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Abstract. In Time-Specific Encryption (TSE) [Paterson&Quaglia, SCN’10] system, each secret-key
(resp. ciphertext) is associated with a time period ¢ € [0,7 — 1] (resp. a time interval [L, R] where
L,R € [0,T — 1]). A ciphertext under [L, R] is correctly decrypted by any secret-key for any time ¢
included in the interval, i.e., t € [L, R]. TSE’s generic construction from identity-based encryption (IBE)
(resp. hierarchical IBE (HIBE)) from which we obtain a concrete TSE scheme with secret-keys of size
O(log T)|g| (resp. O(log® T)lg|) and ciphertexts of size O(log T)|g| (resp. O(1)|g|) has been proposed in
[Paterson&Quaglia, SCN’10] (resp. [Kasamatsu et al., SCN’12]), where |g| denotes bit length of an ele-
ment in a bilinear group G. In this paper, we propose another TSE’s generic construction from wildcarded
identity-based encryption (WIBE). Differently from the original WIBE ([Abdalla et al., ICALP’06]), we
consider WIBE w/o (hierarchical) key-delegatability. By instantiating the TSE’s generic construction,
we obtain the first concrete scheme with constant size secret-keys secure under a standard (static) as-
sumption. Specifically, it has secret-keys of size O(1)|g| and ciphertexts of size O(log® T)|gl, and achieves
security under the decisional bilinear Diffie-Hellman (DBDH) assumption.

Keywords: Time-specific encryption (TSE), Constant-sized secret-keys, The decisional bilinear Diffie-Hellman
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1 Introduction

Time-Specific Encryption (TSE) [/5]. In a TSE system with time periods T € N, each secret-key (resp.
ciphertext) is associated with a time period ¢ € [0, T — 1] (resp. a time interval [L, R], where L,R € [0, T — 1]).
Any ciphertext for [L, R] can be correctly decrypted by any secret-key for any ¢ such that ¢ € [L, R]. If we say
that a TSE scheme is secure, that informally means that any probabilistic polynomial time (PPT) algorithm,
given a ciphertext C* of a plaintext m* under an interval [L*, R*], cannot get any information about m*. This
type of TSE, on whom we mainly focus in this paper, is called plain setting in [15].

Paterson and Quaglia [15] proposed a generic construction of TSE from identity-based encryption (IBE)
[18]. Kasamatsu et al. [12, 13] proposed a generic construction of TSE from forward secure encryption
(FE) [3, 9] and a more efficient concrete construction based on Boneh-Boyen-Goh hierarchical identity-based
encryption (HIBE) [6]. Secret-key size of the IBE-based TSE is O (log T-K (legg 1)), where X7, denotes

an IBE scheme with n € N identities and K (ZI"BE) denotes its size of secret-keys. This means that secret-key
size of any concrete scheme obtained from the IBE-based generic construction of TSE cannot be constant
(even if the secret-key size of the underlying IBE scheme is constant). By a similar reason, either secret-key
size of any concrete TSE scheme obtained by the FE-based generic TSE construction or that of the concrete
BBG HIBE-based TSE construction cannot be constant.

As pointed out by [15], broadcast encryption (BE) [10] is conceptually broader than TSE. As far as
we know, master public-key size (and encryption/decryption cost) of currently-known BE schemes increase
linearly with total number of users (e.g., one in Subsect. 3.1 in [7], one in [20], one in Subsect. 3.1 in [ 1]),
square root of total number of users (e.g., one in Subsect. in [7]), or maximum cardinality of a set of users

associated with a ciphertext (which determines users who can decrypt the ciphertext) (e.g., one in Subsect.



3.3 in [11]). Because of that, from currently-known BE schemes, we obtain TSE schemes whose master
public-key size (and encryption/decryption cost) increase linearly with O( VT) at least.

It is rational that, based on the fact that TSE is more functionally limited than some existing primitives
such as BE, attribute-based encryption [ 7] and functional encryption [8], we require TSE to be more (asymp-
totically) efficient than them. Precisely, in this paper, we focus on (asymptotically) efficient TSE schemes,
whose master public-key/(user’s) secret-key/ciphertext size and encryption/decryption cost are O(log> T) at
most.

In this paper, we affirmatively solve the following open problem: Can we construct a TSE scheme with
total time periods T, whose secret-key size is O(1), whose master public-key/ciphertext size and encryp-
tionjdecryption cost are O(log* T) at most, and which is secure under standard (static) computational as-
sumptions?

Wildcarded Identity-Based Encryption (WIBE) [1,2,4]. WIBE is a generalization of HIBE, where each
ciphertext is associated with a wildcarded identity wID € {0, 1, #}* which can include some wildcard symbols
* and such ciphertext can be correctly decrypted by any secret-key associated with any identity ID € {0, 1}*
s.t. forevery i € [1, L] s.t. wID[i] # =, it holds wID[i] = ID[i]. Abdalla and Birkett et al. [1, 2, 4] showed that
by partially modifying existing HIBE schemes [5, 6, 19], we obtain WIBE schemes. Since they defined WIBE
as a generalization of HIBE, their WIBE schemes are assumed to have (hierarchical) key-delegatability,
which guarantees that there exists a polynomial time algorithm to derive a secret-key for an identity from
any secret-key for any ancestor identity of the identity. In this paper, meanwhile, we define WIBE as a
generalization of IBE, which implies that they lack (hierarchical) key-delegatability.

Our Contribution. We propose a generic construction of Range Encryption (RE) from WIBE w/o key-
delegatability. RE is a generalization of TSE. Differently from TSE, RE handles not only a range [L,R] C
[0,T — 1] s.t. L < R, but also a range [L,R] C [0,T — 1] s.t. L > R. From a normal TSE scheme, we can
easily construct a RE scheme by making an encryptor divide a range [L,R] C [0,T — 1] s.t. L > R into two
subranges [L, T — 1] and [0, R] and independently generate a ciphertext for each subrange. Secret-key size
of the generic construction is described as O (K (Z@%];E)), where 24 o is a WIBE scheme whose bit length
of an identity is n € N. Moreover, we show that by modifying Waters IBE scheme [19], we can construct a
WIBE scheme (w/o key-delegatability), whose secret-keys consists of constant number of group elements,
i.e., two group elements, and which is secure under standard assumptions, i.e., the decisional bilinear Diffie-
Hellman (DBDH) assumption. By using the WIBE scheme to instantiate the generic construction of RE from
WIBE, we obtain a RE (or TSE) scheme which can justify our claim that we certainly solve the open problem
mentioned earlier.

Our Approach. It might be a surprise that it is not hard to obtain a RE scheme with constant-sized secret-keys.
However, since the naive methodology has some disadvantages, we propose another improved methodology.
Let us explain the details below.

Let PQ-IBE-TSE denote the IBE-based generic construction of TSE [15]. Let PQ-WIBE-TSE denote PQ-
IBE-TSE, where we substitute WIBE for IBE. Let PQ-WIBE-RE denote the range encryption constructed by
PQ-WIBE-TSE. We briefly explain PQ-WIBE-RE.

We consider a binary tree with depth log T (as shown in Fig. 3 in Sect. 5). A time period ¢ € [0,T — 1]
corresponds to a leaf node with a bit string ¢ € {0, 1}°¢” (which is the binary value of 7). A secret-key for
t € [0,T — 1] is produced as a secret-key for the bit string (or identity) ¢ € {0, 1}'°¢” by using the key-
generation algorithm of the WIBE scheme. Given a time interval [L, R] where L,R € [0, T — 1], we consider
some wildcarded strings Ty g which covers [L, R] and whose cardinality is the minimum'. For instance,
when T = 8 in Fig. 3, T; 6; = {001, 01+, 10+, 110}. When we encrypt a plaintext under [L, R], we encrypt the
plaintext under each (wildcarded) bit string in T/, g; by using the encryption algorithm of the WIBE scheme.

IFor the formal algorithm deriving such a set Ty, z;, we recommend the reader to refer to the original paper [15] or
Sect. 5 of this paper.



We can easily prove that if the underlying WIBE scheme is secure, then PQ-WIBE-RE is secure. Secret-
key size of PQ-WIBE-RE is O (K (2{,3%;)). There have already existed WIBE schemes (with key-delegatability)
whose secret-key size is constant, e.g., Abdalla and Birkett et al.’s WIBE scheme [, 2, 4] based on Boneh-
Boyen-Goh HIBE [6]. Thus, by using such a WIBE scheme to instantiate PQ-WIBE-RE, we can obtain a RE
scheme with constant-sized secret-keys.

However, such a naive methodology has the following disadvantages.

1. Ciphertext size of PQ-WIBE-RE can be smaller. In other words, there exists another WIBE-based generic
construction of RE, from which we obtain a concrete RE scheme with smaller ciphertext size. We denote
it by IK-WIBE-RE.

2. To the best of our knowledge, no WIBE scheme (with or without key-delegatability) with constant-sized
secret-keys secure under standard (or static) assumptions has been proposed. For instance, Boneh-Boyen-
Goh HIBE-based WIBE scheme [1,2, 4] with constant-sized secret-keys has been proven to be secure
under non-standard (or non-static) assumption.

Let us provide the details in the following 2 paragraphs.

IK-WIBE-RE. Roughly speaking, encryption process adopted in IK-WIBE-RE is the same as that adopted
in PQ-WIBE-RE. Namely, that is a process, where we, given a plaintext m and an range [L, R], derive a set
of wildcarded IDs Tz g}, encrypt m under each wiD € Ty, g (by using the encryption algorithm of Zif;%BTE)
to produce a ciphertext C,,;p, and construct Ci. g as {Cywip | wID € Ty pg}. Thus, size of the ciphertext
is described as Y,,/per,, , [Cwipl- If we adopt our WIBE scheme based on Waters IBE scheme [19], that is
described as ZWIDET[L_R] {ler] + (2 + |wID|*)|g|}23. This implies that |Cjz k)| is determined solely by T|; ). Let
us explain how we derive Ty g;.

We introduce a binarizing algorithm Binarizej,r which takes a numerical value (or time period) ¢ €
[0, T — 1] and outputs a bit string b € {0, 1}'°¢7. For instance, when T = 32, the relation between ¢ and b is
defined as shown in Fig. 5 in Subsect. 6.1. Then, we introduce a classifying algorithm Classify,,,; which
takes a value ¢ € [0,7 — 1] and outputs a class index in [0, log T']. Specifically, it takes ¢t € [0,7 — 1], and
outputs log 7 if t = 0, or outputs i € [0,log T — 1] if t mod 2™*! = 2'. (See Fig. 7.)

Given a range (or time interval) [L, R], we firstly determine a value (called divider) D € [L, R] which
divides the range into [L, D — 1] and [D, R]. Informally, D is the value which is classified as the class whose
index is the largest among the values in [L, R]. Let Dividey, 7 denote the algorithm which takes [L, R] and
outputs D.

Next, we derive sets of wildcarded IDs Tp g; and Tz p-1; for [D, R] and [L, D — 1], respectively. Firstly,
let us explain how to derive T(p rj. We formally prove that VL,R € [0,T — 1] with D « Dividej, (L, R),
ki € [0,Classify,p(D)], Fkz € [0,k — 1], -+, Tk, € [0,kpy — 1] s.t. D=1 + 2 2k = R. Moreover,
we prove that Vi € [1,n], wID; € {0, 1,+}'°¢7 which covers a subrange® [D + Y21 25, D — 1 + 3i_ 2k]
and satisfies |wID;|, = k;. We set T|pg) as {(wID; | i € [1,n]}. Likewise, we derive Tz p—1;. We prove that
YL,R € [0,T — 1] with D « Dividey,7(L,R), k| € [0,Classity,,,7(D) — 1], 3k; € [0k} — 1], ---,
3k, € [0,k/,_, = 1]st. D=3, 2% mod T = L. Moreover, we prove that Vi € [1,n'], IwlD; € {0,1, s flog T
which covers [D — 25:1 2% mod T,D - 1 — ;;i 2k mod T and satisfies wID'|, = k.. We set Tz p_1) as
{wiD; i€ [1,n']}.

Finally, we derive T g from Tj. p-1; and Tpg). Although the most simple way is deriving a union
set of the two sets, i.e., Tjzg; = Tizp-11 U Tipr;, we adopt the following another way. Let n* denote the
integer s.t. [0 < n* < min(n, n’)] /\?;1 [k,- = kl’] A [n* <min(n,n’) = kpy # k:z*+1]' We formally prove that
Yi € [1,n"], wID; and wiD can be merged into a new wiD? which covers both of the ranges covered by wiD;

2|g| (resp. |gr|) denotes bit length of an element in a bilinear group G (resp. Gy) for a (symmetric) bilinear map
e:GxG - Gy.

3|wID|, denotes number of wildcard symbol * in wID € {0, 1, *}~.

4wID € {0, 1, )% covers a range [a, b] means that any value included in the range matches the wildcarded ID and any
value excluded from the range does not match it.



and wiID),i.e., [D+ Y2125, D -1+ ¥i_, 241UID - ¥j_, 25 mod T, D — 1 — ¥~} 2% mod T1, and satisfies
[wID?|, = k; + 1. In conclusion, we set Tz ry as Tizp-11 U Tip.ry \ier1.n1 iWIDi, WID!} Uy o iWI D5 ).

Let us compare size of ciphertexts generated based on Ty, g with that on Tz, p—17 U Tip,r)- Let |Cr g| (xesp.
|Cr.p,rl) denote size of ciphertext generated based on Tz gy (resp. Tiz.p-17 U Tip.1)- E Tizr1 = Trr.o-11 U Tip.rys
then |CL,R| = |CL,D,R|' Else if TIL,RI * T[L,D—l] U T[D,R]’ then |CL,R| < |CL,D,R|- Especially, ifn*=n= n’, |CL,R|
becomes approximately the half of |C; p g|. For instance, when [L, R] is [1, T —2] (or [2'°87=1 4+ 1, 2lceT=1 _2})
withn* =n=n" =1ogT - 1, |Crprl = 2(og T — 1)|gr| + (log2 T +1logT —2)|g| and |[Crg| = (logT —
Dlgr| + %(log2 T +3logT —4)gl = %lCL,D,Rl + (log T — 1)|g|. For instance, when T = 210 (resp. T = 220y,
|Cr.pr| becomes 18|gr|+ 108|g| (resp. 38|gr| +418|g|) and |Cy | becomes 9|gr| + 63|g| (resp. 19|g7| +228|g|).
Note that the maximum |Cp pg| is 2(log T — 1)|gr| + (log2 T +logT — 2)|g| when [L,R] is [1,T — 2] (or
[2'oe7=1 4 1,2%°eT=1 _ 2]) Thus, in an asymptotic sense, |Cy pz| is O(log T)|gr| + O(log® T)|g|. Neither the
maximum of [Cy g| nor the range [L, R] maximizing |Cy g| is unknown. However, since for every [L, R], |Cp k|
becomes equivalent to or smaller than |Cy pgl, |Cp gl is asymptotically (at most) O(log T)|gr| + O(log2 T)lgl.

Thus far, we introduced IK-WIBE-RE. Henceforth, we explain how smaller ciphertext size of IK-WIBE-

RE is than that of PQ-WIBE-RE. Let TTIE R denote the set of wildcarded IDs (for the range [L, R]) in PQ-

WIBE-RE. For every [L, R], TfLQ’ Rl and Tz p-17 U Tip,r), where D « Dividej, (L, R), do not become the
same, but resemble. Precisely, they consist of the same number of wildcarded IDs, and if there exists a
wildcarded ID in one of them which covers a subrange of [L, R], then there also exists a wildcarded ID in
another one of them which covers the same subrange. This implies that size of ciphertexts generated based
on them become the same. Hence, for any [L, R], size of ciphertext of IK-WIBE-RE becomes equivalent to
or smaller than that of PQ-WIBE-RE, and for some [L, R], the former approximately becomes the half of the

latter.

Our WIBE Scheme with Constant-Sized Secret-Keys Secure under the DBDH Assumption. In IK-WIBE-RE,
the WIBE scheme is not required to be (hierarchically) key-delegatable. In other words, from any WIBE
scheme with constant-sized secret-keys w/o key-delegatability, we can obtain a RE (or TSE) scheme with
constant-sized secret-keys. Influenced by [1, 2, 4], we show that a WIBE scheme w/o key-delegatability and
with constant-sized secret-keys is obtained by modifying Waters IBE scheme [19]. Security of the WIBE
scheme is reduced to that of Waters IBE scheme, namely the decisional bilinear Diffie-Hellman (DBDH)
assumption. By adopting the WIBE scheme to instantiate IK-WIBE-RE, we obtain a RE scheme which can
be an evidence that we certainly solve the open problem mentioned earlier.

Another Generic Construction of TSE from BE. As we explained earlier, concrete TSE constructions ob-
tained by using the naive generic construction of TSE from BE have large master public-key and encryp-
tion/decryption cost which increase linearly with O( VT) at least. We found another generic construction of
TSE from BE. Let us denote it by IK-BE-TSE. It adopts the same tree-based technique as the IBE-based TSE
construction [15] (PQ-IBE-TSE) and the naive WIBE-based TSE construction (PQ-WIBE-TSE). The details
can be seen in Subsect. C.3.

In IK-BE-TSE, we use BE schemes whose maximum cardinality of a set of users associated with a
ciphertext is 2log T — 2. Because of that, from IK-BE-TSE, we can obtain concrete TSE schemes whose
master public-key and encryption/decryption cost are in polylogarithmic order in 7. However, each secret-
key for a time period ¢ consists of log 7 + 1 number of secret-keys of the BE scheme. So, secret-key size
of any concrete TSE scheme obtained from IK-BE-TSE increase linearly with log 7 + 1 and thus cannot be
constant.

Paper Organization. In Sect. 2 for preliminaries, we introduce some special notations, and give definitions
of bilinear groups and DBDH assumption. In Sect. 3 (resp. Sect. 4), we provide syntax and security definition
for WIBE w/o key-delegatability (resp. RE). In Subsect. 6.1 and Subsect. 6.2, we explain some algorithms
of IK-WIBE-RE. Before that, in Subsect. 5, we explain the IBE-based TSE by [15] and the WIBE-based
TSE which replaces the underlying IBE scheme in the IBE-based TSE with an WIBE scheme, since they
are closely related to IK-WIBE-RE. In Subsect. 6.3, we compare existing generic RE/TSE constructions



in terms of space efficiency. In Sect. 7, we instantiate IK-WIBE-RE by our original WIBE scheme w/o key-
delegatability and compare existing concrete RE/TSE constructions in terms of space/time efficiency, security
and required assumptions.

2 Preliminaries

Notations. For an integer 1 € N, 11 denotes a security parameter. PPT, denotes a set of all probabilistic
algorithms whose running time is polynomial in 1. We say that a function f : N — R is negligible if
for every ¢ € N, there exists xyp € N such that for every x > xp, f(x) < x7°. NEG, denotes a set of
all negligible functions for A. For a bit string a € {0, 1}V, a[i] € {0,1} denotes the i-th bit of a. For a
wildcarded identity wID € {0, 1, %}V, |[wID|, € [0, N] denotes number of wildcard symbol * in wID, formally
2iel0.N~-1] s.t. wiD[i]=+ 1. We say that a wildcarded identity wiID € {0, 1, #}V covers a subrange [a, b] of a range
[A, B] if every value included in the subrange matches (or satisfies) the wiID and every value excluded from
the subrange does not match the wiD.

Bilinear Groups of Prime Order. Gpg generates bilinear groups of prime order. Let 4 € N. Specifically, it
takes 11 and randomly generates and outputs (p, G, Gr, e, g, h). First, p is a prime with bit length A. Second,
(G, Gy) are multiplicative groups of order p. Third, (g, #) are generators of G. Fourth,e : G X G — Gy is a
(symmetric) function computable in polynomial time which satisfies the following conditions: (1) Bilinearity:
For every a,b € Z,, e(g",h’) = e(g, ). (2) Non-degeneracy: e(g,h) # lg,, where 1g, denotes the unit
element.

Definition 1. Decisional Bilinear Diffie-Hellman (DBDH) assumption holds if VA € N, YA € PPT,, de €
NEG, s.t. AdvR'(A) = |Pr[1 < A(p, G, g, 8%, &%, 87, e(g,9)")] = Pr[1 « A(p,G, g,¢%, 8", 8", (g, 9)“)1l <

& where (p, G, Gy, e,8,") « Gpo(1") and . By, 0 < Z,

3 Wildcarded Identity-Based Encryption (WIBE)

Wildcarded identity-based encryption (WIBE) [1, 2, 4] was originally introduced as a generalized primitive
of hierarchical IBE (HIBE). In WIBE, a plaintext is encrypted under a wildcarded identity which can include
some wildcard symbols *, and the ciphertext can be correctly decrypted by a secret-key for an identity match-
ing the wildcarded identity. The original WIBE automatically inherits the (hierarchical) key-delegatability.
In this paper, we consider WIBE lacking key-delegatability, whose definitions are given in this section. Def-
initions of the original WIBE are given in Subsect. A.5.

Syntax. Wildcarded identity-based encryption (WIBE) consists of following 4 polynomial time algorithms,
where Dec is deterministic and the others are probabilistic: Let 14, where 1 € N, denote a security parameter.
Let L € N denote bit length of an ID or wildcarded ID (wID). Setup algorithm Setup takes (14, 1) as input,
then outputs a master public-key mpk and a master secret-key msk. We write the procedure as (mpk, msk) <
Setup(14, 1£). We assume that space of plaintexts M is uniquely determined by mpk. Note that the other
algorithms implicitly takes mpk as input. Key-generation algorithm KGen takes msk and an ID € {0, 1}*,
then outputs a secret-key sk;p. We write it as sk;p < KGen(msk, ID). Encryption algorithm Enc takes a
plaintext m € M and a wID € {0, 1, #}*, then outputs a ciphertext C,,;p. We write it as C,,;p < Enc(m, wiD).
Decryption algorithm Dec takes a secret-key sk;p and a ciphertext C,,;p, then outputs a plaintext m € M or
a special symbol L which means that decryption failed. We write it as m / L < Dec(sk;p, Cyip)-

Additionally, we define matching algorithm Match,. It takes an ID € {0, 1} and a wID € {0, 1, %)%,
verifies whether the /D matches the wiD, then outputs a Boolean symbol. Formallly, it outputs 1 (if Vi €
[0, L — 1] s.t. wID[i] € {0, 1}, ID[i] = wID[i]) or O (otherwise).

We require every WIBE scheme to be correct. A WIBE scheme 2w gg = {Setup, KGen, Enc, Dec, Match}
is correct, if YA € N, YL € N, Y(mpk, msk) « Setup(14,15), VID € {0, 1}%, Vsk;p < KGen(msk, ID),



Vm e M, YwID € {0, 1, )t s.t. Match,(ID,wID) = 1, VC,,;p < Enc(m, wID), it holds that m « Dec(sk;p,
CW[D)'

IND-CPA Security on Multiple Ciphertexts. For WIBE schemes, we consider a security notion of (adaptive or
selective) indistinguishability against adaptive chosen plaintexts attack (IND-CPA) on multiple ciphertexts.
In this section, we give the definition of the adaptive security. The one of the selective security is given in
Subsect. A.1. For a WIBE scheme Xywgg, a probabilistic algorithm A and a bit b € {0, 1}, we consider a

. . IND-nWID-CPA : : .
security experiment Expty 1" described in Fig. 1.

Expt2P PO CPR(TTT 17;
(mpk, msk) « Setup(14, 1%)
KGeny

o
WIDY, -+ ,wID}, mo,my, st;) < A;™* (mpk), where
»ONM(ID; € {0, 1}1), where j € [1, ¢]: Return sk; < KGen(msk, ID;).

msk
Assume that A ey, [WIDF € {0, 1, %} A jepy ) Matchy (ID;, wIDY) = 0]

KGeny
Vi€ [1,n],C* « Enc(my, wID?). Return b’ — AS™ (st,,C*, -, C*), where
>O':ni:n2(ID € {0, 1}"): Return sk;p — KGen(msk, ID), if A\;,q Match,(ID, wID}) = 0. Else, Return L.

Fig. 1. Security experiment for a WIBE scheme Xy g

Definition 2. Let n € N. A WIBE scheme Swigg is IND-nWID-CPA, if YA € N, YL € N, YA € PPT,,

Je € NEG,, Advr "W CPA (L) = | Tpeio, (-1 PrExptf o3P 15 1M = 1]] < €.

The following theorem, whose proof is given in Subsect. D.1, guarantees that the adaptive or selective
IND-CPA security on single ciphertext implies the one on multiple ciphertexts.

Theorem 1. For every WIBE scheme 2wigg and every integer n € N, if Xwigg is IND-WID-CPA (resp. IND-
sWID-CPA), then it is IND-nWID-CPA (resp. IND-snWID-CPA).

4 Range Encryption (RE)

Paterson and Quaglia [ 5] introduced time-specific encryption (TSE) as a generalization of time-release
encryption [ 14, 16]. In this paper, we are interested in one type of TSE whom [15] named plain setting®. In
the TSE system (in plain setting) with time periods T in total, there is a trusted authority which privately
generates a secret-key for a time period ¢ € [0, T — 1]. A plaintext is encrypted under a time interval [L, R]
such that 0 < L < R < T — 1, and the ciphertext can be correctly decrypted by using a secret-key for a
time period ¢ in the inverval, i.e., € [L, R]. In this paper, we consider a generalized primitive named range
encryption (RE). In RE, the range [L, R] is allowed to be one s.t. 0 < R < L < T — 1. In this case, the range is
equivalent to [0, R] | J[L, T — 1]7. In this section, we provide some definitions of RE. (Definitions of TSE can
be seen in Subsect. A.3.)

SWhen n = 1, we refer to this as IND-WID-CPA.

Qther than the plain setting, they considered the other types of TSE, namely public-key setting and identity-based
setting. In the former (resp. latter) setting, each ciphertext is associated with not only a range [L, R] but also a public-key
(resp. identity), and the ciphertext can be correctly decrypted only when using not only a secret-key for a time period
t € [L,R] but also a secret-key for the public-key (resp identity). They showed that we can obtain a TSE scheme in
public-key setting (resp. identity-based setting) from a TSE scheme in plain setting and a normal public-key encryption
(resp. identity-based encryption) scheme.

7As you might already notice, there is no big difference between RE and TSE, since TSE also can encrypt a plaintext
under a range [L,R] s.t. 0 £ R < L < T — 1 by encrypting the plaintext under the subrange [0, R] and doing the same
under the subrange [L, T — 1].



Syntax. Range encryption (RE) consists of following 4 polynomial time algorithms, where Dec is determin-
istic and the others are probabilistic: Let 11, where A € N, denote a security parameter. Let [0, 7 — 1], where
T € N, denote a space of numerical values. Setup algorithm Setup takes (14, 17) as input then outputs a mas-
ter public-key mpk and a master secret-key msk. We write the procedure as (mpk, msk) < Setup(14,17). We
assume that space of plaintexts M is uniquely determined by mpk. Note that all the other three algorithms
implicitly take mpk as input. Key-generation algorithm KGen takes msk and a numerical value ¢ € [0, T — 1],
then outputs a secret-key sk; for the numerical value. We write it as sk, « KGen(msk, t). Encryption algorithm
Enc takes a plaintext m € M and arange [L, R], where L, R € [0, T — 1], then outputs a ciphertext Cz z;. Note
thatif L < R (resp. L > R), [L, R] is equivalent to {L, L+1,--- ,R—1,R} (resp. {L,--- ,T—1}U{0,--- ,R}). We
write it as Cizg) < Enc(m, [L, R]). Decryption algorithm Dec takes a secret-key sk, and a ciphertext Cyz gy,
then outputs a plaintext m € M or a special symbol L which means that the decrypting procedure failed. We
write it as m / L < Dec(sk;, C[L,R])'

We require every RE scheme to be correct. A RE scheme 2grg = {Setup,KGen, Enc,Dec} is correct,
if VA € N, YT € N, Y(mpk,msk) « Setup(1*,17), ¥t € [0,T — 1], Vsk, « KGen(msk,t), Vm € M,
VYL,R € [0, T - l] s.t.re [L, R], VC[L,R] — Enc(m, [L,R]), m <« Dec(skt, C[L,R])~

IND-CPA Security. As the security notion whom RE schemes should satisfy, we consider IND-CPA, which
intuitively means that no PPT adversary who is given a ciphertext for a plaintext under a range [L, R] cannot
get any information about the plaintext even if he can acquire any secret-keys for any numerical value 7 s.t.
t ¢ [L, R]. As the usual TSE schemes, e.g. [15], we consider two types of the security notion, namely adaptive
one (IND-R-CPA) and selective one (IND-sR-CPA). In this section, we give the definition of the adaptive
security. The one of the selective security is given in Subsect. A.2. For a RE scheme 2yg, a probabilistic

algorithm A, and a bit b € {0, 1}, we consider a security experiment Expt;\> &,%* in Fig. 2.

Exptye A PR (1, 17):
(mpk, msk) « Setup(14,17)

Gen
(L*,R*, my, my, st;) « Aloﬁ”k (mpk), where
»OFM (1, € [0, T — 1]), where i € [1, g]: Return sk; — KGen(msk, 1;).

msk
Assume that L* € [0,T — 1] A R" € [0,T = 1] Aiep g ti € [L*, R']

KGeny

C* « Enc(my, [L*,R*]). Return b’ « Af””k (st;, C*), where
»O"™ (1 € [0, T — 1]): If 7 ¢ [L*, R*], Return sk, «— KGen(msk, r). Else, Return L.

msk

Fig. 2. Security experiment for a RE scheme 2g.

Definition 3. A RE scheme Zxg is IND-R-CPA if VA € N, VT € N, YA € PPT), Je € NEG,, Advy o x4 () =
| Zpeqo.ny (= 1P PrExptiP X (14,17 = 1] < e

5 PQ-WIBE-TSE

PQ-IBE-TSE. Paterson and Quaglia [15] presented a generic construction of TSE scheme with T € N
time periods from IBE scheme with 27 — 1 identities. Let us denote the underlying IBE scheme by legg L
Additionally, for the IBE scheme, we denote a secret-key associated with an /D and a ciphertext associated
with an ID and a plaintext m by sk;p and C}%, respectively. In the TSE scheme, we consider a binary tree
whose depth is log T like the one in Fig. 3. The tree has T leaf nodes. Each leaf node is correlated with each
time period. Precisely, a leaf node associated with a bit string b is correlated with a time period which is the
decimal value of b. A time instant key (TIK) sk, for a time period ¢ € [0, T —1] is composed of 1 +log T secret-

keys of Eﬁ{gl, namely Sk, = (Sk[qu), Sk[Dzb[o], Sle:b[O]Hh[l], LN SkID:b[()]Hb[l]H~--||h[10g T—l])7 where b € {0, I}IOgT



denotes the binary value of ¢. In the case of T = 8 in Fig. 3, for instance, a TIK for ¢t = 3 is sk,—3 = (sky, sko,
skot, skoi1).

Covery(L,R), where 0 < L< R <29 —1:
® l:==L,r:=R,TLg =0. While l < r, do:
pa » If I = 0 mod 2, [ := Parent(]).
00 01 10 11 EISC, T[L,RJ = T[L,RJ U{l}, [ = Parent(l) + 1.
¢ 0 ol If r = 0 mod 2, Ty.z) := Tz Uir}, r = Parent(r) — 1.

6 o6 o &6 o6 ® Else, r := Parent(r).

000 001 010 011 100 101 110 111 Ifl - r, TlL’RJ = TlL’RJ U{l} Return TlL’RJ.

Fig. 3. A binary tree with depth 3 Fig. 4. Algorithm Cover,, which appeared as Algorithm I in [15], where

d € N and Parent takes a node and returns its parental node.

Next, let us informally explain how a ciphertext for a plaintext m under a decryption time interval (DTI)
[L,R], where 0 < L < R < T — 1, is generated. For a node with binary value b in depth Depthlogr(b) €
[0,log T'], let S, denote the set which consists of every leaf node whose one of ancestors is the node b, i.e.,
{bIIiE[Q‘IOgT_Depth(b)_,] B 1B €0, 1}}. If T = 8, for example, S; = {100, 101,110, 111}, S;o = {100, 101} and
Si10 = {110}. To construct the ciphertext for [L, R], we firstly deterministically find a set of nodes Ty g
according to the following rule: the union set (Uyer,, ,, Sp is equivalent to the set [L, R], and cardinality of
the set [Tizr| = ZbeT{L,R] 1 is the smallest. For instance, Tp6 = {01, 10,110}, Ty = {0,10, 110}, and
Ti7,71 = {111}. An algorithm Cover deriving Tz z; is formally described in Fig. 4. Finally, the ciphertext
C’[“L!R] is composed of ({C},_, | b € TiLr}).

Four algorithms of PQ-IBE-TSE are formally described in Fig. 19 in Subsect. C.1.

PQ-WIBE-TSE. The idea on whom PQ-WIBE-TSE is based is similar with the one on whom PQ-IBE-TSE
is based on. As PQ-IBE-TSE, PQ-WIBE-TSE defines a binary tree with depth log 7. One major difference
between the two is that PQ-WIBE-TSE uses a WIBE scheme Zif,%; (whose bit length of an identity is log T').
A TIK for ¢t € [0,T — 1] is sk, = skjp=p, where b is the binary value of 7. A ciphertext for a plaintext m

under a DTI [L, R] satisfying 0 < L < R < T —11is CE’LR] ={C ., | b€ TFL’R]}), where the set of

wildcarded IDs T’[*L’R] is defined as {p||x°¢T-! | p € Ti.r}. For instance, sk3 = skoi1, TE‘Z 6 = {01, 10%, 110}
and CJ; ¢, = (Cp.. Clo.r Cl)-

Four formal algorithms of PQ-WIBE-TSE are in Fig. 20 in Subsect. C.2.

6 Our Generic Construction of RE from WIBE (IK-WIBE-RE)

As described in Fig. 6, IK-WIBE-RE has 4 main algorithms {RE.Setup, RE.KGen, RE.Enc, RE.Dec} and 6
sub algorithms {Binarize,r,Classify s, Dividejogr, LatterWID,, 7, FormerWIDy, 7, Merge,o. 7} In
the first subsection, we introduce the sub algorithms. In the second subsection, we introduce the main al-
gorithms. Hereafter, let PQ-WIBE-RE denote the RE scheme constructed from PQ-WIBE-TSE which was
explained in Sect. 5.

6.1 Six Sub Algorithms of IK-WIBE-RE

5 sub algorithms other than Binarize,r are used to determine a set of wildcarded IDs Ty ) for a range
[L, R] in an encryption procedure. Binarize 7 is a general algorithm used in the whole system.
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Fig. 5. Correspondence between a numerical value ¢ € [0,31] and a binary value b € {0, 1}°.

Binarizeo, r binarizing ¢ € [0, T — 1]. For PQ-WIBE-RE, the correspondence between a time period and
a bit string was defined in a way that b is the binary value of ¢. For IK-WIBE-RE, the correspondence is
defined as shown in Fig. 5. The formal algorithm Binarize,, 7 which takes a numerical value ¢ and returns
its binary value is given in Fig. 6. Here, we provide two theorems. We prove Theorem 2 in Subsect. D.2. We
can analogously prove Theorem 3.

Theorem 2. Yk € [0,logT], YVt € [0,T — 1] s.t. t mod 2k =0, if we set ID = Binarizey,r(t) and Vj €
[0,log T — 1], wiID[j] = ID[J] (if j € [k,logT — 1]) or wID[]] := * (otherwise), then wID € {0, 1, %}log”
covers a range [t,t + 2k 1.

Theorem 3. Vk € [0,logT], ¥t € [0, T —1] s.t. t mod 2¥ = 0, if we set ID = Binarizey7r(t—1 mod T) and
Vje[0,log T — 1], wID[ ] := ID[j] (if j € [k,log T — 1]) or wID[j] := * (otherwise), then wID € {0, 1, x}°¢T
covers a range [t — 2k mod T,t — 1 mod T]. Note that modulo operation with T, i.e., mod T, should be
considered only when t = Q.

Classify,, r classifying ¢ € [0, — 1] into log T + 1 classes. We classify each value ¢ € [0, T — 1] into
log T + 1 classes. If T = 32, as shown in Fig. 7, there are 6 classes i € {0, 1,2, 3,4, 5}. Firstly, O is classified as
class 5. The other value 7 € [1, T — 1] is classified as class i € {0, 1,2,3,4} s.t.  mod 2! = 0 At mod 2! = 2!,
Generally, in case of T € N (s.t. log T € N), there are log T + 1 classes i € [0,1log T]. O is classified as class
logT.t € [1,T — 1] is classified as class i € [0,logT — 1] s.t. # mod 2/ = 0 A t mod 2! = 2. The formal
algorithm Classify,, 7 is given in Fig. 6.

Related to Classify,, we provide five theorems below. Intuitively, Theorem 6 says that for every ¢ €
[0, — 1] s.t. ¢ := Classify7(7) and every 6 € [1,2¢], the identities for  + 6 — 1 and for 7 — ¢ are
identical except for the c-th bit (or the (log T — 1)-th bit, if = 0). Theorem 7 says that for every ¢ and every
k € [0,Classify|,7(¢) — 1], the class indexes for ¢ + 2% and for ¢ — 2F are (identically) k. Theorem 8§ says
that for every 1 w. ¢ := Classify,q, r(?), the class indexes for 7 + 2¢ and for 1 — 2¢ are greater than or equal
toc + 1 (or equal to log T + 1 if ¢ = 0). Short proofs of the former two (theorems) are given below, but long
ones of the latter three are given in Subsect. D.3, D.4 and D.5, respectively.

Theorem 4. V¢ € [0, T—1] with ID < Binarizer(t), Yk € [0, Classify,o, r(?)], if we set ¥ j € [0,log T —
11, wID[j] := ID[j] (if j € [k,JogT — 1]) or wID[j] := * (otherwise), then wID € {0, 1, }°¢T covers a
subrange [t,t + 2k — 1.

Proor. Obviously, V¢ € [0, T — 1], Vk € [0, ClassiflegT(t)], ¢ mod 2% = 0. Hence, by Theorem 2, the proof
is completed. O

Theorem S. V¢ € [0,T — 1] with ID « Binarizej,r(t — 1 mod T), Yk € [0, Classify,,r(1)], if we set
Vje[0,logT —1], wID[j] := ID[j] (if j € [k,1log T —1]) or wID[j] := * (otherwise), then wID € {0, 1, s flog T
covers a subrange [t — 2 mod T,t — 1 mod T]. Note that any modulo operation with T, i.e., mod T, is
considered only when t = Q.

Proor. Obviously, Yz € [0, T — 1], Yk € [0, Classify,q, r(#)], f mod 2k = 0. Hence, by Theorem 3, the proof
is completed. O



RE.Setup(14,17): *Classify,r(1): If 1 = 0, Return log 7.
(mpk, msk) .= WIBE.Setup(14, 1'¢7), i:=1logT — 1. While i > 0, do:

Return (mpk, msk) Return i if t mod 2! =27, j := i — 1.

RE.KGen(msk, t): ID = Binarize (). *Divide,, 7 (L, R):

Return sk, := WIBE KGen(msk, ID). IfL=0VL>R, Return D := 0.

RE.Enc(L, R, m): D :=2"%eT-1 j:=log T — 1. While i > 0, do:
D :=Dividey, (L, R). If L < D <R, Return D.

Tipg) = LatterWID, (D, R). Elseif R<D,D:=D-2"andi:==i-1.
Tizp-17 := FormerWIDy, (L, D — 1). Else, D:=D+2'andi:=i-1.

Tirry) = Merge,, 1 (Tip.rys Tiz.p-17)- *LatterWIDy,, (D, R):

Parse T g as {(wID; | i € [1,n]}. n:=0,0:=D-1,i:=Classify,,r(D).
Vi€ [1,n], C; := WIBE.Enc(wlD;, m). While i > 0, do:

Return Cy. gz = {C; | i € [1,n]}. If Q +2' <R, do:

RE.Dec(sk;, Crr)): n:=n+1,wlD, = Binarizey,r(Q).
Generate Ty g in the same way as RE.Enc. Vje[0,i— 1], wID,[j] = *. Q= Q+2..
Parse T, g as {(wID; | i € [1,n]}. If O = R, Return Typg, == {wID; | j € [1,n]}.
Parse Cz g as {C; | i € [1,n]}. i=i-1.

ID = Binarize, 7 (?). *FormerWIDy,, (L, D — 1 mod 2loeT.

te[L,R] = 3di€|[l,n]s.t. n:=0,0:=D,i:=Classify,;(D) - 1.
WIBE Matchy,, r(ID,wID;) = 1. While i > 0, do:

If such i exists, Return WIBE.Dec(sk;, C;). If Q — 2/ mod 2'°¢7 > L, do:

Return L. n:=n+1,wlD, = Binarizejr(Q — 1 mod 2'%¢7).
*Binarizeo,r(f): Vje[0,i— 1], wID,[j] = *. Q = Q — 2/ mod 2%.
flag =0, left =0, right =29 - 1. If 9 = L, Return Ty p_y; == {wID; | j € [1,n]}

i=1logT — 1. While i > 0, do: i=i-1.
If ¢ € [left, right — 2], do: *Mergey, r(Tiz.o-11, Tip.k)):
If flag = 0, b[i] = 0. Parse Tpg) as {wID; | j € [1,n;]}.
Else, b[i] := 1 and flag = 0. Parse T p-1j as (wID; | j € [n; + 1,n,]}.
right .= right =2/, i = i— 1. Tier = Tip-11 U Tpr = (WID; | j € [1,n,]}.
Else, do: class := Classify,, (D). i = 1.
If flag = 1, b[i] == 0. While i < min(ny, ny —ny) A WID;|, = [WIDjyy, |, do:
Else, b[i] := 1 and flag = 1. wiID = wiD;. wlD|[class] = .
left =left+2.i:=i-1 TiLr = Tig \ {WID;, wIDy, } U{wID}. i =i + 1.
Return b € {0, 1}l°¢7 Return Ty z).

Fig. 6. Four main algorithms and six sub algorithms (with a symbol %) of IK-WIBE-RE, where T € N s.t. logT € N,
AeN, t,L,R,D,D—-1¢€[0,T-1],n € [0,logT] and wiD € {0, 1, sejlogT Every algorithm runs in polynomial time.
RE.Setup, RE.KGen and RE.Enc are probabilistic. The others are deterministic.

T t012345678910111213141516171819202122232425262728293031
32 |5/0(1{0{2|0{1]{0(3j0{1|{0|2(|0|1({0|4(0]|1]0]|2]0|1]0|3]0|1]0|2]|0|1]0
16 [4]/0(1]|0|2|0|1]|0|3|0/1]0[2|0|1]|0

8 (3]0]/1(0(2]0]|1|0

Fig. 7. Correspondence between a numerical value ¢t € [0,7 — 1] and a class i € [0,log T']. O is classifed as class log T'.
t € [1,T — 1] is classified as class i € [0,log T — 1] where  mod 2™*! = 2/,
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Theorem 6. V¢ € [0,T — 1] with ¢ := Classify,,r(t), Y0 € [1,2°], if we set ID « Binarizer(t +
0 — 1) and ID" « Binarize,r(t — 6 mod T), then ¥j € [0,logT — 1], ID[j] is equal to —ID’[j] (if
[f=0Aj=logT - 1]V [te[l, T —1]A j=c])orequal to ID'[]] (otherwise).

Theorem 7. V¢ € [0,T — 1], Yk € [0, Classifyj,r(#) — 1], Classify,,r(f + 2k = Classify,,r(f -
2¥ mod T) = k. Note that any modulo operation with T, i.e., mod T, is considered only when t = 0.

Theorem 8. V¢ € [0,T — 1], V6 € {26125518i0er(® _2Classifr(y Classifyj,,¢(t + 6 mod T) is equal to
log T (if t € {0,2'°2T-1}) or greater than or equal to Classi Yiogr(t) + 1 (otherwise).

A Process where a set of wildcarded IDs Tz g; for a range [L, R] is determined. As examples, four
ranges are described in Fig. 8. In the figure, D € [0,31] denotes a divider D dividing each range into two
subranges [L, D — 1] and [D, R]. How we choose a divider D from a range [L, R] is explained later. For each
range, all numerical values with the same integer are associated with (or covered by) a single wID € {0, 1, *}°.
For instance, in the third example from the top, i.e., [1,30], all numerical values given 1 (resp. 2, 3, 4) are
associated with a wID [1 # xx] (resp. [*01 * =], [+*001x], [+0001]).

(L.R] lo1|2|3]4|5|6|7|8[9|10|11|12|13|14|15|16|17|18|19|20|21|22|23| 24|25 |26 |27 | 28| 29| 30{31 | D
[0, 30] 1 2 3 4 |5]|-10
9.301  [-[-[-[-[-[-]-]-]-]7] 6 | 5 1 2 3 [4]-]1e
[1,30] |[-|4| 3 2 1 2 3 |4]- |16
[2,0] -] 5 4 3 2 0

Fig. 8. A divider D and a set of wildcarded IDs T, g, for four ranges.
Step "lo[12(3]4|5|6|7|8[9|10|11|12|13| 14| 15|16 | 17| 18| 19| 20| 21| 22| 23| 24| 25| 26| 27|28 |29 |30 |31
1 -|loej®o|®o/ 0|00 O O (O O L] ° [ ] L] e (o) O (] L] L] [ ] o L] L] ° [ ] L] L] [ ] L] -
2 -|o|o|o|e|e|eje|ejo| e |0 0|0 e e 1 2 3 4| -
3 -8 7 6 5 1 2 3 14]-
4 -4 3 2 1 2 3 |4 -

Fig. 9. A process where wlDs Ty, 3, are chosen. For i € {1, 2,3, 4}, i-th row from the top describes the state after each
algorithm Divides(1,30), LatterWIDs(16,30), FormerWIDs(1, 15) or Merges(Ti630;, T|1.157) is performed, respectively.
For each row, all values with the same integer are associated with a single wiD € {0, 1, %P,

A process where we, given a range [L, R], choose such a set of wlDs Ty, g; proceeds as follows. First,
we determine a divider D € [L, R] for the range. Second, we determine a set of wiIDs Typ ) for the latter
subrange. Third, we determine a set of wlDs Ty, p—1; for the former subrange. Fourth, we merge the two sets
of wiDs into a set of wiDs Tz g;. For instance, the process where Ty 30) is determined is described in Fig. 9.
We provide the details in the following 4 paragraphs with star symbol (%) in title.

* Dividejns 1 determining a divider D for a range [L, R]. Informally, a divider is the numerical value which
is classified as the class whose index is the largest among the values in [L, R]. Formally, D for [L,R] is
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D = arg maxtelL’RlclassifylogT(t)x. For instance, as Fig. 9 indicates, the divider for [1,30] is 16, since the
class index 4 of the value 16 is the largest in the range and 16 is the only value which is classified as the class.
A formal algorithm Divideyog 7 is described in Fig. 6.

* LatterWIDygr deriving a set of wID(s) for the latter subrange, i.e., Tipr). According to Theorem 9
(whose proof is given in Subsect. D.6), for any L, R, D, there exist integers ki, - -+ ,k, s.t. D—1+ Y], 2k = R
and n < Classify,, (D), and if we generate {wID; | i € [1,n]} as shown in the theorem, each wID; covers
asubrange [D + Y21 2%, D — 1 + Yi_, 2%] of [D, R]. Note that J",[D + YiZ1 2%, D — 1 + 3i_ 28] = [D, R]
and Vi, j € [Lnl s.t.i # j, [D+ 22125, D~ 1+ 3, 2" n[D+ %/ 2%,D~ 1+ %/, 24] = 0. Thus,
Tip.ry = {wID; | i € [1,n]} is an adequate set of wIDs for [D, R].

For instance, as shown in Fig. 9, there are 4 wiDs in Tj630) = {WID1, wIDy, wID3,wIDy}, and wID; =
[11 = =x] covers [16,23], wID, = [101 * «] covers [24,27], wID3; = [1001x] covers [28,29] and wiD, =
[10001] covers [30, 30]. A formal algorithm for this procedure, i.e., LatterWIDj, 7, which takes (D, R) and
outputs T|p g}, is described in Fig. 6.

Theorem 9. VL,R € [0,T — 1] with D « Divide (L, R), Fk; € [0, Classify,, (D)), dky € [0,k — 1],
oo, Jk, € [0,k = 1] 5. D=1+ 30, 2k = R. Moreover, Vi € [1,n] with ID; « BinarizelOgT(D+Z;:i 2k,
if we set Vj € [0,logT — 1], wID;[j] = ID;[]] (if j € [ki,JogT — 1]) or wID;[j] = = (otherwise), then
wiD; € {0, 1, +)'°2T covers a subrange [D + Z}:: 2% D—-1+ 25:1 2k7 of [D, RY.

* FormerWIDy,, r deriving a set of wID(s) for the former subrange, i.e., Ty p-13. This is analogous to 6.1. Ac-
cording to Theorem 10 (whose proof is given in Subsect. D.7), for any L, R, D, there exist integers ki, - , k,
st.D -7, 2%modT = Land n < Classifyg7(D), and if we generate {wID; | i € [1,n]} as shown
in the theorem, each wlD; covers a subrange [D — Zfz ! 2% mod T,D — 1 — ;;} 2k mod T of [L,D — 1].
Note that [J/,[D - Y., 2 mod T,D - 1 — Y21 2% mod T] = [L,D — 1] and Vi,j € [l,n] s.t. i # j,
[D-3i,2%mod 7,0~ 1 - X2t 25 mod T1 N [D - X/, 2% mod T, D — 1 — /| 2% mod T = 0. Thus,
Ti.p-11 = {wID; | i € [1,n]} is an adequate set of wiDs for [L, D — 1].

For instance, as shown in Fig. 9, there are 4 wiDs in Tyy,15; = {wID1, wID,, wID3,wIDy,}, and wiD; =
[01 = #x] covers [8, 15], wID, = [001 = *] covers [4, 7], wID5 = [0001x] covers [2,3] and wID, = [00001]
covers [1, 1]. A formal algorithm for this procedure, i.e., FormerWIDy,e 7, which takes (L, D — 1) and outputs
Tir.p-13, is described in Fig. 6.

Theorem 10. VL,R € [0, T — 1] with D « Divideygr(L,R), Ik; € [0, Classify,,r(D)— 1], Tky € [0, k1 -
11, ---, 3k, € [0,k — 11 5.2. D=3}, 2% mod T = L. Moreover, Vi € [1,n] with ID; « Binarizej, (D -
1 - %21 2% mod T), if we set Vj € [0,log T — 11, wIDi[j] := IDi[j] (if j € [ki,log T — 11) or wID;[j] := =
(otherwise), then wID; € {0, 1, #}°¢T covers a subrange [D — D 2%“modT,D -1 - ;;% 2% mod T of
[L, D — 1]. Note that every modulo operation with T, i.e., mod T, should be considered only when D = (.

* Merge,, v merging Tir.p-17 and Tp ) into Tir r). Let us parse Tipg) (resp. Tizp-17) as {wID; | i € [1,n]}
(resp. {wID} | i € [1,n’]}) where n,n" < Classify,, 7 (D). The most simple way for us to merge the two sets
is adding all wiDs in one of the sets into the other one, which means Tz g := {wID;, wID;. |iell,n],je
[1,7]}. Number of wilDs in Ty g simply becomes n + n’. However, as we explain below, there exists another
way to merge the two sets into a set with less number of wIDs. Specifically, the number of wlDs can be half
ofn+n'.

We use Corollary 1 which is directly proven by Theorem 6, Theorem 9 and Theorem 10. According to
the corollary, for every i € [1,n"], wID; and wiD; are the same except for 1 bit. Specifically, at the position
J = Classity,, (D), one of wID;[j] and wiD;[j] is 1 and the other one is 0. This means that wID; (or
wiD?) whose Classify,,, r(D)-th bit is changed to wildcard symbol * becomes a wID which covers both of

8In general, arg max operation can output a set (of values). In our case, however, for every T € N and every L,R €
[0, T — 1], arg max,; zClassify,,,+(¢) outputs a single value ¢’ € [L, R].
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the subranges covered by wID; and wID/, namely [D + ¥,i_; 2%, D -1+ Y,_ 2%1U[D - ¥_, 28 mod T, D -
1- ;;i 2% mod T']. For every i € [1,n"], wID; and wiD’ can be combined into a single wiD in such a way.
Especially, in cases where n* = n = n’, the number of wIDs in T(z g becomes n which is half of n + n’ = 2n.

For instance, as shown in Fig. 9, each one of the 4 wlDs in T[;630; and each one of the 4 wlDs in Ty; 15
are combined into a single wiID. Precisely, wID; = [11 * %x] (resp. wID, = [101 % %], wID3 = [1001x],
wlD, = [10001]) and wiD}| = [0l * =x] (resp. wiD’, = [001 x x], wID} = [0001%], wID/, = [0001]) are
combined into wiD;| = [*1 % xx] (resp. wID, = [%01 = %], wID3 = [*001x%], wID4 = [«0001]). Finally, we
obtain Ty 30) := {wID; | i € [1,4]}. A formal algorithm for this procedure, i.e., Mergeos 7, which takes Tip g
and Tz p-1; and outputs Tz gy, is in Fig. 6.

Corollary 1 (from Theorems 6, 9, 10). Given L,R € [0,T — 1] with D « Dividei,z7(L,R) and ¢ =
Classify,, (D), we inherit the notations {k;, wID; | i € [1,n]} from Theorem 9 and the ones {k,wiID; |
i € [1,n']} (with apostrophe marks) from Theorem 10. Let n* denote the integer s.t. [0 < n* < min(n, n’)]
AL [k = R A [n* < min(e,n') = ki1 # K., | Then, ¥i € [1,n") and ¥ j € [0,log T = 11, it holds that
wiD;[j] is equal to —wID'[j] € {0,1} (if [c = logT A\ j = logT - 1]1\[c # logT A\ j = cl), equal to
wiD![j] = = (else if j € [0, k; — 1]), or equal to wID[i] € {0, 1} (otherwise).

6.2 Four Main Algorithms of IK-WIBE-RE

Main algorithms of IK-WIBE-RE, i.e., {Setup, KGen, Enc, Dec}, are formally described in Fig. 6. A pair of
keys (mpk, msk) is a randomly generated one of the underlying WIBE scheme 2wgg = {Setup, KGen, Enc,
Dec,Match} whose (wildcarded) ID’s bit length is log 7. A secret-key for a numerical value ¢t € [0, —
1] is a randomly generated one of the WIBE scheme for the binary value of ¢ determined according to
Binarize,7(#). A ciphertext for a plaintext m under a range [L, R] is composed of {C; | i € [1,n]} which is
generated by firstly deriving a set of wIDs Tz gy by properly using Divideos 7, LatterWIDiog 7, FormerWIDog 7
and Merge,,, 7, then generating a ciphertext C; for m under each wiD; in T, g). Note that if a numerical value

t is in a range [L, R], Ty z includes only one wiD; satisfied by /D := Binarize,(r), which means that sk,
derives m by decrypting C; in C. ) associated with wiD;. Its security is guaranteed by the following theorem,
whose proof is in Subsect. D.8.

Theorem 11. /K-WIBE-RE = {RE.Setup, RE.KGen, RE.Enc, RE.Dec} is IND-R-CPA (resp. IND-sR-CPA) if
the underlying WIBE scheme Xwgg = {WIBE.Setup, WIBE.KGen, WIBE.Enc, WIBE.Dec, WIBE.Match} is
IND-nWID-CPA (resp. IND-snWID-CPA), where n .= 21log T — 3.

6.3 Efficiency Comparison among Generic RE/TSE Constructions

We use Fig. 1 to compare efficiency of our WIBE-based RE construction with those of IBE/BE-based TSE
constructions [15], that of FE-based one [12, 13], that of the generic RE construction obtained by replacing
the underlying IBE scheme in the IBE-based one with an WIBE scheme, and that of our BE-based TSE
construction, in terms of their underlying building blocks.

In each one of PQ-IBE-TSE, KME-FE-TSE, and IK-BE-TSE, size of secret-keys asymptotically grows
linearly with log 7', which means that it cannot be constant. On the other hand, size of secret-keys of IK/PQ-
WIBE-RE or PQ-BE-TSE becomes that of the underlying building block itself, which means that by adopting
a concrete scheme whose size of secret-keys is constant, we can obtain a RE/TSE scheme with constant-sized
secret-keys. As we will see in the next section, such WIBE schemes actually exist.

7 Instantiation of Our RE Scheme
Our WIBE scheme w/o key-delegatability in Fig. 10 is obtained by partially modifying Waters IBE scheme

[19] in Fig. 18 in Sect. B. We prove Theorem 12 in Subsect. D.9. From Theorem 13, Theorem 12 and
Theorem 1, we obtain Corollary 2.
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Table 1. Efficiency comparison among some generic RE/TSE constructions in terms of the building blocks

l Generic Const. ‘ Building Block ‘ |mpk]| ‘ |sk;| ‘ | L R]I ‘
PQ-IBE-TSE[15]  [IBE 22! P(zH:) (logT +1)- K (Z2:")[ O(log T - c(zﬁ{E N)
PQ-BE-TSE [15] BE 31/ (ZT T) (ZT T) ( T)
KME-FE-TSE [ 12, 13] |FE 27, o(r - P(2L)) O(logT - K (1)) o(c (ZFTE))
IK-BE-TSE BE ZZT—I,ZlogT—Z P(Z-ZT 1.2log T— 2) (lOgT + 1) K( 2T 1210gT 2) C ZZT 1,2log T- 2)
IK/PQ-WIBE-RE  |WIBE 2{,3‘;’BTE P(Z3is) K (Zwiag) [0 (log T - c( wiat))

2lpg denotes an IBE scheme with n € N identities. 23,5 denotes a WIBE scheme whose bit length of an identity is
n € N. 2. denotes an FE scheme with n € N time periods. Z]’;'é denotes a BE scheme, where total number of users is
n € N and maximum cardinality of a set of users associated with a ciphertext is / < n. For a scheme X, P (X), C (X) and
K (X) denote its size of master public-key/ciphertext/secret-key, respectively.

Setup(14, 19): (p, G, Gr, e, 8) — Guo(1)); @ € Z,; g1 = g% ga,tsthgy -ty 1 < G

msk = g7 and mpk = (p,G,Gr,e, g, 81,8, U, u1, - ,ur,e(g, g)); Return (mpk, msk)
KGen(msk, ID € (0. 1)"): r & Z,,; Return skip = (g5 - (' TTi o1 1oy 1) . 8'):
Enc(wID € {0, 1, %}, m € Gr):

U c ¢ ’ s S| H .

s < Z,; Return C,,;p = (e(gl,gz)A -m, g°, (u IT: st wippi=1 u,-) ,{ui |is.t.wlD[i] = *})
Dec(skip, Cip):

Parse sk;p as (dy,d,) € G?; Parse Cp as (¢, ¢, ¢3,{ca; | i 5.t. wID[i] = }) € Gy x G*Dls;

Returnc, - e (dz, c3 Il wID[i]=+AID[i]=1 C4,i) le(dy, c2);

Fig. 10. Our WIBE scheme /7wgE, based on Waters IBE scheme [19]

Theorem 12. Our WIBE scheme IIwgg is IND-WID-CPA (resp. IND-sWID-CPA) if Waters IBE scheme [19]
is IND-ID-CPA (resp. IND-sID-CPA).

Corollary 2. Ilywgg is IND-nWID-CPA, where n .= 2log T — 3, under the DBDH assumption.

Comparing Some Concrete TSE/RE Constructions. Let us compare some concrete TSE/RE schemes in Table
2. There are 5 TSE/RE schemes which have poly-logarithmic size/cost in all measures in the table, namely
the PQ-IBE-TSE scheme instantiated by Waters’ IBE scheme [19], the TSE scheme by Kasamatsu et al.
[12], the IK-BE-TSE scheme instantiated by 2nd Gentry and Waters’ BE scheme [ 1], the IK/PQ-WIBE-RE
scheme instantiated by our WIBE scheme Ilwgg, and the IK/PQ-WIBE-RE scheme instantiated by Abdalla
et al.’s WIBE scheme (w. key-delegatability) based on Boneh-Boyen-Goh HIBE scheme [, 6]. Among them,
only the latter two achieves the constant-size secret-keys. IK/PQ-WIBE-RE scheme instantiated by I1wisg
is superior to IK/PQ-WIBE-RE instantiated by Abdalla et al.’s WIBE scheme, since it achieves the adaptive
security under standard (static) assumption.

In an asymptotic sense, IK-WIBE-RE by Ilwg and PQ-WIBE-RE by Ilwgg achieve the equivalent
size/cost in all measures. However, the actual value of ciphertext length can be greatly different between
them. Let |C%11i R]| (resp. |Cf£ R]I) denote size of a ciphertext under [L, R] for IK-WIBE-RE (resp. PQ-WIBE-

RE). Precisely, for every range [L, R], |C ]| is equivalent to or smaller than |C
[L, R], the former is almost the half of the latter The details are given in Sect. E.

(. R]| and for some ranges
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A Some Definitions

A.1 Selective IND-CPA Security on Multiple Ciphertexts for a WIBE Scheme

For a WIBE scheme 2wigg, a probabilistic algorithm A, a bit b € {0, 1} and an integer n € N, we consider a

security experiment Expt;\>: *'P""* described in Fig. 11.
Definition 4. Let n € N. A WIBE scheme 2wigg is IND-suWID-CPA, if YA € N, YL € N, YA € PPT,,

Je € NEG,, Advr> VIR () = | Tpeo 1) (= 1P Pr[Exptd > VPP 15,17 = 1] < e

A.2  Selective IND-CPA Security for a RE Scheme

For a RE scheme 2gg, a probabilistic algorithm A, and a bit b € {0, 1}, we consider a security experiment
Exptﬂﬁj”};'cm in Fig. 12.

Definition 5. A RE scheme xg is IND-sR-CPA, if VA € N, VT € N, YA € PPT,, Je € NEG,, Advy) 280" (1) =
| Zpeto.y(= 1) Pr[ExpthP2 M4 17) = 1] < e
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IND-snWID-CPA 11 L ny.
EXptZWIBEsAsb (14,15, 17):

(WID}, - ,wID}, sty) «— Ao(11,15), where Ay, wID} € 10,1, )5

n?

(mpk, msk) « Setup(14, 1%)
KGeny
(mo, my, st;) — A" (mpk),
»ON™ (ID € {0, 1}1): If Ajeq1, Match, (ID, wID}) = 0, Return sk;p < KGen(msk, ID).

Else, Return L.

KGen-
Vi€ [1,n],Cr « Enc(my, wID}). b" < A(Z)””" z(stl,Cr, -+, CY), where
2O (ID € {0, 1}"): If Ajeq1.y Match, (ID, wID}) = 0, Return sk;p < KGen(msk, ID).
Else, Return L.
Return »’.

Fig. 11. Selective security experiment for a WIBE scheme 2y g

Expty 3 A, 17):
(L",R", sto) « Ao(14, 17), where L* € [0,T — 1] A R* € [0, T — 1].
KGen
(mpk, msk) « Setup(1%, 17). (mgy, my, st;) « A(l)””‘k (sty, mpk), where
»O<%en(1 € [0,T — 11): If 1 ¢ [L*, R°], Return sk « KGen(msk, 1).

Else, Return L.

KGen
C* « Enc(mpk, my,, [L*,R*]). b’ < A;)’”"" 2(st],C*), where
2O ™ (1 € [0,T — 11): If ¢ ¢ [L*, R*], Return sk, < KGen(msk, 1).
Else, Return L.
Return »’.

Fig. 12. Selective security experiments for a RE scheme 2gg.

A.3 Time-Specific Encryption (TSE) [15]

Syntax. Time-specific encryption (TSE) consists of following 4 polynomial time algorithms, where Dec is
deterministic and the others are probabilistic:

— Let 14, where A € N, denote a security parameter. Let T € N denote total number of time periods. Setup
algorithm Setup takes (1%, 17) as input then outputs a master public-key mpk and a master secret-key
msk. Let it be denoted by (mpk, msk) < Setup(14,17).

— Key-generation algorithm KGen takes msk and a time period ¢ € [0, T — 1], then outputs a secret-key
(time-instant key (TIK)) sk,. Let it be denoted by sk, < KGen(msk, t).

— Encryption algorithm Enc takes a plaintext m € M and a decryption time interval (DTI) [L, R], where
L,R€[0,T-1]and L < R, then outputs a ciphertext Cj g;. Let it be denoted by Cy; z) < Enc(m, [L, R]).

— Decryption algorithm Dec takes a secret-key sk; and a ciphertext Cz ), then outputs a plaintext m € M
or a symbol L. Let it be denoted by m / L « Dec(sk;, Ciry)-

We require every TSE scheme to be correct. A TSE scheme 2tsg = {Setup, KGen, Enc, Dec} is correct, if
YA, T € N, Y(mpk, msk) « Setup(14,17), Vt € [0, T — 11, Vsk, < KGen(msk,t),Ym € M,YL,Re [0,T —1]
st. L<RAte[L,R], VC[L’R] «— Enc(m, [L, R]), Pr[m « Dec(sk,,C[L,RJ)] = 1.

IND-CPA Security. For a TSE scheme Xrgg, a probabilistic algorithm A, and b € {0, 1}, we consider security

experiments Exptﬂ?ﬁ"%g'cm and Exptg];h:i‘\]?gl'cp" in Fig. 13.

Definition 6. A TSE scheme Srsg is IND-DTI-CPA if VA, T € N, YA € PPT,, Je € NEG,, Advy"> P4 =
| Zpeton(=1)? PrlExpt> 20 FAA4L1T) = 1] < e

Definition 7. A TSE scheme St is IND-sDTI-CPA if VA, T € N, YA € PPT), Je € NEG,, Advy> 11" P4(1) ==
| Zpeo,y(=1)” Pr{Expt > P14, 17) = 1] < e
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Expt?i];EDATIb CPA(l/l, IT)Z Expt?,j.];ESDTI CPA(l/I ):
(mpk, msk) — Setup(1*,17) (L, R, stg) « Ap(11,17).
(L R mo.my. sty) — A]OI'(”(‘;"in(mpk), Assume that L*, R* € [O;TT— 1]and L* < R*.
> O™ (1, € 0,7 — 1), where i € [1,,]: (mpk, msk) — Setup(1”, 1)
Return sk; < KGen(msk, t;). (mgy, my, sty) « A?”““ (sty, mpk),
Assume that L*,R* € [0,T — 1] and L* < R* > O (e [0,T - 1]): If t ¢ [L*, R*],
and Vi € [1,q], t; ¢ [L*,R*]. Return sk < KGen(msk, t). Else, Return L.
C* « El}(g(mb, [L*,R*]) C* « Enc(mpk, my, [L*,R*])
eny KGen-
b= A (s1,CY), b A 2(stl, c*),
Offﬁi“Z(z e[0,T - 1)) > O (1€ [0,T - 1): If £ ¢ [L*, R*],
If ¢ ¢ [L*,R"], Return sk; < KGen(msk, 1). Return sk, < KGen(msk, t). Else, Return L.
Else, Return L. Return b’.
Return »'.

Fig. 13. Security experiments for a TSE scheme Z1sg

A.4 Identity-Based Encryption (IBE) [18]

Syntax. Identity-based encryption (IBE) consists of the following 4 polynomial time algorithms, where Dec
is deterministic and the others are probabilistic:

— Let 14, where A € N, denote a security parameter. Let 7 denote the ID space. Let N € N denote total num-
ber of IDs, which implies |7| = N. Setup algorithm Setup takes (1%, 1) as input, then outputs a master
public-key mpk and a master secret-key msk. We write the procedure as (mpk, msk) « Setup(14, 1V).

— Key-generation algorithm KGen takes msk and an ID € 7, then outputs a secret-key sk;p. We write it as
Sk]D — KGen(msk, ID)

— Encryption algorithm Enc takes a plaintext m € Mand a ID € I, then outputs a ciphertext C;p. We write
it as C;p « Enc(m, ID).

— Decryption algorithm Dec takes a secret-key sk;p and a ciphertext C;p, then outputs a plaintext m € M
or a symbol L. We write it as m / L < Dec(sk;p, Cip).

We require every IBE scheme to be correct. An IBE scheme 2gg = {Setup, KGen, Enc, Dec} is correct,

if VA, N € N, V(mpk,msk) « Setup(1%,1V), VID € I, Vsk;p < KGen(msk,ID), Vm € M, YCip «
Enc(m, ID), Pr[m < Dec(sk;p,Cip)] = 1.

IND-CPA Security. For an IBE scheme 215, a probabilistic algorithm A, and b € {0, 1}, we consider security

experiments EXpt}ND ;Db P4 and Expt?f}iE ;If “CPA given in Fig. 14.

Definition 8. An IBE scheme g is IND-ID-CPA, if VA, N € N, YA € PPT,, 3¢ € NEG,, Advyw 2 P4() =
| Zpejon (= 1P PrlExptg> 22 PA4, 1Y) = 1] < e.

Definition 9. An IBE scheme Zigg is IND-sID-CPA, if VA, N € N, YA € PPT,, 3¢ € NEG,, AdvI¥P-$ID-CPA( ) .=
2ise. AN
| Zpeqo,n (= 1" PrExptg> 3P0 1Y) = 1] < e

A.5 Wildcarded Hierarchical Identity-Based Encryption (WHIBE) [2]

Syntax. Wildcarded hierarchical identity-based encryption (WHIBE) consists of following 4 polynomial time
algorithms, where Dec is deterministic and the others are probabilistic:
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Exptg;’éi{f;CPA(lﬁ, ): ExptggE’,ﬂ’cpA(li, N):

(mpk, msk) « Setup(14, 1) (ID*, sty) « Ay(14, 1Y)
KGen s
(ID* . mo.my, st) — A]Om.\-k ! (mpk), ASSl]l{me t]};at ll; el -
> 0N (ID, € T), where i € [1,,]: (mpk, msk) < e;iéfif 15
Return sk; « KGen(msk, ID;). (mo, my, st;) — A" (sty, mpk),
Assume that ID* € T and Vi € [1, g;], » O (ID € I):
ID; # ID*. Return sk < KGen(msk, ID) if ID # ID*.
C* « Enc(my, ID*) Return L otherwise.
KGen * %
b e A (sty, ), € Encam 1)
> O N (ID € I): b — A (s11,C),
Return sk < KGen(msk, ID) if ID # ID*.| ~ »O\™(ID € I):
Return L otherwise. Return sk < KGen(msk, ID) if ID # ID*.
Return »’. Return L otherwise.
Return »’.

Fig. 14. Security experiments for an IBE scheme g

— Let 14, where A € N, denote a security parameter. Let p denote a prime whose bit length is A. Let L € N
denote maximum number of elements in ID or wildcarded ID. Let J denote space for each element in ID
or wildcarded ID, which is assumed to be determined after executing this algorithm Setup. For instance,
1 can be {0, 1} or Z}, where p is a prime with bit length A. Setup algorithm Setup takes (14, 1%) as input,
then outputs a master public-key mpk and a master secret-key for the empty set sky. Let it be denoted by
(mpk, sky) «— Setup(14, 15).

— Key-generation algorithm KGen takes sk;p, for an ID; € I' where | € N and h € I, then outputs a
secret-key skyp,,, where IDy, = ID)||h. Let it be denoted by sk;p,,, < KGen(sk;p,, ID;, h).

— Encryption algorithm Enc takes a plaintext m € M and a wID; € {I U {*}}/ where [ € N, then outputs a
ciphertext Cy,rp,. Let it be denoted by C,,;p, < Enc(m, wiDy).

— Decryption algorithm Dec takes a secret-key skjp, and a ciphertext C,,;p,, then outputs a plaintext m € M
or a symbol L. Let it be denoted by m / L « Dec(skip,, Cyip,)

As for WIBE schemes, we define matching algorithm Match; : I s (T U {=}}} - 1/0, for WHIBE
schemes, where [ € [0, L], as described in Fig. 15.

Match,(ID € I', wID € {T U {x}}}):
Return 1if Vi € [0,/ — 1] s.t. wIDI[i] # %, wiID[i] = ID[i]. Return 0, otherwise.

Fig. 15. A formal definition of Match;, where / € [0, L], for WHIBE schemes

Every WHIBE scheme must be correct. A scheme 2wysg = {Setup,KGen, Enc,Dec,Match} is cor-
rect, if VA, L € N, V(mpk, skg) « Setup(14,15), VI € N, VID € T, Vskipioy < KGen(msk, sky, ID[0]),
VSk]D[()]“]D[]] — KGen(msk, Sk[D[()],ID[l]), ey, VSk]D — KGen(msk, Sk]D[()]”...”]D[[,z],ID[I - 1]), VYm € M,
YwID € {I U {x}} s.t. Match,(ID,wID) = 1, YC,,;p < Enc(m, wID), Pr[m « Dec(sk;p, C,,ip)] = 1.

IND-CPA Security. For a WHIBE scheme Zwygg, a probabilistic algorithm A and b € {0, 1}, we consider a

security experiments Expt}&i‘lsgi\%cm and Exptﬁ%iﬂlg’cm in Fig. 16.

Definition 10. A WHIBE scheme Zwnisg is IND-HWID-CPA if YA, L € N, YA € PPT,, de € NEG,,

Advi 2P 1= 1 S (=1 PHEXpER 0 A1) = 1] < e
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TND-HWID-CPA {1 {L\.
EXptZWHIBEsA,b (1%, 1%):

(mpk, sky) < Setup(1*, 1F)
KGen
(WID*,mg, my, sty) « A, 0 (mpk),
> O‘jf;“' (ID; € 1), where j € [1,q]:
sko j = KGen(msk, sko, ID;[0]), - - -, ski,—1 = KGen(msk, sk;,—2 ;, ID;[l; — 11).
Return sk,j.,l.
Assume that wID* € {I U {+}}/" for I* € N and Vie[l,qlst.l; <%,
Matchy, (lliejo.1;-11/ Dl lliejo.;-1ywID*[i]) = 0.
C* « Enc(my, wID*).

KGeny
Vo A0 (s, C),
> 0‘;:;“2 (ID € I'):
If [ < I* and Match(llico-11 /DLl liggo-1ywID*[i]) = 1, Return L.
sky := KGen(msk, sky, ID[0)), - - -, sk;_, := KGen(msk, sk;_», ID[l — 1]).
Return Skl,l.
Return b'.
Expt; S0 PR, 15):
(wID*, st) « Ag(1%, 1%). Assume that wID* € I for [* € N.
(mpk, sky) < Setup(1*, 1)

KGen |
(mo, my, sty) < A, ‘0 (mpk),
> Oy (ID € I'):
If I < I* and Match(llico-11/ DLl liggo-1ywID*[i]) = 1, Return L.
sky := KGen(msk, sky, ID[0)), - - -, sk;_; := KGen(msk, sk;_», ID[l — 1]).
Return sk;_;.
C* « Enc(m,, wID*).

KGeny
b= A" (s11,C),

> Off:“z (ID € I*): Same as Of,f;“‘ .
Return »'.

Fig. 16. Security experiments for a WHIBE scheme 2wupg
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Definition 11. A WHIBE scheme 2wuisg is IND-sHWID-CPA if VA,L € N, YA € PPT,, de € NEG,,

AdvD ST P 1= | Speron (1) PrExptE) P 18 = 1] < €.

A.6 Broadcast Encryption (BE) [10]

Syntax. Broadcast encryption (BE) consists of the following 4 polynomial time algorithms, where Dec is
deterministic and the others are probabilistic:

— Let 14, where A € N, denote a security parameter. Let n € N denote total number of users. Let [ € N
denote the maximum cardinality of a set of users S associated with a ciphertext. Setup algorithm Setup
takes (14, 1", 1%) as input, then outputs a master public-key mpk and a master secret-key msk. We write
the procedure as (mpk, msk) «— Setup(14, 17, 1.

— Key-generation algorithm KGen takes msk and a user i € {0, 1,--- ,n — 1}, then outputs a secret-key sk;.
We write it as sk; < KGen(msk, i).
— Encryption algorithm Enc takes a plaintext m € M and a set of users S € {0,1,--- ,n — 1} s.t. [S| < [,

then outputs a ciphertext Cs. We write it as Cs « Enc(m, S).
— Decryption algorithm Dec takes a secret-key sk; and a ciphertext Cs, then outputs a plaintext m € M or
a symbol L. We write it as m / L « Dec(sk;, Cs).

We require every BE scheme to be correct. A BE scheme 2gg = {Setup,KGen, Enc,Dec} is correct,
if YA, n,l € N, Y(mpk, msk) < Setup(14, 1", 1, Vi € {0,--- ,n — 1}, Vsk; « KGen(msk,i), Ym € M,
VS C{0,1,--- ,n—1}s.t.|S| <[, YCs <« Enc(m,S), Pr[m « Dec(sk;,Cs)] = 1.

IND-CPA Security. For a BE scheme 2gg, a probabilistic algorithm A, and b € {0, 1}, we consider security

experiments Expty- 2, * and Expty> % "F* given in Fig. 17.

Expt}> R4 17, 1) Expty 2 (14, 17, 10):
(mpk, msk) « Setup(14,17,1") (S*, sty) « Ag(14, 17, 1h)
(5" o,y sty) — A% (mpl) Assume Dt & = 10+ on = Hand Bl <1
> OF%%01 (i, € [0,n — 1]), where s € [1,q,y|  PRmsk) « Setup(1% 1% 1)
Return sk, «— KGen(msk, i,). (mo, my, st) < A™* (sty, mpk),
Assume that S* € {0,--- ,n—1},[S*| < I, > Ofnii"‘ @(iel0,n—-1)):
and Ve € [1,q], i, ¢ S*. Return sk «— KGen(msk,i)if i ¢ S*.
C* « Enc(my, S¥) Return L otherwise.
KGen- * *
B AP (51,0, € Enclm, 89
> 0K (i € [0, — 1]): b ADM (51, C),
Return sk « KGen(msk, i) if i ¢ S. > 0L (i€ [0,n - 1]):
Return L otherwise. Return sk < KGen(msk, i) if i ¢ S*.
Return »’. Return L otherwise.
Return »'.

Fig. 17. Security experiments for a BE scheme Xgg

Definition 12. A BE scheme Zgg is IND-S-CPA, if VA, n,l € N, YA € PPT,, Je € NEG,, Advy 2 7SPH(A)
| Zpeqo,y (= 1° PrlExptie 5 P44 17 1) = 1] < e

Definition 13. A BE scheme S is IND-sS-CPA, if VA, n,1 € N, VA € PPT,, e € NEG,, Advy> 0 2STH(A) :
| Zpeto,ny(~ 1" PHEXptiD P44 17, 1) = 1| < e
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B IBE Scheme by Waters [19]

Waters [19] showed that security of the IBE scheme in Fig. 18 is guaranteed by the following theorem.

Setup(14, 15):
U U
(P,G,Gr,e,8) « Gpo(1"); @ < Zy; g1 := g% ga, ' utg, -+ ,upy — G
Return msk = g5 and mpk = (p, G, Gr, e, g, 81,82, U, Uy, "+ ,Ur_1);
KGen(msk, ID € {0, 1}5):
U r
r < Z,; Return sk;p = (g‘z’ . (u’ [1i sr. 1p1i1=1 u,-) ,gr);
Enc(ID € {0, 1}*,m € Gy):
u P
s < Z,; Return Cyp = (e(gl,gz)S -m, g%, (u’ IT: 1. 1p1=1 ui) );
DeC(Sk][), C]D)I
Parse sk;p as (dy,d,) € G*; Parse Cyp as (cy, ¢2, ¢3) € Gy X G?;
Return ¢, - e(dy, c3)/e(d), ¢2);

Fig. 18. Waters’ IBE scheme /732t [19]

Theorem 13. Waters’ IBE scheme Hfgg is IND-ID-CPA under the DBDH assumption.

C Formal Description of Three Generic TSE Constructions

C.1 PQ-IBE-TSE

Four algorithms of PQ-IBE-TSE are formally described in Fig. 19. [15] proved that its security is guaranteed
by Theorem 14.

Setup(14, 17):

Return (mpk, msk) := IBE.Setup(14, 12771).
KGen(msk,t € [0,T — 1]):

b1, =0.Yie[0,logT — 1], b;, == t[O]|| - - - ll£[].

Return sk, := {sk;, < IBEKGen(msk,b;,) | i € [-1,logT — 1]}.
Enc(m,L,R), where 0 < L<R<T-1:

Tzr) = Coverjo (L, R). Return Cj; g = {C, < IBE.Enc(m,b) | b € T p)}.
Dec(sk,, CL,R):

by, =0.Yie[0,logT — 11, b, = t[0]] - - - ||#[].

Parse sk, as {sk;, | i € [-1,logT — 1]}.

T[L,R] = CoverlogT(L, R). Parse C[L,R] as{C, | b e T[L,R]}~

te[L,R] = 3Ale[-1,logT — 1] s.t. b, € T

Return m / 1L < IBE.Dec(sk;, Cy,,).

Fig. 19. Four algorithms of PQ-IBE-TSE, where IBE.Setup, IBE.KGen, IBE.Enc and IBE.Dec denote algorithms of an
IBE scheme.

Theorem 14. PQ-IBE-TSE in Fig. 19 is IND-DTI-CPA (resp. IND-sDTI-CPA) if the underlying IBE scheme
218E is IND-ID-CPA (resp. IND-sID-CPA).
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Setup(14, 17):

Return (mpk, msk) := WIBE.Setup(1+, 1'°¢7),
KGen(msk,t € [0, T — 1]):

Parse  as #[0]]| - - - ||lt[log T — 1]. Return sk, := WIBE.KGen(msk, t).
Enc(m,L,R), where 0 < L<R<T - 1:

TiLr) = Coveryo,r(L, R). Return Cyp g = {C;, « WIBE.Enc(m, b||+'°¢ TPy | b € Ty g}
Dec(sk,, CL’R)Z

T[L,R] = CoverlOgT(L, R).T:= {b”*lOnglb‘ |be T[L,R]}~

Parse C[L,R] as{C, | b e T[L,R]}~

t€[L,R] = 3b, € Ty g s.t. WIBEMatchy,7(t,b,) = 1.

Return m / L « WIBE.Dec(sk;, Cy,).

Fig. 20. Four algorithms of PQ-WIBE-TSE, where WIBE.Setup, WIBE.KGen, WIBE.Enc, WIBE.Dec and WIBE.Match
denote algorithms of a WIBE scheme.

Setup(14,17):

Return (mpk, msk) := BE.Setup(14, 1271, 12loeT-2),
KGen(msk,t € [0, T — 1]):

by, =0.Yie[0,logT — 1], b;, == t[0]]] - - - ||#[]-

Return sk, = {sk;, < BE.KGen(msk,b;,) | i € [-1,logT — 1]}.
Enc(m,L,R), where 0 < L<R<T-1:

Tz = Covery, (L, R). Return Cy; gy < BE.Enc(m, Tz ).
Dec(sk, Cpg):

by, =0.Yie[0,logT — 11, b;, := t[0]]| - - - ||[4].

Parse sk, as {sk;, | i € [-1,log T — 1]}.

Tir) = Covery, (L, R).

te[L,R] = 3Ale[-1,logT — 1] s.t. b, € Ty

Return m / L < BE.Dec(sk;;, Cirg))-

Fig. 21. Four algorithms of IK-BE-TSE, where BE.Setup, BE.KGen, BE.Enc and BE.Dec denote algorithms of a BE
scheme.
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C.2 PQ-WIBE-TSE

Four algorithms of PQ-WIBE-TSE are formally described in Fig. 20. Its security is guaranteed by Theorem
15. We omit its proof since it can be proven in the same manner as the security of our RE scheme IK-WIBE-
RE.

Theorem 15. PQ-WIBE-TSE in Fig. 20 is IND-DTI-CPA (resp. IND-sDTI-CPA) if the underlying WIBE
scheme 2wigg is IND-wID-CPA (resp. IND-swID-CPA).

C.3 IK-BE-TSE

Four algorithms of IK-BE-TSE are formally described in Fig. 21. Its security is guaranteed by Theorem 16.
We omit its proof since it is almost obvious that the theorem is true.

Theorem 16. IK-BE-TSE in Fig. 21 is IND-DTI-CPA (resp. IND-sDTI-CPA) if the underlying BE scheme
2 is IND-S-CPA (resp. IND-sS-CPA).

D Some Proofs

D.1 Proof of Theorem 1

We only prove the adaptive security since we can analogously prove the selective one.
Let A denote a probabilistic algorithm which behaves as an adversary in the IND-nWID-CPA exper-
iments, namely Exptﬂ?};ﬂ{g'cm where b € {0, 1}. For each integer i € [0,n], we define an experiment

IND-nWID-CPA : : : IND-nWID-CPA :
Expt; "io.;  as follows. The experiment is basically the same as Expty """ except for ciphertexts

generated in the challenge phase, i.e., (CT, .-+, CY). Precisely, in the experiment, for j € [1,n], C; is gen-

erated by Enc(m;, wID;‘) (resp. Enc(my, WID;)) if j < i (resp. otherwise). Obviously from the definitions,

IND-nWID-CPA IND-nWID-CPAy : o : : IND-nWID-CPA IND-nWID-CPA
Expty Taoo  (resp. Expty U0, is identical to Expty il (resp. Expty 7). For every

integers A,L,n € N and A € PPT, whose running time is ¢, there exists B; € PPT, whose running time is
t+ (n — Dty for i € [1, n], where 7., denotes computational time to encrypt a plaintext by 2wgg, such that

IND-nWID-CPA
AdeWIBE AL )

IND-nWID-CPA IND-nWID-CPA
< Z Pr [1 < EXptZme,A,O,i—I ] - Pl'[l < EXptZWlBE,AqO,i ]|
i€[1,n]
_ IND-WID-CPA
- Z AdeWIBE»B;J,LJI(/l)'
i€[1,n]

The first inequality follows the triangle inequality. The second equation follows the following lemma.

Lemma 1. For any A,L,n € N, any i € [1,n], any A € PPT, which runs in time t, AB € PPT, which

runs in time t + (n — )., where t.,. denotes computational time to encrypt a plaintext, such that |Pr[1 «

IND-nWID-CPA IND-nWID-CPAq| _ ND-WID-CPA
EXptEWIBEsA»Osi_l 1=Pr[l « EXptEWIBEsA»Osi = AdVéWIBEst/LLJl(/l).

Proor. We consider B € PPT,; which behaves as in Fig. 22. Note that for every j € {1,2}, when A; queries
an ID to O'°°%, B ; queries it to his own oracle Oiiinf to get a secret-key skjp, then returns it to A;.

msk S
Obviously, B perfectly simulates Expt;\-. "0 -S4 (resp. Expty)-"0-*) for A when B (unconsciously)

is in Exptﬂ?};ﬁ?&c“ (resp. Exptg[;ggicm). Hence, it holds that Pr[1 « Exptﬂ?};ﬂiﬁ;ﬁ“] = Pr[l «

IND-WID-CPA IND-nWID-CPAy _ IND-WID-CPA
Expty "po 1 (resp. Pr{l « Expty "0 ] = Pr[l « Expty - "e"~"]).

The reason why the the running time of B is 7 + (n — 1)t is that B is given only one ciphertext, i.e., Cl?*,
among n ciphertexts and needs to generate the other n — 1 ciphertexts, i.e., (C},--- ,C*,C%,,--- ,C;), by

himself. O
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KGen|

o
B,™* (mpk):
KGeny

o
1. WIDY, -+ ,wID}, mg,my, sty) — A[™ (mpk).
2. sty = (st,wIDY,--- ,wID}? | ,wIDY, ,--- ,wID}).
3. Return (wID},my, my, st}).

oo
B,"™* (st},C*):
4. Parse st| as (st;,wIDY, - ,wID! |, wID},,,--- ,wID}).
Enc(ml,wID}*) ifj<i-1,
5. For every j € [1,n], ij =C* if j =1,

Enc(my, WIDJ*.) otherwise.

KGeny

6. Return b’ « Ag"”k (st1,Ct,---,C)).

Fig. 22. Algorithm B in the proof of Theorem 1|

D.2 Proof of Theorem 2

Let us consider the case of k = log 7. Among T values in [0, T—1], only the value ¢ = 0 satisfies  mod 2* = 0.
If we set wID = «°¢7 it is obviously true that for every ¢ € [0, T — 1], ID < Binarize,, r(¢) matches wiD.

Consider the case of k = log T — 1. There are two values which satisfy  mod 2'°¢7~! = 0, namely ¢ = 0
which satisfies Binarizejo r(f)[log7 — 11 = 0 A[t,7 + 25 — 1] = [0,2'°¢7~! — 1] and ¢t = 2'°¢7~! which
satisfies Binarizej, r(f)[logT — 1] = 1 Az, 1 + 2k — 1] = [2loeT=1 ploeT _ 1] It is obviously true from the
definition of Binarizey,, r that every ¢’ € [0, 2loeT-1 _ 1] satisfies Binarizejr(¢')[log T — 1] = 0 and every
¢ e [2leT=1 ploeT _ 1] gatisfies Binarizejoer(#)[log T — 1] = 1.

Consider the case of k = log T—2. There are four values ¢ which satisfy # mod 2°¢7-2 = 0, namely 0 (resp.
2log =2 plogT=1 plogT=1 4 plog7=2) with ID := Binarizej,, () which satisfies that (/D[log T — 1], ID[log T -
21, [t,t + 2¥ — 1]) is equivalent to (0,0, [0,2'°27=2 — 1]) (resp. (0, 1, [2!°¢7=2, 2loeT=1 _ 1]) (1, 1,[2leT~1 —
1,2loeT=1 4 ploeT=2 _ 17y (1,0, [2'°e7~1 4 2loeT=2 ploeT _ 1])) It is obviously true from the definition of
Binarize,r thatevery ¢’ in arange [0, 216 72—1] (resp. [2'0872, 2loe T=1_1] [loeT—1 plogT=1 4 ploe T=2_1],
[2loeT=1 4 DloeT=2 loeT _ 1]) with /D’ := Binarize,,r(¢') satisfies that (ID'[log T — 1],ID'[log T - 2]) is
equivalent to (0, 0) (resp. (0, 1), (1, 1), (1,0)).

In the same manner, for the other cases of k € [0,log T — 3], we can prove that the theorem holds true.

D.3 Proof of Theorem 6

For j € [0,log T—1], there are 3 cases. Namely, (1) € [Classify,,r(H)+1,log T—1],(2)j = Classify,, (1),
(3)j € [0,Classify), 1 — 1]. We prove the theorem in each case.

(1) By the definition of Classifyj,, 7, it holds that 7 mod 2612ssifier(+1 = pClassifyr() By the prop-
erty of modulo operation, it holds that

t— 2C1assifyk,g7(t) mod 2C1assify]0g7(r)+1 =0
t— 2Classifylogr(t) + 1 mod zclassifylogr(t)ﬂ =1

t mod zclassifylogT(t)H — 2C1assify|0gr(t)

t+ 2Classifylog7(t) —1 mod zclassifyh,gr(z)ﬂ — 2classifyh,gr(t)+1 -1

t+ 2C1a551fyk,g7(t) mod 2C1a551fy](,g7(z)+l =0
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This means that from ¢ — 2€1assifr(® o ¢ 4 2C1assifyier(® _ 1 their IDs have the same bit in position
Classifyj,r(r) + 1. Hence, Y6 € [1,2°0255 e (0] ID[Classifyo, r(f) + 1] = ID'[Classifyo,r (1) +
1] = ID/[Classifyo p(¢) + 1], where ID « Binarizejogr(f +06 — 1), ID'" « Binarizej,,r(t — 6 mod T)
and /D, « Binarizej.r(?). By the same logic, we can prove the theorem for the other cases, namely
J € [Classifyo, () +2,l0g T —1].

(2) By the definition of Classifyj,, 7, it holds that 7 mod 2425517 = (. By the property of modulo
operation, it holds that

t— ZCIassifylogT(t) mod 2CIASsify]0gT(t) =0

t — Classifyier () 4 1 mod 2€tassifyigr(® — |

t—1 mod 2classify]0gr(t) — 2Classifylogr(t) -1

£ mod 2€1assifyir(® — ()

t+ 1 mod 2¢12s8H e 1™ =

t+ 2Classifylogr(t) — 1 mod 2classify]0gr(z) — 2CIassifyh,gT(t) -1

t+ 2C1assify|(,g»,-(f) mod 2C1assify](,gy~(z) =0

This means that from t—21255110e7() o t— 1, their IDs have the same bit in position Classi £Y10e 7 With the ID
of t, and from ¢ to t+2135i1e7() _ 1 _their IDs have the distinct bit in position Classi £y10g 7 With the ID of 7.
Hence, V6 € [1,2°1255180:r®] [D[Classify,r(1)] = ID;[Classify,, r(1)] and ID'[Classifyj,r(1)] =
—ID,[Classify,r(¢)], where ID « Binarizejoer(t + 6 — 1), ID’ « Binarizej,r(t — ¢ mod T') and
ID; « Binarizej, 7 ().

(3) Firstly, we focus on ¢ + 6 — 1. For j € [0, Classify,q, r(¢) — 1], let us define a pair (x}, 7;) of Boolean
variable and integer variable. For instance, (xc1assify]0gr(,),1, tc1assify]0g7(,),1) is defined as follows.

(XClassifyiogr(1)-1» [Classi £y, r(1)-1)
1,0
Ift+6—1¢[t,t+ 2035101 _ 1)
(0, 1 + 2C1assifyer(D-1y
Elseift+6 — 1 € [t + 2C1255i8er(0=1 ¢ 4 oClassifyigr() _ ]

Generally, for each j € [1,Classify,,7(f)], (xjs1,2j:1) is defined as follows, based on 7y := 7 and 7;.

(1)) Ift+6-1€tjt;+2771 = 1]
(Xje15tj41) = (0,2 + 2771
Elseift+6—1€[t;+2/71; +2/ - 1]

In the same manner, for ¢ — 6 mod T, we define such pairs {(x’]., t;.) | j €[0,Classify,r(r) — 1]}
Obviously, it is true that ¥j € [0,Classifyj,,r — 1], x; = Hx;. By the results of (1) and (2), and the
definition of Binarize,, 7, proof for the case (3) is completed.
D.4 Proof of Theorem 7
It is true that ¥r € [0,T — 1], Vi € [0,Classity,,¢(£)], f mod 2/ = 0. In this proof, we refer to this as the

first statement.
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It is also true that V¢ € [0, T — 1], if 3i € [0,1log T'] s.t.
tmod 2’ = 0A[i#logT = tmod 2" =21,

then Classifyq, 7(f) = i. We refer to this as the second statement.
If we can prove that it is true that Yz € [0, T — 1], Vk € [0, Classify,, (1) — 1],

t+2F mod 2¥ = 0,
¢+ 28 mod 2%*! = 2K,
t—2¥mod 2¢ = 0,
t — 28 mod 2¢! = 2K,

then accoding to the second (true) statement, Theorem 6 is proven.
Actually, the statement is true since according to the first (true) statement,

t+28mod 2¢ = tmod 2 + 2 mod 2 =0+ 0 = 0,
¢+ 28 mod 2! = r mod 28! + 2% mod 28! = 0 + 2% = 2%,
t—2mod 2¥ = t mod 2 + 2 mod 2 =0+ 0 = 0,
t =28 mod 2! = r mod 2! — 2% mod 2F*! = 0 + 2% = 2.

D.5 Proof of Theorem 8

Let us prove the theorem in each one of the cases (1)t = 0, (2) t = 2127, (3) r € [0, T — 1]\ {0, 2" T}

(1) Obviously, t+22551 507 mod T = 0+2'°¢” mod T = T mod T = 0. Likewise, t—22551H10:7() mod
T = 0. The proof is done.

(2) Obviously, ¢ + 26125511 mod T = 2leT=1 4 plogT=1 mod T = 2°¢T" mod T = Tmod T = 0.
Likewise, 1 — 261258117 mod T = 0. The proof is done.

(3) It is true that  mod 2125517 = 0 and r mod 212551 B0 r(+1 = pClassifyier() Hence, 142125511010 mod
2C1assifyh,g»,~(t)+l — 2C1assify1‘,g»,~(z)+l mod 2C1assifyh,g»,~(t)+l = 0 mod 2C1assify|(,g»,~(t)+1' Hence, ClassiflegT(t +
2¢1assifier® mod T) > Classifyo,r(1)+ 1. Likewise, since 1 — 21551 80er() mod 21assifier @+ = 0 mod
2CLassi8ar 41 it holds Classi £y (f — 25255181 mod T) > Classi fypogr(1) + 1.

D.6 Proof of Theorem 9

By Theorem 8, it is true that VL,R € [0,T — 1] with D « Dividejoe (L, R), D + 2€1255i8er(®) _ 1 > R,
There are two cases, namely (1) D + 2¢13ssifie.r(® _ 1 = R and (2) D + 2¢12ssifer() _ 1 > R We prove
the theorem in each case.

In the 1st case, it is obvious that 3k; € [0, Classifyyr(D)]s.t. D+2k—1 = R, since k; = Classifyye (D)
is the integer. By Theorem 4, we complete to prove Theorem 9.

In the 2nd case, it is true that 3k; € [0, Classify|o,7(D)—1], Iky € [0,k — 1], ---, Tk, € [0, k1 — 1] s.t.
D—1+3Y] 2% = R. By using Theorem 4 and Theorem 7 with n times and n — 1 times in total, respectively,
we complete to prove Theorem 9.

D.7 Proof of Theorem 10

By Theorem 8, it is true that VL,R € [0,T — 1] with D « Dividejo7(L,R), D — 2Classifyisr(D) mod T <
L. Hence, it is true that Jk; € [0,Classify,,7(D) — 1], kp € [0,k — 1], -+, Tk, € [0,k — 1] s.t.
D=3, 2% mod T = L. By using Theorem 5 and Theorem 7 with n times and n— 1 times in total, respectively,
we complete to prove Theorem 10.
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D.8 Proof of Theorem 11

We only prove the adaptive security, because the selective one can be analogously proven.

Precisely speaking, we prove the following statement: For every integer 4,7 € N and every A € PPT,
which runs in time ¢, there exists B € PPT, which runs in time (which is almost the same as) ¢, such that
Advg]?;;f:ﬁ/\y ar = Advg?;lgg;fm(/l), where d := log T and n := 21log T — 3. Note that the reason why the
integer n is set as 2log T — 3 is that total number of wildcarded IDs in Ty g+ for the target range [L*, R*] is
(logT — 1) + (log T — 2) at the maximum.

B behaves as in Fig. 23. B; gives mpk to A; and gets ([L*, R*], mg, m1, st}). Here, obviously, mpk given
to A; by By properly distributes, i.e., distributes identically to the real mpk in the experiment for 2ik _y1pe-ge.
From [L*, R*], B; derives a set of wIDs Ty g+ parsed as {wID7 | i € [1,k*]}. If k* = n, By determines Tyz- g
as n target wiDs. Otherwise, B, determines T« g+ as k* target wIDs, chooses n — k* wIDs from Tyz- g+
uniformly at random, then determines them as the remaining n — k* target wIDs. The reason why we make B
do that is that any one among n target wIDs must satisfy a condition that for any numerical value ¢ queried
to 0% or 0%*™ the wiD is not satisfied by Binarize,(r) € {0, 1}£. Obviously, every one of the randomly
chosen n — k* wiDs satisfies the condition. After that, By outputs the n wIDs and the two plaintexts m and
my. B, receives n ciphertexts for the n wIDs. Only the first k* ciphertexts are given to A, and the other ones
are ignored. Obviously, the ciphertexts given to A, properly distribute. Finally, B, outputs the bit " outputted
by Az.

Thus, B perfectly simulates Expty> * P2, " (resp. Expt;)> * %4 ) for A when B (unconsciously) plays
Exptg?;s%[’g'cm (resp. Expt?v]v?;’f”BI’Il"CPA). Hence, it holds that Pr[1 « Expt}?ﬁ;ﬁfﬁko] =Pr[l « Exptgli;]’l’:’;i"g(?]
(resp. Pr[1 < Expty> * P4 1= Pr[1  Expt;0 ") P4)).

The reason why the running time of B is almost the same as that of A is that B does not need to execute
any inefficient computation such as paring, exponentiation or multiplication on any (bilinear) groups by
himself. He needs to execute some algorithms such as Binarize,, Divide,, LatterWID,, FormerWID,,
and Merge,, by himself. However, they can be executed much more efficiently than the heavy computation
related to (bilinear) groups. Thus, we do not count the time to execute them.

KGen;

B(l)mxk (mpk)
KGen |

1 (L, R T, mo,my. st)) — A (mpk),
> O\ (1€ [0,T - 1]):
2. B, queries Binarize,(?) € {0, 1}¢ to Oiii"' to get sk,
then returns sk;.
3. D* :=Divide,(L*,R"), T\p+ - := LatterWID,(D*,R").
4. Tz pe—1) = FormerWID,(L*,D* — 1)
5. Tize g4 = Merge (Tip+ g+ Tize pe-11)-
6. Parse Ty« gy as {wID; | i € [1,k"]}.
7.Ifk* <n, forevery j € [k" + 1,n], wID; ul {wiD; | i€ [l,k*]}.

8. Return ({wID; | i € [1,n]}, mg, my, st1), where st; = (st], k).
KGen)

Bfmk (st1,{C; i € [1,n])):

9. Parse st as (st],k").
KGeny

10. Return b’ « A" (s11,{CF | i € [1,k*1}),
> O\ (1€ [0,T - 1]):
B, replies as B, replied to a query to O'°*" from A,.

Fig. 23. Algorithm B in the proof of Theorem 11
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D.9 Proof of Theorem 12

Precisely speaking, we prove the following statement: For every 4, L € N and every A € PPT, running in time
t, there exists B € PPT, running in time ¢+ ((2 + gi)texp + Qictma)IWID* |, where [W(wID™)| denotes number of

wildcard symbol * in the target wildcarded ID wID* and t,,,, (resp. #,,,;) denotes computational time per one

exponentiation (resp. multiplication) on the group G, such that Adv}}ﬁ;ﬂif{"(ﬁ) = 2L . AgvINP-ID-CPA 3y,

Iy 1e.B.AL
where L' = L — |wID?|..

We consider B which behaves as in Fig. 24. As we explained earlier, B plays Expty > £P* with L' =

L — |wID*|, which depends on the target wildcarded ID wID* € {0, 1}* which will be chosen by A. We make
B (or By) randomly guess the position of all wildcard symbols in wID*, i.e., {i s.t. wID*[i] = =}, before the
experiment starts. Note that {i s.z. wID*[i] € {0, 1}} can be computed from {i s.t. wID*[i] = *} (and L) by
[1,L] \ {i s.t. wID*[i] = *}. Hereafter, we consider a situation where B, correctly guesses it. Note that the
situation occurs with probability 1/2. We assume that information about {i s.t. wID*[i] = } is transmitted

to B, at the same time as mpk, which means that B, knows {i s.r. wID*[i] = =} before wID* is chosen by A;.

It is easy to verify that mpk’ given to A, distributes identically to the real one in Exptg?;%'gn or

Expt{'> I-(PA Ttis also easy to verify that C* given to A distributes identically to the real one in Expty\> Th-(P4

(resp. Expt;)> *0t"4) when b = 0 (resp. b = 1). It is also obvious that each secret-key sk;p generated

by B; or B, on KGen oracle distributes identically to the real one since it can be simply written as (g5 -

U

W' T1; sr. 1ppi=1 4" 8"), where r «— Z,. Thus, B perfectly simulates Expt}&?;gIA%CPA (resp. Exptﬂ?};ﬂ?l‘c“

for A when B correctly guesses {i s.t. wID*[i] = =} (with probability 1/2") and (unconsciously) plays

Expty> 100 (resp. Expt;- "> ). Hence, it holds that Pr[1 « Expt;\> V2PA]/28 = Pr{1 « Expty >0
tIND—ID—CPA]).

(resp. Pr[1 « Expt}ﬁi}iﬂ?{ PA1/2L = Pr[1 « Exp B

The reason why the the running time of B is t + (2 + gi)texp + Grtma)WID™|, is that By (resp. By) in
step 3 (resp. step 14) needs to calculate [wlD*|. exponentiations, and B; and B, collectively need to calculate
qx - IwID"|, exponentiations and multiplications to generate g secret-keys on KGen; and KGen, in total.

E Detailed Comparison of Ciphertext-Sizes between IK/PQ-WIBE-RE Instantiated
by Ilwisk

Let Tl[)f Rl denote the set of wildcarded IDs (deterministically) chosen from a range [L, R] in PQ-WIBE-RE

w. ITwge. Let T}ED%] (resp. T}g,m) denote the set of wIDs determined from [L, D — 1] (resp. [D,R]) in

IK-WIBE-RE w. ITywigg. Let T%IER] denote the finally determined set of wlDs for [L, R] in IK-WIBE-RE w.
IIyiBE.

It holds that for every A € {PQ, IK}, |C?L’R]| = ZW’DETfL_R] {lgr| + (2 + |wiID|.)|g|}. We say that two sets of
wIDs T} and T, are structurally identical if there exists a wID in one of the sets which covers a range, then

there also exists another wiID in the other one of the sets which covers the same range. Obviously, if TFB Rl

and T}f x) are structurally identical, then |C fg wl = IC[IE x)l- We can easily prove that for every [L, R], Tl[)g g and
IK IK P
Tir.p-1 Y T\p g are structurally identical.
For some ranges [L, R], T{f R = T{E p-ny Y ng xp» €& the first three examples in Table 3. In this case,

PQ 1K

: PQ 1K : : —
since T[L’R] and T[L’ g are structurally identical, |C, [L’R]l =|C [ L’R]|.

For the other ranges [L, R], T{ERJ # T{E’Dfl 1, T{E’Rl, e.g., the last three examples in Table 3. In this case,

|CF§R]| > IC%ER]L Consider a case that a wID in T%g  and awID’ in T{fD_l], where |wID|, = WID'|, =k €

[0,log T — 1], are merged into a wID* with \wID*|, = k + 1. In this case, by the merging, ciphertext size is

reduced by |g7| + (k + 1)|g|. For instance, when [L,R] = [1,T — 2], |cf§R]| = (2logT - 2)|gr| + (log> T +
log T = 2)lgl and |C¥ )| = (log T = Dlgr| + 5(log> T + 3log T — 4)|g| = HerR el + (log T — 1)lgl which is

[L,R]
almost the half of |C1]’)13 R l.
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OKGem

B, ™" (mpk,{i s.t. wID*[i] = })):

1. Parse mpk as (p,G, Gy, e, g, g1, &, {u; | i s.t. wID*[i] € {0, 1}}).
2. For every i s.t. wID*[i] € {0, 1}, u; := u;.

3. For every i s.t. wID*[i] = *, §; l Zy, u; = g
4.mpk' = (p,G,Gr,e,8,81, 8, uo, -+, Ur-1,V1).

KGen
5. (WID*,mg, my, st}) < A" ] (mpk’).
> OL M (ID € {0, 1))

6. B parses ID’ as ||, 1177, where k! € {0, 1}.

7. B, queries ID := ||; g, ip-paco, to his own OF*™ to get
skip = (gg (' Hi s.t. wID*[i]1€{0,1}AID' [i]=1 u;)', g") = (di,dy),
where @, r € Z, cannot be seen by B;.

8. By returns skipy = (d1 - [1; s wipe(imentnriie1 s da).

9. sty == (st1,{B; | i € W(wID")}).

10. Parse wID" as ||;ejo.r_1h; Where i} € {0, 1, #}E.

11. Return (ID*, my, my, st;), where ID* = |; s ; vup*[aeo. 7 -

RKGen-

BO" (s, C"):

12. Parse sty as (st],{B; | i s.t. wID*[i] = #}).

13. Parse C* as (e(g1, g2)" - myp, &°, (W' [icuap+) ti)°), where s and b are
unknown to B,.

14. C* = ((e(g1,82)" - My, &°, (U T1; 5. 1pr1ig=1 i),

(@Y | i s.t. wID*[i] = *}).

KGeny

15. Return b’ — A" (1, C*).
> O\ (ID € {0, 1}F):
B, replies as B, replied to a query to Of°*™! from A,.

Fig. 24. Algorithm B in the proof of Theorem 12

Table 3. Ciphertext sizes of IK/PQ-WIBE-RE instantiated by /7ygg for some ranges [L, R]

! [L.R] | |Clik | [Cltal |
[0,0] lgr| + 2lg]
[0,T-1] lgr| + (2 +1og T)ig]
[1,2°7" " — 1+ Ficjou0e7-31 2'] 2log T = 3)lgr| + (log” T - 2)Ig]
[T -1,0] 2lgr| +4lgl lgr| + 3lgl
[1,20271 _ ] (2log T - 4)lgr| (log T = 2)lgr|

’ +(log> T —log T - 2)|g| +%(log2 T +1logT - 6)|g|

[1,T -2]or (21og T - 2)lgr| (log T - 1)lgr

[2loeT-1 4 1, loeT=2 _ 2] +(log” T +1log T = 2)|g| | +3(log® T + 3log T — 4)lg|
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