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Abstract. NewHope is a lattice cryptoscheme based on the Ring Learn-
ing With Errors (Ring-LWE) problem, and it has received much attention
among the candidates of the NIST post-quantum cryptography stan-
dardization project. Recently, key mismatch attacks on NewHope have
been proposed, where the adversary tries to recover the server’s secret
key by observing the mismatch of the shared key from chosen queries.
At CT-RSA 2019, Bauer et al. first proposed a key mismatch attack on
NewHope, and then at ESORICS 2019, Qin et al. proposed an improved
version with success probability of 96.9% using about 880,000 queries. In
this paper, we further improve their key mismatch attacks on NewHope.
First, we reduce the number of queries by adapting the terminating con-
dition to the response from the server using an early abort technique.
Next, the success rate of recovering the secret key polynomial is raised
by setting a deterministic condition for judging its coefficients. We also
improve the method of generating queries. Furthermore, the search range
of the secret key in Qin et al.’s attack is extended without increasing the
number of queries. As a result, about 73% of queries can be reduced
compared with Qin et al.’s method under the success rate of 97%. More-
over, we analyze the trade-off between the number of queries and the
success rate. In particular, we show that a lower success rate of 20.9% is
available by further reduced queries of 135,000, simultaneously.

Keywords: PQC, Ring-LWE, Key Mismatch Attack, NewHope.

1 Introduction

The current public-key cryptosystems based on the hardness of the factorization
problem or the discrete logarithm problem can be broken by quantum computers
in polynomial time [17]. For this reason, it is urgent to develop post-quantum
cryptography (PQC) which is secure against the threat of quantum computers.
PQC is being standardized by the National Institute of Standards and Technol-
ogy (NIST) [1]. There, lattice-based cryptography is one of the most promising
categories, and NewHope is one of the lattice-based key exchange candidates
selected in the second round of the NIST PQC standardization project. The
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security of NewHope [2] is based on the difficulty of the underlying Ring-LWE
problem [12]. Comparing to the typical LWE problem [15], the Ring-LWE based
cryptoschemes enjoy smaller key sizes that benefit from its ring structure. On
the other hand, some potential demerits from the ring structure may be mali-
ciously used by attackers, thus more careful cryptanalysis of these cryptoschemes
is required.

Nowadays it is common to reuse keys in Internet communications, so as to
improve the performance of the protocols. For example, TLS 1.3 [16] adopts the
pre-shared key (PSK) mode where the server is allowed to reuse the same secret
key and public key in intermittent communication with the clients, in order to
reduce the procedure of handshakes. Meanwhile, such protocols may have a risk
of leakage of the server’s secret key when the adversary has enough chances to
send queries to the honest server and get correct responses from it. There is a
kind of key mismatch attack on the Ring-LWE based key exchange protocols.
As its name implies, the key mismatch attack generally works as follows: an
adversary sends chosen ciphertexts to the server, and recovers the server’s secret
key by observing a match or mismatch of a common key. In particular, there are
mainly two key mismatch attacks on NewHope [4,13] which take advantage of
the property that the secret key of NewHope is a polynomial constructed with
integer coefficients sampled from -8 to 8 in a key-reuse scenario.

The first key mismatch attack on NewHope was proposed by Bauer et al. [4]
at CT-RSA 2019, which can recover the secret coefficients belonging to the
interval [−6, 4]. However, the success rate of recovering coefficients in [−6, 4]
was not so high. Bauer et al. also reported that the coefficients belonging to
{−8,−7, 5, 6, 7, 8} can be recovered by the brute-force attack, nevertheless, the
computational complexity is as large as 611 ≃ 239 due to the fact that about
11.16 coefficients of 1024 ones are belonging to {−8,−7, 5, 6, 7, 8} on average in
one secret key.

Furthermore, Qin et al. [13] improved Bauer et al.’s attack at ESORICS 2019
so that the coefficients in [−6, 4] can be successfully recovered with a high rate of
99.22%, and the others in {−8,−7, 5, 6, 7, 8} can be recovered with fewer queries
than the brute-force attack. As a result, the rate of recovering the secret key
correctly achieves 96.88%. However, the attack proposed by Qin et al. requires
a large number of 880,000 queries for recovering a secret key, which makes the
attack not efficient. Besides, some specific patterns of secret keys can not be
recovered successfully in this attack.

1.1 Our Contributions

In this paper, we further improve Qin et al.’s attack to reduce the number of
queries, and evaluate its relationship with the success rate of recovering secret
keys. First, we introduce an early abort technique to reduce the number of
queries. Namely, we set an appropriate query stop condition according to the
response (i.e. match or mismatch with the common key) from the server. Then,
to raise the success rate of the attack, we propose a deterministic condition
when judging the secret polynomial’s coefficients; and we improve the method
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of generating queries sent by the adversary. Moreover, we observe that without
increasing the number of queries, the attack of Qin et al. on the secret key
coefficients in [−6, 4] can be extended to a wider range of [−6, 7]. Since only 0.28
coefficients on average belonging to the remaining set of {−8,−7, 8} in one secret
key, we decide to perform a brute-force attack. As a result, to achieve almost
the same success rate of 97%, the number of queries is reduced to about 230,000
which is 73% less than the cost claimed in Qin et al’s method. Furthermore, the
recovery success rate can be improved to 100.0% experimentally in our method.
Simultaneously, by evaluating the relationship between the success rate and the
number of queries, we can further reduce the number of queries to 135,000 with
20.9% success rate.

1.2 Related Works

A number of key recovery attacks have been developed to Ring-LWE based cryp-
tography, under the assumption of a key reusing scenario. Generally, they are
divided into two types: the signal leakage attacks with exploiting the flaws of the
signal function [5,8,11], and the key mismatch attacks taking advantage of con-
structing the final shared key. In this work, we focus on the latter key mismatch
attacks, as we already introduced two previous works of [4,13] above. Besides,
in ACISP 2018, Ding et al. [7] proposed a general key mismatch attack model
for Ring-LWE based key exchange scheme without using the signal leakage. Re-
cently, there are also some key mismatch attacks on several specific lattice-based
cryptographic schemes. For instance, in 2020, Greuet et al. [10] proposed the
mismatch attack on LAC which is a Ring-LWE based cryptoscheme but with
small key size. In 2019, Qin et al. [14] applied their attack on the Module-LWE
based Kyber as well. And Ding et al. [6] analyzed the NTRU cryptoscheme by
adapting the key mismatch attack to it. Especially, the mismatch attack using
the quantum algorithm was proposed by Băetu et al. [3] in Eurocrypt 2019.

1.3 Roadmap

We recall the NewHope cryptoscheme and its relevant functions in Section 2.
Then we introduce the previous works of mismatch attacks on NewHope in Sec-
tion 3, including the methods proposed by Bauer et al [4] and its improvement
by Qin et al [13], respectively. In Section 4, we propose our mismatch attack
which is evidently improving Qin et al.’s attack. We give our experimental re-
sults, and show the trade-off between the number of queries and the success rate
in Section 5. Finally, we conclude our work in Section 6.

2 Preliminaries

In this section, we introduce the algebraic definitions and notations used in
NewHope. Next, we show the outline of NewHope’s protocol, including several
important functions being used in it.



4 Satoshi Okada, Yuntao Wang, and Tsuyoshi Takagi

pre-shared key a
Alice Bob

sA, eA
$
← ψn

8

PA ← asA + eA
PA−−→ sB , eB , e

′
B

$
← ψn

8

PB ← asB + eB

νB
$
← {0, 1}256

ν′B ← SHA3-256 (νB)
k← Encode (ν′B)
c← PAsB + e′B + k

c′ ← Decompress(c)
(PB ,c)
←−−−− c← Compress(c)

k′ = c′ −PBsA SkB
← SHA3-256 (ν′B)

ν′A ← Decode (k′)
SkA
← SHA3-256 (ν′A)

Fig. 1. NewHope key exchange protocol

Set Zq the integer remainder ring modulo q, and Zq[x] represents a polyno-
mial ring whose coefficients are sampled from Zq. We also denote the residue ring
of Zq[x] modulo (xn + 1) by Rq = Zq[x]/ (x

n + 1). Bold letters such as P, s refer
to elements in Rq. We also use vector notation for polynomials in this paper,

e.g. the vector notation for a
(

=
∑n−1

i=0 aix
i
)

∈ Rq is (a0, a1, · · · , an−2, an−1).

a[i] represents the coefficient of xi in the polynomial, and the corresponding i-th
element of the vector as well. For a real number x, ⌊x⌋ represents the largest
integer no larger than x and ⌊x⌉ = ⌊x+ 1

2⌋. For the sake of convenience, we set
s = ⌊q/8⌋ where q is the integer modulus in NewHope.

We denote by ψ8 a binomial distribution with a standard deviation of 8,
and its element is sampled by calculating

∑8
i=1 (bi − b

′
i). Here, bi and b′i are

sampled from {0, 1} uniformly at random. Let ψn
8 be the polynomial set whose

each coefficient is sampled from ψ8. In the figures and algorithms, the notation
$
← D means randomly sampling an element from distribution (or set) D.

Ring-LWE Problem: Let χ be a distribution on Rq. For randomly sampled

polynomials s, e
$
← χ,a

$
← Rq, the set of (a,b = as+ e ∈ Rq) is called as ring

LWE sample. The ring learning with errors (Ring-LWE) problem is to find the
secret polynomial s (and the error e simultaneously) from a given Ring-LWE
sample of (a,b).

2.1 NewHope Key Exchange Protocol

An outline of the NewHope key exchange protocol is shown in Figure 1. Here we
omit the procedures that are not directly related to the key mismatch attack,
such as NTT (Number Theoretic Transform) being used to speed up polynomial
multiplication. NewHope aims to securely exchange a shared key between Alice
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and Bob and it executes the below three steps. Note that the public polynomial
a is shared in advance, which is sampled from Rq uniformly at random. The
security of NewHope is based on the hardness of the Ring-LWE problem, where
χ is the distribution of ψn

8 .

1. Alice randomly samples a secret key sA and an error eA from ψn
8 . Then,

she calculates the public key PA = asA + eA using the previously shared
a(∈ Rq), and sends PA to Bob. From the public key PA and the previously
shared polynomial a, it is difficult to obtain information about the secret
key sA thanks to the hardness of Ring-LWE problem.

2. Bob selects sB , eB and e′B from ψn
8 and computes the public key PB =

asB + eB . Then, Bob chooses a 256-bit long bit string νB that is the basis
of the shared key SkB

, and hashes it by calculating ν′B = SHA3-256 (νB).
Subsequently, he computes k = Encode (ν′B) , c = PAsB + e′B + k, c =
Compress(c) and sends (PB , c) to Alice. The shared key SkB

is obtained by
calculating SkB

= SHA3-256 (ν′B).
3. When Alice receives (PB , c), she calculates k

′ = c′−PBsA = eAsB−eBsA+
e′B + k. Alice can get ν′A equal to ν′B with high probability by computing
Decode (k′) because the coefficients of eAsB − eBsA + e′B are small. Then,
she also gains a shared key SkA

= SHA3-256 (ν′A).

In NewHope, q = 12289 and n = 512 or 1024 are employed. NewHope512
and NewHope1024 refer to the case of n = 512 and n = 1024, respectively. In
the five security levels defined by NIST, NewHope512 is at the lowest level (level
1), and NewHope1024 is at the highest level (level 5) [1]. In this paper, we deal
with the higher secure NewHope1024.

2.2 The Functions Used in NewHope

We simply review four functions being used in NewHope (Figure 1): Compress(c),
Decompress(c), Encode(ν′B), and Decode(k′).

The Compress function (Algorithm 1) and the Decompress function (Algo-
rithm 2) perform coefficient-wise modulus switching between modulus q and 8.
By compressing c ∈ Rq, the total size of coefficients becomes smaller; thereby
the transmission cost is lower.

The function Encode (Algorithm 3) takes a 256-bit string ν′B as an input and
maps each bit to four coefficients in k ∈ Rq: k[i], k[i + 256], k[i + 512], and
k[i + 768] (for i = 0 · · · 255). In contrast, The function Decode (Algorithm 4)
restores each bit of ν′A ∈ {0, 1}

256 from four coefficients in k′ ∈ Rq. Namely,
ν′A[i] = 1 if the summation of the four coefficients is smaller than q, and ν′A[i] = 0
otherwise.

3 Key Mismatch Attack on NewHope

In this section, we first explain a general model of a key mismatch attack on
NewHope. Then we recall the attacks proposed by Bauer et al. [4] and Qin et
al. [13], respectively.
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Algorithm 1: Compress(c)

Input: c ∈ Rq

Output: c ∈ R8

1 for i← 0 to 255 do

2 c[i]← ⌊(c[i] · 8)/q⌉ (mod8)

3 Return c

Algorithm 2: Decompress(c)

Input: c ∈ R8

Output: c′ ∈ Rq

1 for i← 0 to 255 do

2 c′[i]← ⌊(c[i] · q)/8⌉

3 Return c′

Algorithm 3: Encode(ν′B)

Input: ν′B ∈ {0, 1}
256

Output: k ∈ Rq

1 k← 0
2 for i← 0 to 255 do

3 for j ← 0 to 3 do

4 k[i+ 256j]← 4s · ν′B [i]

5 Return k

Algorithm 4: Decode(k′)

Input: k′ ∈ Rq

Output: ν′A ∈ {0, 1}
256

1 ν′A ← 0
2 for i← 0 to 255 do

3 m←
∑3

j=0 |k
′[i+ 256j]− 4s|

4 if m < q then

5 ν′A[i]← 1

else

6 ν′A[i]← 0

7 Return ν′A

3.1 The General Model

In the model of the key mismatch attack, we assume that Alice is an honest
server and Bob plays the role of an adversary in Figure 1. An adversary sends
a query including (PB , c, SkB

) to the server. Then, the server calculates the
shared key SkA

and returns whether SkA
and SkB

match or mismatch. Here, the
server is set to reuse the same secret key and honestly respond to any number
of queries.

For the sake of convenience, we build an oracle O (Algorithm 5) to simulate
the behavior of the server in this paper. The oracle outputs 1 if SkA

= SkB

and outputs 0 otherwise. Changing the formats of queries sent to the oracle, the
adversary can get information about sA by observing the responses.

3.2 Bauer et al.’s Method

Bauer et al. proposed a method for recovering the coefficients in [−6, 4] of the
secret key sA. To recover the coefficient sA[i], the adversary forges the following
query and send it to the oracle.



























ν′B = (1, 0, · · · , 0)

PB =
s

2
x−i′ (i′ ≡ i (mod 256))

c =

3
∑

j=0

(lj + 4)x256j (lj ∈ [−4, 3])
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Algorithm 5: Oracle(PB , c,SkB )

Input: PB , c, SkB

Output: 1 or 0
1 c′ ← Decompress(c)
2 k′ ← c′ −PBsA
3 ν′A ← Decode (k′)
4 SkA

← SHA3-256 (ν′A)
5 if SkA

= SkB
then

6 Return 1

else

7 Return 0

In this case, k′ is calculated as follows:

k′ = c′ −PBsA

=
3

∑

j=0

(

Decompress(c)[256j]−
s

2
sA[i

′ + 256j]
)

x256j

+
∑

k 6≡ i
(mod 256)

(

0−
s

2
sA[k]

)

xk.

(1)

In ν′A (= Decode(k′)), all elements except ν′A[0] are calculated from the sec-
ond term of Equation (1) and they become 0 with high probability. Therefore,
the key mismatch corresponds to the mismatch between ν′B [0](= 1) and ν′A[0],
which depends on selected lj (j = 0, 1, 2, 3). The adversary fixes lj other than
l⌊ i

256
⌋ to a random value and observes the change of the oracle’s output by

increasing l⌊ i

256
⌋ from −4 to 3. If the adversary gets a string of outputs like

1, · · · , 1, 0, · · · , 0, 1, · · · , 1, he can calculate an estimated value τ of sA[i] from
the two possible values τ1 < τ2. The oracle’s output goes from 1 to 0 at point
l⌊ i

256
⌋ = τ1 and then from 0 to 1 at point l⌊ i

256
⌋ = τ2. Here such a form of outputs

is called a favorable case. Please refer to [4] for the details of the attack.

3.3 Qin et al.’s Method

Qin et al. pointed out the low success rate of the attack proposed by Bauer
et al. They proposed the following improvements to Bauer et al.’s attack on
recovering the coefficients in [−6, 4]. In their method, they used the same way
to generate the queries as Bauer et al.’s. However, they observed that a form
of outputs like 0, · · · , 0, 1, · · · , 1, 0, · · · , 0 is also a favorable case. Besides, they
indicated that Bauer et al.’s attack algorithm is not deterministic. For example,
in the case of sA[i] = 2, the adversary may get a value of the incorrect 1 along
with the correct 2. Since the attack algorithm is probabilistic, the more times
the attacks are applied, the higher success probability can be achieved. However,
the number of queries increases accordingly. To take a balance between the cost
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and the success rate, Qin et al. decided to collect 50 τs for each coefficient and
recover the coefficient from the breakdown of them.

Additionally, they proposed a new attack for coefficients in {−8,−7, 5, 6, 7, 8}.
However, this attack is conditional and its success rate is smaller than 11.2%.
We analyze the details of their attack and show its drawbacks in Appendix A.

4 Our Improved Method

We propose an improved method to increase the success rate of key recovery and
reduce the number of queries. In this section, we first describe the improvements
in three parts, and finally introduce the overall attack flow.

4.1 Improvement on the Construction of Queries

We focus on the point that there are some secret key patterns that cannot
be recovered in Qin et al.’s and Bauer et al.’s attacks. In their attacks, when
recovering the coefficients in [−6, 4], an adversary sets ν′B = (1, 0, · · · , 0). In this
case, depending on the pattern of sA, some elements except for ν′A[0] become
unexpected value of 1 where ν′A = Decode (k′). Due to this, the oracle keeps
returning 0 because ν′A 6= ν′B regardless of the value of ν′A[0]. Therefore, a key
mismatch attack will never be established.

To solve this problem, we propose a new query construction. In our method,
when an adversary wants to recover the coefficient sA[i], he directly sets the
query like



















PB =
s

2

c =
3

∑

j=0

(lj + 4)xi
′+256j (lj ∈ [−4, 3], i′ ≡ i (mod 256)).

The oracle receives it and calculates

k′ = c′ −PBsA

=
3

∑

j=0

(

Decompress(c)[256j]−
s

2
sA[i

′ + 256j]
)

x256j

+
∑

k 6≡ 0
(mod 256)

(

0−
s

2
sA

)

[k]xk.

(2)

Then, the oracle gets ν′A = (Decode(k′)), where ν′A[i
′] is calculated from the first

term of Formula (2) and other elements are from the second term. Here, if ν′B
meets two conditions such as

{

ν′B = Decode(0−
s

2
sA), (3)

ν′B [i
′] = 1, (4)
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Algorithm 6: Find−ν′
B
()

Output: ν′B ∈ {0, 1}
256

1 PB ←
s
2
, c← 0

2 ν′B ← (0, · · · , 0)
3 SkB

← SHA3-256 (ν′B)
4 if O (PB , c, SkB

) = 1 then

5 Return ν′B

6 for i← 0 to 255 do

7 ν′B ← (0, · · · , 0)
8 ν′B [i]← 1
9 SkB

← SHA3-256 (ν′B)
10 if O (PB , c, SkB

) = 1 then

11 Return ν′B

12 for i← 0 to 255 do

13 for j ← i+ 1 to 255 do

14 ν′B ← (0, · · · , 0)
15 ν′B [i]← 1, ν′B [j]← 1
16 SkB

← SHA3-256 (ν′B)
17 if O (PB , c, SkB

) = 1 then

18 Return ν′B

19 Terminate the entire program

the value returned by the oracle (matching or mismatching between the two
shared keys) can be reduced to the value of ν′A[i

′].
In Algorithm 6, we show how to set ν′B to satisfy the above two conditions.

Here we decide to find ν′B that meets Equation (3) by the exhaustive search.
First, PB and c are set as PB = s

2 , c = 0. Then, ν′B is set to be an 256-bit string
in the following orders: ( I ) all elements are 0, (II) except for one 1, all elements
are 0, and (III) except for two 1s, all elements are 0. Simultaneously, the adver-
sary sends a query (PB , c, SkB

) to the oracle. When the oracle returns 1, this
algorithm stops and returns ν′B . In contrast, if the oracle does not return 1 even
after examining all of the above patterns ( I )(II)(III), the algorithm can judge
that the secret key sA cannot be recovered successfully, and the whole program
is terminated. The reason why we only deals with three patterns ( I )(II)(III) is
as follows.

1. The case that ν′B includes three or more 1s appears with probability of only
0.003% (see Table 1).

2. For the case of ν′B with three or more 1s, the exhaustive search needs
much more queries than Qin et al.’s method. For instance, it takes 256C3 =
2, 763, 520 queries when searching ν′B with three 1s.

By performing Algorithm 6, ν′B that satisfies the Equation (3) is set. Then,
when querying the oracle, an adversary has to additionally set ν′B [i

′] = 1 to meet
Equation (4).
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Table 1. Distribution of secret key sA

the number of 1 included in
Decode(0− s

2sA)
secret key sA

0 94.547%
1 5.302%
2 0.148%

3 or more 0.003%

4.2 Extending the Search Range of Secret Key

After setting a proper query, an adversary changes l⌊ i

256
⌋ from -4 to 3 analogous

to Qin et al.’s method. Then, he calculates an estimated value τ of the coefficient
sA[i] by observing the oracle’s outputs. Qin et al. claimed that this attack was
valid on coefficients of sA[i] in [-6,4]. However, we point out that the attack can
be applied to a wider range such as [-6,7], without any additional queries.

It is clear that the oracle’s output is relative to ν′A[i
′] whose value depends

on the size of m comparing with the size of q (Algorithm 4). Remark that m is
calculated by

m =

3
∑

j=0

|k′[i′ + 256j]− 4s|

≈

3
∑

j=0

∣

∣

∣
(lj + 4) s−

s

2
sA[i

′ + 256j]− 4s
∣

∣

∣

=

3
∑

j=0

∣

∣

∣

∣

lj −
1

2
sA[i

′ + 256j]

∣

∣

∣

∣

s.

Moreover, all lj (j ∈ {0, 1, 2, 3}\{⌊
i

256⌋}) are fixed at random values. From these
facts, we can conclude that the string of oracle’s outputs depends on the change
of

u = |k′[i]− 4s| . (5)

Meanwhile, there are two kinds of favorable cases such as 0, · · · , 0, 1, · · · , 1,
0, · · · , 0 and 1, · · · , 1, 0, · · · , 0, 1, · · · , 1. Next, we study the condition of u for
meeting favorable cases from the oracle.

We explain the case of 1, · · · , 1, 0, · · · , 0, 1, · · · , 1 here, and the analysis for
the case of 0, · · · , 0, 1, · · · , 1, 0, · · · , 0 is similar due to symmetry. For exam-
ple, an adversary wants to recover s′A[i] = −7. He randomly fixes lj (j ∈
{0, 1, 2, 3}\{⌊ i

256⌋}) first. Then, we assume that he gets v = 6s which is fixed by
the computation of

v = m− u

=
∑

i′+256j 6=i

|k′[i′ + 256j]− 4s| .
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In this case, when l⌊ i

256
⌋ varies, the behavior of m used in Decode function and

the oracle’s output is shown in Table 2.

Table 2. The behavior of m and the oracle’s output(s′A[i] = −7)

l⌊ i

256
⌋ -4 -3 -2 -1 0 1 2 3

u(= m− v) 0.5s 0.5s 1.5s 2.5s 3.5s+1 3.5s 2.5s 1.5s
the oracle’s output 1 1 1 0 0 0 0 1

We can conclude that if u monotonically increases and then monotonically de-
creases, the oracle’s outputs become 1, · · · , 1, 0, · · · , 0, 1, · · · , 1. On the contrary,
due to the symmetry, if u monotonically decreases and then monotonically in-
creases, the oracle’s outputs become 0, · · · , 0, 1, · · · , 1, 0, · · · , 0.

Table 3. The behavior of u (Formula 5) corresponding to parameter l⌊ i

256
⌋ and sA[i]

sA[i]

u l⌊ i

256
⌋

-4 -3 -2 -1 0 1 2 3

-8 0 s 2s 3s 4s 3s 2s s
-7 0.5s 0.5s 1.5s 2.5s 3.5s+1 3.5s 2.5s 1.5s
-6 s 0 s 2s 3s+1 4s 3s 2s
-5 1.5s 0.5s 0.5s 1.5s 2.5s+1 3.5s+1 3.5s 2.5s
-4 2s s 0 s 2s+1 3s+1 4s 3s
-3 2.5s 1.5s 0.5s 0.5s 1.5s+1 2.5s+1 3.5s+1 3.5s
-2 3s 2s s 0 s+1 2s+1 3s+1 4s
-1 3.5s 2.5s 1.5s 0.5s 0.5s+1 1.5s+1 2.5s+1 3.5s+1
0 4s 3s 2s s 1 s+1 2s+1 3s+1
1 3.5s+1 3.5s 2.5s 1.5s 0.5s-1 0.5s+1 1.5s+1 2.5s+1
2 3s+1 4s 3s 2s s-1 1 s+1 2s+1
3 2.5s+1 3.5s+1 3.5s 2.5s 1.5s-1 0.5s-1 0.5s+1 1.5s+1
4 2s+1 3s+1 4s 3s 2s-1 s-1 1 s+1
5 1.5s+1 2.5s+1 3.5s+1 3.5s 2.5s-1 1.5s-1 0.5s-1 0.5s+1
6 s+1 2s+1 3s+1 4s 3s-1 2s-1 s-1 1
7 0.5s+1 1.5s+1 2.5s+1 3.5s+1 3.5s-1 2.5s-1 1.5s-1 0.5s-1
8 1 s+1 2s+1 3s+1 4s-1 3s-1 2s-1 s-1

Furthermore, we show how u changes according to l⌊ i

256
⌋ for each value of

sA[i] ∈ [−8, 8] in Table 3. As we can see, for each sA[i], u always monotoni-
cally increases and then decreases or monotonically decreases and then increases.
Therefore, the estimated value τ of each sA[i] ∈ [−8, 8] can be obtained theoret-
ically.
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Table 4. sA[i] and possible τs, outputs of Algorithm 7

sA[i] -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
τ 8 8 -7 -7 -6 -6 -5 -5 -4 -4 -3 -3 -2 -2 -1 -1 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8

Algorithm 7: Find−τ(b)

Input: b ∈ {0, 1}8

Output: τ ∈ [−7, 8] or NULL
1 τ, τ1, τ2 ← NULL
2 for i← 0 to 6 do

3 if b[i] 6= b[i+ 1] then
4 if τ1 = NULL then

5 τ1 ← i− 4

6 else if τ2 = NULL then

7 τ2 ← i− 3

8 if τ1 6= NULL and τ2 6= NULL then

9 τ = τ1 + τ2
10 if τ > 0 and b[0] = 1 then

11 τ = τ − 8

12 else if τ ≤ 0 and b[0] = 1 then

13 τ = τ + 8

14 Return τ

Next, we consider how to determine sA[i] from τs. We invite Qin et al.’s
algorithm (Algorithm 7) to calculate τ from the string of oracle’s outputs b.
Note that the output τ is expanded from -7 to 8, where τ belongs to [-6,4] in
Qin et al.’s paper. We show the relationship between possible τs and sA[i] in
Table 4. In particular, three values of sA[i] ∈ {−8,−7, 8} correspond to τ = 8.
Namely, when τ = 8 appears, an adversary has to determine sA[i] from {-8,-
7,8}. Thus, we conduct this attack only against sA[i] ∈ [−6, 7] in our improved
method.

4.3 Early Abort Technique for Terminating Queries

In Qin et al.’s method, 50 τs are collected for each coefficient and sA[i] is deter-
mined from the breakdown of them. For example, if 35 τs out of 50 are 3 and
15 τs are 2, then sA[i] = 3. However, this probabilistic process is inefficient. In
our algorithm, we set a deterministic condition for judging sA[i]. As shown in
Table 4, two types of τ correspond to unique value of sA[i] in [-6,7]. Therefore,
we can terminate collecting τ when two different types appear. We apply this
condition at Step 20 in Algorithm 8.
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Algorithm 8: Partial−recovery(p)

Input: p ∈ N

Output: s′A ∈ Rq

1 PB ←
s
2

2 ν′B ← Find−ν′B()
3 for i′ ← 0 to 255 do

4 ν′B [i
′]← 1

5 SkB
← SHA3-256 (ν′B)

6 for j ← 0 to 3 do

7 count← 0
8 t, temp← NULL
9 while count < p do

10 (l0, l1, l2, l3)
$
← [−4, 3]4

11 b← []
12 for lj ← −4 to 3 do

13 c←
∑3

k=0 (lk + 4)xi
′+256k

14 b.append (O (PB , c, SkB
))

15 t← Find−τ(b)
16 if t 6= NULL then

17 count = count+ 1
18 if temp = NULL then

19 temp← t

20 else if temp 6= t then

21 break

22 if temp 6= 8 and t 6= 8 then

23 if temp = t then
24 s′A[i

′ + 256j]← temp

else

25 s′A[i
′ + 256j]← max(temp, t)

else

26 s′A[i
′ + 256j]← NULL

27 Return s′A

4.4 Our Proposed Algorithm

We first propose Algorithm 8 to recover the coefficient of sA in [-6,7]. To launch
this attack, an adversary sets PB = s

2 , ν
′
B = Find−ν′

B
(), ν′B [i

′] = 1,and c =
∑3

k=0 (lk + 4)xi
′+256k according to the coefficient sA[i

′ +256j] that he wants to
recover. Then, the queries including (PB , c, SkB

) are sent to the oracle. When
li′ varies from -4 to 3, the outputs from the oracle are appended to the array b
(Step 14). Then the adversary gets τs from Find−τ(b). He keeps sending queries
until he gets two different values of τ or he gets same τs for p times. We execute
our experiments with different p and analyze the performance of the algorithm.
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Algorithm 9: Full−recovery(p)

Input: p ∈ N

Output: s′A ∈ Rq

1 s′A ← Partial-recovery(p)

2 sB , eB , e
′
B

$
← ψn

8

3 PB ← asB + eB

4 νB
$
← {0, 1}256

5 k← Encode (ν′B)
6 ν′B ← SHA3-256 (νB)
7 SkB

← SHA3-256 (ν′B)
8 index← []
9 for i← 0 to 1024 do

10 if s′A[i] = NULL then

11 index.append(i)

12 for list ∈ {−8,−7, 8}index.length() do

13 for j ← 0 to index.length ()− 1 do

14 s′A[index[j]] = list[j]

15 PA ← as′A
16 c← PAsB + e′

B + k

17 c← Compress(c)
18 if O (PB , c, SkB

) = 1 then

19 break

20 Return s′A

If τ = 8, this algorithm returns NULL without determining the value of the
target coefficient (Step 26). Besides, if two different τs are obtained, the larger
one is adopted (Step 25), otherwise s′A[i

′ + 256j] = τ .

Finally, we propose Algorithm 9 to recover the entire secret key sA. Taking
account of the fact that averagely only 0.28 coefficients in {-8, -7, 8} are included
in one secret key, so we decide to perform an exhaustive search on them. First,
by running Partial-recovery(p), an adversary gets s′A whose coefficients in [-
6,7] can be recovered. Next, he sets the public key PB , the secret key sB , and
the error polynomial eB , e

′
B in the same way as Bob does in Figure 1. νB is

set random bit string, because it has no significant meaning in this exhaustive
attack. Simultaneously, SkB

is calculated by hashing νB . Finally, he exhaustively
substitutes values in {-8,-7,8} for s′A[i] where is NULL (Step 14). Originally, PA

sent from Alice is used when Bob calculates c. However, the goal of this attack
is to check whether s′A = sA, thus PA = as′A is used (Step 15). The queries
generated by the above procedure are sent to the oracle repeatedly and when
the oracle outputs 1, this program stops and returns s′A.
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5 Our Experiments

At first, we implement NewHope1024-CPA-KEM [1] with parameters (n, q) =
(1024, 12289). Then, we generate 1000 secret keys sA randomly. Our goal is to
recover sA by using our proposed Algorithm 9, where we try different parameters
p in the set of {5, 10, 12, 15, 20, 30, 50}. All the algorithms and oracles are im-
plemented by Python3. Polynomial calculation is implemented using poly1d of
numerical calculation library NumPy. We run the programs on Intel Xeon Skylake
Gold 6130 with CPUs at 2.1GHz.

Table 5. The success rate and the number of queries when increasing the value of p

The value of p 5 10 12 15 20 30 50

The success rate (%) 0 20.9 52.3 80.7 97.4 100.0 100.0
The number of queris 78,648 135,602 155,610 185,789 233,803 327,659 512,435

The experimental results are shown in Table 5, where we illustrate the trade-
off between the number of required queries and the success rate. In addition,
we also represent the data in Figure 2. It is notable that the attack can achieve
100.0% success rate when p ≥ 30. Meanwhile, it indicates that decreasing p
reduces not only the number of queries but also decreases the success rate.
Specifically, if we sacrifice the success rate to 20.9%, we can reduce the number
of queries to 135,602.

Fig. 2. The relationship between the number of queries and the success rate (each dot
from left to right corresponds to the value of p = 5, 10, . . . , 50)
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Table 6. Comparison of experimental results of key mismatch attacks

Qin et al. [13] Our attack (p = 20)

The success rate (%) 96.9 97.4
The number of queries 879,725 233,803

Moreover, a comparison with Qin et al.’s experimental results is summarized
in Table 6. In the case of p = 20, the success rate is almost the same as that of
Qin et al.’s, but the number of queries is reduced by about 73%.

6 Conclusion

In this paper, we improved Qin et al’s key mismatch attack on NewHope, and
evaluated the trade-off between the number of queries and the success rate of
recovering the secret keys. As a result, the number of required queries can be
reduced by about 73% with almost the same success rate as that in Qin et al.’s
attack. Moreover, our attack can achieve 100.0% success rate.

The current key mismatch attacks, including ours, Qin et al.’s, and Bauer
et al.’s, are feasible under the assumption that the server honestly responses
to freely chosen queries and continues to reuse the secret key. For this reason,
they are not applicative to the CCA-secure NewHope using Fujisaki-Okamoto
transformation [9]. However, considering the aspect of efficiency in practical
use, there may be some cases where only CPA-secure NewHope is used without
updating the server’s secret key for a time. Then it is necessary to take some
countermeasures to prevent the leakage of secret information, such as updating
keys periodically or setting a detection system to malicious queries.
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Appendix A An Observation of Qin et al.’s Attack.

A.1 Qin et al.’s method [13]

Qin et al. analyzed the distribution of the quadruplet (sA[i],sA[i + 256], sA[i +
512], and sA[i + 768]). They show that with 98.50% probability, there are 3
coefficients in {−6,−5, . . . , 2, 3, 4} and 1 coefficient is in {-8,-7,5,6,7,8} in each
quadruplet (Table 4, [13]). In the following, we call this quadruplet Ξ for conve-
nience sake.
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Assume that an adversary wants to recover sA[i] (∈ {−8,−7, 5, 6, 7, 8}) after
he recovered other 3 coefficients, sA[i+256], sA[i+512], and sA[i+768] by their
attack for the coefficients in [-6,4]. He sets each polynomials with parameter h1
as follows:











sB , e
′
B = 0

eB = h1x
512 (h1 ∈ Zq)

ν′B = (0, · · · , 0, 1, 0, · · · , 0)(only i-th element is 1).

After receiving the query, the server has

k′ =

3
∑

j=0

(4s+ 1)xi+256j − h1x
512sA

=

3
∑

j=0

(4s+ 1)xi+256j −
(

−h1sA[512]− · · · − h1sA[1023]x
511

+h1sA[0]x
512 + · · ·+ h1sA[511]x

1023
)

.

Finally, the parameter m used in Decode function to calculate ν′A[i] is like

m =
3

∑

j=0

|k′[i+ 256j]− 4s|

≈ |1 + sA[i+ 512]h1|+ |1 + sA[i+ 768]h1|+ |1− sA[i]h1|+ |1− sA[i+ 256]h1|

≈ (|sA[i]|+ |sA[i+ 256]|+ |sA[i+ 512]|+ |sA[i+ 768]|)h1.

It sets ν′A[i] = 1 if this m ≥ q, and ν′A[i] = 0 otherwise. If ν′A[ℓ] = 0(∀ℓ 6= i),
the oracle’s output corresponds to the relationship between m and q. In other
words, if h1 is so small that m < q, the oracle keeps returning 1, but only after
h1 becomes large enough such that m ≥ q, it returns 0. The adversary varies the
value of h1 from 1 to 12289. At the point that the oracle’s output changes from
1 to 0, the following equation holds.

q ≈ (|sA[i]|+ |sA[i+ 256]|+ |sA[i+ 512]|+ |sA[i+ 768]|)h1

At this time, the adversary have

|sA[i]|+ |sA[i+ 256]|+ |sA[i+ 512]|+ |sA[i+ 768]| ≈
q

h1
.

He knows 3 coefficients except for sA[i] in the quadruplet. Therefore, he can
calculate |sA[i]| from Equation A.1. Furthermore he can determine sA[i] from
the absolute value and the information on the sign of sA[i] which is obtained by
the attack on the coefficients in [-6,4].

A.2 The Condition for Qin et al.’s Method

In this subsection, we consider the conditions for the success of Qin et al.’s attack.
Hereinafter, we define mi as m used in Decode function to calculate ν′A[i]. As
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shown above,

mi =

3
∑

j=0

|k′[i+ 256j]− 4s|

≈ (|sA[i]|+ |sA[i+ 256]|+ |sA[i+ 512]|+ |sA[i+ 768]|)h1.

Meanwhile, for all ℓ 6= i, we have

mℓ =
3

∑

j=0

|k′[ℓ+ 256j]− 4s|

≈ 16s− (|sA[ℓ]|+ |sA[ℓ+ 256]|+ |sA[ℓ+ 512]|+ |sA[ℓ+ 768]|)h1

when h1 is small. In this method, an adversary can calculate sA[i] only when
ν′A[i] changes from 1 to 0 and all other elements of ν′A keep 0s. Namely, until mi

becomes no smaller than q, mℓ (∀ℓ 6= i) must be smaller than q. Therefore, in
Qin et al.’s attack, the following inequality is required for all ℓ.

3
∑

j=0

|sA[i+ 256j]| >

3
∑

j=0

|sA[ℓ+ 256j]|. (6)

A.3 The Success Rate of Qin et al.’s Method

We show the distribution of the maximum value of
∑3

j=0 |sA[ℓ
′ + 256j]| (0 ≤

ℓ′ ≤ 255) in Table 7. We can see that max
ℓ′

(
∑3

j=0 |sA[ℓ
′ + 256j]|) is larger than

12 with (almost) 100% for every sA. In Table 8, we also show the distribution

of Ξ about its summation (=
∑3

j=0 |sA[i+ 256j]|).

Table 7. The distribution of max
ℓ′

(
∑3

j=0 |sA[ℓ
′ + 256j]|)

max
ℓ′

(
∑3

j=0 |sA[ℓ
′ + 256j]|) sA

12 5%
13 25%
14 34%
15 22%
16 10%
17 3%
18 1%
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Table 8. The distribution of Ξ about
∑3

j=0 |sA[i+ 256j]|

∑3
j=0 |sA[i+ 256j]| Ξ

5 0.6%
6 3.4%
7 8.8%
8 14.8%
9 18.3%
10 18.1%
11 14.7%
12 10.1%
13 6.0%
14 3.1%
15 1.3%

16 or larger 0.8%

We can estimate the success rate of Qin et al.’s attack by using Inequality (6)

and Table 8. For instance, if max
ℓ

(
∑3

j=0 |sA[ℓ+ 256j]|) = 12, sA[i] can be cal-

culated only if
∑3

j=0 |sA[i+ 256j]| is 13 or larger. In this case, the success rate
of recovering sA[i] is 11.2%(= 6.0% + 3.1% + 1.3% + 0.8%). We show the re-

lationship between the success rate and the values of max
ℓ

(
∑3

j=0 |sA[ℓ+ 256j]|)

in Table 9. We can conclude that the success rate of Qin et al.’s method for
recovering coefficients in {-8,-7,5,6,7,8} is not so high.

Table 9. The relationship between max
ℓ

(
∑3

j=0 |sA[ℓ+ 256j]|) and the success rate

max
ℓ

(
∑3

j=0 |sA[ℓ+ 256j]|) The success rate

12 11.2%
13 6.2%
14 2.1%
15 0.8%


	 Improving Key Mismatch Attack on NewHope with Fewer Queries 
	Introduction
	Our Contributions
	Related Works
	Roadmap

	Preliminaries
	NewHope Key Exchange Protocol
	The Functions Used in NewHope

	Key Mismatch Attack on NewHope
	The General Model
	Bauer et al.'s Method
	Qin et al.'s Method

	Our Improved Method
	Improvement on the Construction of Queries
	Extending the Search Range of Secret Key
	Early Abort Technique for Terminating Queries
	Our Proposed Algorithm

	Our Experiments
	Conclusion
	An Observation of Qin et al.'s Attack.
	Qin et al.'s method QCD19
	The Condition for Qin et al.'s Method
	The Success Rate of Qin et al.'s Method



