
Time-Specific Encryption with Constant-Size Secret-Keys Secure
under Standard Assumption

Masahito Ishizaka and Shinsaku Kiyomoto

KDDI Research, Inc.
{ma-ishizaka, kiyomoto}@kddi-research.jp

Abstract. In Time-Specific Encryption (TSE) [Paterson&Quaglia, SCN’10] system, each secret-key
(resp. ciphertext) is associated with a time period t ∈ [0,T − 1] (resp. a time interval [L,R] where
L,R ∈ [0,T − 1]). A ciphertext under [L,R] is correctly decrypted by any secret-key for any time t
included in the interval, i.e., t ∈ [L,R]. TSE’s generic construction from identity-based encryption (IBE)
(resp. hierarchical IBE (HIBE)) from which we obtain a concrete TSE scheme with secret-keys of size
O(log T)|g| (resp. O(log2 T)|g|) and ciphertexts of size O(log T)|g| (resp. O(1)|g|) has been proposed in
[Paterson&Quaglia, SCN’10] (resp. [Kasamatsu et al., SCN’12]), where |g| denotes bit length of an ele-
ment in a bilinear groupG. In this paper, we propose another TSE’s generic construction from wildcarded
identity-based encryption (WIBE). Differently from the original WIBE ([Abdalla et al., ICALP’06]), we
consider WIBE w/o (hierarchical) key-delegatability. By instantiating the TSE’s generic construction,
we obtain the first concrete scheme with constant size secret-keys secure under a standard (static) as-
sumption. Specifically, it has secret-keys of size O(1)|g| and ciphertexts of size O(log2 T)|g|, and achieves
security under the decisional bilinear Diffie-Hellman (DBDH) assumption.

Keywords: Time-specific encryption (TSE), Constant-sized secret-keys, The decisional bilinear Diffie-Hellman
(DBDH) assumption, Wildcarded identity-based encryption (WIBE).

1 Introduction

Time-Specific Encryption (TSE) [15]. In a TSE system with time periods T ∈ N, each secret-key (resp.
ciphertext) is associated with a time period t ∈ [0,T −1] (resp. a time interval [L,R], where L,R ∈ [0,T −1]).
Any ciphertext for [L,R] can be correctly decrypted by any secret-key for any t such that t ∈ [L,R]. If we say
that a TSE scheme is secure, that informally means that any probabilistic polynomial time (PPT) algorithm,
given a ciphertext C∗ of a plaintext m∗ under an interval [L∗,R∗], cannot get any information about m∗. This
type of TSE, on whom we mainly focus in this paper, is called plain setting in [15].

Paterson and Quaglia [15] proposed a generic construction of TSE from identity-based encryption (IBE)
[18]. Kasamatsu et al. [12, 13] proposed a generic construction of TSE from forward secure encryption
(FE) [3, 9] and a more efficient concrete construction based on Boneh-Boyen-Goh hierarchical identity-based
encryption (HIBE) [6]. Secret-key size of the IBE-based TSE is O

(
log T · K

(
Σ2T−1

IBE

))
, where Σn

IBE denotes

an IBE scheme with n ∈ N identities and K
(
Σn

IBE

)
denotes its size of secret-keys. This means that secret-key

size of any concrete scheme obtained from the IBE-based generic construction of TSE cannot be constant
(even if the secret-key size of the underlying IBE scheme is constant). By a similar reason, either secret-key
size of any concrete TSE scheme obtained by the FE-based generic TSE construction or that of the concrete
BBG HIBE-based TSE construction cannot be constant.

As pointed out by [15], broadcast encryption (BE) [10] is conceptually broader than TSE. As far as
we know, master public-key size (and encryption/decryption cost) of currently-known BE schemes increase
linearly with total number of users (e.g., one in Subsect. 3.1 in [7], one in [20], one in Subsect. 3.1 in [11]),
square root of total number of users (e.g., one in Subsect. in [7]), or maximum cardinality of a set of users
associated with a ciphertext (which determines users who can decrypt the ciphertext) (e.g., one in Subsect.

3.3 in [11]). Because of that, from currently-known BE schemes, we obtain TSE schemes whose master
public-key size (and encryption/decryption cost) increase linearly with O(

√
T) at least.

It is rational that, based on the fact that TSE is more functionally limited than some existing primitives
such as BE, attribute-based encryption [17] and functional encryption [8], we require TSE to be more (asymp-
totically) efficient than them. Precisely, in this paper, we focus on (asymptotically) efficient TSE schemes,
whose master public-key/(user’s) secret-key/ciphertext size and encryption/decryption cost are O(log2 T) at
most.

In this paper, we affirmatively solve the following open problem: Can we construct a TSE scheme with
total time periods T , whose secret-key size is O(1), whose master public-key/ciphertext size and encryp-
tion/decryption cost are O(log2 T) at most, and which is secure under standard (static) computational as-
sumptions?

Wildcarded Identity-Based Encryption (WIBE) [1, 2, 4]. WIBE is a generalization of HIBE, where each
ciphertext is associated with a wildcarded identity wID ∈ {0, 1, ∗}L which can include some wildcard symbols
∗ and such ciphertext can be correctly decrypted by any secret-key associated with any identity ID ∈ {0, 1}L

s.t. for every i ∈ [1, L] s.t. wID[i] , ∗, it holds wID[i] = ID[i]. Abdalla and Birkett et al. [1, 2, 4] showed that
by partially modifying existing HIBE schemes [5, 6, 19], we obtain WIBE schemes. Since they defined WIBE
as a generalization of HIBE, their WIBE schemes are assumed to have (hierarchical) key-delegatability,
which guarantees that there exists a polynomial time algorithm to derive a secret-key for an identity from
any secret-key for any ancestor identity of the identity. In this paper, meanwhile, we define WIBE as a
generalization of IBE, which implies that they lack (hierarchical) key-delegatability.

Our Contribution. We propose a generic construction of Range Encryption (RE) from WIBE w/o key-
delegatability. RE is a generalization of TSE. Differently from TSE, RE handles not only a range [L,R] ⊆
[0,T − 1] s.t. L ≤ R, but also a range [L,R] ⊆ [0,T − 1] s.t. L > R. From a normal TSE scheme, we can
easily construct a RE scheme by making an encryptor divide a range [L,R] ⊆ [0,T − 1] s.t. L > R into two
subranges [L,T − 1] and [0,R] and independently generate a ciphertext for each subrange. Secret-key size
of the generic construction is described as O

(
K

(
Σ

log T
WIBE

))
, where Σn

WIBE is a WIBE scheme whose bit length
of an identity is n ∈ N. Moreover, we show that by modifying Waters IBE scheme [19], we can construct a
WIBE scheme (w/o key-delegatability), whose secret-keys consists of constant number of group elements,
i.e., two group elements, and which is secure under standard assumptions, i.e., the decisional bilinear Diffie-
Hellman (DBDH) assumption. By using the WIBE scheme to instantiate the generic construction of RE from
WIBE, we obtain a RE (or TSE) scheme which can justify our claim that we certainly solve the open problem
mentioned earlier.

Our Approach. It might be a surprise that it is not hard to obtain a RE scheme with constant-sized secret-keys.
However, since the naive methodology has some disadvantages, we propose another improved methodology.
Let us explain the details below.

Let PQ-IBE-TSE denote the IBE-based generic construction of TSE [15]. Let PQ-WIBE-TSE denote PQ-
IBE-TSE, where we substitute WIBE for IBE. Let PQ-WIBE-RE denote the range encryption constructed by
PQ-WIBE-TSE. We briefly explain PQ-WIBE-RE.

We consider a binary tree with depth log T (as shown in Fig. 3 in Sect. 5). A time period t ∈ [0,T − 1]
corresponds to a leaf node with a bit string t ∈ {0, 1}log T (which is the binary value of t). A secret-key for
t ∈ [0,T − 1] is produced as a secret-key for the bit string (or identity) t ∈ {0, 1}log T by using the key-
generation algorithm of the WIBE scheme. Given a time interval [L,R] where L,R ∈ [0,T − 1], we consider
some wildcarded strings T[L,R] which covers [L,R] and whose cardinality is the minimum1. For instance,
when T = 8 in Fig. 3, T[1,6] = {001, 01∗, 10∗, 110}. When we encrypt a plaintext under [L,R], we encrypt the
plaintext under each (wildcarded) bit string in T[L,R] by using the encryption algorithm of the WIBE scheme.

1For the formal algorithm deriving such a set T[L,R], we recommend the reader to refer to the original paper [15] or
Sect. 5 of this paper.

2

We can easily prove that if the underlying WIBE scheme is secure, then PQ-WIBE-RE is secure. Secret-
key size of PQ-WIBE-RE isO

(
K

(
Σ

log T
WIBE

))
. There have already existed WIBE schemes (with key-delegatability)

whose secret-key size is constant, e.g., Abdalla and Birkett et al.’s WIBE scheme [1, 2, 4] based on Boneh-
Boyen-Goh HIBE [6]. Thus, by using such a WIBE scheme to instantiate PQ-WIBE-RE, we can obtain a RE
scheme with constant-sized secret-keys.

However, such a naive methodology has the following disadvantages.

1. Ciphertext size of PQ-WIBE-RE can be smaller. In other words, there exists another WIBE-based generic
construction of RE, from which we obtain a concrete RE scheme with smaller ciphertext size. We denote
it by IK-WIBE-RE.

2. To the best of our knowledge, no WIBE scheme (with or without key-delegatability) with constant-sized
secret-keys secure under standard (or static) assumptions has been proposed. For instance, Boneh-Boyen-
Goh HIBE-based WIBE scheme [1, 2, 4] with constant-sized secret-keys has been proven to be secure
under non-standard (or non-static) assumption.

Let us provide the details in the following 2 paragraphs.

IK-WIBE-RE. Roughly speaking, encryption process adopted in IK-WIBE-RE is the same as that adopted
in PQ-WIBE-RE. Namely, that is a process, where we, given a plaintext m and an range [L,R], derive a set
of wildcarded IDs T[L,R], encrypt m under each wID ∈ T[L,R] (by using the encryption algorithm of Σ log T

WIBE)
to produce a ciphertext CwID, and construct C[L,R] as {CwID | wID ∈ T[L,R]}. Thus, size of the ciphertext
is described as

∑
wID∈T[L,R]

|CwID|. If we adopt our WIBE scheme based on Waters IBE scheme [19], that is
described as

∑
wID∈T[L,R]

{|gT | + (2 + |wID|∗)|g|}23. This implies that |C[L,R]| is determined solely by T[L,R]. Let
us explain how we derive T[L,R].

We introduce a binarizing algorithm Binarizelog T which takes a numerical value (or time period) t ∈
[0,T − 1] and outputs a bit string b ∈ {0, 1}log T . For instance, when T = 32, the relation between t and b is
defined as shown in Fig. 5 in Subsect. 6.1. Then, we introduce a classifying algorithm Classifylog T which
takes a value t ∈ [0,T − 1] and outputs a class index in [0, log T]. Specifically, it takes t ∈ [0,T − 1], and
outputs log T if t = 0, or outputs i ∈ [0, log T − 1] if t mod 2i+1 = 2i. (See Fig. 7.)

Given a range (or time interval) [L,R], we firstly determine a value (called divider) D ∈ [L,R] which
divides the range into [L,D − 1] and [D,R]. Informally, D is the value which is classified as the class whose
index is the largest among the values in [L,R]. Let Dividelog T denote the algorithm which takes [L,R] and
outputs D.

Next, we derive sets of wildcarded IDs T[D,R] and T[L,D−1] for [D,R] and [L,D − 1], respectively. Firstly,
let us explain how to derive T[D,R]. We formally prove that ∀L,R ∈ [0,T − 1] with D ← Dividelog T (L,R),
∃k1 ∈ [0, Classifylog T (D)], ∃k2 ∈ [0, k1 − 1], · · · , ∃kn ∈ [0, kn−1 − 1] s.t. D − 1 +

∑n
l=1 2kl = R. Moreover,

we prove that ∀i ∈ [1, n], ∃wIDi ∈ {0, 1, ∗}log T which covers a subrange4 [D +
∑i−1

l=1 2kl ,D − 1 +
∑i

l=1 2kl]
and satisfies |wIDi|∗ = ki. We set T[D,R] as {wIDi | i ∈ [1, n]}. Likewise, we derive T[L,D−1]. We prove that
∀L,R ∈ [0,T − 1] with D ← Dividelog T (L,R), ∃k′1 ∈ [0, Classifylog T (D) − 1], ∃k′2 ∈ [0, k′1 − 1], · · · ,
∃k′n′ ∈ [0, k′n′−1 − 1] s.t. D −

∑n
l=1 2k′l mod T = L. Moreover, we prove that ∀i ∈ [1, n′], ∃wID′i ∈ {0, 1, ∗}

log T

which covers [D −
∑i

l=1 2k′l mod T,D − 1 −
∑i−1

l=1 2k′l mod T] and satisfies |wID′i |∗ = k′i . We set T[L,D−1] as
{wID′i | i ∈ [1, n′]}.

Finally, we derive T[L,R] from T[L,D−1] and T[D,R]. Although the most simple way is deriving a union
set of the two sets, i.e., T[L,R] B T[L,D−1]

⋃
T[D,R], we adopt the following another way. Let n∗ denote the

integer s.t. [0 ≤ n∗ ≤ min(n, n′)]
∧n∗

i=1

[
ki = k′i

]∧ [
n∗ < min(n, n′) =⇒ kn∗+1 , k′n∗+1

]
. We formally prove that

∀i ∈ [1, n∗], wIDi and wID′i can be merged into a new wID∗i which covers both of the ranges covered by wIDi

2|g| (resp. |gT |) denotes bit length of an element in a bilinear group G (resp. GT) for a (symmetric) bilinear map
e : G × G→ GT .

3|wID|∗ denotes number of wildcard symbol ∗ in wID ∈ {0, 1, ∗}L.
4wID ∈ {0, 1, ∗}L covers a range [a, b] means that any value included in the range matches the wildcarded ID and any

value excluded from the range does not match it.

3

and wID′i , i.e., [D +
∑i−1

l=1 2kl ,D − 1 +
∑i

l=1 2kl]
⋃

[D −
∑i

l=1 2k′l mod T,D − 1 −
∑i−1

l=1 2k′l mod T], and satisfies
|wID∗i |∗ = ki + 1. In conclusion, we set T[L,R] as T[L,D−1]

⋃
T[D,R] \i∈[1,n∗] {wIDi,wID′i}

⋃
i∈[1,n∗]{wID∗i }.

Let us compare size of ciphertexts generated based on T[L,R] with that on T[L,D−1]
⋃
T[D,R]. Let |CL,R| (resp.

|CL,D,R|) denote size of ciphertext generated based on T[L,R] (resp. T[L,D−1]
⋃
T[D,R]). If T[L,R] = T[L,D−1]

⋃
T[D,R],

then |CL,R| = |CL,D,R|. Else if T[L,R] , T[L,D−1]
⋃
T[D,R], then |CL,R| < |CL,D,R|. Especially, if n∗ = n = n′, |CL,R|

becomes approximately the half of |CL,D,R|. For instance, when [L,R] is [1,T −2] (or [2log T−1 +1, 2log T−1−2])
with n∗ = n = n′ = log T − 1, |CL,D,R| = 2(log T − 1)|gT | + (log2 T + log T − 2)|g| and |CL,R| = (log T −
1)|gT | +

1
2 (log2 T + 3 log T − 4)|g| = 1

2 |CL,D,R| + (log T − 1)|g|. For instance, when T = 210 (resp. T = 220),
|CL,D,R| becomes 18|gT |+ 108|g| (resp. 38|gT |+ 418|g|) and |CL,R| becomes 9|gT |+ 63|g| (resp. 19|gT |+ 228|g|).
Note that the maximum |CL,D,R| is 2(log T − 1)|gT | + (log2 T + log T − 2)|g| when [L,R] is [1,T − 2] (or
[2log T−1 + 1, 2log T−1 − 2]). Thus, in an asymptotic sense, |CL,D,R| is O(log T)|gT | + O(log2 T)|g|. Neither the
maximum of |CL,R| nor the range [L,R] maximizing |CL,R| is unknown. However, since for every [L,R], |CL,R|

becomes equivalent to or smaller than |CL,D,R|, |CL,R| is asymptotically (at most) O(log T)|gT | + O(log2 T)|g|.
Thus far, we introduced IK-WIBE-RE. Henceforth, we explain how smaller ciphertext size of IK-WIBE-

RE is than that of PQ-WIBE-RE. Let TPQ[L,R] denote the set of wildcarded IDs (for the range [L,R]) in PQ-
WIBE-RE. For every [L,R], TPQ[L,R] and T[L,D−1]

⋃
T[D,R], where D ← Dividelog T (L,R), do not become the

same, but resemble. Precisely, they consist of the same number of wildcarded IDs, and if there exists a
wildcarded ID in one of them which covers a subrange of [L,R], then there also exists a wildcarded ID in
another one of them which covers the same subrange. This implies that size of ciphertexts generated based
on them become the same. Hence, for any [L,R], size of ciphertext of IK-WIBE-RE becomes equivalent to
or smaller than that of PQ-WIBE-RE, and for some [L,R], the former approximately becomes the half of the
latter.

Our WIBE Scheme with Constant-Sized Secret-Keys Secure under the DBDH Assumption. In IK-WIBE-RE,
the WIBE scheme is not required to be (hierarchically) key-delegatable. In other words, from any WIBE
scheme with constant-sized secret-keys w/o key-delegatability, we can obtain a RE (or TSE) scheme with
constant-sized secret-keys. Influenced by [1, 2, 4], we show that a WIBE scheme w/o key-delegatability and
with constant-sized secret-keys is obtained by modifying Waters IBE scheme [19]. Security of the WIBE
scheme is reduced to that of Waters IBE scheme, namely the decisional bilinear Diffie-Hellman (DBDH)
assumption. By adopting the WIBE scheme to instantiate IK-WIBE-RE, we obtain a RE scheme which can
be an evidence that we certainly solve the open problem mentioned earlier.

Another Generic Construction of TSE from BE. As we explained earlier, concrete TSE constructions ob-
tained by using the naive generic construction of TSE from BE have large master public-key and encryp-
tion/decryption cost which increase linearly with O(

√
T) at least. We found another generic construction of

TSE from BE. Let us denote it by IK-BE-TSE. It adopts the same tree-based technique as the IBE-based TSE
construction [15] (PQ-IBE-TSE) and the naive WIBE-based TSE construction (PQ-WIBE-TSE). The details
can be seen in Subsect. C.3.

In IK-BE-TSE, we use BE schemes whose maximum cardinality of a set of users associated with a
ciphertext is 2 log T − 2. Because of that, from IK-BE-TSE, we can obtain concrete TSE schemes whose
master public-key and encryption/decryption cost are in polylogarithmic order in T . However, each secret-
key for a time period t consists of log T + 1 number of secret-keys of the BE scheme. So, secret-key size
of any concrete TSE scheme obtained from IK-BE-TSE increase linearly with log T + 1 and thus cannot be
constant.

Paper Organization. In Sect. 2 for preliminaries, we introduce some special notations, and give definitions
of bilinear groups and DBDH assumption. In Sect. 3 (resp. Sect. 4), we provide syntax and security definition
for WIBE w/o key-delegatability (resp. RE). In Subsect. 6.1 and Subsect. 6.2, we explain some algorithms
of IK-WIBE-RE. Before that, in Subsect. 5, we explain the IBE-based TSE by [15] and the WIBE-based
TSE which replaces the underlying IBE scheme in the IBE-based TSE with an WIBE scheme, since they
are closely related to IK-WIBE-RE. In Subsect. 6.3, we compare existing generic RE/TSE constructions

4

in terms of space efficiency. In Sect. 7, we instantiate IK-WIBE-RE by our original WIBE scheme w/o key-
delegatability and compare existing concrete RE/TSE constructions in terms of space/time efficiency, security
and required assumptions.

2 Preliminaries

Notations. For an integer λ ∈ N, 1λ denotes a security parameter. PPTλ denotes a set of all probabilistic
algorithms whose running time is polynomial in λ. We say that a function f : N → R is negligible if
for every c ∈ N, there exists x0 ∈ N such that for every x ≥ x0, f (x) ≤ x−c. NEGλ denotes a set of
all negligible functions for λ. For a bit string a ∈ {0, 1}N , a[i] ∈ {0, 1} denotes the i-th bit of a. For a
wildcarded identity wID ∈ {0, 1, ∗}N , |wID|∗ ∈ [0,N] denotes number of wildcard symbol ∗ in wID, formally∑

i∈[0,N−1] s.t. wID[i]=∗ 1. We say that a wildcarded identity wID ∈ {0, 1, ∗}N covers a subrange [a, b] of a range
[A, B] if every value included in the subrange matches (or satisfies) the wID and every value excluded from
the subrange does not match the wID.

Bilinear Groups of Prime Order. GBG generates bilinear groups of prime order. Let λ ∈ N. Specifically, it
takes 1λ and randomly generates and outputs (p,G,GT , e, g, h). First, p is a prime with bit length λ. Second,
(G,GT) are multiplicative groups of order p. Third, (g, h) are generators of G. Fourth, e : G × G → GT is a
(symmetric) function computable in polynomial time which satisfies the following conditions: (1) Bilinearity:
For every a, b ∈ Zp, e(ga, hb) = e(g, h)ab. (2) Non-degeneracy: e(g, h) , 1GT , where 1GT denotes the unit
element.

Definition 1. Decisional Bilinear Diffie-Hellman (DBDH) assumption holds if ∀λ ∈ N, ∀A ∈ PPTλ, ∃ε ∈
NEGλ s.t. AdvDBDHA,λ (λ) B |Pr[1 ← A(p,G, g, gα, gβ, gγ, e(g, g)αβγ)] − Pr[1 ← A(p,G, g, gα, gβ, gγ, e(g, g)ω)]| <

ε, where (p,G,GT , e, g, ·)← GBG(1λ) and α, β, γ, ω
U
←− Zp.

3 Wildcarded Identity-Based Encryption (WIBE)

Wildcarded identity-based encryption (WIBE) [1, 2, 4] was originally introduced as a generalized primitive
of hierarchical IBE (HIBE). In WIBE, a plaintext is encrypted under a wildcarded identity which can include
some wildcard symbols ∗, and the ciphertext can be correctly decrypted by a secret-key for an identity match-
ing the wildcarded identity. The original WIBE automatically inherits the (hierarchical) key-delegatability.
In this paper, we consider WIBE lacking key-delegatability, whose definitions are given in this section. Def-
initions of the original WIBE are given in Subsect. A.5.

Syntax. Wildcarded identity-based encryption (WIBE) consists of following 4 polynomial time algorithms,
where Dec is deterministic and the others are probabilistic: Let 1λ, where λ ∈ N, denote a security parameter.
Let L ∈ N denote bit length of an ID or wildcarded ID (wID). Setup algorithm Setup takes (1λ, 1L) as input,
then outputs a master public-key mpk and a master secret-key msk. We write the procedure as (mpk,msk)←
Setup(1λ, 1L). We assume that space of plaintexts M is uniquely determined by mpk. Note that the other
algorithms implicitly takes mpk as input. Key-generation algorithm KGen takes msk and an ID ∈ {0, 1}L,
then outputs a secret-key skID. We write it as skID ← KGen(msk, ID). Encryption algorithm Enc takes a
plaintext m ∈ M and a wID ∈ {0, 1, ∗}L, then outputs a ciphertext CwID. We write it as CwID ← Enc(m,wID).
Decryption algorithm Dec takes a secret-key skID and a ciphertext CwID, then outputs a plaintext m ∈ M or
a special symbol ⊥ which means that decryption failed. We write it as m / ⊥ ← Dec(skID,CwID).

Additionally, we define matching algorithm MatchL. It takes an ID ∈ {0, 1}L and a wID ∈ {0, 1, ∗}L,
verifies whether the ID matches the wID, then outputs a Boolean symbol. Formallly, it outputs 1 (if ∀i ∈
[0, L − 1] s.t. wID[i] ∈ {0, 1}, ID[i] = wID[i]) or 0 (otherwise).

We require every WIBE scheme to be correct. A WIBE scheme ΣWIBE = {Setup, KGen, Enc, Dec, Match}
is correct, if ∀λ ∈ N, ∀L ∈ N, ∀(mpk,msk) ← Setup(1λ, 1L), ∀ID ∈ {0, 1}L, ∀skID ← KGen(msk, ID),

5

∀m ∈ M, ∀wID ∈ {0, 1, ∗}L s.t. MatchL(ID,wID) = 1, ∀CwID ← Enc(m,wID), it holds that m ← Dec(skID,
CwID).

IND-CPA Security on Multiple Ciphertexts. For WIBE schemes, we consider a security notion of (adaptive or
selective) indistinguishability against adaptive chosen plaintexts attack (IND-CPA) on multiple ciphertexts.
In this section, we give the definition of the adaptive security. The one of the selective security is given in
Subsect. A.1. For a WIBE scheme ΣWIBE, a probabilistic algorithm A and a bit b ∈ {0, 1}, we consider a
security experiment ExptIND-nWID-CPAΣWIBE,A,b described in Fig. 1.

ExptIND-nWID-CPAΣWIBE ,A,b
(1λ, 1L, 1n):

(mpk,msk)← Setup(1λ, 1L)

(wID?
1 , · · · ,wID?

n ,m0,m1, st1)← A
O
KGen1
msk

1 (mpk), where
.O
KGen1
msk (ID j ∈ {0, 1}L), where j ∈ [1, qk]: Return sk j ← KGen(msk, ID j).

Assume that
∧

i∈[1,n]

[
wID?

i ∈ {0, 1, ∗}
L ∧

j∈[1,qk] MatchL(ID j,wID?
i) = 0

]
∀i ∈ [1, n],C?

i ← Enc(mb,wID?
i). Return b′ ← A

O
KGen2
msk

2 (st1,C?
1 , · · · ,C

?
n), where

.O
KGen2
msk (ID ∈ {0, 1}L): Return skID ← KGen(msk, ID), if

∧
i∈[1,n] MatchL(ID,wID?

i) = 0. Else, Return ⊥.

Fig. 1. Security experiment for a WIBE scheme ΣWIBE

Definition 2. Let n ∈ N. A WIBE scheme ΣWIBE is IND-nWID-CPA5, if ∀λ ∈ N, ∀L ∈ N, ∀A ∈ PPTλ,
∃ε ∈ NEGλ, AdvIND-nWID-CPA

ΣWIBE,A,λ,L,n (λ) B |
∑

b∈{0,1}(−1)b Pr[ExptIND-nWID-CPA
ΣWIBE,A,b (1λ, 1L, 1n) = 1]| < ε.

The following theorem, whose proof is given in Subsect. D.1, guarantees that the adaptive or selective
IND-CPA security on single ciphertext implies the one on multiple ciphertexts.

Theorem 1. For every WIBE scheme ΣWIBE and every integer n ∈ N, if ΣWIBE is IND-WID-CPA (resp. IND-
sWID-CPA), then it is IND-nWID-CPA (resp. IND-snWID-CPA).

4 Range Encryption (RE)

Paterson and Quaglia [15] introduced time-specific encryption (TSE) as a generalization of time-release
encryption [14, 16]. In this paper, we are interested in one type of TSE whom [15] named plain setting6. In
the TSE system (in plain setting) with time periods T in total, there is a trusted authority which privately
generates a secret-key for a time period t ∈ [0,T − 1]. A plaintext is encrypted under a time interval [L,R]
such that 0 ≤ L ≤ R ≤ T − 1, and the ciphertext can be correctly decrypted by using a secret-key for a
time period t in the inverval, i.e., t ∈ [L,R]. In this paper, we consider a generalized primitive named range
encryption (RE). In RE, the range [L,R] is allowed to be one s.t. 0 ≤ R < L ≤ T − 1. In this case, the range is
equivalent to [0,R]

⋃
[L,T − 1]7. In this section, we provide some definitions of RE. (Definitions of TSE can

be seen in Subsect. A.3.)
5When n = 1, we refer to this as IND-WID-CPA.
6Other than the plain setting, they considered the other types of TSE, namely public-key setting and identity-based

setting. In the former (resp. latter) setting, each ciphertext is associated with not only a range [L,R] but also a public-key
(resp. identity), and the ciphertext can be correctly decrypted only when using not only a secret-key for a time period
t ∈ [L,R] but also a secret-key for the public-key (resp identity). They showed that we can obtain a TSE scheme in
public-key setting (resp. identity-based setting) from a TSE scheme in plain setting and a normal public-key encryption
(resp. identity-based encryption) scheme.

7As you might already notice, there is no big difference between RE and TSE, since TSE also can encrypt a plaintext
under a range [L,R] s.t. 0 ≤ R < L ≤ T − 1 by encrypting the plaintext under the subrange [0,R] and doing the same
under the subrange [L,T − 1].

6

Syntax. Range encryption (RE) consists of following 4 polynomial time algorithms, where Dec is determin-
istic and the others are probabilistic: Let 1λ, where λ ∈ N, denote a security parameter. Let [0,T − 1], where
T ∈ N, denote a space of numerical values. Setup algorithm Setup takes (1λ, 1T) as input then outputs a mas-
ter public-key mpk and a master secret-key msk. We write the procedure as (mpk,msk)← Setup(1λ, 1T). We
assume that space of plaintextsM is uniquely determined by mpk. Note that all the other three algorithms
implicitly take mpk as input. Key-generation algorithm KGen takes msk and a numerical value t ∈ [0,T − 1],
then outputs a secret-key skt for the numerical value. We write it as skt ← KGen(msk, t). Encryption algorithm
Enc takes a plaintext m ∈ M and a range [L,R], where L,R ∈ [0,T −1], then outputs a ciphertext C[L,R]. Note
that if L ≤ R (resp. L > R), [L,R] is equivalent to {L, L+1, · · · ,R−1,R} (resp. {L, · · · ,T −1}∪{0, · · · ,R}). We
write it as C[L,R] ← Enc(m, [L,R]). Decryption algorithm Dec takes a secret-key skt and a ciphertext C[L,R],
then outputs a plaintext m ∈ M or a special symbol ⊥ which means that the decrypting procedure failed. We
write it as m / ⊥ ← Dec(skt,C[L,R]).

We require every RE scheme to be correct. A RE scheme ΣRE = {Setup, KGen, Enc, Dec} is correct,
if ∀λ ∈ N, ∀T ∈ N, ∀(mpk,msk) ← Setup(1λ, 1T), ∀t ∈ [0,T − 1], ∀skt ← KGen(msk, t), ∀m ∈ M,
∀L,R ∈ [0,T − 1] s.t. t ∈ [L,R], ∀C[L,R] ← Enc(m, [L,R]), m← Dec(skt,C[L,R]).

IND-CPA Security. As the security notion whom RE schemes should satisfy, we consider IND-CPA, which
intuitively means that no PPT adversary who is given a ciphertext for a plaintext under a range [L,R] cannot
get any information about the plaintext even if he can acquire any secret-keys for any numerical value t s.t.
t < [L,R]. As the usual TSE schemes, e.g. [15], we consider two types of the security notion, namely adaptive
one (IND-R-CPA) and selective one (IND-sR-CPA). In this section, we give the definition of the adaptive
security. The one of the selective security is given in Subsect. A.2. For a RE scheme ΣRE, a probabilistic
algorithm A, and a bit b ∈ {0, 1}, we consider a security experiment ExptIND-R-CPAΣRE,A,b in Fig. 2.

ExptIND-R-CPAΣRE ,A,b
(1λ, 1T):

(mpk,msk)← Setup(1λ, 1T)

(L∗,R∗,m0,m1, st1)← A
OKGenmsk
1 (mpk), where

.O
KGen1
msk (ti ∈ [0,T − 1]), where i ∈ [1, qk]: Return ski ← KGen(msk, ti).

Assume that L∗ ∈ [0,T − 1]
∧

R∗ ∈ [0,T − 1]
∧

i∈[1,qk] ti < [L∗,R∗]

C∗ ← Enc(mb, [L∗,R∗]). Return b′ ← A
O
KGen2
msk

2 (st1,C∗), where
.O
KGen2
msk (t ∈ [0,T − 1]): If t < [L∗,R∗], Return skt ← KGen(msk, t). Else, Return ⊥.

Fig. 2. Security experiment for a RE scheme ΣRE.

Definition 3. A RE scheme ΣRE is IND-R-CPA if ∀λ ∈ N, ∀T ∈ N, ∀A ∈ PPTλ, ∃ε ∈ NEGλ, AdvIND-R-CPA
ΣRE,A,λ,T (λ) B

|
∑

b∈{0,1}(−1)b Pr[ExptIND-R-CPA
ΣRE,A,b (1λ, 1T) = 1]| < ε.

5 PQ-WIBE-TSE

PQ-IBE-TSE. Paterson and Quaglia [15] presented a generic construction of TSE scheme with T ∈ N
time periods from IBE scheme with 2T − 1 identities. Let us denote the underlying IBE scheme by Σ2T−1

IBE .
Additionally, for the IBE scheme, we denote a secret-key associated with an ID and a ciphertext associated
with an ID and a plaintext m by skID and CM

ID, respectively. In the TSE scheme, we consider a binary tree
whose depth is log T like the one in Fig. 3. The tree has T leaf nodes. Each leaf node is correlated with each
time period. Precisely, a leaf node associated with a bit string b is correlated with a time period which is the
decimal value of b. A time instant key (TIK) skt for a time period t ∈ [0,T−1] is composed of 1+log T secret-
keys of Σ2T−1

IBE , namely skt = (skID=∅, skID=b[0], skID=b[0]||b[1], · · · , skID=b[0]||b[1]||···||b[log T−1]), where b ∈ {0, 1}log T

7

denotes the binary value of t. In the case of T = 8 in Fig. 3, for instance, a TIK for t = 3 is skt=3 = (sk∅, sk0,
sk01, sk011).

Fig. 3. A binary tree with depth 3

Coverd(L,R), where 0 ≤ L ≤ R ≤ 2d − 1:
l B L, r B R, T[L,R] B ∅. While l < r, do:

If l = 0 mod 2, l B Parent(l).
Else, T[L,R] B T[L,R]

⋃
{l}, l B Parent(l) + 1.

If r = 0 mod 2, T[L,R] B T[L,R]
⋃
{r}, r B Parent(r) − 1.

Else, r B Parent(r).
If l = r, T[L,R] B T[L,R]

⋃
{l}. Return T[L,R].

Fig. 4. Algorithm Coverd, which appeared as Algorithm 1 in [15], where
d ∈ N and Parent takes a node and returns its parental node.

Next, let us informally explain how a ciphertext for a plaintext m under a decryption time interval (DTI)
[L,R], where 0 ≤ L ≤ R ≤ T − 1, is generated. For a node with binary value b in depth Depthlog T (b) ∈
[0, log T], let Sb denote the set which consists of every leaf node whose one of ancestors is the node b, i.e.,{
b||i∈[0,log T−Depth(b)−1] β | β ∈ {0, 1}

}
. If T = 8, for example, S1 = {100, 101, 110, 111}, S10 = {100, 101} and

S110 = {110}. To construct the ciphertext for [L,R], we firstly deterministically find a set of nodes T[L,R]
according to the following rule: the union set

⋃
b∈T[L,R]

Sb is equivalent to the set [L,R], and cardinality of
the set |T[L,R]| =

∑
b∈T[L,R]

1 is the smallest. For instance, T[2,6] = {01, 10, 110}, T[0,6] = {0, 10, 110}, and
T[7,7] = {111}. An algorithm Cover deriving T[L,R] is formally described in Fig. 4. Finally, the ciphertext
Cm

[L,R] is composed of ({Cm
ID=b | b ∈ T[L,R]}).

Four algorithms of PQ-IBE-TSE are formally described in Fig. 19 in Subsect. C.1.

PQ-WIBE-TSE. The idea on whom PQ-WIBE-TSE is based is similar with the one on whom PQ-IBE-TSE
is based on. As PQ-IBE-TSE, PQ-WIBE-TSE defines a binary tree with depth log T . One major difference
between the two is that PQ-WIBE-TSE uses a WIBE scheme Σ log T

WIBE (whose bit length of an identity is log T).
A TIK for t ∈ [0,T − 1] is skt = skID=b, where b is the binary value of t. A ciphertext for a plaintext m
under a DTI [L,R] satisfying 0 ≤ L ≤ R ≤ T − 1 is Cm

[L,R] = ({Cm
wID=b | b ∈ T∗[L,R]}), where the set of

wildcarded IDs T∗[L,R] is defined as {b||∗log T−|b| | b ∈ T[L,R]}. For instance, sk3 = sk011, T∗[2,6] = {01∗, 10∗, 110}
and Cm

[2,6] = (Cm
01∗,C

m
10∗,C

m
110).

Four formal algorithms of PQ-WIBE-TSE are in Fig. 20 in Subsect. C.2.

6 Our Generic Construction of RE from WIBE (IK-WIBE-RE)

As described in Fig. 6, IK-WIBE-RE has 4 main algorithms {RE.Setup,RE.KGen,RE.Enc,RE.Dec} and 6
sub algorithms {Binarizelog T , Classifylog T , Dividelog T , LatterWIDlog T , FormerWIDlog T , Mergelog T }. In
the first subsection, we introduce the sub algorithms. In the second subsection, we introduce the main al-
gorithms. Hereafter, let PQ-WIBE-RE denote the RE scheme constructed from PQ-WIBE-TSE which was
explained in Sect. 5.

6.1 Six Sub Algorithms of IK-WIBE-RE

5 sub algorithms other than Binarizelog T are used to determine a set of wildcarded IDs T[L,R] for a range
[L,R] in an encryption procedure. Binarizelog T is a general algorithm used in the whole system.

8

b[4] 0 1
b[3] 0 1 1 0
b[2] 0 1 1 0 0 1 1 0
b[1] 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
b[0] 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fig. 5. Correspondence between a numerical value t ∈ [0, 31] and a binary value b ∈ {0, 1}5.

Binarizelog T binarizing t ∈ [0, T − 1]. For PQ-WIBE-RE, the correspondence between a time period and
a bit string was defined in a way that b is the binary value of t. For IK-WIBE-RE, the correspondence is
defined as shown in Fig. 5. The formal algorithm Binarizelog T which takes a numerical value t and returns
its binary value is given in Fig. 6. Here, we provide two theorems. We prove Theorem 2 in Subsect. D.2. We
can analogously prove Theorem 3.

Theorem 2. ∀k ∈ [0, log T], ∀t ∈ [0,T − 1] s.t. t mod 2k = 0, if we set ID B Binarizelog T (t) and ∀ j ∈
[0, log T − 1], wID[j] B ID[j] (if j ∈ [k, log T − 1]) or wID[j] B ∗ (otherwise), then wID ∈ {0, 1, ∗}log T

covers a range [t, t + 2k − 1].

Theorem 3. ∀k ∈ [0, log T], ∀t ∈ [0,T −1] s.t. t mod 2k = 0, if we set ID B Binarizelog T (t−1 mod T) and
∀ j ∈ [0, log T −1], wID[j] B ID[j] (if j ∈ [k, log T −1]) or wID[j] B ∗ (otherwise), then wID ∈ {0, 1, ∗}log T

covers a range [t − 2k mod T, t − 1 mod T]. Note that modulo operation with T , i.e., mod T, should be
considered only when t = 0.

Classifylog T classifying t ∈ [0, T − 1] into log T + 1 classes. We classify each value t ∈ [0,T − 1] into
log T +1 classes. If T = 32, as shown in Fig. 7, there are 6 classes i ∈ {0, 1, 2, 3, 4, 5}. Firstly, 0 is classified as
class 5. The other value t ∈ [1,T − 1] is classified as class i ∈ {0, 1, 2, 3, 4} s.t. t mod 2i = 0∧ t mod 2i+1 = 2i.
Generally, in case of T ∈ N (s.t. log T ∈ N), there are log T + 1 classes i ∈ [0, log T]. 0 is classified as class
log T . t ∈ [1,T − 1] is classified as class i ∈ [0, log T − 1] s.t. t mod 2i = 0 ∧ t mod 2i+1 = 2i. The formal
algorithm Classifylog T is given in Fig. 6.

Related to Classifyd, we provide five theorems below. Intuitively, Theorem 6 says that for every t ∈
[0,T − 1] s.t. c B Classifylog T (t) and every δ ∈ [1, 2c], the identities for t + δ − 1 and for t − δ are
identical except for the c-th bit (or the (log T − 1)-th bit, if t = 0). Theorem 7 says that for every t and every
k ∈ [0, Classifylog T (t) − 1], the class indexes for t + 2k and for t − 2k are (identically) k. Theorem 8 says
that for every t w. c B Classifylog T (t), the class indexes for t + 2c and for t − 2c are greater than or equal
to c + 1 (or equal to log T + 1 if t = 0). Short proofs of the former two (theorems) are given below, but long
ones of the latter three are given in Subsect. D.3, D.4 and D.5, respectively.

Theorem 4. ∀t ∈ [0,T−1] with ID← Binarizelog T (t), ∀k ∈ [0, Classifylog T (t)], if we set ∀ j ∈ [0, log T−
1], wID[j] B ID[j] (if j ∈ [k, log T − 1]) or wID[j] B ∗ (otherwise), then wID ∈ {0, 1, ∗}log T covers a
subrange [t, t + 2k − 1].

Proof. Obviously, ∀t ∈ [0,T − 1], ∀k ∈ [0, Classifylog T (t)], t mod 2k = 0. Hence, by Theorem 2, the proof
is completed. ut

Theorem 5. ∀t ∈ [0,T − 1] with ID ← Binarizelog T (t − 1 mod T), ∀k ∈ [0, Classifylog T (t)], if we set
∀ j ∈ [0, log T −1], wID[j] B ID[j] (if j ∈ [k, log T −1]) or wID[j] B ∗ (otherwise), then wID ∈ {0, 1, ∗}log T

covers a subrange [t − 2k mod T, t − 1 mod T]. Note that any modulo operation with T , i.e., mod T, is
considered only when t = 0.

Proof. Obviously, ∀t ∈ [0,T − 1], ∀k ∈ [0, Classifylog T (t)], t mod 2k = 0. Hence, by Theorem 3, the proof
is completed. ut

9

RE.Setup(1λ, 1T):
(mpk,msk) BWIBE.Setup(1λ, 1log T).
Return (mpk,msk)

RE.KGen(msk, t): ID B Binarizelog T (t).
Return skt BWIBE.KGen(msk, ID).

RE.Enc(L,R,m):
D B Dividelog T (L,R).
T[D,R] B LatterWIDlog T (D,R).
T[L,D−1] B FormerWIDlog T (L,D − 1).
T[L,R] B Mergelog T (T[D,R],T[L,D−1]).
Parse T[L,R] as {wIDi | i ∈ [1, n]}.
∀i ∈ [1, n], Ci BWIBE.Enc(wIDi,m).
Return C[L,R] B {Ci | i ∈ [1, n]}.

RE.Dec(skt,C[L,R]):
Generate T[L,R] in the same way as RE.Enc.
Parse T[L,R] as {wIDi | i ∈ [1, n]}.
Parse C[L,R] as {Ci | i ∈ [1, n]}.
ID B Binarizelog T (t).
t ∈ [L,R] =⇒ ∃i ∈ [1, n] s.t.

WIBE.Matchlog T (ID,wIDi) = 1.
If such i exists, Return WIBE.Dec(skt,Ci).
Return ⊥.

?Binarizelog T (t):
f lag B 0, le f t B 0, right B 2d − 1.
i B log T − 1. While i ≥ 0, do:

If t ∈ [le f t, right − 2i], do:
If f lag = 0, b[i] B 0.
Else, b[i] B 1 and f lag B 0.
right B right − 2i. i B i − 1.

Else, do:
If f lag = 1, b[i] B 0.
Else, b[i] B 1 and f lag B 1.
le f t B le f t + 2i. i B i − 1

Return b ∈ {0, 1}log T

?Classifylog T (t): If t = 0, Return log T .
i B log T − 1. While i ≥ 0, do:

Return i if t mod 2i+1 = 2i. i B i − 1.
?Dividelog T (L,R):

If L = 0 ∨ L > R, Return D B 0.
D B 2log T−1, i B log T − 1. While i ≥ 0, do:

If L ≤ D ≤ R, Return D.
Else if R < D, D B D − 2i−1 and i B i − 1.
Else, D B D + 2i−1 and i B i − 1.

?LatterWIDlog T (D,R):
n B 0, Q B D − 1, i B Classifylog T (D).
While i ≥ 0, do:

If Q + 2i ≤ R, do:
n B n + 1, wIDn B Binarizelog T (Q).
∀ j ∈ [0, i − 1], wIDn[j] B ∗. Q B Q + 2i.
If Q = R, Return T[D,R] B {wID j | j ∈ [1, n]}.

i B i − 1.
?FormerWIDlog T (L,D − 1 mod 2log T):

n B 0, Q B D, i B Classifylog T (D) − 1.
While i ≥ 0, do:

If Q − 2i mod 2log T ≥ L, do:
n B n + 1, wIDn B Binarizelog T (Q − 1 mod 2log T).
∀ j ∈ [0, i − 1], wIDn[j] B ∗. Q B Q − 2i mod 2d.
If Q = L, Return T[L,D−1] B {wID j | j ∈ [1, n]}

i B i − 1.
?Mergelog T (T[L,D−1],T[D,R]):

Parse T[D,R] as {wID j | j ∈ [1, n1]}.
Parse T[L,D−1] as {wID j | j ∈ [n1 + 1, n2]}.
T[L,R] B T[L,D−1]

⋃
T[D,R] = {wID j | j ∈ [1, n2]}.

class B Classifylog T (D). i B 1.
While i ≤ min(n1, n2 − n1) ∧ |wIDi|∗ = |wIDi+n1 |∗, do:

wID B wIDi. wID[class] B ∗.
T[L,R] B T[L,R] \ {wIDi,wIDi+n1 } ∪ {wID}. i B i + 1.

Return T[L,R].

Fig. 6. Four main algorithms and six sub algorithms (with a symbol ?) of IK-WIBE-RE, where T ∈ N s.t. log T ∈ N,
λ ∈ N, t, L,R,D,D − 1 ∈ [0,T − 1], n ∈ [0, log T] and wID ∈ {0, 1, ∗}log T . Every algorithm runs in polynomial time.
RE.Setup, RE.KGen and RE.Enc are probabilistic. The others are deterministic.

T
t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 5 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0
16 4 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0
8 3 0 1 0 2 0 1 0

Fig. 7. Correspondence between a numerical value t ∈ [0,T − 1] and a class i ∈ [0, log T]. 0 is classifed as class log T .
t ∈ [1,T − 1] is classified as class i ∈ [0, log T − 1] where t mod 2i+1 = 2i.

10

Theorem 6. ∀t ∈ [0,T − 1] with c B Classifylog T (t), ∀δ ∈ [1, 2c], if we set ID ← Binarizelog T (t +

δ − 1) and ID′ ← Binarizelog T (t − δ mod T), then ∀ j ∈ [0, log T − 1], ID[j] is equal to ¬ID′[j] (if[
t = 0 ∧ j = log T − 1

]
∨

[
t ∈ [1,T − 1] ∧ j = c

]
) or equal to ID′[j] (otherwise).

Theorem 7. ∀t ∈ [0,T − 1], ∀k ∈ [0, Classifylog T (t) − 1], Classifylog T (t + 2k) = Classifylog T (t −
2k mod T) = k. Note that any modulo operation with T , i.e., mod T, is considered only when t = 0.

Theorem 8. ∀t ∈ [0,T − 1], ∀δ ∈ {2Classifylog T (t),−2Classifylog T (t)}, Classifylog T (t + δ mod T) is equal to
log T (if t ∈ {0, 2log T−1}) or greater than or equal to Classifylog T (t) + 1 (otherwise).

A Process where a set of wildcarded IDs T[L,R] for a range [L, R] is determined. As examples, four
ranges are described in Fig. 8. In the figure, D ∈ [0, 31] denotes a divider D dividing each range into two
subranges [L,D − 1] and [D,R]. How we choose a divider D from a range [L,R] is explained later. For each
range, all numerical values with the same integer are associated with (or covered by) a single wID ∈ {0, 1, ∗}5.
For instance, in the third example from the top, i.e., [1, 30], all numerical values given 1 (resp. 2, 3, 4) are
associated with a wID [∗1 ∗ ∗∗] (resp. [∗01 ∗ ∗], [∗001∗], [∗0001]).

[L,R]
t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 D

[0, 30] 1 2 3 4 5 - 0
[9, 30] - - - - - - - - - 7 6 5 1 2 3 4 - 16
[1, 30] - 4 3 2 1 2 3 4 - 16
[2, 0] 1 - 5 4 3 2 0

Fig. 8. A divider D and a set of wildcarded IDs T[L,R] for four ranges.

Step
t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1 - • • • • • • • • • • • • • • • •D • • • • • • • • • • • • • • -
2 - • • • • • • • • • • • • • • • 1 2 3 4 -
3 - 8 7 6 5 1 2 3 4 -
4 - 4 3 2 1 2 3 4 -

Fig. 9. A process where wIDs T[1,30] are chosen. For i ∈ {1, 2, 3, 4}, i-th row from the top describes the state after each
algorithm Divide5(1, 30), LatterWID5(16, 30), FormerWID5(1, 15) or Merge5(T[16,30],T[1,15]) is performed, respectively.
For each row, all values with the same integer are associated with a single wID ∈ {0, 1, ∗}5.

A process where we, given a range [L,R], choose such a set of wIDs T[L,R] proceeds as follows. First,
we determine a divider D ∈ [L,R] for the range. Second, we determine a set of wIDs T[D,R] for the latter
subrange. Third, we determine a set of wIDs T[L,D−1] for the former subrange. Fourth, we merge the two sets
of wIDs into a set of wIDs T[L,R]. For instance, the process where T[1,30] is determined is described in Fig. 9.
We provide the details in the following 4 paragraphs with star symbol (?) in title.

? Dividelog T determining a divider D for a range [L,R]. Informally, a divider is the numerical value which
is classified as the class whose index is the largest among the values in [L,R]. Formally, D for [L,R] is

11

D = arg maxt∈[L,R]Classifylog T (t)8. For instance, as Fig. 9 indicates, the divider for [1, 30] is 16, since the
class index 4 of the value 16 is the largest in the range and 16 is the only value which is classified as the class.
A formal algorithm Dividelog T is described in Fig. 6.

? LatterWIDlog T deriving a set of wID(s) for the latter subrange, i.e., T[D,R]. According to Theorem 9
(whose proof is given in Subsect. D.6), for any L,R,D, there exist integers k1, · · · , kn s.t. D−1 +

∑n
l=1 2kl = R

and n ≤ Classifylog T (D), and if we generate {wIDi | i ∈ [1, n]} as shown in the theorem, each wIDi covers
a subrange [D +

∑i−1
l=1 2kl ,D − 1 +

∑i
l=1 2kl] of [D,R]. Note that

⋃n
i=1[D +

∑i−1
l=1 2kl ,D − 1 +

∑i
l=1 2kl] = [D,R]

and ∀i, j ∈ [1, n] s.t. i , j, [D +
∑i−1

l=1 2kl ,D − 1 +
∑i

l=1 2kl] ∩ [D +
∑ j−1

l=1 2kl ,D − 1 +
∑ j

l=1 2kl] = ∅. Thus,
T[D,R] = {wIDi | i ∈ [1, n]} is an adequate set of wIDs for [D,R].

For instance, as shown in Fig. 9, there are 4 wIDs in T[16,30] = {wID1,wID2,wID3,wID4}, and wID1 =

[11 ∗ ∗∗] covers [16, 23], wID2 = [101 ∗ ∗] covers [24, 27], wID3 = [1001∗] covers [28, 29] and wID4 =

[10001] covers [30, 30]. A formal algorithm for this procedure, i.e., LatterWIDlog T , which takes (D,R) and
outputs T[D,R], is described in Fig. 6.

Theorem 9. ∀L,R ∈ [0,T − 1] with D ← Dividelog T (L,R), ∃k1 ∈ [0, Classifylog T (D)], ∃k2 ∈ [0, k1 − 1],
· · · , ∃kn ∈ [0, kn−1−1] s.t. D−1+

∑n
l=1 2kl = R. Moreover, ∀i ∈ [1, n] with IDi ← Binarizelog T (D+

∑i−1
l=1 2kl),

if we set ∀ j ∈ [0, log T − 1], wIDi[j] B IDi[j] (if j ∈ [ki, log T − 1]) or wIDi[j] B ∗ (otherwise), then
wIDi ∈ {0, 1, ∗}log T covers a subrange [D +

∑i−1
l=1 2kl ,D − 1 +

∑i
l=1 2kl] of [D,R].

? FormerWIDlog T deriving a set of wID(s) for the former subrange, i.e., T[L,D−1]. This is analogous to 6.1. Ac-
cording to Theorem 10 (whose proof is given in Subsect. D.7), for any L,R,D, there exist integers k1, · · · , kn

s.t. D −
∑n

l=1 2kl mod T = L and n ≤ Classifylog T (D), and if we generate {wIDi | i ∈ [1, n]} as shown
in the theorem, each wIDi covers a subrange [D −

∑i
l=1 2kl mod T,D − 1 −

∑i−1
l=1 2kl mod T] of [L,D − 1].

Note that
⋃n

i=1[D −
∑i

l=1 2kl mod T,D − 1 −
∑i−1

l=1 2kl mod T] = [L,D − 1] and ∀i, j ∈ [1, n] s.t. i , j,
[D −

∑i
l=1 2kl mod T,D − 1 −

∑i−1
l=1 2kl mod T] ∩ [D −

∑ j
l=1 2kl mod T,D − 1 −

∑ j−1
l=1 2kl mod T] = ∅. Thus,

T[L,D−1] = {wIDi | i ∈ [1, n]} is an adequate set of wIDs for [L,D − 1].
For instance, as shown in Fig. 9, there are 4 wIDs in T[1,15] = {wID1,wID2,wID3,wID4}, and wID1 =

[01 ∗ ∗∗] covers [8, 15], wID2 = [001 ∗ ∗] covers [4, 7], wID3 = [0001∗] covers [2, 3] and wID4 = [00001]
covers [1, 1]. A formal algorithm for this procedure, i.e., FormerWIDlog T , which takes (L,D − 1) and outputs
T[L,D−1], is described in Fig. 6.

Theorem 10. ∀L,R ∈ [0,T −1] with D← Dividelog T (L,R), ∃k1 ∈ [0, Classifylog T (D)−1], ∃k2 ∈ [0, k1−

1], · · · , ∃kn ∈ [0, kn−1 − 1] s.t. D −
∑n

l=1 2kl mod T = L. Moreover, ∀i ∈ [1, n] with IDi ← Binarizelog T (D −
1 −

∑i−1
l=1 2kl mod T), if we set ∀ j ∈ [0, log T − 1], wIDi[j] B IDi[j] (if j ∈ [ki, log T − 1]) or wIDi[j] B ∗

(otherwise), then wIDi ∈ {0, 1, ∗}log T covers a subrange [D −
∑i

l=1 2kl mod T,D − 1 −
∑i−1

l=1 2kl mod T] of
[L,D − 1]. Note that every modulo operation with T , i.e., mod T, should be considered only when D = 0.

? Mergelog T merging T[L,D−1] and T[D,R] into T[L,R]. Let us parse T[D,R] (resp. T[L,D−1]) as {wIDi | i ∈ [1, n]}
(resp. {wID′i | i ∈ [1, n′]}) where n, n′ ≤ Classifylog T (D). The most simple way for us to merge the two sets
is adding all wIDs in one of the sets into the other one, which means T[L,R] B {wIDi,wID′j | i ∈ [1, n], j ∈
[1, n′]}. Number of wIDs in T[L,R] simply becomes n + n′. However, as we explain below, there exists another
way to merge the two sets into a set with less number of wIDs. Specifically, the number of wIDs can be half
of n + n′.

We use Corollary 1 which is directly proven by Theorem 6, Theorem 9 and Theorem 10. According to
the corollary, for every i ∈ [1, n∗], wIDi and wID′i are the same except for 1 bit. Specifically, at the position
j B Classifylog T (D), one of wIDi[j] and wID′i[j] is 1 and the other one is 0. This means that wIDi (or
wID′i) whose Classifylog T (D)-th bit is changed to wildcard symbol ∗ becomes a wID which covers both of

8In general, arg max operation can output a set (of values). In our case, however, for every T ∈ N and every L,R ∈
[0,T − 1], arg maxt∈[L,R]Classifylog T (t) outputs a single value t′ ∈ [L,R].

12

the subranges covered by wIDi and wID′i , namely [D +
∑i−1

l=1 2kl ,D− 1 +
∑i

l=1 2kl]∪ [D−
∑i

l=1 2kl mod T,D−
1 −

∑i−1
l=1 2kl mod T]. For every i ∈ [1, n∗], wIDi and wID′i can be combined into a single wID in such a way.

Especially, in cases where n∗ = n = n′, the number of wIDs in T[L,R] becomes n which is half of n + n′ = 2n.
For instance, as shown in Fig. 9, each one of the 4 wIDs in T[16,30] and each one of the 4 wIDs in T[1,15]

are combined into a single wID. Precisely, wID1 = [11 ∗ ∗∗] (resp. wID2 = [101 ∗ ∗], wID3 = [1001∗],
wID4 = [10001]) and wID′1 = [01 ∗ ∗∗] (resp. wID′2 = [001 ∗ ∗], wID′3 = [0001∗], wID′4 = [0001]) are
combined into wID1 = [∗1 ∗ ∗∗] (resp. wID2 = [∗01 ∗ ∗], wID3 = [∗001∗], wID4 = [∗0001]). Finally, we
obtain T[1,30] B {wIDi | i ∈ [1, 4]}. A formal algorithm for this procedure, i.e., Mergelog T , which takes T[D,R]
and T[L,D−1] and outputs T[L,R], is in Fig. 6.

Corollary 1 (from Theorems 6, 9, 10). Given L,R ∈ [0,T − 1] with D ← Dividelog T (L,R) and c B
Classifylog T (D), we inherit the notations {ki,wIDi | i ∈ [1, n]} from Theorem 9 and the ones {k′i ,wID′i |
i ∈ [1, n′]} (with apostrophe marks) from Theorem 10. Let n∗ denote the integer s.t. [0 ≤ n∗ ≤ min(n, n′)]∧n∗

i=1

[
ki = k′i

]∧ [
n∗ < min(n, n′) =⇒ kn∗+1 , k′n∗+1

]
. Then, ∀i ∈ [1, n∗] and ∀ j ∈ [0, log T − 1], it holds that

wIDi[j] is equal to ¬wID′i[j] ∈ {0, 1} (if [c = log T
∧

j = log T − 1]
∨

[c , log T
∧

j = c]), equal to
wID′i[j] = ∗ (else if j ∈ [0, ki − 1]), or equal to wID′i[i] ∈ {0, 1} (otherwise).

6.2 Four Main Algorithms of IK-WIBE-RE

Main algorithms of IK-WIBE-RE, i.e., {Setup, KGen, Enc, Dec}, are formally described in Fig. 6. A pair of
keys (mpk,msk) is a randomly generated one of the underlying WIBE scheme ΣWIBE = {Setup, KGen, Enc,
Dec, Match} whose (wildcarded) ID’s bit length is log T . A secret-key for a numerical value t ∈ [0,T −
1] is a randomly generated one of the WIBE scheme for the binary value of t determined according to
Binarizelog T (t). A ciphertext for a plaintext m under a range [L,R] is composed of {Ci | i ∈ [1, n]} which is
generated by firstly deriving a set of wIDs T[L,R] by properly using Dividelog T , LatterWIDlog T , FormerWIDlog T

and Mergelog T , then generating a ciphertext Ci for m under each wIDi in T[L,R]. Note that if a numerical value
t is in a range [L,R], T[L,R] includes only one wIDi satisfied by ID B Binarized(t), which means that skt

derives m by decrypting Ci in C[L,R] associated with wIDi. Its security is guaranteed by the following theorem,
whose proof is in Subsect. D.8.

Theorem 11. IK-WIBE-RE = {RE.Setup,RE.KGen,RE.Enc,RE.Dec} is IND-R-CPA (resp. IND-sR-CPA) if
the underlying WIBE scheme ΣWIBE = {WIBE.Setup,WIBE.KGen,WIBE.Enc,WIBE.Dec,WIBE.Match} is
IND-nWID-CPA (resp. IND-snWID-CPA), where n B 2 log T − 3.

6.3 Efficiency Comparison among Generic RE/TSE Constructions

We use Fig. 1 to compare efficiency of our WIBE-based RE construction with those of IBE/BE-based TSE
constructions [15], that of FE-based one [12, 13], that of the generic RE construction obtained by replacing
the underlying IBE scheme in the IBE-based one with an WIBE scheme, and that of our BE-based TSE
construction, in terms of their underlying building blocks.

In each one of PQ-IBE-TSE, KME-FE-TSE, and IK-BE-TSE, size of secret-keys asymptotically grows
linearly with log T , which means that it cannot be constant. On the other hand, size of secret-keys of IK/PQ-
WIBE-RE or PQ-BE-TSE becomes that of the underlying building block itself, which means that by adopting
a concrete scheme whose size of secret-keys is constant, we can obtain a RE/TSE scheme with constant-sized
secret-keys. As we will see in the next section, such WIBE schemes actually exist.

7 Instantiation of Our RE Scheme

Our WIBE scheme w/o key-delegatability in Fig. 10 is obtained by partially modifying Waters IBE scheme
[19] in Fig. 18 in Sect. B. We prove Theorem 12 in Subsect. D.9. From Theorem 13, Theorem 12 and
Theorem 1, we obtain Corollary 2.

13

Table 1. Efficiency comparison among some generic RE/TSE constructions in terms of the building blocks

Generic Const. Building Block |mpk| |skt |
∣∣∣C[L,R]

∣∣∣
PQ-IBE-TSE [15] IBE Σ2T−1

IBE P
(
Σ2T−1

IBE

) (
log T + 1

)
· K

(
Σ2T−1

IBE

)
O

(
log T ·C

(
Σ2T−1

IBE

))
PQ-BE-TSE [15] BE ΣT,T

BE P
(
ΣT,T

BE

)
K

(
ΣT,T

BE

)
C

(
ΣT,T

BE

)
KME-FE-TSE [12, 13] FE ΣT

FE O
(
T · P

(
ΣT

FE

))
O

(
log T · K

(
ΣT

FE

))
O

(
C

(
ΣT

FE

))
IK-BE-TSE BE Σ

2T−1,2 log T−2
BE P

(
Σ

2T−1,2 log T−2
BE

) (
log T + 1

)
· K

(
Σ

2T−1,2 log T−2
BE

)
C

(
Σ

2T−1,2 log T−2
BE

)
IK/PQ-WIBE-RE WIBE Σ

log T
WIBE P

(
Σ

log T
WIBE

)
K

(
Σ

log T
WIBE

)
O

(
log T ·C

(
Σ

log T
WIBE

))
Σn

IBE denotes an IBE scheme with n ∈ N identities. Σn
WIBE denotes a WIBE scheme whose bit length of an identity is

n ∈ N. Σn
FE denotes an FE scheme with n ∈ N time periods. Σn,l

BE denotes a BE scheme, where total number of users is
n ∈ N and maximum cardinality of a set of users associated with a ciphertext is l ≤ n. For a scheme X, P (X), C (X) and
K (X) denote its size of master public-key/ciphertext/secret-key, respectively.

Setup(1λ, 1L): (p,G,GT , e, g)← GBG(1λ); α
U
←− Zp; g1 B gα; g2, u′, u0, · · · , uL−1

U
←− G;

msk B gα2 and mpk B (p,G,GT , e, g, g1, g2, u′, u1, · · · , uL, e(g1, g2)); Return (mpk,msk)

KGen(msk, ID ∈ {0, 1}L): r
U
←− Zp; Return skID B

(
gα2 ·

(
u′

∏
i s.t. ID[i]=1 ui

)r
, gr

)
;

Enc(wID ∈ {0, 1, ∗}L,m ∈ GT):

s
U
←− Zp; Return CwID B

(
e(g1, g2)s · m, gs,

(
u′

∏
i s.t. wID[i]=1 ui

)s
,
{
us

i | i s.t. wID[i] = ∗
})

;
Dec(skID,CwID):

Parse skID as (d1, d2) ∈ G2; Parse CwID as
(
c1, c2, c3,

{
c4,i | i s.t. wID[i] = ∗

})
∈ GT × G

2+|wID|∗ ;
Return c1 · e

(
d2, c3 ·

∏
i s.t. wID[i]=∗∧ID[i]=1 c4,i

)
/e (d1, c2);

Fig. 10. Our WIBE scheme ΠWIBE, based on Waters IBE scheme [19]

Theorem 12. Our WIBE schemeΠWIBE is IND-WID-CPA (resp. IND-sWID-CPA) if Waters IBE scheme [19]
is IND-ID-CPA (resp. IND-sID-CPA).

Corollary 2. ΠWIBE is IND-nWID-CPA, where n B 2 log T − 3, under the DBDH assumption.

Comparing Some Concrete TSE/RE Constructions. Let us compare some concrete TSE/RE schemes in Table
2. There are 5 TSE/RE schemes which have poly-logarithmic size/cost in all measures in the table, namely
the PQ-IBE-TSE scheme instantiated by Waters’ IBE scheme [19], the TSE scheme by Kasamatsu et al.
[12], the IK-BE-TSE scheme instantiated by 2nd Gentry and Waters’ BE scheme [11], the IK/PQ-WIBE-RE
scheme instantiated by our WIBE scheme ΠWIBE, and the IK/PQ-WIBE-RE scheme instantiated by Abdalla
et al.’s WIBE scheme (w. key-delegatability) based on Boneh-Boyen-Goh HIBE scheme [1, 6]. Among them,
only the latter two achieves the constant-size secret-keys. IK/PQ-WIBE-RE scheme instantiated by ΠWIBE
is superior to IK/PQ-WIBE-RE instantiated by Abdalla et al.’s WIBE scheme, since it achieves the adaptive
security under standard (static) assumption.

In an asymptotic sense, IK-WIBE-RE by ΠWIBE and PQ-WIBE-RE by ΠWIBE achieve the equivalent
size/cost in all measures. However, the actual value of ciphertext length can be greatly different between
them. Let |CIK

[L,R]| (resp. |CPQ[L,R]|) denote size of a ciphertext under [L,R] for IK-WIBE-RE (resp. PQ-WIBE-
RE). Precisely, for every range [L,R], |CIK

[L,R]| is equivalent to or smaller than |CPQ[L,R]|, and for some ranges
[L,R], the former is almost the half of the latter. The details are given in Sect. E.

14

Ta
bl

e
2.

C
om

pa
ri

so
n

am
on

g
so

m
e

ex
is

tin
g

an
d

ou
rc

on
cr

et
e

T
SE

/R
E

co
ns

tr
uc

tio
ns

se
cu

re
in

th
e

st
an

da
rd

m
od

el

G
en

er
ic

C
on

st
ru

ct
io

n
B

ui
ld

in
g

B
lo

ck
s

|m
pk
|
[b

it]
|s

k t
|
[b

it]
∣ ∣ ∣ C [L,R

]∣ ∣ ∣ [bit
]

E
nc

.C
os

t
D

ec
.C

os
t

Se
c.

A
ss

um
pt

io
n(

s)

PQ
-I

B
E

-T
SE

[1
5]

W
at

er
s

[1
9]

(l
og

T
+

5)
|g
|

(2
lo

g
T

+
2)
|g
|
O

(l
og

T
)

(|g
T
|
+
|g
|)

[0
,O

(l
og

T
),

O
(l

og
2

T
)]

[2
,0

,2
]

A
da

.
D

B
D

H

PQ
-B

E
-T

SE
[1

5]

B
G

W
1

[7
]

|g
T
|
+

(2
T

+
1)
|g
|
|g
|

2|
g|

[0
,2

,O
(T

)]
[2

,0
,O

(T
)]

Se
l.

T
-D

B
D

H
E

B
G

W
2

[7
]

|g
T
|
+

3
√

T
|g
|

|g
|

|g
T
|
+

(√
T

+
1)
|g
|

[0
,√

T
+

1,
O

(T
)]

[2
,0

,O
(√

T
)]

Se
l.
√

T
-D

B
D

H
E

W
at

er
s

[2
0]

|g
T
|
+

(T
+

10
)|g
|

(T
+

7)
|g
|

10
|g
|

[0
,1

2,
O

(T
)]

[9
,0

,O
(T

)]
A

da
.

D
L

IN
,D

B
D

H
G

W
1

[1
1]

2|
g T
|
+

(2
T

+
2)
|g
|

(2
T

+
2)
|g
|

4|
g|

[0
,4

,O
(T

)]
[2

,0
,O

(T
)]

A
da

.
2T

-D
B

D
H

E
,I

N
D

-C
PA

SE

G
W

2
[1

1]
(3

T
−

7)
|g
|

|g
|

2|
g T
|
+

6|
g|

+
O

(T
)

[2
,O

(T
),
O

(T
)]

[2
,O

(T
),
O

(T
)]

A
da

.
(2

T
,T

)-
D

B
D

H
E

S,
IN

D
-C

PA
SE

,P
R

F

K
M

E
-T

SE
[1

2,
13

]
-

|g
T
|
+
O

(l
og

T
)|g
|
O

(l
og

2
T

)|g
|
|g

T
|
+

3|
g|

[0
,O

(l
og

T
),

O
(l

og
T

)]
[3

,O
(l

og
T

),
O

(l
og

T
)]

Se
l.

(l
og

T
+

1)
-D

B
D

H
I

IK
-B

E
-T

SE

B
G

W
1

[7
]

|g
T
|

+
(4

T
−

1)
|g
|

(l
og

T
+

1)
|g

T
|
|g

T
|
+

2|
g|

[0
,2

,O
(l

og
T

)]
[2

,0
,

O
(l

og
T

)]
Se

l.
(2

T
−

1)
-D

B
D

H
E

B
G

W
2

[7
]

|g
T
|

+
3
√

2T
−

1|
g|

(l
og

T
+

1)
|g
|
|g

T
|,

+
O

(√ lo
g

T
)|g
|

[0
,O

(√ lo
g

T
),

O
(l

og
T

)]
[2

,0
,

O
(√ lo

g
T

)]
Se

l.
√

2T
−

1-
D

B
D

H
E

W
at

er
s

[2
0]

|g
T
|
+

(2
T

+
9)
|g
|
O

(T
·
lo

g
T

)|g
|

10
|g
|

[0
,1

2,
O

(l
og

T
)]

[9
,0

,O
(l

og
T

)]
A

da
.

D
L

IN
,D

B
D

H

G
W

1
[1

1]
|g

T
|
+

(4
T
−

2)
|g
|
O

(T
·
lo

g
T

)|g
|

4|
g|

[0
,4

,O
(l

og
T

)]
[2

,0
,O

(l
og

T
)]

A
da

.
(4

T
−

2)
-D

B
D

H
E

,
IN

D
-C

PA
SE

G
W

2
[1

1]
(6

lo
g

T
+

1)
|g
|

(l
og

T
+

1)
|g
|

2|
g T
|
+

6|
g|

+
O

(l
og

T
)

[2
,O

(l
og

T
),

O
(l

og
T

)]
[2

,O
(l

og
T

),
O

(l
og

T
)]

A
da

.
PR

F,
(4

T
−

2,
2

lo
g

T
−

2)
-D

B
D

H
E

S,
IN

D
-C

PA
SE

IK
/P

Q
-W

IB
E

-R
E

O
ur
Π

W
IB

E
(l

og
T

+
4)
|g
|
+
|g

T
|

2|
g|

O
(l

og
T

)|g
T
|

+
O

(l
og

2
T

)|g
|

[0
,O

(l
og

2
T

),
O

(l
og

2
T

)]
[2

,0
,O

(l
og

T
)]

A
da

.
D

B
D

H

A
B

C
[1

]
(l

og
T

+
4)
|g
|
+
|g

T
|

2|
g|

O
(l

og
T

)|g
T
|

+
O

(l
og

2
T

)|g
|

[0
,O

(l
og

2
T

),
O

(l
og

2
T

)]
[2

,0
,O

(l
og

T
)]

Se
l.

lo
g

T
-D

B
D

H
I

K
M

E
-T

SE
de

no
te

s
a

co
nc

re
te

(n
on

-g
en

er
ic

)T
SE

co
ns

tr
uc

tio
n

pr
op

os
ed

in
[1

2,
13

].
B

G
W

1
an

d
B

G
W

2
ar

e
B

E
sc

he
m

e
in

tr
od

uc
ed

in
Su

bs
ec

t.
3.

1
an

d
Su

bs
ec

t.
3.

2
in

[7
],

re
sp

ec
tiv

el
y.

G
W

1
an

d
G

W
2

ar
e

ad
ap

tiv
el

y
se

cu
re

B
E

sc
he

m
e

ob
ta

in
ed

by
ap

pl
yi

ng
a

m
et

ho
do

lo
gy

(w
hi

ch
co

nv
er

ts
se

m
i-

st
at

ic
al

ly
se

cu
re

B
E

sc
he

m
e

in
to

ad
ap

tiv
el

y
se

cu
re

on
e)

to
se

m
i-

st
at

ic
al

ly
se

cu
re

B
E

sc
he

m
e

in
tr

od
uc

ed
in

Su
bs

ec
t.

3.
1

an
d

Su
bs

ec
t.

3.
3

in
[1

1]
,r

es
pe

ct
iv

el
y.
|m

pk
|,
|s

k t
|
an

d
∣ ∣ ∣ C [L,R

]∣ ∣ ∣ den
ot

e
bi

tl
en

gt
h

of
th

e
m

as
te

r
pu

bl
ic

-k
ey

,t
ha

to
f

a
se

cr
et

-k
ey

fo
r

a
tim

e
pe

ri
od

t,
an

d
th

at
of

a
ci

ph
er

te
xt

fo
r

a
ra

ng
e

[L
,R

],
re

sp
ec

tiv
el

y.
|g
|
an

d
|g

T
|
de

no
te

bi
tl

en
gt

h
of

an
el

em
en

ti
n

bi
lin

ea
r

gr
ou

p
G

an
d
G

T
,r

es
pe

ct
iv

el
y.

In
ea

ch
co

lu
m

n
fo

re
nc

ry
pt

io
n/

de
cr

yp
tio

n
co

st
s,

[α
,β
,γ

]d
en

ot
e

nu
m

be
ro

fp
ai

ri
ng

s,
th

at
of

ex
po

ne
nt

ia
tio

ns
,a

nd
th

at
of

m
ul

tip
lic

at
io

ns
,r

es
pe

ct
iv

el
y.

A
da

.a
nd

Se
l.

de
no

te
ad

ap
tiv

e
se

cu
ri

ty
an

d
se

le
ct

iv
e

se
cu

ri
ty

,r
es

pe
ct

iv
el

y.
D

B
D

H
E

(r
es

p.
D

B
D

H
E

S,
D

L
IN

)
is

th
e

de
ci

si
on

al
bi

lin
ea

r
D

iffi
e-

H
el

lm
an

ex
po

ne
nt

(r
es

p.
th

e
de

ci
si

on
al

bi
lin

ea
r

D
iffi

e-
H

el
lm

an
ex

po
ne

nt
su

m
,t

he
de

ci
si

on
al

lin
ea

r)
as

su
m

pt
io

n.
PR

F
de

no
te

s
ps

eu
do

ra
nd

om
fu

nc
tio

n.
IN

D
-C

PA
SE

de
no

te
s

IN
D

-C
PA

se
cu

re
sy

m
m

et
ri

c
en

cr
yp

tio
n.

15

References
1. M. Abdalla, J. Birkett, D. Catalano, A.W Dent, J. Malone-Lee, G. Neven, J.C.N. Schuldt, and N.P. Smart. Wildcarded

identity-based encryption. Journal of Cryptology, 24(1):42–82, 2011.
2. M. Abdalla, D. Catalano, A.W. Dent, J. Malone-Lee, G. Neven, and N.P. Smart. Identity-based encryption gone

wild. In ICALP 2006, volume 4052 of LNCS, pages 300–311. Springer, 2006.
3. R. Anderson. Two remarks on public key cryptology. http://www.cl.cam.ac.uk/users/rja14, 1997.
4. J. Birkett, A.W. Dent, G. Neven, and J.C.N. Schuldt. Efficient chosen-ciphertext secure identity-based encryption

with wildcards. In ACISP 2007, volume 4586 of LNCS, pages 274–292. Springer, 2007.
5. D. Boneh and X. Boyen. Efficient selective-ID secure identity-based encryption without random oracles. In EURO-

CRYPT 2004, volume 3027 of LNCS, pages 223–238. Springer, 2004.
6. D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity based encryption with constant size ciphertext. In EURO-

CRYPT 2005, volume 3494 of LNCS, pages 440–456. Springer, 2005.
7. D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast encryption with short ciphertexts and private keys.

In CRYPTO 2005, volume 3621 of LNCS, pages 258–275. Springer, 2005.
8. D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and challenges. In TCC 2011, volume 6597

of LNCS, pages 253–273. Springer, 2011.
9. R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme. In EUROCRYPT 2003, volume

2656 of LNCS, pages 255–271. Springer, 2003.
10. A. Fiat and M. Naor. Broadcast encryption. In CRYPTO 1993, volume 773 of LNCS, pages 480–491. Springer,

1993.
11. C. Gentry and B. Waters. Adaptive security in broadcast encryption systems (with short ciphertexts). In EURO-

CRYPT 2009, volume 5479 of LNCS, pages 171–188. Springer, 2009.
12. K. Kasamatsu, T. Matsuda, K. Emura, N. Attrapadung, G. Hanaoka, and H. Imai. Time-specific encryption from

forward-secure encryption. In SCN 2012.
13. K. Kasamatsu, T. Matsuda, K. Emura, N. Attrapadung, G. Hanaoka, and H. Imai. Time-specific encryption

from forward-secure encryption: generic and direct constructions. International Journal of Information Security,
15(5):549–571, 2016.

14. T. May. Time-release crypto. http://www.cyphernet.org/cyphernomicon/chapter14/14.5.html, 1993.
15. K. G. Paterson and E. A. Quaglia. Time-specific encryption. In SCN 2010, volume 6280 of LNCS, pages 1–16.

Springer, 2010.
16. R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release crypto. 1996.
17. A. Sahai and B. Waters. Fuzzy identity-based encryption. In EUROCRYPT 2005, volume 3494 of LNCS, pages

457–473. Springer, 2005.
18. A. Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO 1984, volume 196 of LNCS, pages

47–53. Springer, 1984.
19. B. Waters. Efficient identity-based encryption without random oracles. In EUROCRYPT 2005, volume 3494 of

LNCS, pages 114–127. Springer, 2005.
20. B. Waters. Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In CRYPTO

2009, volume 5677 of LNCS, pages 619–639. Springer, 2009.

A Some Definitions

A.1 Selective IND-CPA Security on Multiple Ciphertexts for a WIBE Scheme

For a WIBE scheme ΣWIBE, a probabilistic algorithm A, a bit b ∈ {0, 1} and an integer n ∈ N, we consider a
security experiment ExptIND-snWID-CPAΣWIBE,A,b described in Fig. 11.

Definition 4. Let n ∈ N. A WIBE scheme ΣWIBE is IND-snWID-CPA, if ∀λ ∈ N, ∀L ∈ N, ∀A ∈ PPTλ,
∃ε ∈ NEGλ, AdvIND-snWID-CPA

ΣWIBE,A,λ,L,n (λ) B |
∑

b∈{0,1}(−1)b Pr[ExptIND-snWID-CPA
ΣWIBE,A,b (1λ, 1L, 1n) = 1]| < ε.

A.2 Selective IND-CPA Security for a RE Scheme

For a RE scheme ΣRE, a probabilistic algorithm A, and a bit b ∈ {0, 1}, we consider a security experiment
ExptIND-sR-CPAΣRE,A,b in Fig. 12.

Definition 5. A RE scheme ΣRE is IND-sR-CPA, if ∀λ ∈ N, ∀T ∈ N, ∀A ∈ PPTλ, ∃ε ∈ NEGλ, AdvIND-sR-CPA
ΣRE,A,λ,T (λ) B

|
∑

b∈{0,1}(−1)b Pr[ExptIND-sR-CPA
ΣRE,A,b (1λ, 1T) = 1]| < ε.

16

http://www.cl.cam.ac.uk/users/rja14
http://www.cyphernet.org/cyphernomicon/chapter14/14.5.html

ExptIND-snWID-CPAΣWIBE ,A,b
(1λ, 1L, 1n):

(wID?
1 , · · · ,wID?

n , st0)← A0(1λ, 1L), where
∧

i∈[1,n] wID?
i ∈ {0, 1, ∗}

L.
(mpk,msk)← Setup(1λ, 1L)

(m0,m1, st1)← A
O
KGen1
msk

1 (mpk),
.O
KGen1
msk (ID ∈ {0, 1}L): If

∧
i∈[1,n] MatchL(ID,wID?

i) = 0, Return skID ← KGen(msk, ID).
Else, Return ⊥.

∀i ∈ [1, n],C?
i ← Enc(mb,wID?

i). b′ ← A
O
KGen2
msk

2 (st1,C?
1 , · · · ,C

?
n), where

.O
KGen2
msk (ID ∈ {0, 1}L): If

∧
i∈[1,n] MatchL(ID,wID?

i) = 0, Return skID ← KGen(msk, ID).
Else, Return ⊥.

Return b′.

Fig. 11. Selective security experiment for a WIBE scheme ΣWIBE

ExptIND-sR-CPAΣRE ,A,b
(1λ, 1T):

(L∗,R∗, st0)← A0(1λ, 1T), where L∗ ∈ [0,T − 1]
∧

R∗ ∈ [0,T − 1].

(mpk,msk)← Setup(1λ, 1T). (m0,m1, st1)← A
O
KGen1
msk

1 (st0,mpk), where
.OKGenmsk (t ∈ [0,T − 1]): If t < [L∗,R∗], Return sk ← KGen(msk, t).

Else, Return ⊥.

C∗ ← Enc(mpk,mb, [L∗,R∗]). b′ ← A
O
KGen2
msk

2 (st1,C∗), where
.O
KGen2
msk (t ∈ [0,T − 1]): If t < [L∗,R∗], Return skt ← KGen(msk, t).

Else, Return ⊥.
Return b′.

Fig. 12. Selective security experiments for a RE scheme ΣRE.

A.3 Time-Specific Encryption (TSE) [15]

Syntax. Time-specific encryption (TSE) consists of following 4 polynomial time algorithms, where Dec is
deterministic and the others are probabilistic:

– Let 1λ, where λ ∈ N, denote a security parameter. Let T ∈ N denote total number of time periods. Setup
algorithm Setup takes (1λ, 1T) as input then outputs a master public-key mpk and a master secret-key
msk. Let it be denoted by (mpk,msk)← Setup(1λ, 1T).

– Key-generation algorithm KGen takes msk and a time period t ∈ [0,T − 1], then outputs a secret-key
(time-instant key (TIK)) skt. Let it be denoted by skt ← KGen(msk, t).

– Encryption algorithm Enc takes a plaintext m ∈ M and a decryption time interval (DTI) [L,R], where
L,R ∈ [0,T −1] and L ≤ R, then outputs a ciphertext C[L,R]. Let it be denoted by C[L,R] ← Enc(m, [L,R]).

– Decryption algorithm Dec takes a secret-key skt and a ciphertext C[L,R], then outputs a plaintext m ∈ M
or a symbol ⊥. Let it be denoted by m / ⊥ ← Dec(skt,C[L,R]).

We require every TSE scheme to be correct. A TSE scheme ΣTSE = {Setup, KGen, Enc, Dec} is correct, if
∀λ,T ∈ N, ∀(mpk,msk)← Setup(1λ, 1T), ∀t ∈ [0,T − 1], ∀skt ← KGen(msk, t), ∀m ∈ M, ∀L,R ∈ [0,T − 1]
s.t. L ≤ R ∧ t ∈ [L,R], ∀C[L,R] ← Enc(m, [L,R]), Pr[m← Dec(skt,C[L,R])] = 1.

IND-CPA Security. For a TSE scheme ΣTSE, a probabilistic algorithm A, and b ∈ {0, 1}, we consider security
experiments ExptIND-DTI-CPAΣTSE,A,b and ExptIND-sDTI-CPAΣTSE,A,b in Fig. 13.

Definition 6. A TSE scheme ΣTSE is IND-DTI-CPA if ∀λ,T ∈ N, ∀A ∈ PPTλ, ∃ε ∈ NEGλ, AdvIND-DTI-CPAΣTSE,A,λ,T (λ) B
|
∑

b∈{0,1}(−1)b Pr[ExptIND-DTI-CPAΣTSE,A,b (1λ, 1T) = 1]| < ε.

Definition 7. A TSE scheme ΣTSE is IND-sDTI-CPA if ∀λ,T ∈ N, ∀A ∈ PPTλ, ∃ε ∈ NEGλ, AdvIND-sDTI-CPAΣTSE,A,λ,T (λ) B
|
∑

b∈{0,1}(−1)b Pr[ExptIND-sDTI-CPAΣTSE,A,b (1λ, 1T) = 1]| < ε.

17

ExptIND-DTI-CPAΣTSE ,A,b
(1λ, 1T):

(mpk,msk)← Setup(1λ, 1T)

(L∗,R∗,m0,m1, st1)← A
OKGenmsk
1 (mpk),

. O
KGen1
msk (ti ∈ [0,T − 1]), where i ∈ [1, qk]:

Return ski ← KGen(msk, ti).
Assume that L∗,R∗ ∈ [0,T − 1] and L∗ ≤ R∗

and ∀i ∈ [1, qk], ti < [L∗,R∗].
C∗ ← Enc(mb, [L∗,R∗])

b′ ← A
O
KGen2
msk

2 (st1,C∗),
. O

KGen2
msk (t ∈ [0,T − 1]):

If t < [L∗,R∗], Return skt ← KGen(msk, t).
Else, Return ⊥.

Return b′.

ExptIND-sDTI-CPAΣTSE ,A,b
(1λ, 1T):

(L∗,R∗, st0)← A0(1λ, 1T).
Assume that L∗,R∗ ∈ [0,T − 1] and L∗ ≤ R∗.
(mpk,msk)← Setup(1λ, 1T)

(m0,m1, st1)← A
O
KGen1
msk

1 (st0,mpk),
. O

KGen1
msk (t ∈ [0,T − 1]): If t < [L∗,R∗],

Return sk ← KGen(msk, t). Else, Return ⊥.
C∗ ← Enc(mpk,mb, [L∗,R∗])

b′ ← A
O
KGen2
msk

2 (st1,C∗),
. O

KGen2
msk (t ∈ [0,T − 1]): If t < [L∗,R∗],

Return skt ← KGen(msk, t). Else, Return ⊥.
Return b′.

Fig. 13. Security experiments for a TSE scheme ΣTSE

A.4 Identity-Based Encryption (IBE) [18]

Syntax. Identity-based encryption (IBE) consists of the following 4 polynomial time algorithms, where Dec
is deterministic and the others are probabilistic:

– Let 1λ, where λ ∈ N, denote a security parameter. Let I denote the ID space. Let N ∈ N denote total num-
ber of IDs, which implies |I| = N. Setup algorithm Setup takes (1λ, 1N) as input, then outputs a master
public-key mpk and a master secret-key msk. We write the procedure as (mpk,msk)← Setup(1λ, 1N).

– Key-generation algorithm KGen takes msk and an ID ∈ I, then outputs a secret-key skID. We write it as
skID ← KGen(msk, ID).

– Encryption algorithm Enc takes a plaintext m ∈ M and a ID ∈ I, then outputs a ciphertext CID. We write
it as CID ← Enc(m, ID).

– Decryption algorithm Dec takes a secret-key skID and a ciphertext CID, then outputs a plaintext m ∈ M
or a symbol ⊥. We write it as m / ⊥ ← Dec(skID,CID).

We require every IBE scheme to be correct. An IBE scheme ΣIBE = {Setup, KGen, Enc, Dec} is correct,
if ∀λ,N ∈ N, ∀(mpk,msk) ← Setup(1λ, 1N), ∀ID ∈ I, ∀skID ← KGen(msk, ID), ∀m ∈ M, ∀CID ←

Enc(m, ID), Pr[m← Dec(skID,CID)] = 1.

IND-CPA Security. For an IBE scheme ΣIBE, a probabilistic algorithm A, and b ∈ {0, 1}, we consider security
experiments ExptIND-ID-CPAΣIBE,A,b and ExptIND-sID-CPAΣIBE,A,b given in Fig. 14.

Definition 8. An IBE scheme ΣIBE is IND-ID-CPA, if ∀λ,N ∈ N, ∀A ∈ PPTλ, ∃ε ∈ NEGλ, AdvIND-ID-CPAΣIBE,A,λ,N (λ) B
|
∑

b∈{0,1}(−1)b Pr[ExptIND-ID-CPAΣIBE,A,b (1λ, 1N) = 1]| < ε.

Definition 9. An IBE scheme ΣIBE is IND-sID-CPA, if ∀λ,N ∈ N, ∀A ∈ PPTλ, ∃ε ∈ NEGλ, AdvIND-sID-CPAΣIBE,A,λ,N (λ) B
|
∑

b∈{0,1}(−1)b Pr[ExptIND-sID-CPAΣIBE,A,b (1λ, 1N) = 1]| < ε.

A.5 Wildcarded Hierarchical Identity-Based Encryption (WHIBE) [2]

Syntax. Wildcarded hierarchical identity-based encryption (WHIBE) consists of following 4 polynomial time
algorithms, where Dec is deterministic and the others are probabilistic:

18

ExptIND-ID-CPAΣIBE ,A,b
(1λ, 1N):

(mpk,msk)← Setup(1λ, 1N)

(ID∗,m0,m1, st1)← A
O
KGen1
msk

1 (mpk),
. O

KGen1
msk (IDi ∈ I), where i ∈ [1, qk]:

Return ski ← KGen(msk, IDi).
Assume that ID∗ ∈ I and ∀i ∈ [1, qk],

IDi , ID∗.
C∗ ← Enc(mb, ID∗)

b′ ← A
O
KGen2
msk

2 (st1,C∗),
. O

KGen1
msk (ID ∈ I):

Return sk ← KGen(msk, ID) if ID , ID∗.
Return ⊥ otherwise.

Return b′.

ExptIND-sID-CPAΣIBE ,A,b
(1λ, 1N):

(ID∗, st0)← A0(1λ, 1N)
Assume that ID∗ ∈ I
(mpk,msk)← Setup(1λ, 1N)

(m0,m1, st1)← A
O
KGen1
msk

1 (st0,mpk),
. O

KGen1
msk (ID ∈ I):

Return sk ← KGen(msk, ID) if ID , ID∗.
Return ⊥ otherwise.

C∗ ← Enc(mb, ID∗)

b′ ← A
O
KGen2
msk

2 (st1,C∗),
. O

KGen2
msk (ID ∈ I):

Return sk ← KGen(msk, ID) if ID , ID∗.
Return ⊥ otherwise.

Return b′.

Fig. 14. Security experiments for an IBE scheme ΣIBE

– Let 1λ, where λ ∈ N, denote a security parameter. Let p denote a prime whose bit length is λ. Let L ∈ N
denote maximum number of elements in ID or wildcarded ID. Let I denote space for each element in ID
or wildcarded ID, which is assumed to be determined after executing this algorithm Setup. For instance,
I can be {0, 1} or Z∗p where p is a prime with bit length λ. Setup algorithm Setup takes (1λ, 1L) as input,
then outputs a master public-key mpk and a master secret-key for the empty set sk∅. Let it be denoted by
(mpk, sk∅)← Setup(1λ, 1L).

– Key-generation algorithm KGen takes skIDl for an IDl ∈ I
l where l ∈ N and h ∈ I, then outputs a

secret-key skIDl+1 where IDl+1 B IDl||h. Let it be denoted by skIDl+1 ← KGen(skIDl , IDl, h).
– Encryption algorithm Enc takes a plaintext m ∈ M and a wIDl ∈ {I ∪ {∗}}

l where l ∈ N, then outputs a
ciphertext CwIDl . Let it be denoted by CwIDl ← Enc(m,wIDl).

– Decryption algorithm Dec takes a secret-key skIDl and a ciphertext CwIDl , then outputs a plaintext m ∈ M
or a symbol ⊥. Let it be denoted by m / ⊥ ← Dec(skIDl ,CwIDl).

As for WIBE schemes, we define matching algorithm Matchl : Il × {I ∪ {∗}}l → 1/0, for WHIBE
schemes, where l ∈ [0, L], as described in Fig. 15.

Matchl(ID ∈ Il,wID ∈ {I ∪ {∗}}l):
Return 1 if ∀i ∈ [0, l − 1] s.t. wID[i] , ∗, wID[i] = ID[i]. Return 0, otherwise.

Fig. 15. A formal definition of Matchl, where l ∈ [0, L], for WHIBE schemes

Every WHIBE scheme must be correct. A scheme ΣWHIBE = {Setup, KGen, Enc, Dec, Match} is cor-
rect, if ∀λ, L ∈ N, ∀(mpk, sk∅) ← Setup(1λ, 1L), ∀l ∈ N, ∀ID ∈ Il, ∀skID[0] ← KGen(msk, sk∅, ID[0]),
∀skID[0]||ID[1] ← KGen(msk, skID[0], ID[1]), · · · , ∀skID ← KGen(msk, skID[0]||···||ID[l−2], ID[l − 1]), ∀m ∈ M,
∀wID ∈ {I ∪ {∗}}l s.t. Matchl(ID,wID) = 1, ∀CwID ← Enc(m,wID), Pr[m← Dec(skID,CwID)] = 1.

IND-CPA Security. For a WHIBE scheme ΣWHIBE, a probabilistic algorithm A and b ∈ {0, 1}, we consider a
security experiments ExptIND-HWID-CPAΣWHIBE,A,b and ExptIND-sHWID-CPAΣWHIBE,A,b in Fig. 16.

Definition 10. A WHIBE scheme ΣWHIBE is IND-HWID-CPA if ∀λ, L ∈ N, ∀A ∈ PPTλ, ∃ε ∈ NEGλ,
AdvIND-HWID-CPAΣWHIBE,A,λ,L (λ) B |

∑
b∈{0,1}(−1)b Pr[ExptIND-HWID-CPAΣWHIBE,A,b (1λ, 1L) = 1]| < ε.

19

ExptIND-HWID-CPAΣWHIBE ,A,b
(1λ, 1L):

(mpk, sk∅)← Setup(1λ, 1L)

(wID?,m0,m1, st1)← A
O
KGen1
sk∅

1 (mpk),
. O

KGen1
sk∅

(ID j ∈ I
l j), where j ∈ [1, q]:

sk0, j B KGen(msk, sk∅, ID j[0]), · · · , skl j−1 B KGen(msk, skl j−2, j, ID j[l j − 1]).
Return skl j−1.

Assume that wID? ∈ {I ∪ {∗}}l
?

for l? ∈ N and ∀ j ∈ [1, q] s.t. l j ≤ l?,
Matchl j (||i∈[0,l j−1]ID j[i], ||i∈[0,l j−1]wID?[i]) = 0.

C? ← Enc(mb,wID?).

b′ ← A
O
KGen2
sk∅

2 (st1,C?),
. O

KGen2
sk∅

(ID ∈ Il):
If l ≤ l? and Matchl(||i∈[0,l−1]ID[i], ||i∈[0,l−1]wID?[i]) = 1, Return ⊥.
sk0 B KGen(msk, sk∅, ID[0]), · · · , skl−1 B KGen(msk, skl−2, ID[l − 1]).
Return skl−1.

Return b′.
ExptIND-sHWID-CPAΣWHIBE ,A,b

(1λ, 1L):
(wID?, st0)← A0(1λ, 1L). Assume that wID? ∈ Il? for l? ∈ N.
(mpk, sk∅)← Setup(1λ, 1L)

(m0,m1, st1)← A
O
KGen1
sk∅

1 (mpk),
. O

KGen1
sk∅

(ID ∈ Il):
If l ≤ l? and Matchl(||i∈[0,l−1]ID[i], ||i∈[0,l−1]wID?[i]) = 1, Return ⊥.
sk0 B KGen(msk, sk∅, ID[0]), · · · , skl−1 B KGen(msk, skl−2, ID[l − 1]).
Return skl−1.

C? ← Enc(mb,wID?).

b′ ← A
O
KGen2
sk∅

2 (st1,C?),
. O

KGen2
sk∅

(ID ∈ I?): Same as OKGen1
sk∅

.
Return b′.

Fig. 16. Security experiments for a WHIBE scheme ΣWHIBE

20

Definition 11. A WHIBE scheme ΣWHIBE is IND-sHWID-CPA if ∀λ, L ∈ N, ∀A ∈ PPTλ, ∃ε ∈ NEGλ,
AdvIND-sHWID-CPAΣWHIBE,A,λ,L (λ) B |

∑
b∈{0,1}(−1)b Pr[ExptIND-sHWID-CPAΣWHIBE,A,b (1λ, 1L) = 1]| < ε.

A.6 Broadcast Encryption (BE) [10]

Syntax. Broadcast encryption (BE) consists of the following 4 polynomial time algorithms, where Dec is
deterministic and the others are probabilistic:

– Let 1λ, where λ ∈ N, denote a security parameter. Let n ∈ N denote total number of users. Let l ∈ N
denote the maximum cardinality of a set of users S associated with a ciphertext. Setup algorithm Setup
takes (1λ, 1n, 1l) as input, then outputs a master public-key mpk and a master secret-key msk. We write
the procedure as (mpk,msk)← Setup(1λ, 1n, 1l).

– Key-generation algorithm KGen takes msk and a user i ∈ {0, 1, · · · , n − 1}, then outputs a secret-key ski.
We write it as ski ← KGen(msk, i).

– Encryption algorithm Enc takes a plaintext m ∈ M and a set of users S ⊆ {0, 1, · · · , n − 1} s.t. |S| ≤ l,
then outputs a ciphertext CS. We write it as CS ← Enc(m,S).

– Decryption algorithm Dec takes a secret-key ski and a ciphertext CS, then outputs a plaintext m ∈ M or
a symbol ⊥. We write it as m / ⊥ ← Dec(ski,CS).

We require every BE scheme to be correct. A BE scheme ΣBE = {Setup, KGen, Enc, Dec} is correct,
if ∀λ, n, l ∈ N, ∀(mpk,msk) ← Setup(1λ, 1n, 1l), ∀i ∈ {0, · · · , n − 1}, ∀ski ← KGen(msk, i), ∀m ∈ M,
∀S ⊆ {0, 1, · · · , n − 1} s.t. |S| ≤ l, ∀CS ← Enc(m,S), Pr[m← Dec(ski,CS)] = 1.

IND-CPA Security. For a BE scheme ΣBE, a probabilistic algorithm A, and b ∈ {0, 1}, we consider security
experiments ExptIND-S-CPAΣBE,A,b and ExptIND-sS-CPAΣBE,A,b given in Fig. 17.

ExptIND-S-CPAΣBE ,A,b
(1λ, 1n, 1l):

(mpk,msk)← Setup(1λ, 1n, 1l)

(S∗,m0,m1, st1)← A
O
KGen1
msk

1 (mpk),
. O

KGen1
msk (iι ∈ [0, n − 1]), where ι ∈ [1, qk]:

Return skι ← KGen(msk, iι).
Assume that S∗ ⊆ {0, · · · , n − 1}, |S∗| ≤ l,

and ∀ι ∈ [1, qk], iι < S∗.
C∗ ← Enc(mb,S

∗)

b′ ← A
O
KGen2
msk

2 (st1,C∗),
. O

KGen1
msk (i ∈ [0, n − 1]):

Return sk ← KGen(msk, i) if i < S∗.
Return ⊥ otherwise.

Return b′.

ExptIND-sS-CPAΣBE ,A,b
(1λ, 1n, 1l):

(S∗, st0)← A0(1λ, 1n, 1l)
Assume that S∗ ⊆ {0, · · · , n − 1} and |S∗| ≤ l.
(mpk,msk)← Setup(1λ, 1n, 1l)

(m0,m1, st1)← A
O
KGen1
msk

1 (st0,mpk),
. O

KGen1
msk (i ∈ [0, n − 1]):

Return sk ← KGen(msk, i) if i < S∗.
Return ⊥ otherwise.

C∗ ← Enc(mb,S
∗)

b′ ← A
O
KGen2
msk

2 (st1,C∗),
. O

KGen2
msk (i ∈ [0, n − 1]):

Return sk ← KGen(msk, i) if i < S∗.
Return ⊥ otherwise.

Return b′.

Fig. 17. Security experiments for a BE scheme ΣBE

Definition 12. A BE scheme ΣBE is IND-S-CPA, if ∀λ, n, l ∈ N, ∀A ∈ PPTλ, ∃ε ∈ NEGλ, AdvIND-S-CPAΣBE,A,λ,n,l (λ) B
|
∑

b∈{0,1}(−1)b Pr[ExptIND-S-CPAΣBE,A,b (1λ, 1n, 1l) = 1]| < ε.

Definition 13. A BE scheme ΣBE is IND-sS-CPA, if ∀λ, n, l ∈ N, ∀A ∈ PPTλ, ∃ε ∈ NEGλ, AdvIND-S-CPAΣBE,A,λ,n,l (λ) B
|
∑

b∈{0,1}(−1)b Pr[ExptIND-S-CPAΣBE,A,b (1λ, 1n, 1l) = 1]| < ε.

21

B IBE Scheme by Waters [19]

Waters [19] showed that security of the IBE scheme in Fig. 18 is guaranteed by the following theorem.

Setup(1λ, 1L):

(p,G,GT , e, g)← GBG(1λ); α
U
←− Zp; g1 B gα; g2, u′, u0, · · · , uL−1

U
←− G;

Return msk B gα2 and mpk B (p,G,GT , e, g, g1, g2, u′, u0, · · · , uL−1);
KGen(msk, ID ∈ {0, 1}L):

r
U
←− Zp; Return skID B

(
gα2 ·

(
u′

∏
i s.t. ID[i]=1 ui

)r
, gr

)
;

Enc(ID ∈ {0, 1}L,m ∈ GT):

s
U
←− Zp; Return CID B

(
e(g1, g2)s · m, gs,

(
u′

∏
i s.t. ID[i]=1 ui

)s)
;

Dec(skID,CID):
Parse skID as (d1, d2) ∈ G2; Parse CID as (c1, c2, c3) ∈ GT × G

2;
Return c1 · e(d2, c3)/e(d1, c2);

Fig. 18. Waters’ IBE scheme ΠWatIBE [19]

Theorem 13. Waters’ IBE scheme ΠWatIBE is IND-ID-CPA under the DBDH assumption.

C Formal Description of Three Generic TSE Constructions

C.1 PQ-IBE-TSE

Four algorithms of PQ-IBE-TSE are formally described in Fig. 19. [15] proved that its security is guaranteed
by Theorem 14.

Setup(1λ, 1T):
Return (mpk,msk) B IBE.Setup(1λ, 12T−1).
KGen(msk, t ∈ [0,T − 1]):

b−1,t B ∅. ∀i ∈ [0, log T − 1], bi,t B t[0]|| · · · ||t[i].
Return skt B {ski,t ← IBE.KGen(msk, bi,t) | i ∈ [−1, log T − 1]}.
Enc(m, L,R), where 0 ≤ L ≤ R ≤ T − 1:
T[L,R] B Coverlog T (L,R). Return C[L,R] B {Cb ← IBE.Enc(m, b) | b ∈ T[L,R]}.
Dec(skt,CL,R):

b−1,t B ∅. ∀i ∈ [0, log T − 1], bi,t B t[0]|| · · · ||t[i].
Parse skt as {ski,t | i ∈ [−1, log T − 1]}.
T[L,R] B Coverlog T (L,R). Parse C[L,R] as {Cb | b ∈ T[L,R]}.
t ∈ [L,R] =⇒ ∃l ∈ [−1, log T − 1] s.t. bl,t ∈ T[L,R].
Return m / ⊥ ← IBE.Dec(skl,Cbl,t).

Fig. 19. Four algorithms of PQ-IBE-TSE, where IBE.Setup, IBE.KGen, IBE.Enc and IBE.Dec denote algorithms of an
IBE scheme.

Theorem 14. PQ-IBE-TSE in Fig. 19 is IND-DTI-CPA (resp. IND-sDTI-CPA) if the underlying IBE scheme
ΣIBE is IND-ID-CPA (resp. IND-sID-CPA).

22

Setup(1λ, 1T):
Return (mpk,msk) BWIBE.Setup(1λ, 1log T).
KGen(msk, t ∈ [0,T − 1]):

Parse t as t[0]|| · · · ||t[log T − 1]. Return skt BWIBE.KGen(msk, t).
Enc(m, L,R), where 0 ≤ L ≤ R ≤ T − 1:
T[L,R] B Coverlog T (L,R). Return C[L,R] B {Cb ←WIBE.Enc(m, b||∗log T−|b|) | b ∈ T[L,R]}.
Dec(skt,CL,R):
T[L,R] B Coverlog T (L,R). T B {b||∗log T−|b| | b ∈ T[L,R]}.
Parse C[L,R] as {Cb | b ∈ T[L,R]}.
t ∈ [L,R] =⇒ ∃bt ∈ T[L,R] s.t. WIBE.Matchlog T (t, bt) = 1.
Return m / ⊥ ←WIBE.Dec(skt,Cbt).

Fig. 20. Four algorithms of PQ-WIBE-TSE, where WIBE.Setup, WIBE.KGen, WIBE.Enc, WIBE.Dec and WIBE.Match
denote algorithms of a WIBE scheme.

Setup(1λ, 1T):
Return (mpk,msk) B BE.Setup(1λ, 12T−1, 12 log T−2).
KGen(msk, t ∈ [0,T − 1]):

b−1,t B ∅. ∀i ∈ [0, log T − 1], bi,t B t[0]|| · · · ||t[i].
Return skt B {ski,t ← BE.KGen(msk, bi,t) | i ∈ [−1, log T − 1]}.
Enc(m, L,R), where 0 ≤ L ≤ R ≤ T − 1:
T[L,R] B Coverlog T (L,R). Return C[L,R] ← BE.Enc(m,T[L,R]).
Dec(skt,CL,R):

b−1,t B ∅. ∀i ∈ [0, log T − 1], bi,t B t[0]|| · · · ||t[i].
Parse skt as {ski,t | i ∈ [−1, log T − 1]}.
T[L,R] B Coverlog T (L,R).
t ∈ [L,R] =⇒ ∃l ∈ [−1, log T − 1] s.t. bl,t ∈ T[L,R].
Return m / ⊥ ← BE.Dec(skl,t,C[L,R]).

Fig. 21. Four algorithms of IK-BE-TSE, where BE.Setup, BE.KGen, BE.Enc and BE.Dec denote algorithms of a BE
scheme.

23

C.2 PQ-WIBE-TSE

Four algorithms of PQ-WIBE-TSE are formally described in Fig. 20. Its security is guaranteed by Theorem
15. We omit its proof since it can be proven in the same manner as the security of our RE scheme IK-WIBE-
RE.

Theorem 15. PQ-WIBE-TSE in Fig. 20 is IND-DTI-CPA (resp. IND-sDTI-CPA) if the underlying WIBE
scheme ΣWIBE is IND-wID-CPA (resp. IND-swID-CPA).

C.3 IK-BE-TSE

Four algorithms of IK-BE-TSE are formally described in Fig. 21. Its security is guaranteed by Theorem 16.
We omit its proof since it is almost obvious that the theorem is true.

Theorem 16. IK-BE-TSE in Fig. 21 is IND-DTI-CPA (resp. IND-sDTI-CPA) if the underlying BE scheme
ΣBE is IND-S-CPA (resp. IND-sS-CPA).

D Some Proofs

D.1 Proof of Theorem 1

We only prove the adaptive security since we can analogously prove the selective one.
Let A denote a probabilistic algorithm which behaves as an adversary in the IND-nWID-CPA exper-

iments, namely ExptIND-nWID-CPAΣWIBE,A,b where b ∈ {0, 1}. For each integer i ∈ [0, n], we define an experiment
ExptIND-nWID-CPAΣWIBE,A,0,i as follows. The experiment is basically the same as ExptIND-nWID-CPAΣWIBE,A,0 except for ciphertexts
generated in the challenge phase, i.e., (C?

1 , · · · ,C
?
n). Precisely, in the experiment, for j ∈ [1, n], C?

j is gen-
erated by Enc(m1,wID?

j) (resp. Enc(m0,wID?
j)) if j ≤ i (resp. otherwise). Obviously from the definitions,

ExptIND-nWID-CPAΣWIBE,A,0,0 (resp. ExptIND-nWID-CPAΣWIBE,A,0,n) is identical to ExptIND-nWID-CPAΣWIBE,A,0 (resp. ExptIND-nWID-CPAΣWIBE,A,1). For every
integers λ, L, n ∈ N and A ∈ PPTλ whose running time is t, there exists Bi ∈ PPTλ whose running time is
t + (n − 1)tenc for i ∈ [1, n], where tenc denotes computational time to encrypt a plaintext by ΣWIBE, such that

AdvIND-nWID-CPAΣWIBE,A,λ,L,n (λ)

≤
∑

i∈[1,n]

∣∣∣∣Pr
[
1← ExptIND-nWID-CPAΣWIBE,A,0,i−1

]
− Pr

[
1← ExptIND-nWID-CPAΣWIBE,A,0,i

]∣∣∣∣
=

∑
i∈[1,n]

AdvIND-WID-CPAΣWIBE,Bi,λ,L,n(λ).

The first inequality follows the triangle inequality. The second equation follows the following lemma.

Lemma 1. For any λ, L, n ∈ N, any i ∈ [1, n], any A ∈ PPTλ which runs in time t, ∃B ∈ PPTλ which
runs in time t + (n − 1)tenc, where tenc denotes computational time to encrypt a plaintext, such that |Pr[1 ←
ExptIND-nWID-CPAΣWIBE,A,0,i−1] − Pr[1← ExptIND-nWID-CPAΣWIBE,A,0,i]| = AdvIND-WID-CPAΣWIBE,B,λ,L,n(λ).

Proof. We consider B ∈ PPTλ which behaves as in Fig. 22. Note that for every j ∈ {1, 2}, when A j queries
an ID to OKGen j

msk , B j queries it to his own oracle OKGen j

msk to get a secret-key skID, then returns it to A j.
Obviously, B perfectly simulates ExptIND-nWID-CPAΣWIBE,A,0,i−1 (resp. ExptIND-nWID-CPAΣWIBE,A,0,i) for A when B (unconsciously)
is in ExptIND-WID-CPAΣWIBE,B,0 (resp. ExptIND-WID-CPAΣWIBE,B,1). Hence, it holds that Pr[1 ← ExptIND-nWID-CPAΣWIBE,A,0,i−1] = Pr[1 ←
ExptIND-WID-CPAΣWIBE,B,0] (resp. Pr[1← ExptIND-nWID-CPAΣWIBE,A,0,i] = Pr[1← ExptIND-WID-CPAΣWIBE,B,1]).

The reason why the the running time of B is t + (n − 1)tenc is that B is given only one ciphertext, i.e., C?
i ,

among n ciphertexts and needs to generate the other n − 1 ciphertexts, i.e., (C?
1 , · · · ,C

?
i−1,C

?
i+1, · · · ,C

?
n), by

himself. ut

24

B
O
KGen1
msk

1 (mpk):

1. (wID?
1 , · · · ,wID?

n , m0,m1, st1)← A
O
KGen1
msk

1 (mpk).
2. st′1 B (st1,wID?

1 , · · · ,wID?
i−1,wID?

i+1, · · · ,wID?
n).

3. Return (wID?
i ,m0,m1, st′1).

B
O
KGen2
msk

2 (st′1,C
?):

4. Parse st′1 as (st1,wID?
1 , · · · ,wID?

i−1,wID?
i+1, · · · ,wID?

n).

5. For every j ∈ [1, n], C?
j B

Enc(m1,wID?

j) if j ≤ i − 1,
C? if j = i,
Enc(m0,wID?

j) otherwise.

6. Return b′ ← A
O
KGen2
msk

2 (st1,C?
1 , · · · ,C

?
n).

Fig. 22. Algorithm B in the proof of Theorem 1

D.2 Proof of Theorem 2

Let us consider the case of k = log T . Among T values in [0,T−1], only the value t = 0 satisfies t mod 2k = 0.
If we set wID B ∗log T , it is obviously true that for every t ∈ [0,T −1], ID← Binarizelog T (t) matches wID.

Consider the case of k = log T − 1. There are two values which satisfy t mod 2log T−1 = 0, namely t = 0
which satisfies Binarizelog T (t)[log T − 1] = 0

∧
[t, t + 2k − 1] = [0, 2log T−1 − 1] and t = 2log T−1 which

satisfies Binarizelog T (t)[log T − 1] = 1
∧

[t, t + 2k − 1] = [2log T−1, 2log T − 1]. It is obviously true from the
definition of Binarizelog T that every t′ ∈ [0, 2log T−1−1] satisfies Binarizelog T (t′)[log T −1] = 0 and every
t′ ∈ [2log T−1, 2log T − 1] satisfies Binarizelog T (t′)[log T − 1] = 1.

Consider the case of k = log T−2. There are four values t which satisfy t mod 2log T−2 = 0, namely 0 (resp.
2log T−2, 2log T−1, 2log T−1 +2log T−2) with ID B Binarizelog T (t) which satisfies that (ID[log T −1], ID[log T −
2], [t, t + 2k − 1]) is equivalent to (0, 0, [0, 2log T−2 − 1]) (resp. (0, 1, [2log T−2, 2log T−1 − 1]), (1, 1, [2log T−1 −

1, 2log T−1 + 2log T−2 − 1]), (1, 0, [2log T−1 + 2log T−2, 2log T − 1])). It is obviously true from the definition of
Binarizelog T that every t′ in a range [0, 2log T−2−1] (resp. [2log T−2, 2log T−1−1], [2log T−1, 2log T−1+2log T−2−1],
[2log T−1 + 2log T−2, 2log T − 1]) with ID′ B Binarizelog T (t′) satisfies that (ID′[log T − 1], ID′[log T − 2]) is
equivalent to (0, 0) (resp. (0, 1), (1, 1), (1, 0)).

In the same manner, for the other cases of k ∈ [0, log T − 3], we can prove that the theorem holds true.

D.3 Proof of Theorem 6

For j ∈ [0, log T−1], there are 3 cases. Namely, (1) j ∈ [Classifylog T (t)+1, log T−1], (2) j = Classifylog T (t),
(3) j ∈ [0, Classifylog T − 1]. We prove the theorem in each case.

(1) By the definition of Classifylog T , it holds that t mod 2Classifylog T (t)+1 = 2Classifylog T (t). By the prop-
erty of modulo operation, it holds that

t − 2Classifylog T (t) mod 2Classifylog T (t)+1 = 0
t − 2Classifylog T (t) + 1 mod 2Classifylog T (t)+1 = 1

...

t mod 2Classifylog T (t)+1 = 2Classifylog T (t)

...

t + 2Classifylog T (t) − 1 mod 2Classifylog T (t)+1 = 2Classifylog T (t)+1 − 1
t + 2Classifylog T (t) mod 2Classifylog T (t)+1 = 0

...

25

This means that from t − 2Classifylog T (t) to t + 2Classifylog T (t) − 1, their IDs have the same bit in position
Classifylog T (t) + 1. Hence, ∀δ ∈ [1, 2Classifylog T (t)], ID[Classifylog T (t) + 1] = ID′[Classifylog T (t) +

1] = IDt[Classifylog T (t) + 1], where ID ← Binarizelog T (t + δ − 1), ID′ ← Binarizelog T (t − δ mod T)
and IDt ← Binarizelog T (t). By the same logic, we can prove the theorem for the other cases, namely
j ∈ [Classifylog T (t) + 2, log T − 1].

(2) By the definition of Classifylog T , it holds that t mod 2Classifylog T (t) = 0. By the property of modulo
operation, it holds that

t − 2Classifylog T (t) mod 2Classifylog T (t) = 0
t − 2Classifylog T (t) + 1 mod 2Classifylog T (t) = 1

...

t − 1 mod 2Classifylog T (t) = 2Classifylog T (t) − 1
t mod 2Classifylog T (t) = 0

t + 1 mod 2Classifylog T (t) = 1
...

t + 2Classifylog T (t) − 1 mod 2Classifylog T (t) = 2Classifylog T (t) − 1
t + 2Classifylog T (t) mod 2Classifylog T (t) = 0

...

This means that from t−2Classifylog T (t) to t−1, their IDs have the same bit in position Classifylog T with the ID
of t, and from t to t+2Classifylog T (t)−1, their IDs have the distinct bit in position Classifylog T with the ID of t.
Hence, ∀δ ∈ [1, 2Classifylog T (t)], ID[Classifylog T (t)] = IDt[Classifylog T (t)] and ID′[Classifylog T (t)] =

¬IDt[Classifylog T (t)], where ID ← Binarizelog T (t + δ − 1), ID′ ← Binarizelog T (t − δ mod T) and
IDt ← Binarizelog T (t).

(3) Firstly, we focus on t + δ − 1. For j ∈ [0, Classifylog T (t) − 1], let us define a pair (x j, t j) of Boolean
variable and integer variable. For instance, (xClassifylog T (t)−1, tClassifylog T (t)−1) is defined as follows.

(xClassifylog T (t)−1, tClassifylog T (t)−1)

B

(1, t)
If t + δ − 1 ∈ [t, t + 2Classifylog T (t)−1 − 1]
(0, t + 2Classifylog T (t)−1)
Else if t + δ − 1 ∈ [t + 2Classifylog T (t)−1, t + 2Classifylog T (t) − 1]

Generally, for each j ∈ [1, Classifylog T (t)], (x j+1, t j+1) is defined as follows, based on t0 B t and t j.

(x j+1, t j+1) B

(1, t j) If t + δ − 1 ∈ [t j, t j + 2 j−1 − 1]
(0, t j + 2 j−1)

Else if t + δ − 1 ∈ [t j + 2 j−1, t j + 2 j − 1]

In the same manner, for t − δ mod T , we define such pairs {(x′j, t
′
j) | j ∈ [0, Classifylog T (t) − 1]}.

Obviously, it is true that ∀ j ∈ [0, Classifylog T − 1], x j = ¬x′j. By the results of (1) and (2), and the
definition of Binarizelog T , proof for the case (3) is completed.

D.4 Proof of Theorem 7

It is true that ∀t ∈ [0,T − 1], ∀i ∈ [0, Classifylog T (t)], t mod 2i = 0. In this proof, we refer to this as the
first statement.

26

It is also true that ∀t ∈ [0,T − 1], if ∃i ∈ [0, log T] s.t.

t mod 2i = 0 ∧
[
i , log T ⇒ t mod 2i+1 = 2i

]
,

then Classifylog T (t) = i. We refer to this as the second statement.
If we can prove that it is true that ∀t ∈ [0,T − 1], ∀k ∈ [0, Classifylog T (t) − 1],

t + 2k mod 2k = 0,
t + 2k mod 2k+1 = 2k,

t − 2k mod 2k = 0,
t − 2k mod 2k+1 = 2k,

then accoding to the second (true) statement, Theorem 6 is proven.
Actually, the statement is true since according to the first (true) statement,

t + 2k mod 2k = t mod 2k + 2k mod 2k = 0 + 0 = 0,
t + 2k mod 2k+1 = t mod 2k+1 + 2k mod 2k+1 = 0 + 2k = 2k,

t − 2k mod 2k = t mod 2k + 2k mod 2k = 0 + 0 = 0,
t − 2k mod 2k+1 = t mod 2k+1 − 2k mod 2k+1 = 0 + 2k = 2k.

D.5 Proof of Theorem 8

Let us prove the theorem in each one of the cases (1) t = 0, (2) t = 2log T , (3) t ∈ [0,T − 1] \ {0, 2log T }.
(1) Obviously, t+2Classifylog T (t) mod T = 0+2log T mod T = T mod T = 0. Likewise, t−2Classifylog T (t) mod

T = 0. The proof is done.
(2) Obviously, t + 2Classifylog T (t) mod T = 2log T−1 + 2log T−1 mod T = 2log T mod T = T mod T = 0.

Likewise, t − 2Classifylog T (t) mod T = 0. The proof is done.
(3) It is true that t mod 2Classifylog T (t) = 0 and t mod 2Classifylog T (t)+1 = 2Classifylog T (t). Hence, t+2Classifylog T (t) mod

2Classifylog T (t)+1 = 2Classifylog T (t)+1 mod 2Classifylog T (t)+1 = 0 mod 2Classifylog T (t)+1. Hence, Classifylog T (t +

2Classifylog T (t) mod T) ≥ Classifylog T (t)+1. Likewise, since t−2Classifylog T (t) mod 2Classifylog T (t)+1 = 0 mod
2Classifylog T (t)+1, it holds Classifylog T (t − 2Classifylog T (t) mod T) ≥ Classifylog T (t) + 1.

D.6 Proof of Theorem 9

By Theorem 8, it is true that ∀L,R ∈ [0,T − 1] with D ← Dividelog T (L,R), D + 2Classifylog T (D) − 1 ≥ R.
There are two cases, namely (1) D + 2Classifylog T (D) − 1 = R, and (2) D + 2Classifylog T (D) − 1 > R. We prove
the theorem in each case.

In the 1st case, it is obvious that ∃k1 ∈ [0, Classifylog T (D)] s.t. D+2k1−1 = R, since k1 = Classifylog T (D)
is the integer. By Theorem 4, we complete to prove Theorem 9.

In the 2nd case, it is true that ∃k1 ∈ [0, Classifylog T (D)−1], ∃k2 ∈ [0, k1−1], · · · , ∃kn ∈ [0, kn−1−1] s.t.
D − 1 +

∑n
l=1 2kl = R. By using Theorem 4 and Theorem 7 with n times and n − 1 times in total, respectively,

we complete to prove Theorem 9.

D.7 Proof of Theorem 10

By Theorem 8, it is true that ∀L,R ∈ [0,T − 1] with D ← Dividelog T (L,R), D − 2Classifylog T (D) mod T <
L. Hence, it is true that ∃k1 ∈ [0, Classifylog T (D) − 1], ∃k2 ∈ [0, k1 − 1], · · · , ∃kn ∈ [0, kn−1 − 1] s.t.
D−

∑n
l=1 2kl mod T = L. By using Theorem 5 and Theorem 7 with n times and n−1 times in total, respectively,

we complete to prove Theorem 10.

27

D.8 Proof of Theorem 11

We only prove the adaptive security, because the selective one can be analogously proven.
Precisely speaking, we prove the following statement: For every integer λ,T ∈ N and every A ∈ PPTλ

which runs in time t, there exists B ∈ PPTλ which runs in time (which is almost the same as) t, such that
AdvIND-R-CPAΣIK-WIBE-RE,A,λ,T (λ) = AdvIND-nWID-CPAΣWIBE,B,λ,d (λ), where d B log T and n B 2 log T − 3. Note that the reason why the
integer n is set as 2 log T − 3 is that total number of wildcarded IDs in T[L∗,R∗] for the target range [L∗,R∗] is
(log T − 1) + (log T − 2) at the maximum.

B behaves as in Fig. 23. B1 gives mpk to A1 and gets ([L∗,R∗],m0,m1, st′1). Here, obviously, mpk given
to A1 by B1 properly distributes, i.e., distributes identically to the real mpk in the experiment for ΣIK-WIBE-RE.
From [L∗,R∗], B1 derives a set of wIDs T[L∗,R∗] parsed as {wID∗i | i ∈ [1, k∗]}. If k∗ = n, B1 determines T[L∗,R∗]
as n target wIDs. Otherwise, B1 determines T[L∗,R∗] as k∗ target wIDs, chooses n − k∗ wIDs from T[L∗,R∗]
uniformly at random, then determines them as the remaining n− k∗ target wIDs. The reason why we make B1
do that is that any one among n target wIDs must satisfy a condition that for any numerical value t queried
to OKGen1

msk or OKGen2
msk , the wID is not satisfied by Binarized(t) ∈ {0, 1}L. Obviously, every one of the randomly

chosen n − k∗ wIDs satisfies the condition. After that, B1 outputs the n wIDs and the two plaintexts m0 and
m1. B2 receives n ciphertexts for the n wIDs. Only the first k∗ ciphertexts are given to A2, and the other ones
are ignored. Obviously, the ciphertexts given to A2 properly distribute. Finally, B2 outputs the bit b′ outputted
by A2.

Thus, B perfectly simulates ExptIND-R-CPAΣIK-WIBE-RE,A,0 (resp. ExptIND-R-CPAΣIK-WIBE-RE,A,1) for A when B (unconsciously) plays
ExptIND-nWID-CPAΣWIBE,B,0 (resp. ExptIND-nWID-CPAΣWIBE,B,1). Hence, it holds that Pr[1← ExptIND-R-CPAΣIK-WIBE-RE,A,0] = Pr[1← ExptIND-nWID-CPAΣIK-WIBE-RE,B,0]
(resp. Pr[1← ExptIND-R-CPAΣIK-WIBE-RE,A,1] = Pr[1← ExptIND-nWID-CPAΣWIBE,B,1]).

The reason why the running time of B is almost the same as that of A is that B does not need to execute
any inefficient computation such as paring, exponentiation or multiplication on any (bilinear) groups by
himself. He needs to execute some algorithms such as Binarized, Divided, LatterWIDd, FormerWIDd,
and Merged, by himself. However, they can be executed much more efficiently than the heavy computation
related to (bilinear) groups. Thus, we do not count the time to execute them.

B
O
KGen1
msk

1 (mpk):

1. ([L∗,R∗],m0,m1, st′1)← A
O
KGen1
msk

1 (mpk),
. O

KGen1
msk (t ∈ [0,T − 1]):

2. B1 queries Binarized(t) ∈ {0, 1}d to OKGen1
msk to get skt,

then returns skt.
3. D∗ B Divided(L∗,R∗), T[D∗ ,R∗] B LatterWIDd(D∗,R∗).
4. T[L∗ ,D∗−1] B FormerWIDd(L∗,D∗ − 1)
5. T[L∗ ,R∗] B Merged(T[D∗ ,R∗],T[L∗ ,D∗−1]).
6. Parse T[L∗ ,R∗] as {wID∗i | i ∈ [1, k∗]}.

7. If k∗ < n, for every j ∈ [k∗ + 1, n], wID∗j
U
←− {wID∗i | i ∈ [1, k∗]}.

8. Return ({wID∗i | i ∈ [1, n]},m0,m1, st1), where st1 B (st′1, k
∗).

B
O
KGen2
msk

2 (st1, {C∗i | i ∈ [1, n]}):
9. Parse st1 as (st′1, k

∗).

10. Return b′ ← A
O
KGen2
msk

2 (st′1, {C
∗
i | i ∈ [1, k∗]}),

. O
KGen1
msk (t ∈ [0,T − 1]):

B2 replies as B1 replied to a query to OKGen1
msk from A1.

Fig. 23. Algorithm B in the proof of Theorem 11

28

D.9 Proof of Theorem 12

Precisely speaking, we prove the following statement: For every λ, L ∈ N and every A ∈ PPTλ running in time
t, there exists B ∈ PPTλ running in time t + ((2 + qk)texp + qktmul)|wID∗|∗, where |W(wID∗)| denotes number of
wildcard symbol ∗ in the target wildcarded ID wID∗ and texp (resp. tmul) denotes computational time per one
exponentiation (resp. multiplication) on the group G, such that AdvIND-WID-CPAΠWIBE,A,λ,L (λ) = 2L · AdvIND-ID-CPAΠWat-IBE,B,λ,L′ (λ),
where L′ B L − |wID∗|∗.

We consider B which behaves as in Fig. 24. As we explained earlier, B plays ExptIND-ID-CPAΠWat-IBE,B
with L′ =

L − |wID∗|∗ which depends on the target wildcarded ID wID∗ ∈ {0, 1}L which will be chosen by A. We make
B (or B0) randomly guess the position of all wildcard symbols in wID∗, i.e., {i s.t. wID∗[i] = ∗}, before the
experiment starts. Note that {i s.t. wID∗[i] ∈ {0, 1}} can be computed from {i s.t. wID∗[i] = ∗} (and L) by
[1, L] \ {i s.t. wID∗[i] = ∗}. Hereafter, we consider a situation where B0 correctly guesses it. Note that the
situation occurs with probability 1/2L. We assume that information about {i s.t. wID∗[i] = ∗} is transmitted
to B1 at the same time as mpk, which means that B1 knows {i s.t. wID∗[i] = ∗} before wID∗ is chosen by A1.

It is easy to verify that mpk′ given to A1 distributes identically to the real one in ExptIND-ID-CPAΣWIBE,A,0 or
ExptIND-ID-CPAΣWIBE,A,1 . It is also easy to verify that C? given to A2 distributes identically to the real one in ExptIND-ID-CPAΣWIBE,A,0

(resp. ExptIND-ID-CPAΣWIBE,A,1) when b = 0 (resp. b = 1). It is also obvious that each secret-key skID′ generated
by B1 or B2 on KGen oracle distributes identically to the real one since it can be simply written as (gα2 ·

(u′
∏

i s.t. ID′[i]=1 ui)r, gr), where r
U
←− Zp. Thus, B perfectly simulates ExptIND-WID-CPAΣWIBE,A,0 (resp. ExptIND-WID-CPAΣWIBE,A,1)

for A when B correctly guesses {i s.t. wID∗[i] = ∗} (with probability 1/2L) and (unconsciously) plays
ExptIND-ID-CPAΣWat-IBE,B,0 (resp. ExptIND-ID-CPAΣWat-IBE,B,1). Hence, it holds that Pr[1← ExptIND-WID-CPAΣWIBE,A,0]/2L = Pr[1← ExptIND-ID-CPAΣWat-IBE,B,0]
(resp. Pr[1← ExptIND-WID-CPAΣWIBE,A,1]/2L = Pr[1← ExptIND-ID-CPAΣWat-IBE,B,1]).

The reason why the the running time of B is t + ((2 + qk)texp + qktmul)|wID∗|∗ is that B1 (resp. B2) in
step 3 (resp. step 14) needs to calculate |wID∗|∗ exponentiations, and B1 and B2 collectively need to calculate
qk · |wID∗|∗ exponentiations and multiplications to generate qk secret-keys on KGen1 and KGen2 in total.

E Detailed Comparison of Ciphertext-Sizes between IK/PQ-WIBE-RE Instantiated
by ΠWIBE

Let TPQ[L,R] denote the set of wildcarded IDs (deterministically) chosen from a range [L,R] in PQ-WIBE-RE
w. ΠWIBE. Let TIK

[L,D−1] (resp. TIK
[D,R]) denote the set of wIDs determined from [L,D − 1] (resp. [D,R]) in

IK-WIBE-RE w. ΠWIBE. Let TIK
[L,R] denote the finally determined set of wIDs for [L,R] in IK-WIBE-RE w.

ΠWIBE.
It holds that for every A ∈ {PQ, IK}, |CA[L,R]| =

∑
wID∈TA[L,R]

{|gT | + (2 + |wID|∗)|g|}. We say that two sets of
wIDs T1 and T2 are structurally identical if there exists a wID in one of the sets which covers a range, then
there also exists another wID in the other one of the sets which covers the same range. Obviously, if TPQ[L,R]

and TIK
[L,R] are structurally identical, then |CPQ[L,R]| = |C

IK
[L,R]|. We can easily prove that for every [L,R], TPQ[L,R] and

TIK
[L,D−1] ∪ T

IK
[D,R] are structurally identical.

For some ranges [L,R], TIK
[L,R] = TIK

[L,D−1] ∪ T
IK
[D,R], e.g., the first three examples in Table 3. In this case,

since TPQ[L,R] and TIK
[L,R] are structurally identical, |CPQ[L,R]| = |C

IK
[L,R]|.

For the other ranges [L,R], TIK
[L,R] , T

IK
[L,D−1] ∪ T

IK
[D,R], e.g., the last three examples in Table 3. In this case,

|CPQ[L,R]| > |C
IK
[L,R]|. Consider a case that a wID in TIK

[D,R] and a wID′ in TIK
[L,D−1], where |wID|∗ = |wID′|∗ = k ∈

[0, log T − 1], are merged into a wID? with |wID?|∗ = k + 1. In this case, by the merging, ciphertext size is
reduced by |gT | + (k + 1)|g|. For instance, when [L,R] = [1,T − 2], |CPQ[L,R]| = (2 log T − 2)|gT | + (log2 T +

log T − 2)|g| and |CIK
[L,R]| = (log T − 1)|gT | +

1
2 (log2 T + 3 log T − 4)|g| = 1

2 |C
PQ
[L,R]| + (log T − 1)|g| which is

almost the half of |CPQ[L,R]|.

29

B
O
KGen1
msk

1 (mpk, ({i s.t. wID∗[i] = ∗})):
1. Parse mpk as (p,G,GT , e, g, g1, g2, u′, {u′i | i s.t. wID∗[i] ∈ {0, 1}}).
2. For every i s.t. wID∗[i] ∈ {0, 1}, ui B u′i .

3. For every i s.t. wID∗[i] = ∗, βi
U
←− Zp, ui B gβi .

4. mpk′ B (p,G,GT , e, g, g1, g2, u′, u0, · · · , uL−1, v1).

5. (wID∗,m0,m1, st′1)← A
O
KGen1
msk

1 (mpk′).
. O

KGen1
msk (ID′ ∈ {0, 1}L):
6. B1 parses ID′ as ‖i∈[0,L−1]h′i , where h′i ∈ {0, 1}.
7. B1 queries ID B ‖i s.t. wID∗[i]∈{0,1}h′i to his own OKGen1

msk to get
skID = (gα2 · (u

′
∏

i s.t. wID∗[i]∈{0,1}∧ID′[i]=1 ui)r, gr) C (d1, d2),
where α, r ∈ Zp cannot be seen by B1.

8. B1 returns skID′ B (d1 ·
∏

i s.t. wID∗[i]=∗∧ID′[i]=1 dβi
2 , d2).

9. st1 B (st′1, {βi | i ∈W(wID∗)}).
10. Parse wID∗ as ‖i∈[0,L−1]h∗i where h∗i ∈ {0, 1, ∗}

L.
11. Return (ID∗,m0,m1, st1), where ID∗ B ‖i s.t. wID∗[i]∈{0,1}h∗i .

B
O
KGen2
msk

2 (st1,C∗):
12. Parse st1 as (st′1, {βi | i s.t. wID∗[i] = ∗}).
13. Parse C∗ as (e(g1, g2)s · mb, gs, (u′

∏
i∈U(ID∗) ui)s), where s and b are

unknown to B2.
14. C? B ((e(g1, g2)s · mb, gs, (u′

∏
i s.t. ID∗[i]=1 ui)s,

{(gs)βi | i s.t. wID∗[i] = ∗}).

15. Return b′ ← A
O
KGen2
msk

2 (st1,C?).
. O

KGen2
msk (ID′ ∈ {0, 1}L):

B2 replies as B1 replied to a query to OKGen1
msk from A1.

Fig. 24. Algorithm B in the proof of Theorem 12

Table 3. Ciphertext sizes of IK/PQ-WIBE-RE instantiated by ΠWIBE for some ranges [L,R]

[L,R]
∣∣∣CPQ[L,R]

∣∣∣ ∣∣∣CIK
[L,R]

∣∣∣
[0, 0] |gT | + 2|g|

[0,T − 1] |gT | + (2 + log T)|g|
[1, 2log T−1 − 1 +

∑
i∈[0,log T−3] 2i] (2 log T − 3)|gT | + (log2 T − 2)|g|

[T − 1, 0] 2|gT | + 4|g| |gT | + 3|g|

[1, 2log T−1 − 2]
(2 log T − 4)|gT |

+(log2 T − log T − 2)|g|
(log T − 2)|gT |

+ 1
2 (log2 T + log T − 6)|g|

[1,T − 2] or
[2log T−1 + 1, 2log T−2 − 2]

(2 log T − 2)|gT |

+(log2 T + log T − 2)|g|
(log T − 1)|gT |

+ 1
2 (log2 T + 3 log T − 4)|g|

30

	Time-Specific Encryption with Constant-Size Secret-Keys Secure under Standard Assumption

