now] := fw [now] \ { (pid, pid′, 𝑥 ′) }

if now > 𝑡0 + |V | ∧ fw = ∅ then
wait for 2(Δ + 1) rounds to return ⊤

Witb (𝑥, 𝑥𝑖)
return 𝑥

Witext (𝑥, 𝑥𝑖)
return 𝑥 +P (−𝑥𝑖)

Receiver 𝑅(G, C𝑅, 𝑆, 𝑅, 𝑣)
in := ∅, 𝑏 := 0, 𝜇 := 0,𝑇 ′ := ⊥

In round 𝑡0 // Initialize payment

𝑥𝑅 ←$
P, ℎ𝑅 := H(𝑥𝑅), (pk, sk) ← Gen(1𝑛)

𝜎 := Signsk𝑅 (𝑆, 𝑅, 𝑣,ℎ𝑅)
(init, ℎ𝑅 , 𝜎, pk) ↩−→ 𝑆

(cPaid, pid, 𝑒, 𝑣′, ℎ,𝑇 , (𝑐, 𝑅, excl, pk)) ←−↪ F
𝑥 := WitR(𝑐, sk, 𝑥𝑅 , ℎ, |excl |)
if 𝑥 ≠ ⊥ then // Witness reconstructed

in := in ∪ (pid, 𝑥), 𝜇 := 𝜇 + 𝑣′,𝑇 ′ := min{𝑇 ′,𝑇 }
if ((𝜇 ≥ 𝑣) ∧ (𝑇 ′ ≥ now + Δ + 1) then
foreach (pid′, 𝑥 ′) ∈ in do // Unlock all payments

(cPay–unlock, pid′, 𝑥 ′) ↩−→ F
𝑏 := 1, wait for Δ + 1 rounds to TerminateR()

In round 𝑡0 + |V | + 1
if 𝑏 = 0 then TerminateR()

TerminateR()
return ⊤

WitRb (𝑐, sk, 𝑥, ℎ, ℓ)
𝑥∗ := ⊥
if H(𝑥) = ℎ then

𝑥∗ := 𝑥

return 𝑥∗

WitRext (𝑐, sk, 𝑥, ℎ, ℓ)
𝑥∗ := ⊥
𝑥 ′ := 𝑥 +M Decsk (𝑐)
for 𝑖 ∈ [0, ℓ] do
𝑧 := 𝑥 ′ + 𝑖𝑁 mod 𝑝

if ℎ = H(𝑧) then
𝑥∗ := 𝑧

return 𝑥∗

Figure 2: Generic description of the protocol initiated in round 𝑡0. For brevity, we replace the condition HashH
ℎ

with the hash
value ℎ. For the extended protocol, we assume P = Z𝑝 andM = Z𝑁 .

Even if payments are not split, our extended protocol provides

additional advantages as it protects intermediaries from Wormhole

attacks [19] (see Remark 3 in Appx. M).

4.2 Formal protocol description
In Fig. 2, we present the formal description of both the basic pro-

tocol, denoted Πb (Route), and the extended protocol with unlink-

ability, denoted Πext (Route). The protocols are parameterized by

a routing algorithm Route. Concrete instantiations of Route are
discussed in Sec. 5.

Since both the basic protocol and the extended protocol with

the unlinkability feature are very similar, we follow a modular

approach when describing them formally. Namely, we define a

protocol Π which is, in addition to Route, parameterized by three

algorithms that define the differences between the two protocols:

HLocks,WitR, andWit. The algorithm HLocks, run by the sender

and intermediaries during the locking phase, takes as input a hash

value ℎ, ciphertext 𝑐 , an integer 𝑘 ∈ [𝑛] and a public key pk, and
outputs 𝑘 tuples (ℎ𝑖 , 𝑐𝑖 , 𝑥𝑖) consisting of hash values, ciphertext,

and a preimage. The algorithm WitR, run by the receiver, takes as

input a ciphertext 𝑐 , a secret key sk, a preimage 𝑥 , a hash value

ℎ and integer ℓ , and outputs a preimage 𝑥 ′ such that ℎ = H(𝑥 ′).
Finally, the algorithmWit, run by the intermediaries and the sender

during the unlocking phase, takes as input two preimages 𝑥 and

𝑥𝑖 , and outputs another preimage 𝑥 ′. For the sake of simplicity,

our formal description presented in Fig. 2 excludes the option for

intermediaries to partially recombine payments. We stress that the

description could be adjusted easily to capture this feature. The

security of our schemes is stated and discussed in Sec. 5.3 and in

Appx. C we discuss how to instantiate the cryptographic primitives

to be Bitcoin-compatible.

5 ROUTING ALGORITHMS
In this section, we consider several realizations of the routing algo-

rithm Route, as defined in Sec. 4. In the context, we also develop

the novel and highly flexible routing algorithm Interdimensional

SpeedyMurmurs. Note that designing a new routing protocol is not

an orthogonal contribution to our splitting protocol. Rather, a rout-

ing protocol designed with splitting in mind is key for exploring

the full potential of splitting, as demonstrated in our evaluation.

Internally, Route always consists of two algorithms: Closer and
7

Split. In a nutshell, Closer determines a candidate set of potential

next hops and Split splits the payment value over these candidates.

First, Closer takes the node 𝑃 ∈ V , the receiver 𝑅 ∈ V , and the

capacity function C𝑃 as input and outputs tuples consisting of an

edge 𝑒 = (𝑃,𝑈) ∈ E𝑃 to a potential next user𝑈 , the capacity 𝑐 of 𝑒 ,

and a value indicating an algorithm-dependent closeness measure

for𝑈 with regard to 𝑅. Afterwards, the algorithm removes potential

edges to avoid loops. More concretely, if a returned edge is with

a node that has previously been on the path, the edge is removed

from the candidate set. The second algorithm, Split, takes the set
of candidate channels, their capacities, the closeness measures, and

a payment value as input. It then splits the payment value over a

subset of these payment channels.

The following subsections introduce two realizations of Closer
and three realizations of Split, which can be combined arbitrarily.

We describe the algorithms here, the formal protocol descriptions

can be found in the Appx. J. In addition to these realizations, random

splitting was considered and the results are in Appx. I. We did not

include random splitting in the main body as the results merely

confirm that splitting needs to be strategic to have a positive impact

on the performance. In fact, random splitting achieved a worse

success ratio than a protocol without splitting.

5.1 Determining potential next hops (Closer)
Our first realization of Closer considers nodes that are closer to
the receiver 𝑅 than the node 𝑃 making their forwarding decision.

The second realization considers a set of spanning trees, and ev-

ery neighbor that is closer to the receiver in terms of at least one

spanning tree distance is a potential next hop.

Hop Distance (HOP): The hop distance gives the length of

the shortest path between two nodes, i.e., the value of the func-

tion 𝑑G . As the graph is available, each node can compute the

distance locally by applying a shortest path algorithm on the graph.

Thus, CloserHOP determines the payment channels to nodes that

are closer to the receiver.

Without splitting, the hop distance results in similar paths as

Lightning routing [28] when all nodes charge the same fees. Nodes

select a shortest and hence cheapest path. However, instead of the

sender deciding the path in advance, nodes locally select the next

hop. Consequently, the nodes making local routing decisions can

take the balances of neighbouring nodes into consideration, which

are unknown to the sender. In this manner, they can avoid some

routing failures that lead to the need for rerouting in Lightning.

Rerouting in Lightning entails high latencies, as the sender has to

wait for time-locks to expire. Thus, in terms of the success ratio for

the first routing attempt, this algorithm is a version of Lightning

that enables local decisions and hence can act as a baseline for

splitting.

Interdimensional SpeedyMurmurs (INTSM): In this section,

a novel realization of Closer, denoted CloserI–SM , is introduced.

The novel realization is a modification of the atomic multi-path

algorithm SpeedyMurmurs [32] that is more suitable for splitting.

SpeedyMurmurs establishes BFS spanning trees 𝑆𝑇1, . . . , 𝑆𝑇dim
using a standard distributed spanning tree protocol. In practice,

there are a number of distributed spanning tree algorithms that

can also efficiently repair the spanning tree if the graph topology

changes (e.g., [26]). In its original form, SpeedyMurmurs routes

each partial payment using a different spanning tree. More pre-

cisely, for the 𝑖-th partial payment, the hop distance function of the

𝑖-th spanning tree, denoted by 𝑑𝑖 , is used to determine the next hop.

Hence, SpeedyMurmurs also considers channels that are not part

of the 𝑖-th spanning tree: If a neighbor is closer to the receiver ac-

cording to 𝑑𝑖 , SpeedyMurmurs chooses the corresponding channel

regardless of whether it is included in the spanning tree. In contrast

to routing using only spanning tree edges, routing based on a span-

ning tree distance with the inclusion of other edges is resilient to

node failures and even attacks removing nodes strategically from

the network [31].

The key difference to original SpeedyMurmurs is that Inter-

dimensional SpeedyMurmurs considers all spanning trees for all

routing decisions. Note that if a node𝑈 is closer to 𝑅 than 𝑃 with

regard to only one distance 𝑑𝑖 , there is a loop-free path from 𝑃 to 𝑅

via 𝑈 . Thus, 𝑈 is a good candidate for a next hop. Consequently,

CloserI–SM determines the set of candidate channels as those lead-

ing to nodes closer to the receiver according to at least one of the

dim distance functions.

So, CloserI–SM considers all spanning trees for each edge (𝑃,𝑈).
Once it finds that 𝑈 has a lower distance to 𝑅 in one spanning

tree, it determines the minimal distance of𝑈 to 𝑅 over all spanning

trees. Indicating the minimal distance allows Split to prefer short

routes. After computing the minimal distance, CloserI–SM adds the

tuple consisting of the channel (𝑃,𝑈), its capacity, and the minimal

distance to the candidate set. Afterwards, it proceeds with the next

channel. In this manner, CloserI–SM selects a large set of neighbors

that offer a loop-free but not necessarily the shortest path to the

receiver. Thus, whereas the hop distance only considers the shortest

paths, Interdimensional SpeedyMurmurs offers a higher flexibility

in choosing paths, hence increasing the chance of successfully

completing a payment.

5.2 Splitting over potential next hops (Split)
Our realizations of Split use the following three approaches: i) not

splitting (baseline), ii) splitting according to the distance to 𝑅, and

iii) splitting only if necessary.

No Split (SplitNo): The first considered realization of Split is not
to split. For each node in the candidate set, the algorithm checks if

the capacity of the corresponding channel is sufficient. From the set

of channels with sufficient capacity, it selects a node with minimal

distance to 𝑅, breaking ties randomly. If no such channel exists the

payment fails.

Split By Distance (SplitDist): Our second realization of Split it-
erates over the candidate channels in order of decreasing closeness

to the receiver, breaking ties randomly. For each candidate channel,

it assigns a partial value that is either the channel capacity or the

part of the total payment value that has not been assigned previ-

ously, whichever is less. The algorithm terminates when the total

payment value has been split or all channels have been considered.

In the latter case, the total capacity of all channels is insufficient

for the payment value and hence the payment fails.

Split If Necessary (SplitIfN): Our third realization only splits if

necessary and hence aims to minimize the number of splits in one

particular forwarding decision. Note that such a greedy approach

8

does not necessarily minimize the total number of splits as it might

prefer longer paths that might lead to more splits. If it is possible

to forward without splitting, the algorithm corresponds to SplitNo .
Otherwise, it proceeds analogously to SplitDist but considers the
candidate channels in decreasing order of their capacity, breaking

ties randomly.

5.3 Security statement
Let R be the set of all discussed routing algorithms. The following

theorem states that for any Route ∈ R, both protocols Πb (Route)
and Πext (Route) discussed in Sec. 4 satisfy Def. 3.1 w.r.t. the receipt

validation function Valid from Fig. 1.

Theorem 5.1. Assume that there exists a PCN realizing the ideal
functionality F . Assume that Σ is an EUF–CMA-secure signature
scheme, Ψ is IND–CPA-secure encryption scheme with message space
M, andH a preimage-resistant hash function with domain P. For any
Route ∈ R, the protocol Πb (Route) is a secure payment protocol with
respect to the function ValidΣ,H .

If, in addition, Ψ andH are additively homomorphic, andM = Z𝑁 ,
P = Z𝑝 for 𝑝, 𝑁 coprime and 𝑝 < 𝑁 , then for any Route ∈ R, the
protocol Πext (Route) is a secure payment protocol with respect to the
function ValidΣ,H .

We present the formal proof of the theorem in Appx. L. The for-

mal definition of payment unlinkability and the proof thatΠext (Route)
satisfies it can be found in Appx. M.

6 PERFORMANCE EVALUATION
This section deals with the overarching question of quantifying

the extent to which splitting affects the performance in terms of

success ratio., i.e., the fraction of successful payments. Furthermore,

we compare our protocol to other PCN routing protocols. Last, we

determine whether removing the linkability by hash value indeed

achieves unlinkability or whether split payments can be linked by

meta data.

6.1 Simulation Model
We extended the simulation framework for SpeedyMurmurs to in-

clude our novel routing algorithms. For this purpose, we have three

branches: the one implementing our changes in the original simu-

lator without concurrency
6
, a modified version of the simulator en-

abling concurrency
7
, and a third branch for establishing how likely

it is to link payments based on metadata
8
. During the initialization

phase, the simulation generates the local information necessary

for the routing algorithms, such as the local topology snapshot

and spanning trees for Interdimensional SpeedyMurmurs. Further-

more, it generates a list of transactions and a time at which the

transaction starts. The actual simulation is a discrete event-based

simulation [23]. The simulator schedules three types of operations:

i) transaction initialization by the sender, ii) forwarding decisions

and corresponding lock operations, and iii) unlocking of payments.

6
https://anonymous.4open.science/r/PaymentRouting-DFC4/README.md

7
https://anonymous.4open.science/r/PaymentRouting-5725/src/paymentrouting/

route/Evaluation.java

8
https://anonymous.4open.science/r/PaymentRouting-A6A3/src/paymentrouting/

route/attack/LinkabilityEval.java

The transaction initialization is scheduled before the simulation

starts whereas the other events are triggered by previous events.

When a node is scheduled to either start or forward a payment,

they make a decision on how to split the payment and make the

corresponding cPay calls if any. The cPay call triggers forwarding

actions for the chosen neighboring nodes, which are scheduled to

happen after a delay corresponding to the duration of the cPay calls

for the respective channels.

If the payment terminates at the node, the payment moves to

the unlocking stage. We considered rational nodes that aim to have

their collateral release as early as possible. For a successful payment,

the receiver immediately starts the unlocking process after they

receive the last partial payment. As for the locking stage, unlocking

collateral for one channel is associated with a delay. The reaction

of the predecessor on the payment path, which is either another

intermediary or the sender, is scheduled to happen after this delay.

If a payment fails, there are two cases for its partial payments:

i) partial payments for which an intermediary cannot forward the

payment due to lack of available funds and hence do not reach the

receiver, and ii) partial payments that reach the receiver but fail as

other partial payments belonging to the same atomic payment fall

into category i). In the first case, the intermediary immediately starts

the process of peacefully canceling the locks along the path. The

information about the failure is forwarded to the sender who can

then inform the receiver. The receiver starts canceling all locks on

partial paths corresponding to the same atomic payment that have

been established, which addresses case ii). Furthermore, the receiver

does not accept any more locks for the payment that might be

requested later, instead communicating with its neighbor to cancel

all locks along the partial path. Note that a malicious sender can

abort a payment by notifying the receiver of a failure without one

being present. However, such an attack is merely a denial-of-service

attack and does not impact any of our security properties. Not

sending the complete payment value is an equally effective denial-

of-service attack that is not as easy to detect as using incorrect

failure notifications.

Note that our topology remains the same during the simulation,

so there are no channel closures and openings. Further note that

in the presence of concurrency and changes to the balances due to

completed payments, it is NP-hard to determine whether it is even

possible to successfully complete all of the transactions success-

fully, even with an optimal algorithm [14]. Indeed, it is quite likely

that some transactions have to fail due to inherently insufficient

balances. Thus, our evaluation results presented here do not give

any insights on how close to an optimal routing algorithm we are.

In Appx. E, we instead consider a simplified simulation without

concurrency and with static balances, for which we can tell that

Interdimensional SpeedyMurmurs is close to an optimal algorithm

for most parameter settings.

6.2 Data Sets and Parameters.
The considered factors influencing the performance of the routing

algorithms were topology, channel capacities, and transactions.

In general, all experiments were averaged over 20 runs. For each

run, the simulation framework first generated the data sets and

then run all routing algorithms on the exact same data set. For

9

https://anonymous.4open.science/r/PaymentRouting-DFC4/README.md
https://anonymous.4open.science/r/PaymentRouting-5725/src/paymentrouting/route/Evaluation.java
https://anonymous.4open.science/r/PaymentRouting-5725/src/paymentrouting/route/Evaluation.java
https://anonymous.4open.science/r/PaymentRouting-A6A3/src/paymentrouting/route/attack/LinkabilityEval.java
https://anonymous.4open.science/r/PaymentRouting-A6A3/src/paymentrouting/route/attack/LinkabilityEval.java

Interdimensional SpeedyMurmurs, the number of trees was chosen

to be 5 for the experiments presented here; Appx. F discusses the

impact of the number of trees. In summary, the success ratio does

not considerably increase when using more than 5 trees.

Topology: The topology was a real-world Lightning snapshot

from March 1, 2020, snapshot 04_00
9
. It contains 6329 nodes with

10.31 channels on average. Appx. G presents results for synthetic

scale-free and random graphs.

Capacities and transactions: Our capacities and transactions

were synthetic, though motivated by real-world data. Initial chan-

nel capacities followed an exponential distribution. In March 2020,

200 was close to the average channel capacity in euro for Lightning

and the capacity distribution was highly skewed with most chan-

nels having a low capacity
10
. Hence, an exponential distribution

seemed a suitable fit with a normal distribution as an alternative

that highlights the impact of the distribution. Note that the success

ratio depends on the relation between capacities and transaction

values rather than the actual values, thus it was sufficient to vary

the expected transaction value and keep the expected capacity con-

stant. The capacities of the two directions of a channel were chosen

independently. Alternative distributions for channel capacity, as

well as transaction values, are evaluated in Appx. G.

Each run considered 100,000 transactions. In the absence of real-

world transaction data
11
, choosing sender and receiver uniformly at

random was the most straight-forward option. Transaction values

were chosen according to an exponential distribution. Exponential

distributions indicate many transactions of a small value with few

expensive purchases. The expected value of the distribution was

1/𝜆 ∈ {25, 100}, with more results being available in the appendix.

Latency and concurrency: The degree of concurrency depends
on the frequency of transactions and the duration of a transaction.

The longer a transaction takes, the more likely it is to impact an-

other transaction. And the more transactions, the more likely is it

that they interfere with each other. Thus, the relation between la-

tency and frequency is the dominant factor in determining whether

transactions are concurrent. As a consequence, we kept the dura-

tion of lock and unlock operations constant at 100 ms and varied

the transaction rate: the average number transactions for each node

per hour was 0.1, 2, and 100. The interval between the initialization

of two transactions was Poisson-distributed with parameters to

match the respective rates.

Timeouts: The remainder of the section sets timeouts in accor-

dance with the generic protocol from Sec. 4, i.e., assuming that the

maximal path length is equal to the number of nodes. However, we

discuss and evaluate the impact of shorter timeouts in Appx. H.

6.3 Performance Results
We use the abbreviations from Sec. 5 throughout the remainder of

this section. Generally, a combination of a realization C of Closer
and a realization S of Split is written as C-S. For readability, tables

and figures use No, Dist, and IfN rather than SplitNo , SplitDist , and
SplitIfN , respectively.

9
https://gitlab.tu-berlin.de/rohrer/discharged-pc-data

10
https://1ml.com/statistics

11
Transactions in Lightning are considered sensitive data and hence hidden using

onion routing

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

S
u
c
c
e
s
s
 R

a
ti
o

Transactions

HOP-No

HOP-Dist

HOP-IfN

INTSM-No

INTSM-Dist

INTSM-IfN

Figure 3: Change in success ratio over number of transactions
for 2 transactions per node and hour.

Tab 1 presents the success ratio for a million transactions and six

routing algorithms. We omit the results for 2 transactions per node

and hour as they are not significantly different to the case of 0.1.

Generally, concurrency has little impact on the success ratio, only

SplitDist ’s success ratio decreases slightly as it tends to split more.

The increased number of partial payments competing for the avail-

able funds can lead to failures. The success ratio for HopDistance is

consistently lower than for Interdimensional SpeedyMurmurs due

to its lacking flexibility in choosing any paths but the shortest ones.

Indeed, splitting does not improve the performance of HopDis-

tance, it can even decrease it as the complete funds in a channel

are exhausted by a split payment and are hence no longer available

for subsequent payments. For Interdimensional SpeedyMurmurs,

SplitDist improves the success ratio by more than 5% for the case

of 1/𝜆 = 100 and low concurrency. SplitDist aims to keep the paths

short, which seems to be working best as the chance for failures is

low on short paths. The advantage of splitting only shows for the

higher average transaction value of 100. For a transaction value of

25, most payments can be settled without splitting.

We suspect that the above results can be improved by varying

the splitting method: SplitDist and SplitIfN share the design choice

of using at least one channel’s complete funds. As a consequence,

the channel is depleted and cannot be used by future payments.

Less aggressive splitting methods that take the balance distribution

into account are bound to increase the success ratio. Fig. 3 indeed

shows a slight negative trend over time, especially for splitting

methods that are initially the most successful.

6.4 Comparison to Related Work
We compared our protocol to Boomerang [4] and Spider [34], two

recent proposals for routing algorithms. Their implementations

do not scale well, so we executed the comparison on a 100-node
12

Watts Strogatz graph (8 links per node, rewiring probability of 0.25)

with exponentially distributed transaction values of 25 and 100 on

average. Capacities were chosen exponentially with average value

12
Due to their code not scaling far beyond about 100 nodes.

10

https://gitlab.tu-berlin.de/rohrer/discharged-pc-data
https://1ml.com/statistics

Value Rate HOP-No HOP-Dist HOP-IfN INTSM-No INTSM-Dist INTSM-IfN

25.0 0.1 0.77 ± 0.003 0.76 ± 0.003 0.77 ± 0.003 0.90 ± 0.002 0.90 ± 0.003 0.90 ± 0.003
25.0 100.0 0.77 ± 0.003 0.76 ± 0.004 0.77 ± 0.004 0.90 ± 0.004 0.90 ± 0.003 0.90 ± 0.004
100.0 0.1 0.46 ± 0.003 0.45 ± 0.003 0.46 ± 0.003 0.65 ± 0.004 0.69 ± 0.005 0.67 ± 0.005
100.0 100.0 0.46 ± 0.004 0.45 ± 0.003 0.46 ± 0.003 0.65 ± 0.005 0.67 ± 0.008 0.66 ± 0.006

Table 1: Success ratio (with standard deviation) in the dynamic setting for six routing algorithm, first column indicates average
transaction value (exponentially distributed) and second column indicated the number of transactions per node per hour.

of 200. The transaction frequency was 100 transactions per hour

and we conducted 1 million transactions.

Spider and Boomerang both apply source routing with multiple

paths, meaning that the payment is split into small units at the

source. As such, they both are required to use precomputed fixed

paths. The sender can decide how they split the funds between the

paths but does not have the complete information about the local

situation of intermediaries.

Spider introduces two novel ideas: First, instead of immediately

marking a payment as failed if there is insufficient balance, a node

queues the (partial) payment hoping that a concurrent payment

in the other direction increases the balance. Second, they react

to congestion feedback from nodes on the path, which enables

the source to choose a different path for other partial payments.

After communicating with the authors to fix some errors caused

by missing libraries and incorrectly set paths, we used the Spider

simulator, which like ours is a discrete event-based simulator, for

our experiments
13
. Note that Spider is non-atomic, so if a payment

succeeds partially, the funds that arrived at the receiver are not

refunded, while our protocol and Boomerang refund.

Boomerang’s key idea is the use of redundancy, i.e., sending

more than the payment value, so that if parts of the amount sent

do not arrive at the receiver, the receiver may still receive sufficient

funds for the payment. If more than the original payment value

goes through to the receiver, Boomerang uses secret sharing and

Bitcoin Scripts to ensure that the receiver has to refund any excess

funds. Boomerang was evaluated in an emulation
14

rather than a

simulation. In order to increase the fairness of the comparison, we

reimplemented Boomerang in our simulator. During the process, we

found that a small change can improve Boomerang’s performance

(see Appx. K). As a consequence, our simulation achieved better

results for Boomerang than reported in the original paper.

Our results still show a noticeable advantage of Interdimensional

SpeedyMurmurs. When using an average transaction value of 25,

Interdimensional SpeedyMurmurs with 𝑠𝑝𝑙𝑖𝑡𝐷𝑖𝑠𝑡 , Spider, and the

best-performing version of Boomerang
15
, all fail in less than 1.5%

of the routings, with Interdimensional SpeedyMurmurs having the

highest performance at a failure rate of 0.1%. When increasing the

average transaction value to 100, Interdimensional SpeedyMurmurs

fails only in 0.2% of the cases, whereas Boomerang and Spider fail

in 4% and 7.1%, respectively.

13
https://github.com/spider-pcn/spider-omnet

14
https://github.com/tse-group/boomerang

15
RedundantRetry, with redundancy 𝑢 = 150.

6.5 Linkability
We removed the possibility to link split payments based on the hash

value in our extended protocol. However, we still reveal metadata

such as the receiver and the path taken up to the intermediary. In

this section, we evaluate how likely it is the attacker can link pay-

ments based on this metadata. Our attacker considers two observed

payments to be part of the same overall payment if they have the

same sender and receiver, and arrive within a certain time.

We considered non-colluding and colluding attackers. If an at-

tacker did not collude with others, they only had information from

the payments they participated in. Hence, in a non-colluding attack,

an attacker considered any two payments they participated in and

decided whether they are parts of the same overall payment. In the

concrete attack we evaluated, the attacker considered the payments

to be the same if they had the same sender, receiver, and the differ-

ence in arrival times at the node was at most 𝑡 . After receiving a

payment, a node hence delayed it by time 𝑡 and dropped it if they

decided it had been split before.

If an attacker colluded with others, they performed the same

attack but with additional information from other attacking nodes:

Attackers shared which payments they had seen and when. If two

attackers had seen a payment with the same sender and receiver,

they first checked whether one of them is contained in the set for

the previously visited nodes of the other. If that was the case, they

were likely just nodes on the same single path and hence they did

not know if the payment had been split and hence did not drop it.

Otherwise, they checked whether the difference in arrival times

was at most 𝑡 and dropped the payments if that was the case.

In order to evaluate the attack, we chose one pair of nodes. We

performed 100 transactions between them, randomly choosing one

of them as the sender (it was essential to have transactions in

both directions as otherwise the channels become depleted in one

direction and fail without reaching an attacker). The transaction

frequency for transactions between these two nodes was varied

between 0.01 and 10 transactions per second. We repeated the

experiment 100 times. Attackers were chosen randomly and the

fraction of attackers varied between 0.01, 0.1, and 0.5 of all nodes and

𝑡 was 0.1s, 0.4s, and 1.3s, with the duration of a forwarding operation

being 0.1s for all channels. 1.3s corresponded to the maximal delay

of sending a transaction along a shortest path between any two

nodes in the graph. Attackers delayed observed payments until they

were either linked and dropped or until the time interval during

which they could be linked had expired. Both splitting methods,

SplitDist and SplitIfN , were evaluated, using the Lightning topology
and exponentially distributed payment values with 1/𝜆 ∈ {25, 100}.

We derived the false positive rate, i.e., the fraction of payment

linked by the attacker that were not actually parts of the same

11

https://github.com/spider-pcn/spider-omnet
https://github.com/tse-group/boomerang

payment, and the false negative rate, i.e., the fraction of payments

not linked by the attacker that actually were part of the same

payment. Note that here we only included payments that could

have been linked if the hash value had been identical to show

the advantage of our extended protocol. We computed the F-score

𝐹 = 𝑇𝑃/(𝑇𝑃 + 0.5(𝐹𝑁 + 𝐹𝑃)), where 𝑇𝑃 is the number of true

positives, 𝐹𝑃 the number of false positives, and 𝐹𝑁 the number of

false negative.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10

F
a

ls
e

 P
o

s
it
iv

e
 R

a
te

Transactions Frequency (in tx/s)

0.01-0.1
0.01-0.4
0.01-1.3

0.1-0.1
0.1-0.4
0.1-1.3
0.5-0.1
0.5-0.4
0.5-1.3

(a) False Positive

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10

F
-S

c
o

re

Transactions Frequency (in tx/s)

0.01-0.1
0.01-0.4
0.01-1.3

0.1-0.1
0.1-0.4
0.1-1.3
0.5-0.1
0.5-0.4
0.5-1.3

(b) F score

Figure 4: Linkability attack based on meta data (SplitDist , 5
trees, average transaction value 100): 9 lines indicate different
attacker fractions (first value for each line in legend; 0.01,
0.1, or 0.5) and time difference 𝑡 (second value in legend,
0.1,0.4,and 1.3s)

The results follow similar patterns for all considered parameters.

Fig. 4 presents an example for the case without collusion. As ex-

pected, the chance of accidentally linking two separate payments

is very low if the transaction frequency is low, as transactions are

hardly ever concurrent. If the transaction frequency is high, it is

quite likely that parts of two separate payments arrive within a

short interval and the false positive rate raises to often above 0.5. If

the time interval for considering two payments to be the same is

chosen to be small, there are less false positives. But, as displayed

in Fig. 4b, the overall quality of the attack does not increase, which

is due to the false negatives increasing whenever the false positives

decrease. For non-colluding attacks, the attack quality decreases

when the fraction of attackers increases. That might seem counter-

intuitive at first glance but is a direct consequence of attackers

delaying payments. This results in more concurrent payments and

hence a higher risk of misclassification. The effects for colluding

attackers are contrary, with more attackers the quality of the attack

increases. Yet, collusion between a large set of nodes seem unlikely.

Nodes involved in the collusion are bound to also drop split pay-

ments from other parties involved in the collusion for individual

gain, which does not make such a collusion attack attractive.

In summary, the specific attack is only effective if nodes sent

payments infrequently. However, if the overall payment frequency

is low, the chance of receiving a concurrent payment that has not

been split is also low. Hence, rational nodes likely only apply the

attack when concurrency is high. Even in a high-concurrency situ-

ation, there are some pairs of nodes that only transact with each

other infrequently. An attack on these pairs remains possible and

defenses should be considered. Another limitation of the results

provided here is that the attack might not be optimal. Improved

attacks should hence be discussed in combination with defenses.

7 RELATEDWORK
The vast majority of payment channel routing algorithms is either

single or multi-path [15, 17, 28, 32, 37, 41], without intermediaries

splitting or recombining payments. Atomicity for multi-path pay-

ments is possible [24]; however, the algorithm requires the sender

to split the payment and is not applicable for splitting on the path.

Spider [34] and Boomerang [4], as discussed in Sec. 6.4, are two

key examples of protocols that split payments at the source but not

on the path.

Spear [29] is a variant of Boomerang with reduced latency and

computational cost. As we focus on success ratio, we only com-

pared to the original Boomerang, for which open-source code is

available. Similarly, CryptoMaze [20] provides a performance im-

provement for payment routing protocols with splitting: If multiple

paths of a split payment share a link, CryptoMaze allows the pro-

tocol to only establish one lock for the shared channel instead of

using one lock per path crossing the channel. In this manner, the

computational cost and latency are reduced but the path selection

and splitting manner, which are the key contribution of our work,

remain unaffected. Thus, CryptoMaze is orthogonal to our work.

EPA-Route [40] is similar to our work in that it relies on local

routing tables but it only improves upon previous protocols in

terms of achieving lower fees. As we do not include fees currently,

a comparison is not relevant. Similarly, MPCN-RP [6] focuses on low

fees without reducing the success ratio in comparison to Lightning

while we focus on achieving a higher success ratio.

Most related to our approach is a concurrent and independent

work [11] proposing EthNA – a protocol that also supports on-

path splitting of payments routed through a PCN. The main goal

of EthNA is to achieve secure and efficient non-atomic payments.

On a technical level, this means that if a receiver accepts a par-

tial payment, an honest sender obtains a partial receipt only. Fully
atomic payments are discussed as a possible extension to EthNA

[11, Appx. E]. In order to validate and combine partial receipts on

the path, EthNA relies on a fairly complex fraud proof verifica-

tion mechanism requiring the support of smart contracts. EthNA

is hence designed for PCNs over cryptocurrencies that support

complex smart contracts (e.g, Ethereum) and, in contrast to our

work, cannot be applied to Bitcoin and the Lightning network. The

authors of [11] evaluate the effectiveness of their routing protocol

using the classic shortest path search algorithm and compare it

with the Lightning protocol, however they do not discuss other

routing algorithms and their possible impact.

The atomic multi-path payment proposal [24] also informally dis-

cusses a notion of payment unlinkability similar to ours; however,

no formal definition or proof is provided. A different unlinkabil-

ity notion is considered by anonymous multi-hop locks and its

predecessor [18, 19]. This line of work considers only monolithic

payments, source-routed by the sender. Their aim is to prevent

colluding intermediaries on one payment path to see that they

are forwarding the same payment. The objective of this “on-path”

unlinkability is to hide sender’s and receiver’s identities. While

hash-locks on one partial payment path in our extended protocol

are “on-path” unlinkable, the routing information attached to the

payment trivially reveals the sender and the receiver. Since our goal

12

is to increase the success ratio of payments by allowing interme-

diaries to locally decide on the route, hiding routing information

(e.g., the identity of the receiver) is not desirable.

8 CONCLUSION AND FUTUREWORK
We presented a protocol for locally splitting payments in a PCN

that guarantees termination, atomicity, balance neutrality, bounded

loss for the sender, correctness, and optionally unlinkability. Our

evaluation illustrated the advantages of splitting in combination

with local routing.

As indicated by the evaluation, there are two important areas of

future work: i) to consider splitting methods that take the long-term

effect on channel balances into account to reduce channel depletion,

and ii) to design protocols that hide the metadata while maintaining

the current performance.

REFERENCES
[1] 2020. Raiden Network. https://raiden.network/.

[2] Lukas Aumayr, Oguzhan Ersoy, Andreas Erwig, Sebastian Faust, Kristina

Hostáková, Matteo Maffei, Pedro Moreno-Sanchez, and Siavash Riahi. 2020.

Generalized Bitcoin-Compatible Channels. Cryptology ePrint Archive, Report

2020/476. https://eprint.iacr.org/2020/476.

[3] Zeta Avarikioti, Lioba Heimbach, Yuyi Wang, and Roger Wattenhofer. 2020. Ride

the Lightning: The Game Theory of Payment Channels. In Financial Cryptography
and Data Security, FC 2020. Springer, 264–283.

[4] Vivek Bagaria, Joachim Neu, and David Tse. 2020. Boomerang: Redundancy Im-

proves Latency and Throughput in Payment Networks. In Financial Cryptography
and Data Security, FC 2020. Springer, 304–324.

[5] Albert-László Barabási and Réka Albert. 1999. Emergence of scaling in random

networks. Science 286, 5439 (1999).
[6] Yanjiao Chen, Yuyang Ran, Jingyue Zhou, Jian Zhang, and Xueluan Gong. 2021.

MPCN-RP: A Routing Protocol for Blockchain-based Multi-Charge Payment

Channel Networks. IEEE Transactions on Network and Service Management
(2021).

[7] Marco Conoscenti, Antonio Vetrò, Juan Carlos De Martin, and Federico Spini.

2018. The cloth simulator for htlc payment networks with introductory lightning

network performance results. Information 9, 9 (2018), 223.

[8] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed

Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, et al. 2016. On

scaling decentralized blockchains. In Financial Cryptography and Data Security,
FC 2016. Springer, 106–125.

[9] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski. 2019.

Perun: Virtual Payment Hubs over Cryptocurrencies. In Symposium on Security
and Privacy, S&P 2019. IEEE, 106–123.

[10] Stefan Dziembowski, Sebastian Faust, and Kristina Hostáková. 2018. General

State Channel Networks. In Conference on Computer and Communications Security,
CCS 2018. ACM, 949–966.

[11] Stefan Dziembowski and Paweł Kȩdzior. 2020. Ethna: Channel Network with

Dynamic Internal Payment Splitting. Cryptology ePrint Archive, Report 2020/166.

https://eprint.iacr.org/2020/166.

[12] Christoph Egger, Pedro Moreno-Sanchez, and Matteo Maffei. 2019. Atomic

Multi-Channel Updates with Constant Collateral in Bitcoin-Compatible Payment-

Channel Networks. In Conference on Computer and Communications Security,
CCS 2019. 801–815.

[13] Paul Erdős and Alfréd Rényi. 1960. On the evolution of random graphs. Publ.
Math. Inst. Hung. Acad. Sci 5, 1 (1960).

[14] Arpita Ghosh, Mohammad Mahdian, Daniel M Reeves, David M Pennock, and

Ryan Fugger. 2007. Mechanism design on trust networks. In International Work-
shop on Internet and Network Economics, WINE 2007. Springer, 257–268.

[15] Philipp Hoenisch and Ingo Weber. 2018. AODV–Based Routing for Payment

Channel Networks. In International Conference on Blockchain. Springer, 107–124.
[16] Aggelos Kiayias and Orfeas Stefanos Thyfronitis Litos. 2020. A Composable

Security Treatment of the Lightning Network. In Computer Security Foundations
Symposium, CSF 2020. IEEE, 334–349.

[17] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maffei. 2017.

SilentWhispers: Enforcing Security and Privacy in Decentralized Credit Net-

works.. In Network and Distributed System Security Symposium, NDSS 2017. The
Internet Society.

[18] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, and Srivat-

san Ravi. 2017. Concurrency and Privacy with Payment-Channel Networks. In

Conference on Computer and Communications Security, CCS 2017. ACM, 455–471.

[19] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket Kate, and

Matteo Maffei. 2019. Anonymous Multi-Hop Locks for Blockchain Scalability

and Interoperability.. In Network and Distributed System Security Symposium,
NDSS 2019. The Internet Society.

[20] Subhra Mazumdar and Sushmita Ruj. 2022. CryptoMaze: Privacy-Preserving

Splitting of Off-Chain Payments. IEEE Transactions on Dependable and Secure
Computing (2022).

[21] Andrew Miller, Iddo Bentov, Surya Bakshi, Ranjit Kumaresan, and Patrick Mc-

Corry. 2019. Sprites and State Channels: Payment Networks that Go Faster

Than Lightning. In Financial Cryptography and Data Security, FC 2019. Springer,
508–526.

[22] Satoshi Nakamoto. 2009. Bitcoin: A Peer-to-Peer Electronic Cash System. http:

//bitcoin.org/bitcoin.pdf.

[23] B. Nelson, J. Banks, J. Carson, and D. Nicol. 2005. Discrete-Event System Simulation.
Pearson Prentice Hall, London.

[24] Olaoluwa Osuntokun. 2018. AMP: Atomic Multi-Path Payments over Light-

ning. https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-February/

000993.html.

[25] Pascal Paillier. 1999. Public-Key Cryptosystems Based on Composite Degree

Residuosity Classes. In Advances in Cryptology - EUROCRYPT ’99. Springer, 223–
238.

[26] Radia Perlman. 1985. An algorithm for distributed computation of a spanningtree

in an extended lan. ACM SIGCOMMComputer Communication Review 15, 4 (1985),

44–53.

[27] Andrew Poelstra. 2017. Scriptless scripts. https://lists.launchpad.net/

mimblewimble/msg00086.html.

[28] Joseph Poon and Thaddeus Dryja. 2016. The bitcoin lightning network: Scal-

able off-chain instant payments. https://www.bitcoinlightning.com/wp-content/

uploads/2018/03/lightning-network-paper.pdf.

[29] Sonbol Rahimpour and Majid Khabbazian. 2021. Spear: fast multi-path pay-

ment with redundancy. In Proceedings of the 3rd ACM Conference on Advances in
Financial Technologies. 183–191.

[30] Elias Rohrer, Julian Malliaris, and Florian Tschorsch. 2019. Discharged Payment

Channels: Quantifying the Lightning Network’s Resilience to Topology-Based

Attacks. In European Symposium on Security and Privacy Workshops, EuroS&P
Workshops 2019. IEEE, 347–356.

[31] Stefanie Roos, Martin Beck, and Thorsten Strufe. 2016. Anonymous addresses

for efficient and resilient routing in f2f overlays. In International Conference on
Computer Communications, INFOCOM 2016. IEEE, 1–9.

[32] Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and Ian Goldberg. 2018.

Settling payments fast and private: Efficient decentralized routing for path-based

transactions. In Network and Distributed System Security Symposium, NDSS 2018.
The Internet Society.

[33] Claus-Peter Schnorr. 1991. Efficient Signature Generation by Smart Cards. J.
Cryptol. 4, 3 (1991), 161–174.

[34] Vibhaalakshmi Sivaraman, Shaileshh Bojja Venkatakrishnan, Kathleen Ruan,

Parimarjan Negi, Lei Yang, RadhikaMittal, Giulia Fanti, andMohammad Alizadeh.

2020. High Throughput Cryptocurrency Routing in Payment Channel Networks.

In Symposium on Networked Systems Design and Implementation, NSDI 2020.
USENIX Association, 777–796.

[35] Guanyu Tian, Zhenhai Duan, Todd Baumeister, and Yingfei Dong. 2014. Reroute

on loop in anonymous peer-to-peer content sharing networks. In Conference on
Communications and Network Security, CNS 2014. IEEE, 409–417.

[36] Saar Tochner, Stefan Schmid, and Aviv Zohar. 2019. Hijacking routes in payment

channel networks: A predictability tradeoff. arXiv preprint arXiv:1909.06890
(2019).

[37] Peng Wang, Hong Xu, Xin Jin, and Tao Wang. 2019. Flash: efficient dynamic

routing for offchain networks. In Proceedings of the 15th International Conference
on Emerging Networking Experiments And Technologies, CoNEXT 2019. ACM,

370–381.

[38] Andrew Whitaker and David Wetherall. 2002. Forwarding without loops in

icarus. In Open Architectures and Network Programming Proceedings, OPENARCH
2002. IEEE, 63–75.

[39] Gavin Wood. 2014. ETHEREUM: A SECURE DECENTRALISED GENERALISED

TRANSACTION LEDGER. http://gavwood.com/paper.pdf.

[40] Han Xue, Qun Huang, and Yungang Bao. 2021. EPA-Route: Routing Payment

Channel Network with High Success Rate and Low Payment Fees. In 2021 IEEE
41st International Conference on Distributed Computing Systems (ICDCS). IEEE,
227–237.

[41] Yuhui Zhang, Dejun Yang, and Guoliang Xue. 2019. Cheapay: An optimal algo-

rithm for fee minimization in blockchain-based payment channel networks. In

International Conference on Communications, ICC 2019. IEEE, 1–6.

13

https://raiden.network/
https://eprint.iacr.org/2020/476
https://eprint.iacr.org/2020/166
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-February/000993.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-February/000993.html
https://lists.launchpad.net/mimblewimble/msg00086.html
https://lists.launchpad.net/mimblewimble/msg00086.html
https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf
https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf
http://gavwood.com/paper.pdf

A CRYPTOGRAPHIC PRIMITIVES
Homomorphic encryption. A public key encryption scheme Ψ

with a message space M and ciphertext space C is a triple of ppt

algorithms (Gen, Enc,Dec) with the following syntax: The algo-

rithm Gen on input the security parameter 𝑛, outputs a key pair

(pk, sk). The algorithm Enc on input a message𝑚 ∈ M and a public

key pk, outputs a ciphertext 𝑐 ∈ C. Finally, Dec is a deterministic

algorithm that on input a secret key sk and a ciphertext 𝑐 ∈ C
outputs a message𝑚 ∈ M. For every message𝑚 ∈ M it holds that

Pr[Decsk (Encpk (𝑚)) =𝑚 | (pk, sk) ← Gen(1𝑛)] = 1,

where the probability is taken over the randomness of Gen and Enc.
In this work we use encryption schemes that satisfy the notion of

indistinguishability under chosen paintext attack (IND-CPA secure

for short) defined below.

Definition A.1 (IND-CPA security). An encryption scheme Ψ =

(Gen, Enc,Dec) is IND–CPA secure if for every ppt adversary A
there exists a negligible function negl such that:

Pr[PubKcpaA,¯ (𝑛) = 1] ≤ negl(𝑛),

where the experiment PubKcpaA,¯ is defined as follows:

PubKcpaA,¯ (𝑛)
(sk, pk) ← Gen(1𝑛)
(𝑚0,𝑚1) ← A(pk)
𝑏 ←

$
{0, 1}, 𝑐𝑏 ← Encpk (𝑚𝑏)

𝑏∗ ← A(𝑐𝑏)
return |𝑚0 | = |𝑚1 | ∧ 𝑏 = 𝑏∗

Definition A.2 (Additively homomorphic encryption). Let Ψ =

(Gen, Enc,Dec) be an encryption scheme, where the message space

(M, +M, 0M) forms an Abelian group and the ciphertext space C is

closed under the binary operation +C. We say that Ψ is additively
homomoprhic if for every 𝑥,𝑦 ∈ M and every public key pk it holds

that

Encpk (𝑥) +C Encpk (𝑦) ≡ Encpk (𝑥 +M 𝑦),
where ≡ denotes equality of distributions.

Signature scheme. A digital signature scheme Σ is a triple of

ppt algorithms (Gen, Sign,Vrfy) with the following syntax: The

algorithmGen on input the security parameter 𝑛, outputs a key pair

(pk, sk). The algorithm Sign on input a message𝑚 and a signing key

sk, outputs a signature 𝜎 . Finally, Vrfy is a deterministic algorithm

that on input a verification key pk, a message𝑚 and a signature 𝜎

outputs a bit 𝑏. For every message𝑚 it holds that

Pr[Vrfypk (Signsk (𝑚)) | (pk, sk) ← Gen(1𝑛)] = 1,

where the probability is taken over the randomness of Gen and

Sign. In this work, we use signature schemes that are existentially
unforgeable under chosen message attack (or EUF-CMA secure for

short) defined as follows.

Definition A.3 (EUF-CMA security). A signature scheme Σ is

EUF–CMA secure if for every ppt adversary A there exists a negli-

gible function negl such that:

Pr[SigForgeA,Σ (𝑛) = 1] ≤ negl(𝑛),
where the experiment SigForgeA,Σ is defined as follows:

SigForgeA,Σ (𝑛)
(sk, pk) ← Gen(1𝑛)

(𝑚∗, 𝜎∗) ← ASignsk (·) (pk)
Let Q be the set of queried messages of A to the signing oracle

return Vrfypk (𝑚∗, 𝜎∗) ∧𝑚 ∉ Q

Homomorphic hash function. A hash function is a pair of ppt

algorithms (Gen,H) with the following syntax: the algorithm Gen
on input a security parameter 𝑛 outputs a key 𝑠 . The algorithmH
on input the key 𝑠 and a value 𝑥 ∈ P𝑠 , outputs a value 𝑦 ∈ H𝑠 . In
this work, we consider preimage-resistant hash functions formally

defined as follows.

Definition A.4 (Preimage-resistant hash function). A hash func-

tion (Gen,H) is preimage resistant if for every ppt adversary A,

there exists a negligible function negl such that

Pr

[
H𝑠 (𝑥 ′) = 𝑦

���� 𝑠 ← Gen(1𝑛), 𝑥 ←
$
P,

𝑦 := H𝑠 (𝑥), 𝑥 ′ ← A(𝑠,𝑦)

]
≤ negl(𝑛) .

Definition A.5 (Homomorphic function). Consider two Abelian

groups (P, +P, 0P) and (H, +H, 0H). We say that H : P → H is a

homomorphism if for every 𝑥,𝑦 ∈ P it holds that H(𝑥 +P 𝑦) =
H(𝑥) +H H(𝑦).

B PCN ABSTRACTION
A high level description of our PCN ideal functionality F (G, C0,Δ)
was provided in Sec. 3. Here we define it formally.

Recall that the functionality is parameterized by a connected

directed graph G = (V, E), where (𝑃,𝑄) ∈ E ⇔ (𝑄, 𝑃) ∈ E,
and the initial capacity function C0 : E → R+. The set of vertices
V defines the parties from which the functionality can receive

messages. Furthermore, the functionality has a timing parameter

Δ representing the upper bound on the blockchain delay. Let us

explain the functionality of PCN at a high level first and thereafter

provide its formal description.

The state of the functionality consists of a capacity function

C : E → R+ storing balances in the network (initially set to C0)
and a function Θ : {0, 1}∗ → {0, 1}∗ keeping track of conditional

payments currently being executed in the network. This means that

on input a payment identifier pid ∈ {0, 1}∗, the function returns

either ⊥, signaling that no payment with this identifier is currently

open, or information about the conditional payment in the form

of the tuple (𝑒, 𝑣, 𝜑,𝑇). Here 𝑒 ∈ E is the edge on which the pay-

ment takes place, 𝑣 ∈ R+ is the amount of coins being transferred,

𝜑 : {0, 1}∗ → {0, 1} is the payment condition and𝑇 is the time-lock.

The function Θ is initialized s.t. it outputs ⊥ for any input.

C INSTANTIATION OF BUILDING BLOCKS
Let us now discuss how to instantiate the building blocks used by

our protocols. Our basic protocol requires the underlying PCN to

support conditional payments locked by a hash preimage verifica-

tion, i.e., HashH
ℎ
, forH being a preimage-resistant hash function.

Such a PCN can be built over most common blockchains, including

Bitcoin and Ethereum, typically using SHA256. A concrete PCN

that is currently deployed on top of the Bitcoin blockchain is the

Lightning Network [28]. An example of a PCN over Ethereum is the

14

Payment channel functionality F(G, C0,Δ)

Initial state: C := C0 and Θ(pid) := ⊥ for all pid ∈ {0, 1}∗.
• Upon receiving (pay, 𝑒, 𝑣) ←−↪ 𝑃 , where 𝑒 = (𝑃,𝑄) ∈ E and C(𝑒) ≥ 𝑣,

define 𝑒′ := (𝑄, 𝑃) . In the next round, set C(𝑒) := C(𝑒) − 𝑣 and

C(𝑒′) := C(𝑒′) + 𝑣 and send (paid, 𝑒′, 𝑣) ↩−→ 𝑄 .

• Upon receiving (cPay, pid, 𝑒, 𝑣, 𝜑,𝑇 , info) ←−↪ 𝑃 , where 𝑒 = (𝑃,𝑄) ∈
E, C(𝑒) ≥ 𝑣 and Θ(pid) = ⊥, wait for one round to set C(𝑒) :=
C(𝑒) − 𝑣, store Θ(pid) := (𝑒, 𝑣, 𝜑,𝑇) and send (cPaid, pid, 𝑒, 𝑣, 𝜑,𝑇 ,
info) ↩−→ 𝑄 .

• Upon receiving (cPay–unlock, pid, 𝑤) ←−↪ 𝑄 , wait for at most Δ +
1 rounds. If ((𝑃,𝑄), 𝑣, 𝜑,𝑇) := Θ(pid) ≠ ⊥ and 𝜑 (𝑤) = 1, then

set C(𝑒′) := C(𝑒′) + 𝑣, for 𝑒′ = (𝑄, 𝑃) , set Θ(pid) = ⊥ and send

(cPay–unlocked, pid, 𝑤) ↩−→ 𝑃 .

• Upon receiving (cPay–refund, pid) ←−↪ 𝑃 , wait for at most Δ + 1

rounds. If (𝑒, 𝑣, 𝜑,𝑇) := Θ(pid) ≠ ⊥ and the current round num-

ber is larger than𝑇 , then set C(𝑒) := C(𝑒) + 𝑣, Θ(pid) = ⊥ and send

(cPay–refunded, pid) ↩−→ 𝑃 .

Figure 5: Formal description of the PCN functionality.

Raiden network [1]. Moreover, our protocol relies on a EUF–CMA-

secure digital signature that can be instantiated by, e.g., the signa-

ture scheme of Schnorr [33] or ECDSA.

The requirements of our extended protocol are higher as we need

a preimage-resistant hash function that is homomorphic. Such a

hash function can be instantiated as follows. Let 𝐺 be a group of

prime order 𝑝 and let 𝑔 be a generator of 𝐺 . Then the function

H : Z𝑝 → 𝐺 defined as H(𝑥) := 𝑔𝑥 is additively homomorphic

and under the assumption that dlog is hard in 𝐺 , H is preimage

resistant.

While replacing SHA256 with a homomorphic hash function

is not a problem for PCNs built over blockchains whose scripting

languages are Turing complete, the situation is more complicated

for legacy cryptocurrencies such as Bitcoin where the evaluation

of such hash functions is not supported. In order to overcome

this difficulty, we can make use of adaptor signatures – primitive

proposed by Poelstra [27], instantiated based on both Schnorr and

ECDSA signatures by [19] and recently formalized by [2]. At a high

level, adaptor signatures allow one party to pre-sign a message with

respect to some hash value ℎ. Such pre-signature can be adapted

into a valid signature by any party if and only if this party knows a

preimage of a hash value ℎ. And importantly, a signer observing

the adapted valid signature can extract the preimage of ℎ. In the

context of payment channels, the role of a signer would be taken by

the payer (the party that wants to conditionally pay), the message

would be the unlocking transaction assigning coins to the payee

(the party conditionally receiving coins), and the hash value would

be the condition of the payment. Let us stress that since the on-

chain footprint of such process is a standard digital signatures,

no changes to existing blockchain systems are required. This, in

particular, implies that both our protocols are Bitcoin-compatible.

We refer to [2, 19] for more details about adaptor signatures.

Finally, our construction assumes an additively homomorphic

encryption scheme with message space Z𝑁 for 𝑝 < 𝑁 and 𝑝, 𝑁

coprime. The encryption scheme of Paillier [25] satisfies these prop-

erties.

D ATTACK EFFECTIVENESS
Using the simulation model from Sec. 6, this section evaluates the

attack of nodes dropping payments that have been split. In order

to detect such split payments, the attacker has to observe the same

hashmultiple times. Note that it seems unlikely that an attacker will

drop the payment if they already committed to a different partial

payment with the same hash. Hence, the attacker only drops if

they have not yet committed, meaning that either i) the adversary

observes two partial payment in the same round or ii) the adversary

delays the payment until they are relatively sure that they will not

observe a second payment with the same hash. In our model, a

randomly selected fraction 𝑝 of nodes applies the attack. Attackers

might be individual non-colluding nodes or a group of colluding

nodes.

Our simulation used the Lightning topology with exponentially

distributed capacities and transaction values. The evaluated routing

algorithm was Interdimensional SpeedyMurmurs, as introduced in

Sec. 5, with the three well-performing splitting algorithms: SplitNo ,
SplitDist , and SplitIfN . The fraction 𝑝 varied between 0 and 1.0 in

steps of 0.1. When using a delay, the delay was set to 12, the length

of the longest shortest path in the Lightning topology. For more

details on the data sets and parameters, please check Sec. 6.

Fig. 6 displays the results regarding the attack effectiveness. If

splitting was only applied if necessary, the success ratio dropped

towards the scenario when there was no splitting as all split pay-

ments were dropped. SplitDist , which splits to minimize the number

of hops, splits more frequently and hence suffered more drastically

from the attack. Indeed, the success ratio dropped below the success

ratio of not splitting if 0.2 or more of the network apply the attack.

The drop was more pronounced for colluding attackers and if de-

lays were applied. Both colluding and delays allowed the attacker

to detect more splits. Yet, even without collusion and delays, the

success ratio was considerably reduced. Given that SplitDist is the
most effective splitting mechanism, the severity of the attack is

evident.

In summary, the discussed attack can indeed negate the positive

impact of splitting. Hence, introducing unlinkability is important

from a security perspective.

E STATIC SIMULATION
In a static setting, the topology is fixed and channel capacities

are reset to their initial values after each transaction. There is no

concurrency and the flow between sender and receiver is greater

or equal than the payment value. The main purpose of the static

setting is to assess how close our protocol is to the optimal solution,

which should always find a path if there exists one. For the dynamic

setting, transactions may be impossible to realize and finding an

optimal solution is NP-hard [14]. As a consequence, it is impossible

to gain insights on how much improvement is possible for the

realistic dynamic setting. In addition to this section, Appx. F, G,

and H also use the static setting.

For the static setting to only consider transactions that can com-

plete successfully, the transaction value had to be below the maxi-

mal flow of the sender and receiver. Thus, we first selected a pre-

liminary transaction value according to the specified distribution

as described in Sec. 6. If a preliminary transaction value was higher

15

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
u
c
c
e
s
s
 R

a
ti
o

Attacker Fraction

No Split
Dist-NonCol
IfN-NonCol

Dist-Col
IfN-NonCol

(a) No Delay

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
u
c
c
e
s
s
 R

a
ti
o

Attacker Fraction

No Split
Dist-NonCol
IfN-NonCol

Dist-Col
IfN-NonCol

(b) Delay (12 rounds)

Figure 6: Impact of the attack on success ratio (exponential capacities with expected value 200, exponential transaction values
with 1/𝜆 = 100, Lightning topology, dim = 5 for Interdimensional SpeedyMurmurs) for colluding (Col) and non-colluding
(NonCol) attackers

 0

 0.2

 0.4

 0.6

 0.8

 1

EXP-EXP EXP-NORMAL NORMAL-EXP NORMAL-NORMAL

S
u

c
c
e

s
s
 R

a
ti
o

Hop-No
Hop-Dist

Hop-IfN
INTSM-No

INTSM-Dist
INTSM-IfN

(a) Capacity/Transaction Distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

BA ER LN

S
u

c
c
e

s
s
 R

a
ti
o

Hop-No
Hop-Dist
Hop-IfN

INTSM-No
INTSM-Dist
INTSM-IfN

(b) Topology

Figure 7: Routing success for 6 routing algorithms for a) exponential and normal capacity (first part of x-axis label) and
transaction value (second part of x-axis label) distributions on Lightning and b) three topologies: Barabasi-Albert (BA), Erdos-
Renyi (ER), Lightning (LN) (expected capacity 200, transaction values for 1/𝜆 = 100 or 𝜇 = 100, dim = 5 for Interdimensional
SpeedyMurmurs)

than the maximum flow, the random selection process was repeated

until either a sufficiently low transaction value was found or a max-

imum of 1000 attempts at choosing the transaction value. In the

latter case, the transaction value was chosen to be the maximum

flow.

If the typical transaction value was low, all routing algorithms

achieved a success ratio of nearly 100%, as indicated by Fig. 8a. Dif-

ferences only became apparent if the typical transaction value was

more than 20% of the expected capacity, i.e., about 50 Euro when

using the typical Lightning capacity of about 200 Euro
16
. In other

words, if the average payment corresponds to a grocery shopping,

splitting starts to matter. As the transaction values were chosen

exponential, payments were usually considerably below 50 Euro in

16
https://1ml.com/statistics

the simulation settings that profited from splitting. Then, Interdi-

mensional SpeedyMurmurs with any splitting method and more

than one spanning tree outperformed HopDistance as it offered

a higher flexibility in the path choice. More concretely, Interdi-

mensional SpeedyMurmurs does not require that a shortest path is

taken. Details on how the number of trees affects the success ratio

can be found in Appx. F.

The choice of the splitting algorithm only improved the suc-

cess ratio slightly when HopDistance was used as a realization of

Closer. The result stemmed from the low number of shortest paths,

especially disjoint shortest paths.

For Interdimensional SpeedyMurmurs, the impact of splitting

was considerable. Themost successful splitting approachwas SplitDist ,
i.e., splitting only over nodes with the least distance to the receiver.

16

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

S
u
c
c
e
s
s
 R

a
ti
o

Expected Transaction Value

HOP-No
HOP-Dist
HOP-IfN

INTSM-No
INTSM-Dist
INTSM-IfN

(a) Success Ratio

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250 300

c
P

a
y
 o

p
e
ra

ti
o
n
s

Expected Transaction Value

HOP-No
HOP-Dist
HOP-IfN

INTSM-No
INTSM-Dist
INTSM-IfN

(b) Overhead: Successful

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250 300

c
P

a
y
 o

p
e
ra

ti
o
n
s

Expected Transaction Value

HOP-No
HOP-Dist
HOP-IfN

INTSM-No
INTSM-Dist
INTSM-IfN

(c) Overhead: All

Figure 8: a) success ratio and overhead for b) successful transactions and c) all transactions with exponentially distributed
transaction values varying 1/𝜆 (exponential capacities with expected value 200, Lightning topology, dim = 5 for Interdimensional
SpeedyMurmurs).

In contrast, SplitIfN , which tried to greedily minimize the number

of splits, did improve the success ratio but not as much as SplitDist .
SplitIfN preferred nodes at a higher distance, hence leading to longer

paths than SplitDist , which for our data set were more likely to lead

to failures, even if they incurred fewer splits than SplitDist .
Fig. 8 displays the trade-off between success ratio and number

of cPay calls when varying 1/𝜆. As increasing the success ratio

comes with a higher flexibility in choosing longer paths and more

splitting, a higher success ratio indicates also a higher overhead

for successful transactions. When considering all transactions, the

overhead was typically lower and could even decrease with the

average transaction value, as clearly indicated for the hop distance

in Fig. 8c. The decrease stemmed from the early failure of many

transactions, i.e., transactions failing in the first hops due to a lack

of available funds did require a low number of cPay calls. As a

consequence, a lower success ratio in Fig. 8a corresponds to a lower

overhead in Fig. 8c. However, the overhead was generally low, at

less than 15 calls per payment.

The results are consistent for various topologies, distributions

of transactions values and capacities, as well as lower timeouts.

Specifically, the routing is essential equally successful when the

applied timeout is about 500 times shorter than the one used in the

generic protocol. See Appxs. G and H for concrete results.

F IMPACT OF NUMBER OF TREES
Fig. 9 portrays examples of this behavior for 1/𝜆 = 50 and 1/𝜆 = 200,

i.e., for 1/𝜆 being 25% and 100% of the expected capacity. The success

ratio is displayed in relation to the number of spanning trees. As

HopDistance does not utilize the spanning trees, the corresponding

results are horizontal lines in the figure. Increasing the number

of trees and hence the number of options for paths increased the

success ratio of Interdimensional SpeedyMurmurs. However, more

than 5 trees had little additional impact.

G IMPACT OF DISTRIBUTIONS AND
TOPOLOGY

In this section, we evaluate the impact of the capacity distribution,

the transaction value distribution, and the topology.

For the channel capacity, we consider a normal distribution

with average 200 and a standard deviation of 10 in comparison

to an exponential distribution with the same average. Similarly,

normally transaction values were evaluated. The expected value of

the distribution was 𝜇 = 100 with the standard deviation of 0.1 · 𝜇.
As described in Sec. 6, we only considered transactions that could

succeed.

For the scale-free and random graphs, Barabasi-Albert [5] and

Erdos-Renyi [13] graphs, respectively, with the same number of

nodes and a similar average degree, were generated. More con-

cretely, each node added to the Barabasi-Albert graph established

5 channels to already-existing nodes. For the random graph, the

probability of an edge between nodes was chosen such that the

expected degree was 10.31. Nodes outside the largest connected

component were removed.

Fig. 7a displays the success ratio for different distributions. Nor-

mal distributions in the capacity reduced the number of failures as

channel capacities were more uniform. Hence, it was less likely to

contain situations when a node had only channels of low capacity.

Indeed, the advantages of Interdimensional SpeedyMurmurs and

splitting were more pronounced for scale-free and random net-

works as they offered a higher diversity of paths than Lightning’s

hub-and-spoke topology [30], as can be seen in Fig. 7b.

H IMPACT OF SHORTER TIMEOUTS
The generic protocol in Fig. 2 assumes that the maximal length

of a (partial) routing path is equal to the number of nodes in the

network. However, in practice, such high timeouts are not desired

as they lock collateral for unnecessary long periods.

For the hop distance, an initial timeout corresponding to the

initial distance is always sufficient by construction of the distance

as the length of the shortest path. For Interdimensional SpeedyMur-

murs, termination can be guaranteed for𝑇 = |V| because loops are
not possible. However, in practice, such long timeouts are undesir-

able, especially if they do not increase the success ratio sufficiently.

Thus, our evaluation also considered the following four options for

timeouts:

(1) the minimum of the dim distances between sender 𝑆 and

receiver 𝑅, i.e., min𝑖∈[dim] {𝑑𝑖 (𝑆, 𝑅)} (denoted by𝑀𝐼𝑁)

17

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

S
u

c
c
e

s
s
 R

a
ti
o

Trees

HOP-No

HOP-Dist

HOP-IfN

INTSM-No

INTSM-Dist

INTSM-IfN

(a) 1/𝜆 = 50

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

S
u

c
c
e

s
s
 R

a
ti
o

Trees

HOP-No

HOP-Dist

HOP-IfN

INTSM-No

INTSM-Dist

INTSM-IfN

(b) 1/𝜆 = 200

Figure 9: Routing success for 6 routing algorithms when transaction value follows exponential distribution with 1/𝜆 being a) 50
and b) 200 (exponential capacities with expected value 200, Lightning topology)

(2) the maximum of the dim distances between sender 𝑆 and

receiver 𝑅, i.e., max𝑖∈[dim] {𝑑𝑖 (𝑆, 𝑅)} (denoted by𝑀𝐴𝑋)

(3) the diameter of the network, i.e., the longest shortest path

in the network (denoted by 𝐷𝐼𝐴𝑀𝐸𝑇𝐸𝑅)

(4) twice the diameter of the network, i.e., the longest shortest

path in the network (denoted by 2𝐷𝐼𝐴𝑀𝐸𝑇𝐸𝑅)

The minimum distance indicates that there is at least one path

of this length between 𝑆 and 𝑅. However, the routing algorithm

might take longer paths, in which case the payment will fail even

if the routing could succeed with a higher timeout. The maximum

distance 𝑑𝑚𝑎𝑥 indicates that there is a path in every tree whose

length is at most𝑑𝑚𝑎𝑥 . However, Interdimensional SpeedyMurmurs

utilizes all spanning trees in parallel and hence the function giving

the distance after 𝑗 hops might not be monotonously decreasing.

As a consequence, the routing algorithm might still take longer

paths. Similarly, there are no guarantees that Interdimensional

SpeedyMurmurs does not result in paths longer than the diameter

or even twice the diameter. However, it seems unlikely for paths to

exceed such a length. Our evaluation substantiates this intuition

with concrete numbers.

Fig. 10 depicts the impact of different maximal timeouts on the

success ratio for three different splitting algorithms. The results

were consistent for all three algorithms: Using𝑀𝐼𝑁 and𝑀𝐴𝑋 did

reduce the success ratio considerable, so it is not advisable to use

them as timeouts. However, using the diameter of 12 or a multiple

of the diameter produced nearly the same success ratio as a timeout

of |V| = 6000. For the Lightning snapshot, we can hence use a

timeout that is approximately 6000/12 = 500 times shorter than the

theoretical bounds while essentially maintaining the same success

ratio.

I RANDOM SPLITTING
We also evaluated the impact of random splitting in contrast to

more sophisticated splitting mechanisms. Due to space constraints,

we excluded the description and results from the main body.

I.1 Algorithm Description
The key component of the algorithm is the function 𝑟𝑎𝑛𝑑𝑜𝑚𝑆𝑝𝑙𝑖𝑡 (𝑣, 𝑘)
that splits a value 𝑣 at random such that the random variables 𝑋𝑖
of the 𝑖-th partial value are identically distributed in [0, 𝑣]. Fur-
thermore, we have

∑𝑘
𝑖=1 𝑋𝑖 = 𝑣 , i.e., the total transaction value is

split.

In the first step, the splitting algorithm applies 𝑟𝑎𝑛𝑑𝑜𝑚𝑆𝑝𝑙𝑖𝑡

with 𝑣 being the total transaction value and 𝑘 being the number of

potential channels. However, such a random assignment of partial

values can potential lead to partial values exceeding the capacities

of some channels. As a consequence, the partial value assigned to

each channel is reduced to the channel’s capacity if it is too high.

The respective channels is marked as being fully collateralized and

the remaining value is recorded for being reassigned to another

channel.

In each subsequent step, 𝑟𝑎𝑛𝑑𝑜𝑚𝑆𝑝𝑙𝑖𝑡 re-distributes the remain-

ing value 𝑣 that has not been assigned to a channel over the number

of channels that still have capacity left. The process continues until

either the total transaction value has been assigned or none of the

channels has capacity left. In the latter case, the payment fails.

I.2 Evaluation
Our implementation of random splitting Split𝑟𝑎𝑛𝑑 included a thresh-

old for a value to be split, i.e., values below the threshold were not

split to reduce the computation time of the algorithm. The threshold

for splitting was set to 1. As random splitting introduced a high

computation overhead, so that we only simulated it for up to three

trees.

Fig. 11 is a version of Fig. 9 that includes the results for random

splitting with up to three trees. Random splitting decreased the

success ratio drastically because if only one of the many shares did

not reach the receiver, the payment failed. Hence, splitting toomuch

and in a non-strategic manner did not improve the performance.

J ROUTING ALGORITHM: PSEUDOCODE
Fig. 12 describes the generic routing algorithm. Figs. 13 and 14 dis-

play the two choices forCloser: Hop Distance and Interdimensional

18

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

S
u

c
c
e

s
s
 R

a
ti
o

Trees

None

Min

Max

Diameter

2 Diameter

(a) No Split

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

S
u

c
c
e

s
s
 R

a
ti
o

Trees

None

Min

Max

Diameter

2 Diameter

(b) Split by Dist

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

S
u

c
c
e

s
s
 R

a
ti
o

Trees

None

Min

Max

Diameter

2 Diameter

(c) Split If Necessary

Figure 10: Success ratio of Interdimensional SpeedyMurmurs for different initial timelock values (exponential capacities with
expected value 200, exponential transaction values with 1/𝜆 = 100, Lightning topology): a) no splitting, b) splitting over nodes
closest to receiver, c) splitting only if necessary

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

S
u

c
c
e

s
s
 R

a
ti
o

Trees

HOP-No

HOP-Dist

HOP-IfN

HOP-Rand

INTSM-No

INTSM-Dist

INTSM-IfN

INTSM-Rand

(a) 1/𝜆 = 50

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

S
u

c
c
e

s
s
 R

a
ti
o

Trees

HOP-No

HOP-Dist

HOP-IfN

HOP-Rand

INTSM-No

INTSM-Dist

INTSM-IfN

INTSM-Rand

(b) 1/𝜆 = 200

Figure 11: Routing success for 8 routing algorithms when transaction value follows exponential distribution with 1/𝜆 being a)
50 and b) 200 (exponential capacities with expected value 200, Lightning topology)

SpeedyMurmurs. Moreover, Figs. 15 to 18 show the four splitting

methods: No Split, Split by Distance, Split If Necessary, and Random

Splitting.

RouteG (𝑣, 𝑃, 𝑅, excl, C𝑃)
// Get candidate set

{ ((𝑃,𝑈 𝑗), 𝑐 𝑗 , 𝑑 𝑗) } 𝑗 ∈ [𝑘′] ← Closer(𝑃, 𝑅, C𝑃)
// Remove visited nodes

M← ∅
for 𝑗 ∈ [𝑘 ′] do

if ((𝑈 𝑗 ∉ excl) then
M := M ∪ { ((𝑃,𝑈 𝑗), 𝑐 𝑗 , 𝑑 𝑗) }

// Split

{ (𝑒 𝑗 , 𝑣̃𝑗) } 𝑗 ∈ [𝑘] ← Split(M, 𝑣)
return { (𝑒 𝑗 , 𝑣̃𝑗) } 𝑗 ∈ [𝑘]

Figure 12: Generic routing algorithm

Closer𝐻𝑂𝑃 (𝑃, 𝑅, C𝑃)
𝐶𝑎𝑛𝑑 := ∅ // candidate set

𝑑𝐼 ← 𝑑G (𝑃, 𝑅)
foreach (𝑃,𝑈) ∈ E do

𝑑 ← 𝑑G (𝑈 ,𝑅)
if 𝑑 < 𝑑𝐼 then // Closer to 𝑅

𝐶𝑎𝑛𝑑 := 𝐶𝑎𝑛𝑑 ∪ ((𝑃,𝑈), C𝑃 ((𝑃,𝑈)), 𝑑)
return𝐶𝑎𝑛𝑑

Figure 13: Hop Distance for determining candidate channels
for routing

19

Closer𝐼𝑁𝑇𝑆𝑀 (𝑃, 𝑅, C𝑃)
𝐶𝑎𝑛𝑑 := ∅ // candidate set

foreach (𝑃,𝑈) ∈ E do

for 𝑖 ∈ [dim] do // Iterate over trees

𝑑 ← 𝑑𝑖 (𝑈 ,𝑅)
𝑑𝐼 ← 𝑑𝑖 (𝑃, 𝑅)
if 𝑑 < 𝑑𝐼 then // lower distance

𝑑𝑚𝑖𝑛 := 𝑑

foreach 𝑗 ∈ [dim] do
𝑑 𝑗 ← 𝑑 𝑗 (𝑈 ,𝑅)
if 𝑑 𝑗 < 𝑑𝑚𝑖𝑛 then

𝑑𝑚𝑖𝑛 := 𝑑 𝑗

𝐶𝑎𝑛𝑑 := 𝐶𝑎𝑛𝑑 ∪ ((𝑃,𝑈), C𝑃 ((𝑃,𝑈)), 𝑑𝑚𝑖𝑛)
break // Stop loop as lower distance found

return𝐶𝑎𝑛𝑑

Figure 14: Interdimensional SpeedyMurmurs for determin-
ing candidate channels for routing

Split𝑁𝑜 ({(𝑒 𝑗 , 𝑐 𝑗 , 𝑑 𝑗)} 𝑗∈[𝑘] , 𝑣)
𝐵 := ∅ // Edges with nodes closest to 𝑅

𝑑 := ∞
for 𝑗 ∈ [𝑘] do
if 𝑣 ≤ 𝑐 𝑗 then // enough capacity

if 𝑑 𝑗 < 𝑑 then // new lowest distance

𝐵 := ∅
𝑑 := 𝑑 𝑗

if 𝑑 = 𝑑 𝑗 then // lowest distance

𝐵 := 𝐵 ∪ {𝑒 𝑗 }
if 𝐵 = ∅ then // No channel has sufficient capacity without splitting

return ⊥
else // Choose a random channel if multiple with lowest distance

𝑒 ←
$
𝐵

return { (𝑒, 𝑣) }

Figure 15: Routing without Splitting

Split𝐷𝑖𝑠𝑡 ({(𝑒 𝑗 , 𝑐 𝑗 , 𝑑 𝑗)} 𝑗∈[𝑘] , 𝑣)
𝑠𝑜𝑟𝑡𝐵𝑦𝐼𝑛𝑐𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ({ (𝑒 𝑗 , 𝑐 𝑗 , 𝑑 𝑗) } 𝑗 ∈ [𝑘]) // Sort by increasing 𝑑 𝑗

𝑠𝑢𝑚 := 0 // capacity already assigned

𝑗 := 0 // index

𝑅𝑒𝑠 := ∅ // edges and partial payment values

while (𝑠𝑢𝑚 < 𝑣) ∧ (𝑗 < 𝑘) do
𝑣𝑗 ← min{𝑣 − 𝑠𝑢𝑚,𝑐 𝑗 }
𝑅𝑒𝑠 := 𝑅𝑒𝑠 ∪ {𝑒 𝑗 , 𝑣𝑗 }
𝑠𝑢𝑚 := 𝑠𝑢𝑚 + 𝑣𝑗
𝑗 := 𝑗 + 1

if 𝑠𝑢𝑚 < 𝑣 then

return ⊥ // value could not be split as total capacity insufficient

else return 𝑅𝑒𝑠

Figure 16: Routing with splitting over channels at least dis-
tance to receiver

Split𝐼 𝑓 𝑁 ({(𝑒 𝑗 , 𝑐 𝑗 , 𝑑 𝑗)} 𝑗∈[𝑘] , 𝑣)
𝑅𝑒𝑠 ← Split𝑁𝑜 ({ (𝑒 𝑗 , 𝑐 𝑗 , 𝑑 𝑗) } 𝑗 ∈ [𝑘] , 𝑣)
if 𝑅𝑒𝑠¬⊥ then

return 𝑅𝑒𝑠

𝑠𝑜𝑟𝑡𝐵𝑦𝐷𝑒𝑐𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ({ (𝑒 𝑗 , 𝑐 𝑗 , 𝑑 𝑗) } 𝑗 ∈ [𝑘]) // Sort by decreasing 𝑐 𝑗

𝑠𝑢𝑚 := 0 // capacity already assigned

𝑗 := 0 // index

𝑅𝑒𝑠 := ∅ // edges and partial payment values

while (𝑠𝑢𝑚 < 𝑣) ∧ (𝑗 < 𝑘) do
𝑣𝑗 ← min{𝑣 − 𝑠𝑢𝑚,𝑐 𝑗 }
𝑅𝑒𝑠 := 𝑅𝑒𝑠 ∪ {𝑒 𝑗 , 𝑣𝑗 }
𝑠𝑢𝑚 := 𝑠𝑢𝑚 + 𝑣𝑗
𝑗 := 𝑗 + 1

if 𝑠𝑢𝑚 < 𝑣 then

return ⊥ // value could not be split as total capacity insufficient

else

return 𝑅𝑒𝑠

Figure 17: Routing with splitting only when necessary and
then with a minimal number of splits

20

Split𝑅𝑎𝑛𝑑 ({(𝑒 𝑗 , 𝑐 𝑗 , 𝑑 𝑗)} 𝑗∈[𝑘] , 𝑣)
𝑠𝑢𝑚 := 0

𝑑𝑜𝑛𝑒 := ∅ // channels with capacity used

for 𝑗 ∈ [𝑘] do
𝑣𝑗 := 0 // init partial payment as 0

while (|𝑑𝑜𝑛𝑒 | < 𝑘) ∧ (𝑠𝑢𝑚 < 𝑣) do
𝑐𝑜𝑢𝑛𝑡 := 𝑘 − |𝑑𝑜𝑛𝑒 |
{ 𝑣̃𝑖 }𝑖∈ [𝑐𝑜𝑢𝑛𝑡] ← 𝑟𝑎𝑛𝑑𝑜𝑚𝑆𝑝𝑙𝑖𝑡 (𝑣 − 𝑠𝑢𝑚,𝑐𝑜𝑢𝑛𝑡)
𝑠𝑢𝑚 := 0

𝑖 := 0

for 𝑗 ∈ [𝑘] do // increase partial values

if 𝑖 ∉ 𝑑𝑜𝑛𝑒 do

𝑣𝑗 ← min{𝑣𝑗 + 𝑣̃𝑖 , 𝑐 𝑗 }
𝑠𝑢𝑚 := 𝑠𝑢𝑚 + 𝑣𝑗
if 𝑣𝑗 = 𝑐 𝑗 then

𝑑𝑜𝑛𝑒 := 𝑑𝑜𝑛𝑒 ∪ { 𝑗 } // channel has no capacity left

𝑖 := 𝑖 + 1
if 𝑠𝑢𝑚 < 𝑣 then

return ⊥ // value could not be split as total capacity insufficient

else

return { (𝑒 𝑗 , 𝑣𝑗) } 𝑗 ∈ [𝑘]

Figure 18: Routing with random splits

21

K BOOMERANG IMPROVEMENT
Boomerang [4] divides a payment in 𝑣 small payments of the same

size and then adds 𝑢 additional payments of this size. It then has

three modes that govern sending the payments:

(1) Redundant: The sender starts all small payments immedi-

ately. The payment succeeds once 𝑣 payments have success-

fully reached the receiver and fails once 𝑢 + 1 have failed.
(2) Retry: The sender only starts 𝑣 small payments immediately.

Whenever a payment fails, they start a new one until the

payment succeeds or 𝑢 + 1 payments have failed.

(3) RedundantRetry: The sender starts 𝑣 +min{𝑘,𝑢} payments

immediately. Whenever a payments fails, they start a new

one as long as less than 𝑣 payments have succeeded and less

than 𝑢 + 𝑣 payments have been sent. The payment succeeds

once 𝑣 payments have successfully reached the receiver and

fails once 𝑢 + 1 have failed.
We find that Retry and RedundancyRetry might keep sending more

payments even if they are aware that the payment already failed.

The concrete details are as follows: Boomerang distinguishes

slow and fast messages. A fast message is a normal communication

message from one party to another while slow messages are mes-

sages that require locking or unlocking. The latter usually require

multiple rounds of communication because two parties have to

agree, which means their overall latency is higher. Now, when a

small payment fails, the sender is informed using fast messages

(concrete, the message type ‘P2PMSG_TYPE_P1_RESERVE_RET’).

They keep state for all the small payments sent and when they

receive the fast message, they change the state of the payment to

‘NegativeOutcome’. If they can still send more payments, they start

one. They could also use these fast messages to detect if more than

𝑢 + 1 payments have failed, in which case it makes no sense to

start new payments. However, their implementation stops sending

payments due to a definite failure only when there are 𝑢 + 1 small

payments with result ‘FinalNeg’, which is only set after the rollback

is complete, i.e., until the slow messages (concretely, the message

type ‘P2PMSG_TYPE_P2_NEG_ROLLBACK_RET’) corresponding

to all the unlock operations reach the sender. As a consequence,

more payments than necessary are sent, which then use up capacity

that could otherwise be given to parties with a better chance at

success. On the other hand, such a change leads to more small pay-

ments being not fully completed as the sender starts new payments

while others are still rolled back. So, our modification might cause

higher congestion but for a shorter duration. In our experiments,

our modification had a slightly better success ratio, so we give the

results with the modification.

In the original code, the same behavior as in our implementation

can be achieved by changing the function ‘FilterTxReqsIsFinalNeg’

to ‘FilterTxReqsNegativeOutcome’ in Lines 134 and 523 of the code

in the class Routing Algorithms. We contacted the authors and

discussed the potential change. However, as the advantage might

not hold for all scenarios, they decided to stay with the original

version.

L SECURITY ANALYSIS
Recall from Sec. 5.3 that our goal is to prove the security of our

payment protocol for any routing algorithm discussed in Sec. 5.

More precisely, we define the set of all discussed routing algorithms

R as{
Route(Closer, Split)

���� Closer ∈ {CloserHOP ,CloserI–SM },
Split ∈ {SplitNo, SplitDist , SplitIfN }

}
.

It is convenient for our proofs to also define two subsets of R: the
subset RHOP ⊂ R containing all routing algorithms with Closer =
CloserHOP and the RI–SM ⊂ R containing all routing algorithms

with Closer = CloserI–SM .

Note that the routing algorithm that uses random splitting (as

described in Appx. I) is excluded from the set R. The reason is that

protocol using this routing algorithm does not satisfy the correct-

ness property. In a nutshell, due to the loop-detection mechanism,

it might happen that routing fails even is all parties behave honestly

and all channels have enough coins.

Beforewe present the proof of Thm. 5.1, let us restate the theorem

here for completeness.

Theorem 5.1. Assume that there exists a PCN realizing the ideal
functionality F . Assume that Σ is an EUF–CMA-secure signature
scheme, Ψ is IND–CPA-secure encryption scheme with message space
M, andH a preimage-resistant hash function with domain P. For any
Route ∈ R, the protocol Πb (Route) is a secure payment protocol with
respect to the function ValidΣ,H .

If, in addition, Ψ andH are additively homomorphic, andM = Z𝑁 ,
P = Z𝑝 for 𝑝, 𝑁 coprime and 𝑝 < 𝑁 , then for any Route ∈ R, the
protocol Πext (Route) is a secure payment protocol with respect to the
function ValidΣ,H .

Since large parts of the proof are the same for both protocols, we

present the proof for Π ∈ {Πb,Πext } and distinguish between the

two protocols only when the proof steps differ. The structure of our

proof is the following. Firstly, we prove that the protocol always

terminates in Appx. L.1. Thereafter, in Appx. L.2, we prove that the

monetary loss of an honest sender is bounded and no other honest

party can ever lose coins, i.e., the security properties bounded loss for
the sender and balance neutrality. Next, we prove that our protocol
satisfies atomicity. This is done in Appx. L.3. Before we complete

the proof by showing the correctness of our protocol in Appx. L.5,

we prove two technical statements about our routing algorithms in

Appx. L.4.

L.1 Termination
Fix a connected directed graph G = (V, E) for which (𝑃,𝑄) ∈
E ⇔ (𝑄, 𝑃) ∈ E, a capacity function C, parties 𝑆, 𝑅 ∈ V s.t. 𝑆 ≠ 𝑅,

a value 𝑣 ∈ R+, a blockchain delay Δ ∈ N and a ppt adversary

A. Let 𝑡0 denote the first round of the protocol execution. As a

first step, we show that the protocol Π terminates. In other words,

it cannot happen that an honest party waits for infinitely many

rounds to produce an output.

Claim 1. The protocol Π terminates in finitely many rounds.

Proof. The protocol description instructs an honest sender to

terminate in round 𝑇 + Δ + 1 at the latest, were 𝑇 = 𝑡0 + 1 + |V| ·
(1+ 2 · (Δ+ 1)). An honest receiver terminates in round 𝑡0 + |V| + 1
if 𝑏 = 0. If 𝑏 ≠ 0, then the receiver is in the process of unlocking all

incoming payments and terminates within Δ + 1 rounds. Thus, in
round 𝑡0 + |V| + Δ + 2 at the latest, the receiver terminates.

22

It remains to discuss the termination for honest intermediaries

(i.e., any other party 𝑃 ∈ V \ {𝑆, 𝑅}). The protocol description

instruct an intermediary 𝐼 to stop forwarding payments after round

𝑡0 + |V|. Let 𝑇 be the maximal time-lock on all outgoing payments

in round 𝑡0 + |V| (set to 0 if there is no such payment). Then in

round 𝑡0 + |V| +𝑇 at the latest, it holds that fw = ∅ since for each
conditional payment, it holds that either it was unlocked until this

round or the intermediary has requested a refund. In both cases,

the intermediary removes the conditional payment from the set fw.
This implies that in round 𝑡0 + |V| +𝑇 + 2(Δ + 1) at the latest the
intermediary terminates.

Since the protocol terminates once all honest parties terminate,

this concludes the proof. □

Since the protocol terminates, after finitely many rounds the

protocol execution returns as output

(Honest, rec, C′) ← EXECFΠ,A (G, C,Δ, 𝑆, 𝑅, 𝑣) .
Let us now prove that this output satisfies the remaining security

properties.

L.2 Balance neutrality
Our next step is to show that the monetary loss of an honest sender

is bounded by the amount of coins that they want to send, and

none of the other honest parties can ever lose coins. To this end,

we make the following simple but important observation about the

payment channel ideal functionality F := F (G, C,Δ) that parties
call in the protocol execution.

Observation 1. The ideal functionality F never reduces coins
of any party unless it receives the instruction cPay or pay from this
party.

Claim 2 (Bounded loss for the sender). It holds that

𝑆 ∈ Honest⇒ netC,C′ (𝑆) ≥ −𝑣 .

Proof. An honest sender 𝑆 never sends any pay-message to

F . By our protocol description, the sender either does not send

any cPay-messages (this happens if the receiver does not send a

valid signature in the first protocol round, or if execution of Route
outputs ⊥), or sends 𝑘 cPay-messages of values (𝑣1, . . . , 𝑣𝑘). Since
the values (𝑣1, . . . , 𝑣𝑘) are returned by the routing algorithm Route,
we know that

∑
𝑖 𝑣𝑖 = 𝑣 (recall the routing property (iii) on page 5).

Hence, the total value of all the cPay-messages sent by 𝑆 to F is at

most 𝑣 which by Observation 1 implies that netC,C′ (𝑆) ≥ −𝑣 . □

As a next step, we show that balance neutrality for the inter-

mediaries and the receiver. The balance neutrality for the receiver

follows directly from Observation 1 since honest receiver never

makes any payments. The balance neutrality for intermediaries

is slightly more evolved. Firstly, we observe that no honest inter-

mediary ever conditionally pays more coins than what they can

potentionally receive. As a second step, we show that if an outgoing

conditional payment is unlocked, the intermediary has a guarantee

that the corresponding incoming payment is unlocked as well. This

follows from the fact that (i) the difference between time-lock is

sufficiently large and (ii) the intermediary can compute a witness

for the incoming payment from the revealed witness of the out-

going payment. The part (ii) is trivial form the basic protocol and

for the extended protocol follows from the homomorphic property

of H . To this end, we state the following auxiliary lemma about

additively homomorphic functions.

Lemma L.1. LetH : P→ H be an additively homomorphic func-
tion. Let ℎ ∈ H, 𝑥𝑖 ∈ P and let us define ℎ𝑖 := ℎ + H (𝑥𝑖). Then for
every 𝑥 ′ ∈ P s.t.H(𝑥 ′) = ℎ𝑖 , it holds thatH(𝑥 ′ − 𝑥𝑖) = ℎ.

Proof. By definition of ℎ𝑖 , we know that ℎ = ℎ𝑖 −H(𝑥𝑖), hence

ℎ = ℎ𝑖 −H(𝑥𝑖) = H(𝑥 ′) − H (𝑥𝑖)
hom.

= H(𝑥 ′ − 𝑥𝑖) .
□

Claim 3 (Balance neutrality). It holds that

𝑃 ∈ Honest \ {𝑆} ⇒ netC,C′ (𝑃) ≥ 0.

Proof. Let us first consider the case 𝑃 = 𝑅. Since an honest

receiver 𝑅 never sends any pay-message or cPay-message to F , by
Observation 1, netC,C′ (𝑅) ≥ 0.

Let us fix an arbitrary intermediary 𝐼 ∈ Honest \ {𝑆, 𝑅}. An
honest 𝐼 never sends any pay-message to F and never sends a cPay-

message to F without receiving a cPaid-messages from F before.

In other words, every outgoing conditional payment is triggered

by an incoming conditional payment.

Assume now that 𝐼 receives a conditional payment of value 𝑣 ,

condition ℎ and time-lock𝑇 . Then 𝐼 executes the routing algorithm

Route on input value 𝑣 and obtains 𝑘 values (𝑣1, . . . , 𝑣𝑘) such that∑
𝑗 𝑣 𝑗 = 𝑣 . Thereafter, the intermediary executes the algorithm

HLocks on input ℎ and 𝑘 and obtains 𝑘 hash values (ℎ1, . . . ℎ𝑘). For
every 𝑖 ∈ [𝑘], the intermediary sends a cPay-message of value 𝑣𝑖 ,

condition ℎ𝑖 and time-lock 𝑇 ′ := 𝑇 − 2 · (Δ + 1). This implies that

an honest 𝐼 never conditionally pays more coins than what they

can conditionally receive. As a next step, we prove that if one of

the outgoing payments is completed, i.e., 𝐼 pays 𝑣𝑖 coins, then 𝐼 has

the guarantee of unlocking the corresponding incoming payments,

i.e. receive 𝑣 coins.

First we show that if 𝐼 learns a preimage of at least one of the

hash values ℎ1, . . . , ℎ𝑘 , then they can compute a preimage for ℎ.

Π = Πb: Since for every 𝑖 ∈ [𝑘] we have ℎ𝑖 = ℎ, the statement

trivially holds.

Π = Πext : For every 𝑖 ∈ [𝑘], the value ℎ𝑖 is computed as ℎ + H (𝑥𝑖).
Upon learning 𝑥 ′ such that ℎ𝑖 = H(𝑥 ′), 𝐼 computes 𝑥 ′ − 𝑥𝑖 which
by Lemma L.1 is a preimage of ℎ.

The latest point at which the intermediary can learn 𝑥 ′ from an

outgoing payment is in round𝑇 ′ + (Δ + 1). Submission of a witness

for the corresponding incoming payments takes at most (Δ + 1)
rounds. Hence, 𝐼 has the guarantee that the unlocking request

is executed by F in round 𝑇 ′′ := 𝑇 ′ + 2 · (Δ + 1) at the latest.

Since honest intermediary sets 𝑇 ′ during the routing phase as

𝑇 ′ := 𝑇 − 2(Δ + 1), we have 𝑇 ′′ = 𝑇 . Since a conditional payment

can be refunded by the payer earliest in round𝑇+1, the intermediary

has a guarantee of successful unlocking.

The intermediary makes no outgoing conditional payments after

round 𝑡0 + |V|. Hence, the size of the set of all outgoing payments

fw can only decrease from this point on. An outgoing conditional

payment is removed from fw when (i) the payment was unlocked

or (ii) 𝐼 requests a refund. If an outgoing payment is unlocked, then

within the next (Δ+1) rounds the corresponding incoming payment

23

is unlocked as we showed above. By our protocol description, 𝐼

requests a refund for a conditional payment in the round when its

time-lock expires. F processes the refund request within (Δ + 1)
rounds and accepts it unless the conditional payment was already

unlocked in which case we fall into case (i). This means that 𝐼 has

to unlock the corresponding incoming payments, which takes at

most (Δ + 1) rounds. Hence, it takes at most 2(Δ + 1) rounds before
𝐼 settles a payment that was removed from fw.

Recall that by the protocol description, an honest intermediary

does not terminate before round 𝑡0 + |V|. After this round, 𝐼 waits
for the first round when the set of outgoing payments fw is empty.

Once this happens, 𝐼 waits 2(Δ + 1) rounds and only then produces

an output and terminates. Hence, in the round when 𝐼 terminates,

all forwarded payments were settled.

□

L.3 Atomicity
We now show that if an honest sender loses coins, then they hold

a valid receipt, i.e., a triple (ℎ𝑅, 𝜎, 𝑥𝑅), where ℎ𝑅 = H(𝑥𝑅) and
Vrfypk𝑅 (𝑆, 𝑅, 𝑣, ℎ𝑅, 𝜎) = 1. Our argumentation in the proof is essen-

tially the following. Since we assume that the sender lost coins,

they had to make at least one conditional payment which was un-

locked. In the basic protocol, all time-locks are set to ℎ𝑅 , hence one

unlocked payment implies knowledge of the desired preimage 𝑥𝑅 .

In the extended protocol, condition of an outgoing payment is set to

ℎ𝑖 = ℎ𝑅 +H (𝑥𝑖). By the homomorphic property ofH (Lemma L.1),

we know that if ℎ𝑖 = H(𝑥 ′), then 𝑥 ′ − 𝑥𝑖 is a preimage of ℎ𝑅 . Let

us now state and proof the atomicity for the sender formally.

Claim 4 (Atomicity for the sender). It holds that

𝑆 ∈ Honest ∧ netC,C′ (𝑆)< 0⇒ ValidΣ,H (𝑆, 𝑅, 𝑣, rec)=1.

Proof. The assumption that the sender is honest and lost some

coins implies that in the initialization phase, the sender received

a statement from the receiver of the form (ℎ𝑅, 𝜎) for some hash

value ℎ𝑅 and 𝜎 being a valid signature of 𝑅 on (𝑆, 𝑅, 𝑣, ℎ𝑅). This
implication follows from the fact that if the sender does not receive

such a valid statement, they immediately terminate the protocol

without ever making any payment. By Observation 1 we know that

in such a case, the sender never loses any coins contradiction the

assumption of this lemma.

After receiving a valid statement from the receiver, the sender

makes (multiple) conditional payments via the functionality F , all
of which have the same time-lock 𝑇 . The sender does not send any

further cPay-message or pay-message to F and does not produce

an output until all conditional payments are either unlocked or

refunded. This follows from the fact that in round𝑇 , i.e., in a round

when all time-locks expire, the sender instructs the ideal functional-

ity to refund all conditional payments that were not unlocked. This

process takes at most Δ + 1 rounds and hence in round 𝑇 + Δ + 1
when the sender terminates, all conditional payments are indeed

settled. Since we assume that the sender lost coin, at least one of the

conditional payments must have been unlocked (and not refunded).

Π = Πb: In the base protocol, all conditional payments had the

same hash-lock ℎ𝑅 . The fact that at least one of the conditional

payments was unlocked implies that the sender must have learned

a value 𝑥 ′
𝑅
such thatH(𝑥 ′

𝑅
) = ℎ𝑅 . In this case, the sender outputs a

receipt rec = (ℎ𝑅, 𝜎, 𝑥 ′𝑅). Since 𝜎 is a valid signature of the receiver

𝑅 andH(𝑥 ′
𝑅
) = ℎ𝑅 , it holds that ValidΣ,H (𝑆, 𝑅, 𝑣, rec) = 1.

Π = Πext : In the extended protocol, each conditional payment

has a different hash-lock produced by the algorithm HLocksext .
Recall that each hash-lock ℎ𝑖 is computed as ℎ𝑅 + H (𝑥𝑖) for a
randomly chosen 𝑥𝑖 . The fact that at least one of the conditional

payments was unlocked implies that the sender must have learned

a preimage of at least one ℎ𝑖 . In other words, the sender learns 𝑥 ′

s.t.H(𝑥 ′) = ℎ𝑖 . According to our protocol description, the sender

executes Wit(𝑥 ′, 𝑥𝑖), returning 𝑥 ′ − 𝑥𝑖 , which by Lemma L.1 is a

preimage of ℎ𝑅 . In this case, the sender outputs a receipt rec =

(ℎ𝑅, 𝜎, 𝑥 ′ − 𝑥𝑖). Since 𝜎 is a valid signature of the receiver 𝑅 and

H(𝑥 ′ − 𝑥𝑖) = ℎ𝑅 , it holds that ValidΣ,H (𝑆, 𝑅, 𝑣, rec) = 1. □

Next, we argue about the atomicity for the receiver, saying that

if the sender holds a valid receipt, then the receiver earned at least

𝑣 . The intuition about this proof is the following. Unforgeability of

the signature scheme guarantees that the only valid signature of

receiver that the sender could output is the signature on (𝑆, 𝑅, 𝑣, ℎ𝑅)
produced by the receiver. Hence, the valid receipt must contain a

preimage of ℎ𝑅 . By preimage resistance ofH , the sender is not able

to output such value without 𝑅 revealing 𝑥𝑅 . We finalize the proof

by showing that the receiver does not reveal 𝑥𝑅 unless they have a

guarantee of unlocking 𝑣 coins and does not terminate before all

the payments are unlocked.

Claim 5 (Atomicity for the receiver). It holds that

𝑅 ∈ Honest ∧ ValidΣ,H (𝑆, 𝑅, 𝑣, rec)=1⇒ netC,C′ (𝑅) ≥ 𝑣

with overwhelming probability.

Proof. Assume that 𝑅 ∈ Honest and ValidΣ,H (𝑆, 𝑅, 𝑣, rec) = 1.

Let us parse rec as (ℎ′, 𝜎′, 𝑥 ′). Since rec is a valid receipt, by the

definition of the validation function ValidΣ,H we know that 𝜎′

is a valid signature of the receiver on the tuple (𝑆, 𝑅, 𝑣, ℎ′) and
ℎ′ = H(𝑥 ′). The EUF–CMA-security of the signature scheme Σ
guarantees that (with overwhelming probability) the signature 𝜎′

had to be produce by the receiver. By our protocol, the receiver

computes only one signature. Namely, in the first round of the

protocol, where they randomly sample 𝑥𝑅 , compute ℎ𝑅 := H(𝑥𝑅)
and produce a signature 𝜎 ← Signsk𝑅 (𝑆, 𝑅, 𝑣, ℎ𝑅). Hence, with
overwhelming probability ℎ′ = ℎ𝑅 .

The preimage resistance of the hash function H guarantees

that the probability of sender outputting 𝑥 ′ without the receiver
revealing their secret preimage 𝑥𝑅 is negligible. Hence, it remains

to show that if the receiver 𝑅 reveals the secret preimage 𝑥𝑅 , then

netC,C′ (𝑅) ≥ 𝑣 .

By our protocol description, the receiver reveals 𝑥𝑅 only once the

following conditions are satisfied: (i) the receiver received condi-

tional payments of total value 𝑣 , (ii) the receiver knows the witness

for all conditional payments, and (iii) in the round when the last

conditional payment is received, let us denote it 𝑡 , the time-lock

of all conditional payments is at least 𝑡 + Δ + 1. Since unlocking of

a conditional payment takes at most Δ + 1 rounds, the aforemen-

tioned properties guarantee that if the receiver starts unlocking the

payments in round 𝑡 , all conditional payments will be successfully

unlocked in round 𝑡 + Δ + 1 at the latest. Since the receiver waits
24

for Δ + 1 before producing an output and terminating, we have

netC,C′ (𝑅) ≥ 𝑣 as we wanted to prove. □

L.4 Correctness of routing algorithms
In this section we prove two technical lemmas about our routing

algorithms from the set R. Recall that this set contains all routing
algorithms defined in Sec. 5.

We first consider the routing algorithms using CloserHOP to de-

termine candidate nodes for routing, i.e., algorithms from the set

RHOP . At a high level, the lemma says that if a party 𝑃 executes

such a routing algorithm given a set excl that contains only nodes

that are strictly further away from the receiver than 𝑃 , then the

routing algorithm never outputs ⊥. This statement holds under the

assumption that all channels in the graph are sufficiently funded.

Moreover, we prove that all nodes that the routing algorithm out-

puts are strictly closer to the receiver than 𝑃 . Hence, if nodes output

by the routing algorithm add 𝑃 to the set excl, this set again satisfies

the assumptions of our lemma.

For convenience, we define a set S𝑃,𝑅HOP for every 𝑃, 𝑅 ∈ V as

S𝑃,𝑅HOP := {𝑄 ∈ V | 𝑑G (𝑄, 𝑅) > 𝑑G (𝑃, 𝑅)}.

Lemma L.2 (Hop-distance routing). Let G = (V, E) be a con-
nected directed graph, 𝑃, 𝑅 ∈ V be two nodes such that 𝑃 ≠ 𝑅 and C
be a capacity function of G such that C(𝑒) ≥ 𝑣 for every 𝑒 ∈ E𝑃 . For
every set excl ⊆ S𝑃,𝑅HOP , and every routing algorithm Route ∈ RHOP ,
the output of RouteG (𝑣, 𝑃, 𝑅, excl, C𝑃) is never equal to ⊥. Moreover
for every returned edge (𝑃, 𝐼) it holds that excl ∪ {𝑃} ⊆ S𝐼 ,𝑅HOP .

Proof. Let Cnd be the set returned by CloserHOP . By the de-

scription of CloserHOP , we have

Cnd :=

{
((𝑃, 𝐼), 𝑣, 𝑑G (𝐼 , 𝑅))

���� (𝑃, 𝐼) ∈ E∧
𝑑G (𝑃, 𝑅) > 𝑑G (𝐼 , 𝑅)

}
In other words, the set Cnd contains all neighbors of 𝑃 who are

closer to the receiver. As a first step, we prove that Cnd ≠ ∅.
Since G is connected, there exists at least one path between

𝑃 and 𝑅 in G. Let us consider one shortest such path and let

(𝑃, 𝐼1, . . . , 𝐼ℓ , 𝑅) be the nodes associatedwith this path. Then (𝑃, 𝐼1) ∈
E and 𝑑G (𝑃, 𝑅) = 𝑑G (𝐼1, 𝑅) + 1 hence ((𝑃, 𝐼1), 𝑣, 𝑑G (𝐼1, 𝑅)) ∈ Cnd.

As a next step, the routing algorithm applies the loop-detection

filter. Formally, a setM is defined as

M := {((𝑃, 𝐼), 𝑣, 𝑑G (𝐼 , 𝑅)) ∈ Cnd | 𝐼 ∉ excl}.
Since 𝑑G (𝑃, 𝑅) > 𝑑G (𝐼1, 𝑅), we know that 𝐼1 ∉ excl and hence

((𝑃, 𝐼1), 𝑣, 𝑑G (𝑃, 𝐼1)) ∈ M. This in particular means thatM ≠ ∅.
The routing algorithm now executes Split on input M and 𝑣 .

By the specification of the algorithms Split ∈ {SplitNo, SplitIfN ,
SplitDist }, it is easy to see that since the capacity of all edges is at

least 𝑣 , no matter which of the splitting algorithms was used, the

output is exactly one pair ((𝑃, 𝐼), 𝑣). This completes the proof of

the first part of the lemma.

It remains to argue that 𝑑G (𝐼 , 𝑅) < 𝑑G (𝑃, 𝑅). This follows from
the fact that ((𝑃, 𝐼), 𝑣) is such that ((𝑃, 𝐼), 𝑣, 𝑑G (𝑃, 𝐼)) ∈ M ⊆ Cnd.

□

Let us now prove an analogous lemma for routing algorithms

that use CloserI–SM to determine candidate nodes for routing, i.e.,

algorithms from the set RI–SM . Recall that in contrast to CloserHOP ,
the algorithm CloserI–SM does not use hop-distance 𝑑G for measur-

ing the distance of nodes from the receiver. Instead, it considers the

distance of nodes in several spanning trees 𝑆𝑇1, . . . , 𝑆𝑇dim of G. The
restriction we put on the input set excl is hence slightly different.

The lemma requires that the set excl contains only nodes whose

minimal distance from the receiver (minimum is taken over all span-

ning trees) is strictly larger that the minimal distance of the party

𝑃 from the receiver (again, minimum is taken over all spanning

trees). Under this condition and assuming that all channels are suf-

ficiently funded, the routing algorithm executed by 𝑃 never outputs

⊥. Moreover, we prove that all nodes that the routing algorithm

outputs have a minimal distance from the receiver strictly lower

than 𝑃 . For convenience, we define a set S𝑃,𝑅I–SM for every 𝑃, 𝑅 ∈ V
as

S𝑃,𝑅I–SM :=

{
𝑄 ∈ V

���� min

𝑖∈[dim]
𝑑𝑖 (𝑄, 𝑅) > min

𝑖∈[dim]
𝑑𝑖 (𝑃, 𝑅)

}
,

where 𝑑𝑖 := 𝑑𝑆𝑇𝑖 is the distance function in the spanning tree 𝑆𝑇𝑖 .

Lemma L.3 (Routing using spanning trees). Let G = (V, E)
be a connected directed graph, 𝑃, 𝑅 ∈ V be two nodes such that 𝑃 ≠ 𝑅

and C be a capacity function of G such that C(𝑒) ≥ 𝑣 for every
𝑒 ∈ E𝑃 . For every set of spanning trees 𝑆𝑇 := {𝑆𝑇1, . . . , 𝑆𝑇dim} of G,
every set excl ⊆ S𝑃,𝑅I–SM , and every routing algorithm Route ∈ RI–SM ,
the output of RouteG (𝑣, 𝑃, 𝑅, excl, C𝑃) is never equal to ⊥. Moreover
for every returned edge (𝑃, 𝐼) it holds that excl ∪ {𝑃} ⊆ S𝐼 ,𝑅I–SM .

Proof. Let Cnd be the set returned by CloserI–SM . By the de-

scription of CloserI–SM , we have

Cnd :=

((𝑃, 𝐼), 𝑣, 𝑑
𝐼)

�������
(𝑃, 𝐼) ∈ E ∧ 𝑑𝐼 := min

𝑖∈[dim]
𝑑𝑖 (𝐼 , 𝑅)

∧
∃𝑖 ∈ [dim] 𝑑𝑖 (𝑃, 𝑅) > 𝑑𝑖 (𝐼 , 𝑅)


In other words, the set Cnd contains all neighbors of 𝑃 who are

closer to the receiver in at least one spanning tree. As a first step,

we prove that Cnd ≠ ∅.
SinceG is connected, there exists at least one path between 𝑃 and

𝑅 in G, which implies that there exists exactly one path between 𝑃

and 𝑅 in every spanning tree. Hence, for every spanning tree 𝑆𝑇𝑖
there exists 𝐼 ∈ V such that 𝑑𝑖 (𝑃, 𝑅) = 𝑑𝑖 (𝐼 , 𝑅) + 1 implying that

∀𝑖 ∈ [dim] ∃((𝑃, 𝐼), 𝑣, 𝑑𝐼) ∈ Cnd s.t. 𝑑𝑖 (𝑃, 𝑅) > 𝑑𝑖 (𝐼 , 𝑅) . (1)

From eq. (1) we have that Cnd ≠ ∅.
As a next step, the routing algorithm applies the loop-detection

filter. Formally, a setM is defined as

M := {((𝑃, 𝐼), 𝑣, 𝑑𝐼) ∈ Cnd | 𝐼 ∉ excl}.
We show thatM ≠ ∅. Let 𝑗 denote the index of the spanning tree
in which 𝑃 is closest to 𝑅; formally, 𝑗 := argmin𝑖∈dim 𝑑𝑖 (𝑃, 𝑅). By
eq. (1), we know that there exists ((𝑃, 𝐽), 𝑣, 𝑑 𝐽) ∈ Cnd s.t.𝑑 𝑗 (𝑃, 𝑅) >
𝑑 𝑗 (𝐽 , 𝑅) and hence

min

𝑖∈[dim]
𝑑𝑖 (𝑃, 𝑅) > min

𝑖∈[dim]
(𝐽 , 𝑅). (2)

By the definition of the set excl, this implies that 𝐽 ∉ excl and hence
((𝑃, 𝐽), 𝑣, 𝑑 𝐽) ∈ M.

The routing algorithm now executes the splitting algorithm

Split on input M and 𝑣 . From the specification of the algorithm

25

Split ∈ {SplitNo, SplitIfN , SplitDist }, it is easy to see that since all

channels have capacity at least 𝑣 , exactly one pair ((𝑃, 𝐼), 𝑣) is out-
put no matter which of the splitting algorithms we consider. This

in particular implies that the routing algorithm never outputs ⊥.
It remains to prove that

min

𝑖∈[dim]
𝑑𝑖 (𝐼 , 𝑅) < min

𝑖∈[dim]
𝑑𝑖 (𝑃, 𝑅) .

For each Split ∈ {SplitNo, SplitIfN , SplitDist }, it holds that the output
((𝑃, 𝐼), 𝑣) satisfies the following two conditions: (i) ((𝑃, 𝐼), 𝑣, 𝑑𝐼) ∈
M and (ii) 𝑑𝐼 is such that for every ((𝑃, 𝐼 ′), 𝑣, 𝑑𝐼 ′) ∈ M it holds that

𝑑𝐼 ≤ 𝑑𝐼
′
. We already proved that ((𝑃, 𝐽), 𝑣, 𝑑 𝐽) ∈ M. Hence

min

𝑖∈[dim]
𝑑𝑖 (𝐼 , 𝑅) = 𝑑𝐼 ≤ 𝑑 𝐽 = min

𝑖∈[dim]
𝑑𝑖 (𝐽 , 𝑅)

(2)

< min

𝑖∈[dim]
𝑑𝑖 (𝑃, 𝑅)

which concludes the proof. □

A simple corollary of the above two lemmas is that if any of the

routing algorithms is executed on the set excl = ∅, which is exactly

what the sender does it our protocol, then the routing algorithm

never fails.

Corollary L.4 (Routing for the sender). Let G = (V, E)
be a connected directed graph, 𝑆, 𝑅 ∈ V be two nodes such that
𝑆 ≠ 𝑅 and C be a capacity function of G such that C(𝑒) ≥ 𝑣 for
every 𝑒 ∈ E𝑆 . For every routing algorithm Route ∈ R, the output of
RouteG (𝑣, 𝑆, 𝑅, ∅, C𝑆) is never equal to ⊥.

Proof. If Route ∈ RHOP , then the corollary follows directly

from Lemma L.2 since for every 𝑆, 𝑅 it holds that ∅ ⊆ S𝑆,𝑅HOP . Analo-

gously, if Route ∈ RI–SM , then the corollary follows directly from

Lemma L.3 since for every 𝑆, 𝑅 it holds that ∅ ⊆ S𝑆,𝑅I–SM . □

Another simple corollary of the two lemmas is that if the nodes

output by the routing algorithm Route(𝑣, 𝑃, 𝑅, excl, C𝑃) add the

node 𝑃 to the set excl and execute the routing algorithm themselves,

then the routing algorithm never fails. In other words, the lemma

can be use inductively. Let us stress that this is exactly what happens

at intermediary nodes in our protocol.

Corollary L.5 (Routing for intermediaries). LetG = (V, E)
be a connected directed graph, 𝑃, 𝑅 ∈ V be two nodes such that 𝑃 ≠ 𝑅

andC be a capacity function ofG such thatC(𝑒) ≥ 𝑣 for every 𝑒 ∈ E𝑃 .
Let (Route,S) ∈ RHOP ×{S𝑃,𝑅HOP } or (Route,S) ∈ RI–SM ×{S

𝑃,𝑅
I–SM }

and excl ⊆ S. For every pair ((𝑃, 𝐼), 𝑣 ′) returned by Route(𝑣, 𝑃,
𝑅, excl, C𝑃) and ever capacity function C′ of G such that C(𝑒) ≥ 𝑣 ′

for 𝑒 ∈ E𝐼 , it holds that Route(𝑣 ′, 𝐼 , 𝑅, excl ∪ {𝑃}, C′𝐼) ≠ ⊥.

Proof. If (Route,S) ∈ RHOP × {S𝑃,𝑅HOP }, then the corollary fol-

lows directly from Lemma L.2 since for every edge (𝑃, 𝐼) returned
by Route(𝑣, 𝑃, 𝑅, excl, C𝑃), it holds that excl ∪ {𝑃} ⊆ S𝐼 ,𝑅HOP . Analo-
gously, if (Route,S) ∈ RI–SM ×{S𝑃,𝑅I–SM }, then the corollary follows
directly from Lemma L.3 since for every edge (𝑃, 𝐼) returned by

Route(𝑣, 𝑃, 𝑅, excl, C𝑃), it holds that excl ∪ {𝑃} ⊆ S𝐼 ,𝑅I–SM . □

L.5 Correctness
Finally, we need to prove that our protocol satisfies correctness

meaning that if all parties are honest and all channels in the network

have enough coins, then the payment succeeds. The main steps

of our proof are the following. Since both sender and receiver are

honest, the sender initiates conditional payments of total value

𝑣 . Using the statements from the previous section, we argue that

no matter which routing algorithm Route ∈ R we consider, the

routing never fails. Moreover, we show that the initial time-out set

by the sender is sufficient to guarantee that all partial payments

reach the receiver in time and hence the receiver starts unlocking

payments. Since the total amount of coins in the system cannot

increase (parties cannot create coins), we complete the proof by

applying the balance neutrality and bounded loss for the sender.

We now state and proof the correctness of our protocol formally.

Claim 6 (Correctness). IfV = Honest and for every 𝑒 ∈ E it holds
that C(𝑒) ≥ 𝑣 , then it holds that netC,C′ (𝑆) = −𝑣 , netC,C′ (𝑅) = 𝑣

and netC,C′ (𝑃) = 0 for every 𝑃 ∈ V \ {𝑆, 𝑅}.

Proof. Since the receiver 𝑅 is honest, the sender 𝑆 receives a

valid signature 𝜎 on the statement (𝑆, 𝑅, 𝑣, ℎ𝑅) from the receiver 𝑅

in the round 𝑡0+1. This means that the sender execute the algorithm

Route on input excl = ∅. By Corollary L.4, we know that the routing

algorithm returns {(𝐼𝑖 , 𝑣𝑖)}𝑖∈[𝑘] and hence the sender initiates 𝑘

conditional payments – each of them with set excl := {𝑆}.
Assume for now that at least one of the conditional payments

is completed and hence netC,C′ (𝑆) < 0. By Claim 4, this implies

that the sender outputs a valid receipt. Since the receiver is honest

and the sender outputs a valid receipt, by Claim 5 we know that

netC,C′ (𝑅) ≥ 𝑣 . Moreover, by Claim 3, we know that none of

the intermediaries can lose coins, i.e., netC,C′ (𝐼) ≥ 0 for every

𝐼 ∈ V \ {𝑆, 𝑅}. Since the PCN functionality F does not allow any

party to create coins, it must hold that

∑
𝑃 netC,C′ (𝑃) ≤ 0. Hence,

we have

netC,C′ (𝑆) ≤ −
©­«netC,C′ (𝑅) +

∑︁
𝐼 ∈V\{𝑆,𝑅}

netC,C′ (𝑃)
ª®¬ ≤ −𝑣 .

The bounded loss for the sender, Claim 2, guarantees that netC,C′ (𝑆) ≥
−𝑣 , hence it must holds that netC,C′ (𝑆) = −𝑣 . This in turn im-

plies that netC,C′ (𝑅) = 𝑣 and netC,C′ (𝐼) = 0 for any other party

𝐼 ∈ V \ {𝑆, 𝑅}.
What remains to prove is that at least one of the conditional

payments made by the sender is unlocked before the protocol ter-

minates. Since the sender terminates only once all outgoing pay-

ments are settled, it suffices to prove that at least once conditional

payment is unlocked and not refunded.

Since the sender is honest, the conditional payments are made

in the round 𝑡0 + 1 and the time-lock of all of them are set to 𝑇 =

𝑡0 +1+𝑛(1+2(Δ+1)), where 𝑛 = |V|. It takes one round before the
neighbors of 𝑆 are informed about the conditional payment. Each

intermediary, upon being informed about the conditional payment,

executes the routing algorithm Route which by Corollary L.5 never

fails. Hence, the intermediary decreases the time-lock by 2(Δ + 1)
and forwards the payment immediately to parties outputs by the

algorithm Route. Since the length of the longest path between

the sender and receiver is upper bounded by 𝑛, the receiver is

26

informed about all conditional payments in round 𝑡1 := 𝑡0 + 1 + 𝑛
at the latest. Since the number of intermediaries on each path is

upper bounded by 𝑛 − 1, the minimal time-lock 𝑇min of incoming

conditional payments of the receiver can be lower bounded as

𝑇min ≥ 𝑇 − (𝑛 − 1) · 2(Δ + 1) = 𝑡0 + 1 + 𝑛 + 2(Δ + 1)) .

Since𝑇min−𝑡1 > (Δ+1), the receiver starts unlocking all payments

if they know a witness for all of them.

Π = Πb: In the base protocol, all conditional payments have the

same hash-lock ℎ𝑅 . Since ℎ𝑅 was computed by the receive in the

first round asH(𝑥𝑅) = ℎ𝑅 , 𝑅 trivially knows the witness 𝑥𝑅 .

Π = Πext : In the extended protocol, a conditional payment has a

hash-lock ℎ𝑖 and an attached ciphertext 𝑐𝑖 . By our protocol de-

scription, the receiver executes WitRext (𝑐𝑖 , sk, 𝑥𝑅, ℎ𝑖 , excl) in order

to find the preimage of ℎ𝑖 . The algorithm WitRext instructs the re-
ceiver to compute 𝑥 ′ := 𝑥𝑅 +MDecsk (𝑐𝑖) and loop over all 𝑗 ≤ |excl |
to check if ℎ𝑖 = H(𝑥 ′ +Z 𝑗 · 𝑁 mod 𝑝). We need to argue that if

all parties behaved honestly, the receiver will find such 𝑗 and hence

the preimage of ℎ𝑖 . Since all parties in the system are honest, by

the additive homomorphism ofH we know that

ℎ𝑖 = H(𝑥𝑅) +H H(𝑥 (1)𝑖
) +H . . . +H H(𝑥 (ℓ)𝑖

) (3)

= H
(
𝑥𝑅 +P 𝑥 (1)𝑖

+P . . . +P 𝑥 (ℓ)𝑖

)
, (4)

for ℓ = |excl |. Moreover, by the additive homomorphism of the

encryption scheme we know that

𝑐𝑖 = Encpk (0) +C Encpk (𝑥
(1)
𝑖
) +C · · · + Encpk (𝑥

(ℓ)
𝑖
) (5)

= Encpk
(
𝑥
(1)
𝑖
+M . . . +M 𝑥

(ℓ)
𝑖

)
. (6)

SinceM = Z𝑁 we have

𝑥𝑅 +Z 𝑥 (1)𝑖
+Z · · · +Z 𝑥 (ℓ)𝑖

≤ (ℓ + 1) · 𝑁 . (7)

Recall that 𝑥 ′ := 𝑥𝑅 +M Decsk (𝑐𝑖). From (6) and (7), we know that

there exists 𝑗 ≤ ℓ such that

𝑥𝑅 +Z 𝑥 (1)𝑖
+Z · · · +Z 𝑥 (ℓ)𝑖

= 𝑥 ′ +Z 𝑗 · 𝑁 .

Since P = Z𝑝 , this implies that

𝑥 ′ +Z 𝑗 · 𝑁 mod 𝑝 = 𝑥𝑅 +P 𝑥 (1)𝑖
+P . . . +P 𝑥 (ℓ)𝑖

.

and hence 𝑥 ′ +Z 𝑗 ·𝑁 mod 𝑝 is a preimage of ℎ𝑖 which we wanted

to prove.

We showed that all partial payments arrive to the receiver. Since

the receiver can compute all witnesses and they have enough time

to unlock all of them, they initiate the unlocking phase. This implies

that the intermediaries that conditionally paid to 𝑅 lose coins. By

balance neutrality, Claim 3, we know that each intermediary has

the guarantee of unlocking the corresponding incoming payment.

Hence, the conditional payments of the sender are unlocked which

completes the proof.

□

M UNLINKABILITY OF PARTIAL PAYMENTS
Assume that an honest party (the sender or an intermediary) splits

a payment of 𝑣 coins into 𝑘 partial payments (𝑣1, . . . , 𝑣𝑘) routed
over 𝑘 different neighbors. We want to guarantee that even if all

of these neighbors collude, they cannot decide whether the condi-

tional payments are part of the same payment or if 𝑘 independent

payments of values (𝑣1, . . . , 𝑣𝑘) have been sent. Since the partial

payments are unlinkable right after the split takes place, further

forwarding does not influence their linkability. Hence, our defi-

nition also captures the case when the colluding parties happens

later in the partial payment paths (and not right after the splitting).

Formally, we define unlinkability as a property of the algorithm

HLocks in the following definition.

Definition M.1 (Unlinkability). Let Ψ be an encryption scheme

with plaintext spaceM and letH : P→ H be a hash function with

P ⊆ M. Algorithm HLocksH,Ψ
produces unlinkable conditions if for

every ppt adversary A, every 𝑥 ∈ P, 𝑦 ∈ M and 𝑘 ∈ N, we have
Pr[GameLinkA,HLocksH,Ψ (𝑥,𝑦, 𝑘, 𝑛) = 1] ≤ 1

2
+ negl(𝑛), where the

game GameLink is defined as follows:

GameLinkA,HLocksH,Ψ (𝑥,𝑦, 𝑘, 𝑛)
𝑏 ←

$
{0, 1}

(pk, sk) ← Gen(1𝑛), ℎ := H(𝑥), 𝑐 ← Encpk (𝑦)

if 𝑏 = 1 then { (ℎ 𝑗 , 𝑐 𝑗 , 𝑥 𝑗) } 𝑗 ∈ [𝑘] ← HLocksH,Ψ (ℎ, 𝑐, 𝑘, pk)
else foreach 𝑗 ∈ [𝑘] do
𝑥 𝑗 ←$

P, ℎ 𝑗 := H(𝑥 𝑗), 𝑐 𝑗 := Encpk (𝑥 𝑗)
𝑏′ ← A(𝑥, 𝑦, { (ℎ 𝑗 , 𝑐 𝑗) } 𝑗 ∈ [𝑘] , pk)
return 𝑏 = 𝑏′

Let us briefly discuss why the formal definition captures the

unlinkability property discussed above on high level. In case 𝑏 = 0,

the game GameLink generates {(ℎ 𝑗 , 𝑐 𝑗)} 𝑗∈[𝑘] exactly as a sender

would do when sending 𝑘 independent payments. Namely, for each

of the 𝑘 payments, the sender would sample a random preimage

𝑥𝑖 and use the hash value ℎ𝑖 := H(𝑥𝑖) as the hash-lock. Moreover,

the sender would attach the ciphertext 𝑐𝑖 := Encpk (𝑥𝑖) to the condi-
tional payment, where pk is the public key of the receiver, to ensure
that the receiver can unlock the conditional payment. In case 𝑏 = 1,

the game GameLink generates {(ℎ 𝑗 , 𝑐 𝑗)} 𝑗∈[𝑘] exactly as a sender,

who sends a single payment split into 𝑘 partial payments using the

procedure HLocks.
We emphasize that by quantifying in our definition over all 𝑥 and

𝑦, we model that malicious neighbors of a party splitting a payment

(sender or intermediary) may learn these values in our protocol. For

the value 𝑦 this is, e.g., the case when the sender (i.e., the first party

splitting), executes HLocks on 𝑐 = Encpk (0). For 𝑥 this happens in

our protocol when the neighbors of the party splitting the payment

might collude with the party generating ℎ and hence know 𝑥 . For

instance, this can occur during a potential collusion between the

receiver and intermediaries.

Remark 1. We note that our definition only talks about the un-

linkability of the hash values and attached ciphetexts. In particular,

we do not aim to hide the payment history (e.g., the sender) or

the receiver since this information is crucial for our local routing

algorithms. If there are only few concurrent payments, this meta-

data might link the partial payments even if the hash values and

ciphertexts are unlinkable.

Earlier in this work, we presented two different HLocks algo-
rithms; namely the algorithmHLocksb and the algorithmHLocksext
(see Fig. 2). The simple algorithm HLocksb outputs 𝑘 copies of the

27

pair (ℎ, 𝑐). Such algorithm clearly does not satisfy the unlinkability

definition. We now state and prove that HLocksext does satisfy the

unlikability definition.

Theorem M.2. Let Ψ be an additively homomorphic IND–CPA-
secure encryption scheme with message space M = Z𝑁 , and H an
additively homomorphic preimage-resistant hash function with do-
main P = Z𝑝 such that 𝑝, 𝑁 coprime and 𝑝 < 𝑁 . Then HLocksH,Ψ

ext
produces unlinkable conditions.

Proof. Let us fix arbitrary 𝑥 ∈ P,𝑦 ∈ M and 𝑘 ∈ N. Let us define
the three distributions D(pk), D𝑥 (pk), D𝑥,𝑦 (pk) as follows:

D(pk)
𝑎 ←

$
P

𝑐 := Encpk (𝑎)
return (𝑎, 𝑐)

D𝑥 (pk)
𝑎 ←

$
P

𝑐 := Encpk (𝑎)
return (𝑎 + 𝑥, 𝑐)

D𝑥,𝑦 (pk)
𝑎 ←

$
P

𝑐 := Encpk (𝑎 + 𝑦)
return (𝑎 + 𝑥, 𝑐)

Base on these distributions, we define three games 𝐺0 (𝑥,𝑦, 𝑘, 𝑛),
𝐺1 (𝑥,𝑦, 𝑘, 𝑛) and𝐺2 (𝑥,𝑦, 𝑘, 𝑛). All three games first generate a key

pair (pk, sk) and then sample 𝑘 pairs {(ℎ 𝑗 , 𝑐 𝑗)} 𝑗∈[𝑘] . How these

pairs are generated differs for each game. In the game 𝐺0, every

(ℎ 𝑗 , 𝑐 𝑗) is sampled from D(pk), in the game 𝐺1, every (ℎ 𝑗 , 𝑐 𝑗) is
sampled from D𝑥 (pk) and in 𝐺2, every (ℎ 𝑗 , 𝑐 𝑗) is sampled from

D𝑥,𝑦 (pk). Finally, all of the games output the tuple (𝑥,𝑦, {(ℎ 𝑗 , 𝑐 𝑗)} 𝑗∈[𝑘] , pk)
(see Fig. 19 for formal description).

𝐺0 (𝑥,𝑦, 𝑘, 𝑛)
(pk, sk) ← Gen(1𝑛)
foreach 𝑗 ∈ [𝑘] do
(ℎ 𝑗 , 𝑐 𝑗) ← D(pk)

endfor

𝑋 := { (ℎ 𝑗 , 𝑐 𝑗) } 𝑗 ∈ [𝑘]
return (𝑥, 𝑦,𝑋, pk)

𝐺1 (𝑥,𝑦, 𝑘, 𝑛)
(pk, sk) ← Gen(1𝑛)
foreach 𝑗 ∈ [𝑘] do
(ℎ 𝑗 , 𝑐 𝑗) ← D𝑥 (pk)

endfor

𝑋 := { (ℎ 𝑗 , 𝑐 𝑗) } 𝑗 ∈ [𝑘]
return (𝑥, 𝑦,𝑋, pk)

𝐺2 (𝑥,𝑦, 𝑘, 𝑛)
(pk, sk) ← Gen(1𝑛)
foreach 𝑗 ∈ [𝑘] do
(ℎ 𝑗 , 𝑐 𝑗) ← D𝑥,𝑦 (pk)

endfor

𝑋 := { (ℎ 𝑗 , 𝑐 𝑗) } 𝑗 ∈ [𝑘]
return (𝑥, 𝑦,𝑋, pk)

Figure 19: Game hops

Let us note that the game𝐺0 almost corresponds to the case𝑏 = 0

in our unlinkability game expect for the fact that ℎ𝑖 is not a random

element from P but the hash valueH(ℎ𝑖). Similarly, the game 𝐺2

is almost as the case 𝑏 = 1 in our unlinkability game expect for the

fact that in the unlinkability game ℎ𝑖 is the hash valueH(𝑥 + 𝑥𝑖).
However, since for every polynomial-time commutable function 𝑓

it holds that 𝐺0 ∼𝑐 𝐺2 ⇒ 𝑓 (𝐺0) ∼𝑐 𝑓 (𝐺2), it suffices to prove that

𝐺0 ∼𝑐 𝐺2. Here ∼𝑐 denotes computational indistinguishability.

We prove the indistinguishability of 𝐺0 and 𝐺2 in two steps. We

first prove that 𝐺0 and 𝐺1 are computationally indistinguishable

in Claim 7 and then we show that 𝐺1 and 𝐺2 are computationally

indistinguishable in Claim 8.

Claim 7. Games 𝐺0 and 𝐺1 are computationally indistinguishable.

Proof. The proof is by a simple hybrid argument. For every

𝑖 ∈ [0, 𝑘], we define a game𝐺0,𝑖 as follows. The game generates the

pair (ℎ 𝑗 , 𝑐 𝑗) as in game𝐺0 for every 𝑗 ≤ 𝑘−𝑖 , and for every 𝑗 > 𝑘−𝑖 ,
the game generates the pair (ℎ 𝑗 , 𝑐 𝑗) as in game 𝐺1. Formally,

𝐺0,𝑖 (𝑥,𝑦, 𝑘, 𝑛)
(pk, sk) ← Gen(1𝑛)
foreach 𝑗 ∈ [𝑘] do

if 𝑗 ≤ 𝑘 − 𝑖 then
(ℎ 𝑗 , 𝑐 𝑗) ← D(pk)

else

(ℎ 𝑗 , 𝑐 𝑗) ← D𝑥 (pk)
endif

endfor

𝑋 := { (ℎ 𝑗 , 𝑐 𝑗) } 𝑗 ∈ [𝑘]
return (𝑥, 𝑦,𝑋, pk)

Note that 𝐺0 = 𝐺0,0 and 𝐺1 = 𝐺
0,𝑘 . As a first step we prove that

for every 𝑖 ∈ [0, 𝑘−1], the games𝐺0,𝑖 and𝐺0,𝑖+1 are computationally

indistinguishable, i.e.,

𝐺0 = 𝐺0,0 ∼𝑐 𝐺0,1 ∼𝑐 · · · ∼𝑐 𝐺0,𝑘 = 𝐺1 .

Let us fix an arbitrary 𝑖 ∈ [𝑘 − 1] and assume that there exists a ppt

adversary A𝑖 that distinguishes two consecutive games 𝐺0,𝑖 and

𝐺0,𝑖+1 with non-negligible probability. We show that then there

exists an adversary Acpa that wins the PubKcpa game with the

same non-negligible probability which is a contradiction to our

assumption that Ψ is a IND-CPA secure encryption scheme.

The games 𝐺0,𝑖 and 𝐺0,𝑖+1 differ only in the way how the pair

(ℎ𝑘−𝑖 , 𝑐𝑘−𝑖) is generated. In the game𝐺0,𝑖 , this pair is sampled from

the distribution D(pk) while in the game 𝐺0,𝑖+1 it is sampled from

D𝑥 (pk). We use this fact to design an adversaryAcpa as follows (see

also Fig. 20). The adversary Acpa samples𝑚1 uniformly at random

and defines𝑚0 := 𝑚1 + 𝑥 . Upon receiving a challenge ciphertext

𝑐𝑏 , the adversary generates the pairs (ℎ 𝑗 , 𝑐 𝑗), for 𝑗 ≠ 𝑘 − 𝑖 , as in
the games 𝐺0,𝑖 and 𝐺0,𝑖+1 and sets (ℎ𝑘−𝑖 , 𝑐𝑘−𝑖) := (𝑚0, 𝑐𝑏). The ad-
versary Acpa now sends (𝑥,𝑦, {(ℎ 𝑗 , 𝑐 𝑗)} 𝑗∈[𝑘] , pk) to the adversary

A𝑖 and outputs whatever A𝑖 outputs.

We now show that if 𝑏 = 0, Acpa perfectly simulates the game

𝐺0,𝑖 toA𝑖 and if 𝑏 = 1,Acpa perfectly simulates the game𝐺0,𝑖+1 to
A𝑖 . Consider first that 𝑏 = 0. This means that 𝑐𝑏 is an encryption

of𝑚0 and hence

(ℎ𝑘−𝑖 , 𝑐𝑘−𝑖) = (𝑚0, Enc(𝑚0)),
implying that (ℎ𝑘−𝑖 , 𝑐𝑘−𝑖) is distributed according toD(pk). Hence
the tuple (𝑥,𝑦, {(ℎ 𝑗 , 𝑐 𝑗)} 𝑗∈[𝑘] , pk) is equally distributed as the out-

put produced by 𝐺0,𝑖 . Now if 𝑏 = 1, then 𝑐𝑏 is an encryption of𝑚1

and hence

(ℎ𝑘−𝑖 , 𝑐𝑘−𝑖) = (𝑚0, Encpk (𝑚1)) = (𝑚1 + 𝑥, Encpk (𝑚1)),
implying that (ℎ𝑘−𝑖 , 𝑐𝑘−𝑖) is distributed according toD𝑥 (pk). Hence,
the tuple (𝑥,𝑦, {(ℎ 𝑗 , 𝑐 𝑗)} 𝑗∈[𝑘] , pk) is identically distributed with

𝐺0,𝑖+1. This implies that the success probability of Acpa is the

same as the success probability of A𝑖 which we assume to be non-

negligible. This is a contradiction to the IND-CPA security of the

encryption scheme Ψ.
We are now prepared to complete the proof that the games

𝐺0,0 and 𝐺0,𝑘 are computationally indistinguishable. By using the

standard hybrid argument, we know that for any ppt adversary

A, the probability of distinguishing 𝐺0,0 and 𝐺0,𝑘 is bounded by∑
𝑖∈[𝑘−1] 𝜈𝑖 where 𝜈𝑖 (𝑛) is the probability that A distinguishes

𝐺0,𝑖 and 𝐺0,𝑖+1. Since we already proved that 𝐺0,𝑖 and 𝐺0,𝑖+1 are
28

Acpa Cℎcpa

(pk, sk) ← Gen(1𝑛)
pk
←−

𝑚1 ←$
P

𝑚0 :=𝑚1 + 𝑥
𝑚0,𝑚1−−−−→

𝑏 ←
$
{0, 1}

𝑐𝑏 ← Encpk (𝑚𝑏)
𝑐𝑏←−

For 𝑗 < 𝑘 − 𝑖:
(ℎ 𝑗 , 𝑐 𝑗) ← D(pk)

For 𝑗 > 𝑘 − 𝑖:
(ℎ 𝑗 , 𝑐 𝑗) ← D𝑥 (pk)

For 𝑗 = 𝑘 − 𝑖:
(ℎ 𝑗 , 𝑐 𝑗) := (𝑚0, 𝑐𝑏)

A𝑖

(𝑥, 𝑦, { (ℎ 𝑗 , 𝑐 𝑗) } 𝑗 ∈ [𝑘] , pk)
−−−−−−−−−−−−−−−−−−−−→

𝑏′←−

𝑏′−→
output 𝑏 = 𝑏′

Figure 20: Construction of Acpa using an adversary A𝑖 that
distinguishes the games 𝐺0,𝑖 and 𝐺0,𝑖+1.

computationally indistinguishable, we know that 𝜈𝑖 is negligible

in the security parameter. Since 𝑘 is a polynomial in the security

parameter and sum of polynomially many negligible functions is a

negligible function, we completed the proof. □

Claim 8. Games 𝐺1 and 𝐺2 are computationally indistinguishable.

Proof. For every 𝑖 ∈ [0, 𝑘], we define a game𝐺1,𝑖 as follows. The

game generates the pair (ℎ 𝑗 , 𝑐 𝑗) as in game 𝐺1 for every 𝑗 ≤ 𝑘 − 𝑖 ,
and for every 𝑗 > 𝑘 − 𝑖 , the game generates the pair (ℎ 𝑗 , 𝑐 𝑗) as in
game 𝐺2. Formally,

𝐺1,𝑖 (𝑥,𝑦, 𝑘, 𝑛)
(pk, sk) ← Gen(1𝑛)
foreach 𝑗 ∈ [𝑘] do

if 𝑗 ≤ 𝑘 − 𝑖 then
(ℎ 𝑗 , 𝑐 𝑗) ← D𝑥 (pk)

else

(ℎ 𝑗 , 𝑐 𝑗) ← D𝑥,𝑦 (pk)
𝑋 := { (ℎ 𝑗 , 𝑐 𝑗) } 𝑗 ∈ [𝑘]
return 𝑥, 𝑦,𝑋, pk

Note that𝐺1 = 𝐺1,0 and𝐺2 = 𝐺
1,𝑘 . As a first step we prove that for

every 𝑖 ∈ [0, 𝑘 − 1], the games 𝐺1,𝑖 and 𝐺1,𝑖+1 are computationally

indistinguishable, i.e.,

𝐺1 = 𝐺1,0 ∼𝑐 𝐺1,1 ∼𝑐 · · · ∼𝑐 𝐺1,𝑘 = 𝐺2 .

Let us fix an arbitrary 𝑖 ∈ [𝑘 − 1] and assume that there exists a

ppt adversary A𝑖 that distinguishes the two games 𝐺1,𝑖 and 𝐺1,𝑖+1
with non-negligible probability. We show that then there exists an

adversary Acpa that wins the PubKcpa game with the same non-

negligible probability which is a contradiction with our assumption

that Ψ is a IND-CPA secure encryption scheme.

The games 𝐺1,𝑖 and 𝐺1,𝑖+1 differ only in the way how the pair

(ℎ𝑘−𝑖 , 𝑐𝑘−𝑖) is generated. In the game𝐺1,𝑖 , this pair is sampled from

the distributionD𝑥 (pk) while in the game𝐺1,𝑖+1 it is sampled from

D𝑥,𝑦 (pk). We use this fact to design an adversary Acpa as follows

(see also Fig. 21). The adversaryAcpa samples𝑚0 uniformly at ran-

dom message and defines𝑚1 :=𝑚0 +𝑦. Upon receiving a challenge

ciphertext 𝑐𝑏 , the adversary generates the pairs (ℎ 𝑗 , 𝑐 𝑗), for 𝑗 ≠ 𝑘−𝑖 ,
as in the games𝐺1,𝑖 and𝐺1,𝑖+1 and sets (ℎ𝑘−𝑖 , 𝑐𝑘−𝑖) := (𝑚0 +𝑥, 𝑐𝑏).
The adversary Acpa now sends (𝑥,𝑦, {(ℎ 𝑗 , 𝑐 𝑗)} 𝑗∈[𝑘] , pk) to the ad-

versary A𝑖 . The adversary Acpa outputs whatever A𝑖 outputs.

We now show that if 𝑏 = 0, Acpa perfectly simulates the game

𝐺1,𝑖 toA𝑖 and if 𝑏 = 1,Acpa perfectly simulates the game𝐺1,𝑖+1 to
A𝑖 . Consider first that 𝑏 = 0. This means that 𝑐𝑏 is an encryption

of𝑚0 and hence

(ℎ𝑘−𝑖 , 𝑐𝑘−𝑖) = (𝑚0 + 𝑥, Enc(𝑚0)),

implying that (ℎ𝑘−𝑖 , 𝑐𝑘−𝑖) is distributed according toD𝑥 (pk). Hence
the tuple (𝑥,𝑦, {(ℎ 𝑗 , 𝑐 𝑗)} 𝑗∈[𝑘] , pk) is equally distributed as the out-

put produced by 𝐺1,𝑖 . Now if 𝑏 = 1, then 𝑐𝑏 is an encryption of𝑚1

and hence

(ℎ𝑘−𝑖 , 𝑐𝑘−𝑖) = (𝑚0 + 𝑥, Encpk (𝑚1))
= (𝑚0 + 𝑥, Encpk (𝑚0 + 𝑦)),

implying that (ℎ𝑘−𝑖 , 𝑐𝑘−𝑖) is distributed according to D𝑥,𝑦 (pk).
Hence the tuple (𝑥,𝑦, {(ℎ 𝑗 , 𝑐 𝑗)} 𝑗∈[𝑘] , pk) is equally distributed as

the output produced by 𝐺1,𝑖+1. This implies that the success proba-

bility ofAcpa is the same as the success probability ofA𝑖 which we

assume to be non-negligible. This is a contradiction to the IND-CPA

security of the encryption scheme Ψ.
We are now prepared to complete the proof that the games

𝐺1,0 and 𝐺1,𝑘 are computationally indistinguishable. By using the

standard hybrid argument, we know that for any ppt adversary

A, the probability of distinguishing 𝐺1,0 and 𝐺1,𝑘 is bounded by∑
𝑖∈[𝑘−1] 𝜈𝑖 where 𝜈𝑖 (𝑛) is the probability that A distinguishes

𝐺1,𝑖 and 𝐺1,𝑖+1. Since we already proved that 𝐺1,𝑖 and 𝐺1,𝑖+1 are
computationally indistinguishable, we know that 𝜈𝑖 is negligible

in the security parameter. Since 𝑘 is a polynomial in the security

parameter and the sum of polynomially many negligible functions

is a negligible function, we completed the proof. □

To conclude, since 𝐺0 ∼𝑐 𝐺1 ∼𝑐 𝐺2, we have 𝐺0 ∼𝑐 𝐺2 by the

hybrid argument. □

Remark 2. Let us stress thatH does not need to be a hash function.

In fact, any additively homomorphic function would work for the

purposes of the unlinkability equally well.

Wormhole attack. Malavolta et al. [19] pointed out that if the

hash-locks on one multi-hop payment path are the same, two col-

luding intermediaries can steal coins from honest intermediaries

placed in between them on the path. Such aWormhole attack works
at a high level as follows. The colluding intermediaries behave

honestly during the locking phase, i.e., both forward a conditional

payment with the same hash-lock. When the intermediary closer

29

Acpa Cℎcpa

(pk, sk) ← Gen(1𝑛)
pk
←−

𝑚0 ←$
P

𝑚1 :=𝑚0 + 𝑦
𝑚0,𝑚1−−−−→

𝑏 ←
$
{0, 1}

𝑐𝑏 ← Encpk (𝑚𝑏)
𝑐𝑏←−

For 𝑗 < 𝑘 − 𝑖:
(ℎ 𝑗 , 𝑐 𝑗) ← D𝑥 (pk)

For 𝑗 > 𝑘 − 𝑖:
(ℎ 𝑗 , 𝑐 𝑗) ← D𝑥,𝑦 (pk)

For 𝑗 = 𝑘 − 𝑖:
(ℎ 𝑗 , 𝑐 𝑗) := (𝑥 +𝑚0, 𝑐𝑏)

A𝑖

𝑥, 𝑦, { (ℎ 𝑗 , 𝑐 𝑗) } 𝑗 ∈ [𝑘] , pk
−−−−−−−−−−−−−−−−−−→

𝑏′←−

𝑏′−→
output 𝑏 = 𝑏′

Figure 21: Construction of Acpa using an adversary A𝑖 that
distinguishes the games 𝐺1,𝑖 and 𝐺1,𝑖+1.

to the receiver learns a witness for the hash-lock, they do not un-

lock the corresponding incoming payment. Instead, they reveal this

witness to the colluding intermediary, thereby creating a “short-

cut” in the unlocking path. The colluding intermediaries benefit for

this attack because they collect all fees for themselves and for all

excluded honest nodes between them.

Remark 3. If no splitting occurs, our extended protocol with

unlinkability protects intermediaries from such Wormhole attacks.

This comes from the fact that every honest intermediary refreshes

the hash-lock, even in the non-splitting case. Concretely, if the hash-

lock of the incoming payment is ℎ, then the honest intermediary

chooses ℎ′ = ℎ +H (𝑥 ′) as the hash-lock for the outgoing payment

for 𝑥 ′ being a randomly sampled preimage. As a result, the preimage

learned by the malicious intermediary closer to the receiver does

not help the second malicious intermediary closer to the sender to

unlock his incoming payments.

30

	Abstract
	1 Introduction
	2 Preliminaries
	3 Security model
	4 Payment protocol
	4.1 Extended protocol with unlinkability
	4.2 Formal protocol description

	5 Routing Algorithms
	5.1 Determining potential next hops (Closer)
	5.2 Splitting over potential next hops (Split)
	5.3 Security statement

	6 Performance Evaluation
	6.1 Simulation Model
	6.2 Data Sets and Parameters.
	6.3 Performance Results
	6.4 Comparison to Related Work
	6.5 Linkability

	7 Related Work
	8 Conclusion and Future Work
	References
	A Cryptographic primitives
	B PCN abstraction
	C Instantiation of building blocks
	D Attack Effectiveness
	E Static Simulation
	F Impact of Number of Trees
	G Impact of Distributions and Topology
	H Impact of Shorter Timeouts
	I Random Splitting
	I.1 Algorithm Description
	I.2 Evaluation

	J Routing Algorithm: Pseudocode
	K Boomerang Improvement
	L Security analysis
	L.1 Termination
	L.2 Balance neutrality
	L.3 Atomicity
	L.4 Correctness of routing algorithms
	L.5 Correctness

	M Unlinkability of partial payments

