
Bitstream Modification of Trivium
How to Attack and How to Protect

Kalle Ngo, Elena Dubrova and Michail Moraitis

Royal Institute of Technology (KTH), Electrum 229, 164 40 Kista, Sweden,
{kngo,dubrova,micmor}@kth.se

Abstract. In this paper we present a bitstream modification attack on the Trivium
stream cipher, an international standard under ISO/IEC 29192-3. By changing the
content of three LUTs in the bitstream, we reduce the non-linear state updating
function of Trivium to a linear one. This makes it possible to recover the key from 288
keystream bits using at most 219.41 operations. We also propose a countermeasure
against bitstream modification attacks which obfuscates the bitstream using dummy
and camouflaged LUTs which look legitimate to the attacker. We present an algorithm
for injecting dummy LUTs directly into the bitstream without causing any performance
or power penalty.
Keywords: FPGA · reverse engineering · bitstream modification · fault injection ·
stream cipher · Trivium

1 Introduction
This paper presents an attack on an FPGA implementation of Trivium stream cipher [1].
Trivium is one of the finalists of the eStream project in the hardware category [2]. It has
been specified as an international standard under ISO/IEC 29192-3 [3]. Since the end of
the project, Trivium has continuously attracted the attention of cryptanalysists [4, 5, 6, 7,
8, 9, 10], but has not been broken yet.

Trivium belongs to the class of binary additive stream ciphers. A binary additive stream
cipher generates a stream of pseudo-random symbols, called the keystream, using a secret
key as a seed [11]. To encrypt, the keystream is added with the plaintext, typically by a
bitwise XOR. To decrypt, the ciphertext is added with the keystream.

Stream ciphers encrypt plaintext symbols on-the-fly by applying a simple invertible
transformation which typically takes less area to implement and less power to compute
compared to the transformations used by block ciphers. The security of a stream cipher is
based on the unpredictability of its keystream, rather than the complexity of its underlying
transformation. As in the one time pad case, the same keystream should never be used
more than once for encrypting different plaintexts. This implies that the same key should
never be used more than once for initializing a stream cipher. To avoid performing
resource-consuming key agreement protocols for every message, stream ciphers use an extra
input parameter, called the initialization vector (IV), as a seed. By combining different
public IVs with the same key, different keystreams can be generated.

While using the same key for several messages saves resources, it also creates new
opportunities for the attacker. Various attacks exploiting the correlation between keystream
bits generated using the same key but different IVs have been demonstrated in the
past, including known and chosen IV resynchronization attacks, differential attacks, and
differential-linear attacks [12, 13, 14, 15, 16, 17, 18, 19]. To mitigate these attacks, modern
stream ciphers use complex initialization algorithms which mix the key with the IV and

mailto:{kngo,dubrova,micmor}@kth.se

2 Bitstream Modification of Trivium

constants and add idle clock cycles to de-correlate the keystream from the key. Many of
these algorithms, including Trivium, are considered secure from the point of view of the
traditional cryptanalysis.

However, an algorithm that cannot be broken by the traditional cryptanalysis may
still be vulnerable to an attack on its physical implementation. Implementations leak side-
channel information about the algorithm, such as the time taken, or the power consumed
to perform a calculation. If an attacker has a physical access to the implementation, he/she
can exploit this information. For example, the attacker can measure timing or power
consumption of the device and analyze the measured data to extract the key. Alternatively,
he/she can inject a fault which causes an exploitable error in the computation of the
algorithm.

As we become more dependent on Internet-connected “smart" devices which perform
cryptographic computations to protect their data, the threat of physical attacks is increasing.
Many “smart" devices operate a within the physical reach of users who are financially
motivated to attack the devices. Examples include an electric meter that encrypts its
communications with a central server, a set-top box that is supposed to decode digital
media content only for paying customers, or a wearable fitness tracker which an insurance
company is using to monitor the user’s activity to decide the cost of his/her individual
health insurance. Since the value of information processed by low-end Internet of Things
(IoT) devices is expected to increase in the future [20], the incentives for attacks will
increase as well. Therefore, it is important to understand the possibilities and limitations
of physical attacks on IoT devices and design countermeasures suitable for their protection.
Low-end devices often operate under severe constraints on energy, storage, computation
and communication resources. Existing trusted hardware-based countermeasures, such as
Apple’s secure enclave which prevented the FBI from accessing an iPhone [21] are only
cost-efficient for higher-end devices and not acceptable for lower-end embedded devices.
Software-based methods are usually limited in terms of the assurance they can provide.

In this paper, we focus on the SRAM-based FPGA bitstream modification attacks.

Previous Work Bitstream modification attacks require tools for reverse-engineering and
fault injection. For SRAM-based FPGAs, there are many reverse engineering tools that
can assist in the former task, including [22, 23, 24, 25, 26, 27, 28]. The latter problem has
been addressed in [29, 30, 31, 32].

Swierczynski, Fyrbiak, Koppe, and Paar [33] were first to propose a fault attack on
SRAM-based FPGA implementation of Advanced Encryption Standard (AES) in which
all Look-Up Tables (LUTs) implementing the S-boxes are modified in the bitstream to
weaken the algorithm. If the content these LUTs are changed to e.g. the constant 0, the
key can be recovered by analyzing the ciphertext generated by the faulty AES.

In [34], a similar approach was used to break SRAM-based FPGA implementation of the
SNOW 3G stream cipher. The algorithm was weakened by modifying LUTs implementing
the output part of the finite state machine of SNOW 3G. The modifications reduce the
non-linear state updating function of SNOW 3G to a linear one. This, in turn, enables
recovering the key from 512 bits of keystream generated by the faulty SNOW 3G. The
authors proposed to explore the bitstream in a key-independent setting. This makes
possible reducing the complexity of some bitstream search tasks from exponential to linear.

To the best of our knowledge, Trivium has not been attacked by bitstream modification
until now. Other types of physical attacks on Trivium have been reported, including
differential power analysis [35, 36] and fault attacks [37, 38, 39, 40].

Our Contributions A bitstream modification attack can be applied to any algorithm.
We have chosen Trivium as a target because Trivium’s design contains very few gates, the
fewest of all encryption algorithms. For this reason, countermeasures against bitstream

Kalle Ngo, Elena Dubrova and Michail Moraitis 3

modification attacks proposed in [33] and [41] are not sufficient for protecting Trivium.
Both [33] and [41] recommend constraining FPGA technology mappers to generate a
k-LUT cover with small LUTs, covering fewer gates (ideally one 2-input gate per LUT).
For designs containing many gates, this indeed increases the number of candidate points
for fault injection beyond tractable. However, Trivium design contains very few gates.
Thus, one can simply enumerate all possible choices to find the target gates.

The main contributions of this paper are:

• We present an attack on an SRAM FPGA implementation of Trivium. As in the
attack on SNOW 3G [34], the main idea is to reduce the non-linear state updating
function of the cipher to a linear one. This is achieved by locating in the bitstream
the three AND gates contributing to nonlinearity and replacing them with constant-0
functions. As a result, it becomes possible to recover the internal state of Trivium
after the initialization from 288 bits of the keystream using at most 219.41 operations.
From this state, we obtain the key by reversing the faulty Trivium.

• We propose a countermeasure against bitstream modification attacks intended specif-
ically for designs containing a small number of gates. We defeat the enemy with their
own weapon, namely, we modify the bitstream to inject dummy and camouflaged
LUTs which look legitimate to the attacker who performs reverse engineering. The
dummy LUTs are not connected to any functional parts of the design and therefore
do not contribute to power consumption during the execution of the algorithm or
cause performance penalty.

The paper is organized as follows. Section 2 gives a background on FPGA technology
mapping and bitstream reverse engineering. Section 3 presents assumptions. Section 4
reviews the Trivium design. Sections 5 and 6 describe the theoretical and practical parts
of the attack, respectively. Section 7 presents countermeasures. Section 8 concludes the
paper.

2 Background
In this section, we give a background on FPGA technology mapping (see [42] for more
details) and bitstream reverse engineering.

2.1 FPGA technology mapping
An FPGA consists of an array of programmable logic blocks, programmable interconnect,
and input/output pads. Many commercial SRAM-based FPGAs use LUT-based logic
blocks (Xilinx, Intel). A k-input LUT, k-LUT, can be programmed to implement any
Boolean function of up to k variables.

Let N = (V,E) denote a Boolean network, where V represents a set of gates and
primary inputs and E ⊆ V × V describes the nets connecting the gates. Fanin(v) ⊂ V
and Fanout(v) ⊂ V sets of a node v ∈ V are defined as Fanin(v) = {u |(u, v) ∈ E} and
Fanout(v) = {u |(v, u) ∈ E}, respectively. PI ⊂ V and PO ⊂ V denote the primary
inputs and outputs of N , respectively. The set of all nodes in the transitive fanin/fanout
of v are denoted by TrFanin(v) and TrFanout(v), respectively.

The technology mapping problem for k-LUT-based FPGAs consists of finding a func-
tionally equivalent k-LUT network for a general Boolean network N = (V,E) [42].

Algorithms for FPGA technology mapping use different optimization strategies for
finding the best k-LUT network for N . The objective function can be area minimization [43,
44], depth minimization for delay optimization [45, 46], simultaneous area and depth
minimization [47, 48], easy routability [49], or power minimization [50]. Differences

4 Bitstream Modification of Trivium

between algorithms typically are in the strategy for finding a suitable LUT rooted at a
given node of N . While searching for inputs of the LUT, algorithms usually try to re-use
nodes which are already mapped and minimize the number of non-shared inputs among
LUTs.

A typical FPGA technology mapper traverses nodes v ∈ V in backwards topological
order from POs to PIs, and computes LUTs rooted in v by finding k-feasible cuts for
v [48]. A set of nodes C ⊂ V is called a cut of a node v if any path from a PI to v
passes through at least one node in C. Node v itself is a trivial cut. A cut C is k-feasible
if |C| ≤ k. Each k-feasible cut C of v corresponds to a k-LUT which covers nodes in
TrFanin(v) ∩ (

⋃
∀c∈C TrFanout(c)) and has nodes of C as inputs and v as output. Cuts

can be computed using the maximum flow algorithm, or cut enumeration technique [51].

2.2 Reverse Engineering
Reverse engineering is one of the most popular types of physical attacks on FPGAs. FPGA
designs which cost millions of dollars to develop can be stolen using reverse engineering [52].

For Xilinx FPGAs, reverse engineering tools for the older families are at a mature
stage [22, 23, 24, 25, 26]. For the latest series 7, tools are under development [27, 28].

To make reverse engineering more difficult, FPGA vendors use obfuscation of the
bitstream. Obfuscation algorithms are proprietary and kept secret. Unfortunately, history
shows that algorithms whose security relies on the secrecy assumption are broken sooner
or later. For example, the obfuscation algorithm of Xilinx 7 series FPGAs is already
known. The obfuscation is done in two steps. First, the 64-bit truth table F of the Boolean
function defining a 6-input LUT is permuted as ξ : F 7→ B according to the mapping
ξ whose definition can be found in [27] or [41]. Second, the resulting permuted table B
is partitioned into four parts of equal size, B1, B2, B3, B4 which are placed on 404 bytes
from each other in the bitstream, in one of the two different orders: B1, B2, B3, B4 or
B4, B3, B1, B2 [41].

Bitstream encryption is another countermeasure which should, in theory, stop reverse
engineering. For example, Xilinx 7 series FPGAs use Advanced Encryption Standard
in Cipher Block Chaining mode of operation (AES-CBC) to encrypt the bitstream [53].
Xilinx UltraScale FPGAs use AES in Galois/Counter Mode (AES-GCM) [54]. In both
cases, the 256-bit encryption key is stored on-chip in fuses or a battery-backed RAM.
Unfortunately, current methods for protecting bitstream encryption keys in FPGAs are
not tamper-resistant. The keys has been extracted from Altera and Xilinx FPGAs by
power or electromagnetic analysis [55, 56, 57].

3 Assumptions
3.1 Attack Model
We use the same attack model as in other bitstream modification attacks on SRAM-based
FPGAs [33, 34], namely we assume that:

1. The attacker has physical access to the FPGA implementing the encryption algorithm
under attack.

2. The encryption key K is stored in the bitstream.

The first assumption seems realistic in today’s global supply chain of electronic products.
Its distribution stage involves multiple parties, including third-party logistics providers,
distributors, and retailers. Any of these parties can potentially physically access a device
during its distribution. A device can also be accessed when it is returned for repair or
maintenance. The second assumption is a common option for key storage in FPGAs [58, 59].

Kalle Ngo, Elena Dubrova and Michail Moraitis 5

+

zt

•

Figure 1: Trivium design.

3.2 Attack Scenario
The goal of the attack is to recover the key K. The attacker first extracts the bitstream
from the FPGA, e.g. by reading the bitstream with a probe when it is transferred from
the Flash memory to the FPGA during configuration. If the bitstream is encrypted, the
attacker mounts a side-channel attack, e.g. [55, 56, 57], extracts the bitstream encryption
key, and decrypts the bitstream. From the decrypted bitstream, the attacker gets the
authentication key which is stored in the bitstream in plaintext.

Then, the attacker modifies the bitstream to weaken the algorithm and loads the
faulty bitstream back into the FPGA. He/she uses the FPGA to generate a keystream of
the desired length and analyses it. Once K is extracted, the attacker loads the original
bitstream back into the FPGA and returns the compromised device to its legitimate user.

Now the attacker possessing K can decrypt the traffic from/to the user. The attacker
may also interfere in communication between the user and another party by intercepting
their messages and injecting new ones. The victim parties will believe that they are directly
communicating with each other. The attacker may also clone the device by loading the
same configuration into another FPGA.

4 Design Description
Trivium is a bit-oriented synchronous stream cipher constructed from three non-linear
shift registers composed into a 288-bit register as shown in Fig. 1. Only three out of 288
bits of the internal state are updated non-trivially. The rest of the bits shift the content of
the previous bit. The state is updated using both, feedback and feedforward connections.

Let S = (s1, s2, . . . , s288) and S+ = (s+
1 , s

+
2 , . . . , s

+
288) be variables representing the

values of a current state and the next state of Trivium, respectively. At each clock cycle,

6 Bitstream Modification of Trivium

the next state is computed as:

s+
1 = s288 ⊕ s287s286 ⊕ s243 ⊕ s69

s+
94 = s93 ⊕ s92s91 ⊕ s171 ⊕ s66

s+
178 = s177 ⊕ s176s175 ⊕ s264 ⊕ s162

s+
i = si−1, ∀i ∈ {2, . . . , 288} \ {94, 178}.

First, Trivium is initialized by loading the shift register with a combination of an
80-bit key K = (K1, . . . ,K80) and an 80-bit initialization value IV = (IV1, . . . , IV80). The
combination σ(K, IV) is defined as follows:

(s1, s2, . . . , s93) = (K1, . . . ,K80, 0, . . . , 0)
(s94, s95, . . . , s177) = (IV1, . . . , IV80, 0, . . . , 0)
(s178, s179, . . . , s288) = (0, . . . , 0, 1, 1, 1),

(1)

Then, the cipher is clocked for 4× 288 = 1152 cycles without producing the keystream.
Afterwards, the keystream generation stage starts.

During the keystream generation stage, at each clock cycle i = 0, 1, 2, . . ., the ith bit of
the keystream, zi, is generated by the linear combining function z(S) as follows:

zi = z(S) = s66 ⊕ s93 ⊕ s162 ⊕ s177 ⊕ s243 ⊕ s288.

5 Attack: The Theoretical Part
In this section, we discuss how Trivium can be weakened by fault injection. The presented
approach is general and can be implemented not only by bitstream modification but also
by other types of fault injection (see [60] for a overview).

It is straightforward to see that non-linear state updating function of Trivium can be
reduced to a linear one by replacing the three AND gates in the design by constant-0
functions. In the sequel, we refer to Trivium with such a fault injected as faulty Trivium.

Clearly, there are many other ways to make the state updating function linear, e.g. the
AND gate can be reduced to a line, or to an AND with two identical inputs. The best
option will depend on the fault injection mechanism. In the case of bitstream modification,
replacing ANDs by constant-0s seems to be the easiest option.

The attack is performed in three steps:

1. Replace the three AND gates by constant-0 functions.

2. Run the faulty Trivium to generate 288 bits of the keystream.

3. Analyze the keystream as described in Section 5.1 and 5.2 to recover the key.

The analysis in step 3 consists of two parts: (1) deriving the last initialization state
from the keystream, and (2) deriving the key from the last initialization state.

5.1 Deriving the last initialization state from the keystream
During the initialization and the keystream generation stages the internal state of faulty
Trivium is updated by the following linear function L : s 7→ s+

s+
1 = s288 ⊕ s243 ⊕ s69

s+
94 = s93 ⊕ s171 ⊕ s66

s+
178 = s177 ⊕ s264 ⊕ s162

s+
i = si−1,∀i ∈ {2, . . . , 288} \ {94, 178}.

Kalle Ngo, Elena Dubrova and Michail Moraitis 7

If Si is the shift register state at the ith clock cycle, i = 0, 1, 2, . . ., the sequence of
states followed during the initialization is:

S0 = σ(K, IV)
S1 = L(σ(K, IV))
. . .
S1152 = L1152(σ(K, IV)),

where σ(K, IV) is the initial state defined by (1). The last initialization state is S1152.
Next, the faulty Trivium starts generating the keystream. By observing 288 bits of the

keystream, we can construct a system of 288 linear equations:

z0 = z(S1152)
z1 = z(L(S1152))
z2 = z(L2(S1152))
. . .
z287 = z(L287(S1152)).

(2)

The system of equations depends on 288 unknown variables representing the values of the
state S1152.

It is known that a linear system with k variables can be solved by the Gaussian
elimination in time kω, where ω ≤ 2.376 is the exponent of the Gaussian reduction [61].
So, in our case, finding the solution takes at most 2882.376 ≈ 219.41 operations.

5.2 Deriving the key form the last initialization state
Once we know the last initialization state S1152, we can reverse the shift register 1152
steps backwards, from S1152 to S0, to get σ(K, IV) and hence the key K. A linear shift
register with known updating functions is easy to reverse. For Trivium, the shift register
generating the sequence of states which is a reverse of the one generated by the faulty
Trivium is defined by:

s+
288 = s1 ⊕ s244 ⊕ s70

s+
93 = s94 ⊕ s172 ⊕ s67

s+
177 = s178 ⊕ s265 ⊕ s163

s+
i = si+1,∀i ∈ {1, . . . , 287} \ {93, 177}.

(3)

6 Attack: The Practical Part
In this section, we describe how we injected the fault into Trivium by bitstream modification.

In the experiments, we used our VHDL and C implementations of Trivium1. The
bitstream was synthesized for the Xilinx Artix-7 (XC7A100T-FTG256) as the target device.

6.1 Analyzing LUT Network
Let B be the bitstream under attack and f : {0, 1}k → {0, 1} be the target Boolean
function to find and modify in B. In our case, we search for LUTs implementing the three
AND gates in B.

First, we extract the Boolean network N = (V,E) representing the combinatorial part
of Trivium (see Fig. 2). The multiplexes (MUXes) do not appear in the Trivium diagram
in Fig. 1, however, the need to include them in N is obvious from the specification of

1Source codes will be made publicly available at github once the blind review stage is over and the
authors can identify themselves.

8 Bitstream Modification of Trivium

+

zt
0

10

c2

s66

+

+
s93
s162

s177
s243

s288

+ s+94
0

1IV1

+ s+1
0

1K1

c1

c1

s286

s287
s69

s+178
0

10

c1

s175

s176
s264

+

+

s91

s92

s171

Figure 2: Boolean network representing the combinatorial part of Trivium.

Trivium. MUXes with the control input c1 are required to load the initial state σ(K, IV)
into the shift register. The MUX with the control input c2 is needed to assure that the
keystream is not given to the output during the initialization stage (in the network in
Fig. 2 the output is constant-0 during initialization).

Second, we analyze possible ways a k-LUT can cover an AND gate in N . The Xilinx
7 series FPGAs use 6-input dual-output LUTs, so k = 6. A LUT can implement either
a single Boolean function of up to 6 independent variables or two Boolean functions
of up to 5 dependent variables [53]. As we mentioned in Section 2, FPGA technology
mappers typically traverse nodes v ∈ V in backwards topological order from POs to PIs,
and compute k-LUTs rooted in v by finding k-feasible cuts for v. Fig. 3(a) shows possible
6-LUTs for v = s+

94 containing the AND with inputs s91 and s92. The functions f1 and f2
corresponding to these LUTs are

f1 = c1(s91s92 ⊕ s171) + c1IV1
f2 = c1(s91s92 ⊕ s171 ⊕ x) + c1IV1

Since we do not know how values of the MUX control variable c1 are assigned, we also
need to consider the possibility in which c1 is complemented:

f1c = c1(s91s92 ⊕ s171) + c1IV1
f2c = c1(s91s92 ⊕ s171 ⊕ x) + c1IV1

For v = s+
1 and the AND with inputs s286 and s287, the same type of LUTs is possible:

f1 = c1(s286s287 ⊕ s69) + c1IV1
f2 = c1(s286s287 ⊕ s69 ⊕ x) + c1IV1

and similar expressions with c1 is complemented.
For v = s+

178 and the AND with inputs s175 and s176, there is one more possibility
(see Fig. 3(b)). Since s+

178 is loaded with 0 during initialization (see (1)), its MUX can be
optimized as c1a+ c10 = c1a (or c10 + c1b = c1b). Therefore, one of the following 6-LUTs

Kalle Ngo, Elena Dubrova and Michail Moraitis 9

Table 1: Search results returned by FindLUT().

Boolean function implemented by LUT |L|
f1 = a1(a2a3 ⊕ a4) + a1a5 1
f1c = a1(a2a3 ⊕ a4) + a1a5 0
f2 = a1(a2a3 ⊕ a4 ⊕ a5) + a1a6 1
f2c = a1(a2a3 ⊕ a4 ⊕ a5) + a1a6 0
f3 = a1(a2a3 ⊕ a4 ⊕ a5 ⊕ a6) 1
f3c = a1(a2a3 ⊕ a4 ⊕ a5 ⊕ a6) 0

+
s66

s93

s91

+
+

s92
s171 s+94

0

1

c1

x

f2

f1

IV1

+
s162

s177

s175

+
+

s176
s264 s+178

0

10

c1

x

f2

f1

f3

(a) (b)

Figure 3: Possible 6-LUT covers for the AND gate (a) with inputs s91 and s92, (b) with
inputs s162 and s177.

is possible:
f3 = c1(s175s176 ⊕ s264 ⊕ s162 ⊕ s177)
f3c = c1(s175s176 ⊕ s264 ⊕ s162 ⊕ s177).

Table 1 summarizes the types of functions we are looking for in the bitstream, abstracting
from specific state variables.

6.2 Finding Target LUTs in Bitstream
Next, we search the bitstream for the functions in Table 1 one-by-one using the FindLUT()
algorithm presented in [34]. FindLUT() takes as input a k-variable Boolean function
f and a bitstream B and returns a set L of candidates into LUTs implementing f in B,
together with the byte position of each l ∈ L. FindLUT() treats all Boolean functions in
the same P equivalence class as one function. Two Boolean functions belong to the same
P equivalence class, if they can be transformed to each other through a permutation of
inputs [62]. For example, the functions f = a1a2 + a3 and g = a3a2 + a1 belong the same
P equivalence class.

The results of the search are shown in the last column of Table 1. |L| stands for the
size of the set L. We can see that there are only three candidates. To check if they are the
correct LUTs, we do the following:

1. Generate 288 bits of reference keystream Z using the FPGA loaded with the fault-free
bitstream B, for any IV .

2. Modify the content of LUTs implementing f1, f2 and f3 in B to:

f∗1 = a1a4 + a1a5
f∗2 = a1(a4 ⊕ a5) + a1a6
f∗3 = a1(a4 ⊕ a5 ⊕ a6).

(4)

10 Bitstream Modification of Trivium

3. Load the resulting faulty bitstream, B∗, into the FPGA.

4. Run the FPGA to generate 288 bits of the faulty keystream, Z∗, for the same IV as
in step 1.

5. Analyze Z∗ to recover the key K as described in Sections 5.1 and 5.2.

6. Use the software implementation of Trivium to simulate the keystream Z ′ for the
recovered K and the selected IV . If Z ′ = Z, then K is correct.

6.3 Example of Key Extraction
As an example, suppose that the FPGA loaded with B∗ generates the following 288 bit
keystream Z∗ (in hex):

124FFF2F2659E053A15BC31FCB16887AD3315C7CFC024AD343B2D12AA5D5FE7B19B5AB810

First, we recover the last initialization state from the keystream by constructing the system
of 288 linear equations of type (2) and solving it by Gaussian elimination. The resulting
state S1152 is:

DA99FB1E7A0853806EB765AE5D3FA785C3E27CF4394CBDFCA54BEDD32D96AC233240B06C

Next, we load the state S1152 into the reverse shift register defined by (3) and run it for
1152 steps. The resulting initial state S0 = σ(K, IV) is:

5F0AA3AAA9D2BDFE4A080002A3AAA9D2BDFE4A0800000000000000000000000000000007

From σ(K, IV), we conclude that the key is:

5F0AA3AAA9D2BDFE4A08

and the IV is:
5502F929D5553A57B5A4

One can verify that this key is correct by running the FPGA loaded with the original B
and some IV to generate a reference keystream Z and then comparing Z to the keystream
generated by a software implementation of Trivium using the same key and IV .

6.4 Disabling CRC Check
Xilinx 7 series FPGAs use a 32-bit Cyclic Redundancy Check (CRC) for detecting random
errors which may occur during device configuration. The device computes the CRC value
on-the-fly from the configuration data packets as they are loaded. If the CRC value
computed by the device does not match the CRC value in the bitstream, the device pulls
INIT_B low and aborts configuration. Therefore, if a bitstream is modified, the CRC has
to be either re-computed and replaced, or disabled.

By default, the CRC is included in the configuration bitstream in two positions:
immediately after the last data word of the frame data register and close to the end of the
bitstream, before DESYNCH command (0x30008001 0x0000000d). These positions can be
located by searching for the command 0x30000001 which means

0x30000001 Packet Type 1: Write CRC register, WORD_COUNT=1.

Four bytes following 0x30000001 are the CRC value, CRC[31:0]. In principle, one can
re-compute and replace the CRC. Bitstream CRC coverage begins right after the command
0x30008001 0x00000007 which means

0x30008001 Packet Type 1: Write CMD register, WORD_COUNT=1.
0x00000007 CMD[4:0]=00111 (binary) = RCRC (Reset CRC register).

Kalle Ngo, Elena Dubrova and Michail Moraitis 11

However, it is much easier to disable the CRC.
There are different opinions on how the CRC should be disabled, e.g. see [63, p. 401].

We disabled the CRC by replacing the Write CRC register command 0x30000001 and
the follow-up CRC word by all-0 words in both positions in the bitstream. For example, if
the CRC is 0x3395dd39, then the following replacement is made:

0x30000001 0x3395dd39 =⇒ 0x00000000 0x00000000

For encrypted bitstreams, in Xilinx 7 series FPGAs the CRC check is disabled by
default because data integrity is verified using a 256-bit message authentication code
HMAC. Faults in the bitstream detected by HMAC are reported in the boot history status
register BOOTSTS. The 256-bit authentication key is stored in two locations the bitstream.
To enable bitstream modifications, the HMAC should be re-computed for the modified
bitstream B∗ and changed.

7 Countermeasures
As a countermeasure against bitstream modification attacks it was suggested in [33] and [41]
to constrain FPGA technology mappers to generate k-LUT networks with smaller LUTs,
ideally covering one gate each. For designs containing many gates, this countermeasure
makes it difficult to locate a common gate such an AND or an XOR in a bitstream.
However, it does not help in Trivium’s case since it contains very few gates. Thus, one can
simply enumerate all choices to find the three target ANDs.

We propose a countermeasure based on dummy LUT addition and camouflaging intended
specifically for designs with a small number of gates. The dummy/camouflaged LUTs are
injected directly into the bitstream using techniques presented in the next two subsections.
The main idea is to modify the bitstream so that:

1. The functionality of the design is not changed.

2. Dummy and camouflaged LUTs appear as legitimate LUT to the attacker who
performs reverse engineering.

3. Dummy LUTs are not connected to any functional parts of the design.

Note that redundancy is a well-known countermeasure against fault attacks [64, 65, 66,
67]. Redundancy (space or time) is typically used to detect computational errors caused
by the injected faults. For example, a cryptographic algorithm can be duplicated and the
results of the duplicated parts compared to detect a disagreement [68]. However, redundancy
may have some negative effects, e.g. it may simplify power analysis [69, 70, 71]. In our
case, dummy LUTs are not connected to any functional part of the design. Camouflaging
is done so that a function looks as another function, but in fact it is not. Therefore, neither
dummy, nor camouflaged LUTs contribute to power consumption during the execution
of the algorithm. In addition, they do not cause any performance penalty. Contrary, the
countermeasures based on small LUTs may potentially increase the critical path.

7.1 Dummy LUT Addition
In this subsection, we describe how dummy LUTs are injected into the bitstream of a
Xilinx 7 series FPGA to satisfy the three conditions listed above.

The first step is to locate in the bitstream, the information intended for the Frame
Data Input Register (FDRI) where the configuration data is located. In Xilinx 7 series
FPGAs, the configuration data is arranged in frames. Each frame consists of 101 4-byte

12 Bitstream Modification of Trivium

words. Apart from the configuration data, the bitstream contains some overhead, so the
total length of the bitstream is larger than 404n bytes, where n is the number frames.

The FDRI can be found by searching for command 0x30004000 which means

0x30004000 Packet Type 1: Write FDRI register, WORD_COUNT=0.

The the last 3 bytes of the word following 0x30004000 contains information about the
number of data words in the FDRI, e.g. 0x50251c50 means

0x50251c50 Packet Type 2: Write FDRI register, WORD_COUNT=2432080.

Next, we partition FDRI into frames. Let wi,j denote the jth data word of the ith
frame in FDRI, i ∈ {1, 2, ..., n}, j ∈ {1, 2, ..., 101}. The last word of the header is always
followed by 51 all-0 words. We partition FDRI into frames starting from the word 52 and
get the following matrix2:

Frame 1 FDRI data word 52 = w1,1 w1,2 . . . w1,101
Frame 2 FDRI data word 53 = w2,1 w2,2 . . . w2,101

. . .
Frame n FDRI data word 101*n+52 = wn,1 wn,2 . . . wn,101

The last word of each frame, wi,101, is reserved for a 13-bit Hamming code parity check,
Error Correction Code (ECC), which is calculated based on the frame data.

Let wi,ja and wi,jb denote the first 16-bits and the second 16-bit of a word wi,j ,
respectively. A legitimate LUT is contained in four consecutive frames, in the half-words
wi,jk, w(i+1),jk, w(i+2),jk, w(i+3),jk, where k = a or b.

We inject dummy LUTs using the algorithm AddDummyLUT() whose pseudo-code
is shown as Algorithm 1. AddDummyLUT() takes as input a bitstream, B, a Boolean
function d of the dummy LUT, a set I of indices of frames in which the dummy LUTs
should be injected, and a parameter c ∈ {0, 1} defining in which half of the frame to inject.
The value of c can be determined by locating any legitimate LUT in the bitstream using
FindLUT().

At the first step of AddDummyLUT(), a set of all Boolean functions within the same
P equivalence class and the function of dummy LUT is computed. Next, based on the
value of c and parity of the frame’s index, either the first or the second half of the frame is
selected for dummy LUT insertion. Then, for each frame in the set I and each word in the
selected half of the frame, it is checked if this word contains a constant-0 LUT either in
its first or second halves. If yes, the LUT is replaced by a dummy LUT implementing a
function f randomly selected from the P -class of the function d. By selecting different
candidates from the P -class, we assure that the dummy LUTs appear in the bitstream
with different input orders, i.e. diversity.

The replacement by a dummy LUT implementing a function f is done as follows. First,
the truth table F of f is computed. Then, F is mapped according to the obfuscation
function ξ : F → B of type {0, 1}k → {0, 1}k whose definition can be found in [27, 41].
The resulting vector B is partitioned into 4 sub-vectors B1, B2, B3, B4 of equal size which
are placed in four consecutive frames in the bitstream.

AddDummyLUT() returns the modified bitstream B∗ and the number of injected
dummy LUTs.

We are currently investigating the best strategies for selecting frames in which dummy
LUTs can be injected. We have implemented the procedure AddDummyLUT() and
successfully applied it to frames containing at least one legitimate LUT. The selection of
candidate frames for LUT injection is done manually at present.

2Such a partitioning results in the ECC word being the last word of a frame.

Kalle Ngo, Elena Dubrova and Michail Moraitis 13

Algorithm 1 An algorithm for injecting dummy LUTs into Xilinx 7 series FPGA.
Name: AddDummyLUT(B, d, I, c)
Input: Bitstream B = (b0, . . . , b|B|−1), bi ∈ {0, 1}16, a Boolean function d of the dummy

LUT, a set I of indices of frames in which the dummy LUTs should be injected, a
parameter c ∈ {0, 1} defining in which half of the frame to inject.

Output: Modified bitstream B∗ and the number of injected dummy LUTs count.
1: P = ComputePClass(d); /* computes the P equivalence class for function d */
2: for each i ∈ I do
3: Ri = { j | j = k + 50c, ∀k ∈ {1, 2, . . . , 50}};
4: end for
5: count = 0; /* counter for dummy LUTs */
6: for each i ∈ I do
7: for each j ∈ Ri do
8: for each k ∈ {a, b} do
9: if LUTjk = 0 then

10: f = SelectAtRandom(P); /* randomly selects a function from P class */
11: F = GetTruthTable(f); /* computes the truth table of f */
12: B = ξ(F); /* permutes the truth table F */
13: B = (B1||B2||B3||B4), |Bi| = |Bj |,∀i, j ∈ {1, 2, 3, 4};
14: wi,jk = B1;
15: w(i+1),jk = B2;
16: w(i+2),jk = B3;
17: w(i+3),jk = B4;
18: count = count+ 1;
19: end if
20: end for
21: end for
22: end for
23: return B∗, count

7.2 Camouflaging
The dummy LUT addition technique alone is not sufficient to protect Trivium because the
attacker can modify all LUTs implementing functions f1, f2 and f3 from Table 1 to (4) and
then extract the key as described in Section 5. Since the dummy LUTs are not connected
to any functional parts of the design, changes in them do not affect the keystream.

However, we can make it necessary for the attacker to distinguish between dummy and
legitimate LUTs by changing some LUTs in the design implementing other than target
functions to look like target functions, and vice versa. We call this technique camouflaging.

In theory, there are infinitely many ways to add redundant variables to a Boolean
expression. This is to the advantage of camouflaging because the attacker cannot enumerate
all ways a designer may invent to protect a design. In practice, the designer is bounded by
the number of available (non-redundant) 6-LUTs which have at least one unused input.
The more unused inputs a LUT has, the easier it is to do camouflaging.

The redundant variables are added depending on the value assigned to the unused
inputs by default. In Xilinx FPGAs, unused inputs are wired to VCC (the logic 1).3

To camouflage Trivium, we searched its bitstream for 6-LUTs with unused inputs and
found two suitable candidates: one 2-input XOR gate (we believe it implements s243⊕ s288,
see Fig. 2) and one MUX. There are many MUXes in the bitstream (for loading the initial
state σ(K, IV) into the register), however, they are grouped in pairs into dual-output

3It is possible to manually connect an unused input to GND (the logic 0) using Vivado Design Suite.

14 Bitstream Modification of Trivium

LUTs and thus use all 6 variables.
A MUX can be camouflaged into f2 as follows

f4 = a1a2 + a1a3 =⇒ f̂4 = a1a2 + a1(a3a4 ⊕ a5 ⊕ a6) (5)

where a4 = a5 = a6 = 1.
A 2-input XOR can be camouflaged into f1c as follows

f5 = a1 ⊕ a2 =⇒ f̂5 = a4a5 + a4(a3a1 ⊕ a2) (6)

where a3 = a4 = a5 = 1.
The function f1 can be camouflaged in may different ways, including

f̂1a = a1(a2a3a6 ⊕ a4) + a1a5
f̂1b = a1(a2a3 ⊕ a4a6) + a1a5
f̂1c = a1(a2a3 ⊕ a4) + a1a5a6
f̂1d = a1a6(a2a3 ⊕ a4) + a1a5

where a6 = 1.
The camouflaging modifications are done directly in the bitstream, by replacing the

LUT functions fi by f̂i, for i = {1, 4, 5}. Since unused inputs are wired to VCC , the
functionality of Trivium is not changed in the attack-free case. However, if the attacker
replaces ANDs by the constant-0s, the camouflaged MUX and XOR change to the incorrect
functions:

f̂∗4 = a1a2 + a1(0⊕ a5 ⊕ a6) = a1a2

where a5 = a6 = 1, and
f̂∗5 = a4a5 + a4(0⊕ a2) = a2

where a4 = a5 = 1. So, the attack changes the keystream.
It is important to mention that the attacker can substitute the AND a2 · a3 in f1, f2

and f3 not only by the constant-0, but also by the constant-1, a2, or a3. Any of these
modifications make Trivium’s state updating function linear (or affine in the case of
constant-1). The designer should have these attacks in mind and assure that, for any
substitution of a2 · a3, at least one of the camouflaged functions becomes an incorrect
function.

With camouflaged LUTs added to the bitstream, it becomes necessary for the attacker
to distinguish between dummy and legitimate LUTs in order to identify target LUTs. To
do this, the attacker has to replace each candidate LUT by, for example, a constant-0
function, load the modified bitstream into the FPGA and check if the keystream has
changed. If the presented countermeasure is complemented by a counter which records
the number of bitstream uploads (and cannot be easily reset), tampering will be evident.
Upon the detection of tampering, the legitimate user of the device can change the key in
the bitstream.

It is possible to increase time complexity of identifying a target LUT implementing
function f from O(n) to O(n1+bN/2c), where n is the total number of legitimate and dummy
LUTs implementing function f , by applying to the target LUT N Modular Redundancy
(NMR) scheme. It is important to use redundancy with diversification (as in fault-tolerant
techniques used to combat common-mode faults [72]) as well as camouflage the majority
voter in the bitstream. Due to fault masking by the voter, modification of up to bN/2c
LUTs protected by NMR will not affect the keystream. Thus, to distinguish legitimate
LUTs from dummy, the attacker has to modify LUTs in groups of 1 + bN/2c.

However, as we mentioned in Section 7, adding redundancy to the functional parts
of a design causes power and performance penalty, as well as may simplify side-channel
analysis [69, 70, 71]. We are currently investigating possible ways of overcoming these
shortcomings.

Kalle Ngo, Elena Dubrova and Michail Moraitis 15

8 Conclusion
We presented an attack on an Xilinx 7 series FPGA implementation of Trivium which can
recover the key from 288 keystream bits using at most 219.41 operations if the content of
three LUTs is changed to all-0 in the bitstream.

We also proposed a low-cost countermeasure against the presented attack which
obfuscates the bitstream using dummy and camouflaged LUTs that appear legitimate
to the attacker who performs reverse engineering. The countermeasure can also be used
to protect other algorithms with a small number of gates from reverse engineering and
bitstream modification attacks.

References
[1] C. D. Canniere and B. Preneel, “TRIVIUM specifications,” http://citeseer.ist.psu.edu

/734144.html.

[2] “eSTREAM: the ECRYPT stream cipher project,” 2008. http://www. ecrypt.eu.org/
stream/.

[3] International Organization for Standardization, “ISO/IEC 29192-3:2012: Information
technology - security techniques - lightweight cryptography - part 3: Stream ciphers,”
2012.

[4] A. Maximov and A. Biryukov, “Two trivial attacks on Trivium,” in International
Workshop on Selected Areas in Cryptography, pp. 36–55, Springer, 2007.

[5] D. Priemuth-Schmid and A. Biryukov, “Slid pairs in salsa20 and Trivium,” in Inter-
national Conference on Cryptology in India, pp. 1–14, Springer, 2008.

[6] I. Dinur and A. Shamir, “Cube attacks on tweakable black box polynomials,” in
Advances in Cryptology - EUROCRYPT 2009 (A. Joux, ed.), (Berlin, Heidelberg),
pp. 278–299, Springer Berlin Heidelberg, 2009.

[7] N. Rohani, Z. Noferesti, J. Mohajeri, and M. R. Aref, “Guess and determine attack
on Trivium family,” in 2010 IEEE/IFIP International Conference on Embedded and
Ubiquitous Computing, pp. 785–790, IEEE, 2010.

[8] S. Knellwolf, W. Meier, and M. Naya-Plasencia, “Conditional differential cryptanalysis
of Trivium and katan,” in International Workshop on Selected Areas in Cryptography,
pp. 200–212, Springer, 2011.

[9] P. Mroczkowski and J. Szmidt, “The cube attack on stream cipher Trivium and
quadraticity tests,” Fundamenta Informaticae, vol. 114, no. 3-4, pp. 309–318, 2012.

[10] F.-M. Quedenfeld and C. Wolf, “Advanced algebraic attack on Trivium,” in Interna-
tional Conference on Mathematical Aspects of Computer and Information Sciences,
pp. 268–282, Springer, 2015.

[11] M. Robshaw, “Stream ciphers,” Tech. Rep. TR - 701, July 1994.

[12] H. Wu and B. Preneel, “Resynchronization attacks on WG and LEX,” in Fast Software
Encryption (M. Robshaw, ed.), (Berlin, Heidelberg), pp. 422–432, Springer Berlin
Heidelberg, 2006.

[13] H. Wu and B. Preneel, “Differential-linear attacks against the stream cipher Phelix,”
in Fast Software Encryption (A. Biryukov, ed.), (Berlin, Heidelberg), pp. 87–100,
Springer Berlin Heidelberg, 2007.

16 Bitstream Modification of Trivium

[14] H. Wu and B. Preneel, “Differential cryptanalysis of the stream ciphers Py, Py6
and Pypy,” in Advances in Cryptology - EROCRYPT 2007 (M. Naor, ed.), (Berlin,
Heidelberg), pp. 276–290, Springer Berlin Heidelberg, 2007.

[15] C. De Cannière, Ö. Küçük, and B. Preneel, “Analysis of Grain’s initialization algo-
rithm,” in Progress in Cryptology – AFRICACRYPT 2008 (S. Vaudenay, ed.), (Berlin,
Heidelberg), pp. 276–289, Springer Berlin Heidelberg, 2008.

[16] A. Biryukov, D. Priemuth-Schmid, and B. Zhang, “Analysis of SNOW 3G resynchro-
nization mechanism,” pp. 327–333, 01 2010.

[17] S. Knellwolf, W. Meier, and M. Naya-Plasencia, “Conditional differential cryptanalysis
of NLFSR-based cryptosystems,” in Advances in Cryptology - ASIACRYPT 2010
(M. Abe, ed.), (Berlin, Heidelberg), pp. 130–145, Springer Berlin Heidelberg, 2010.

[18] A. Kircanski and A. M. Youssef, “On the sliding property of SNOW 3G and SNOW
2.0,” IET Information Security, vol. 5, no. 4, p. 199, 2011.

[19] S. Sarkar, S. Banik, and S. Maitra, “Differential fault attack against Grain family
with very few faults and minimal assumptions,” IEEE Trans. on Computers, vol. 64,
pp. 1647–1657, June 2015.

[20] Ericsson, “5G security,” 2015. https://www.ericsson.com/res/docs/white papers/5G-
security. pdf.

[21] I. Krsti, “Behind the Scenes with iOS Security,” Aug 2016. https://www.blackhat.
com/docs/us-16/materials/us-16-Krstic.pdf.

[22] J.-B. Note and É. Rannaud, “From the bitstream to the netlist.,” in FPGA, vol. 8,
pp. 264–264, 2008.

[23] Z. Ding, Q. Wu, Y. Zhang, and L. Zhu, “Deriving an NCD file from an FPGA bitstream:
Methodology, architecture and evaluation,” Microprocessors and Microsystems, vol. 37,
no. 3, pp. 299–312, 2013.

[24] T. Zhang, J. Wang, S. Guo, and Z. Chen, “A comprehensive FPGA Reverse Engineer-
ing Tool-Chain: From Bitstream to RTL Code,” IEEE Access, vol. 7, pp. 38379–38389,
2019.

[25] F. Benz, A. Seffrin, and S. A. Huss, “Bil: A tool-chain for bitstream reverse-
engineering,” in 22nd Int. Conf. on Field Programmable Logic and Applications
(FPL), pp. 735–738, IEEE, 2012.

[26] J. Yoon, Y. Seo, J. Jang, M. Cho, J. Kim, H. Kim, and T. Kwon, “A bitstream reverse
engineering tool for FPGA hardware trojan detection,” in Proceedings of the 2018
ACM SIGSAC Conf. on Computer and Communications Security, pp. 2318–2320,
ACM, 2018.

[27] M. Jeong, J. Lee, E. Jung, Y. H. Kim, and K. Cho, “Extract LUT logics from a
downloaded bitstream data in FPGA,” in 2018 IEEE Int. Symp. on Circuits and
Systems (ISCAS), pp. 1–5, IEEE, 2018.

[28] SymbiFlow Team, “Project X-Ray.” https://prjxray. readthedocs.io/en/latest/.

[29] M. Alderighi, S. D’Angelo, M. Mancini, and G. R. Sechi, “A fault injection tool for
SRAM-based FPGAs,” in 9th IEEE On-Line Testing Symp. (IOLTS 2003), pp. 129–
133, July 2003.

Kalle Ngo, Elena Dubrova and Michail Moraitis 17

[30] R. S. Chakraborty, I. Saha, A. Palchaudhuri, and G. K. Naik, “Hardware Trojan
insertion by direct modification of FPGA configuration bitstream,” IEEE Design &
Test, vol. 30, no. 2, pp. 45–54, 2013.

[31] P. Swierczynski, M. Fyrbiak, P. Koppe, A. Moradi, and C. Paar, “Interdiction in
practice - hardware Trojan against a high-security USB flash drive,” Journal of
Cryptographic Engineering, vol. 7, pp. 199–211, Sep 2017.

[32] P. Swierczynski, G. Becker, A. Moradi, and C. Paar, “Bitstream fault injections (BiFI)
– automated fault attacks against SRAM-based FPGAs,” IEEE Trans. on Computers,
vol. 76, pp. 1–1, 2018.

[33] P. Swierczynski, M. Fyrbiak, P. Koppe, and C. Paar, “FPGA trojans through detecting
and weakening of cryptographic primitives,” IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, vol. 34, pp. 1236–1249, Aug 2015.

[34] M. Moraitis and E. Dubrova, “Bitstream modification attack on SNOW 3G,” in
Proceedings of the 2020 Design, Automation & Test in Europe Conf. & Exhibition
(DATE’20), 2020.

[35] “DPA vulnerability analysis on Trivium stream cipher using an optimized power model,
author=Tena-Sánchez, Erica and Acosta, Antonio J, booktitle=2015 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), pages=1846–1849, year=2015,
organization=IEEE,”

[36] M. Hojsík and B. Rudolf, “Differential fault analysis of Trivium,” in International
Workshop on Fast Software Encryption, pp. 158–172, Springer, 2008.

[37] M. Hojsík and B. Rudolf, “Floating fault analysis of Trivium,” in International
Conference on Cryptology in India, pp. 239–250, Springer, 2008.

[38] “Using SAT[] solving to improve differential fault analysis of Trivium, au-
thor=Mohamed, MSE and Bulygin, S and Behmann, J, journal=International Journal
of Security and Its Ap-plications, volume=6, number=1, pages=29–38, year=2012,”

[39] F. E. Potestad-Ordóñez, C. J. Jiménez-Fernández, and M. Valencia-Barrero, “Fault at-
tack on FPGA implementations of Trivium stream cipher,” in 2016 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 562–565, IEEE, 2016.

[40] H. Yupu, G. Juntao, and L. Qing, “Floating fault analysis of Trivium under weaker
assumptions,” 2009.

[41] M. Moraitis and E. Dubrova, “Bitstream modification attack on SNOW 3G.” Cryptol-
ogy ePrint Archive, Report 2020/038, 2020. https://eprint.iacr.org/2020/038.

[42] S. Hassoun and S. Tsutomu, Logic Synthesis and Verification. Norwell, MA, USA:
Kluwer Academic Publishers, 2002.

[43] R. J. Francis, J. Rose, and Z. Vranesic, “Chortle-crf: Fast technology mapping for
lookup table-based FPGAs,” in Proceedings of the 28th ACM/IEEE Design Automation
Conf., pp. 227–233, 1991.

[44] K. Karplus, “Xmap: A technology mapper table-lookup field-programmable gate
arrays,” in Proceedings of the 28th ACM/IEEE Design Automation Conf., pp. 240–243,
1991.

[45] R. Murgai, N. Shenoy, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, “Peformance
directed synthesis for table look up programmable gate arrays,” in Proceedings of the
Int. Conf. on Computer Aided Design, pp. 572–575, 1991.

https://eprint.iacr.org/2020/038

18 Bitstream Modification of Trivium

[46] J. Cong and Y. Ding, “An optimal technology mapping algorithm fo delay optimization
in lookup-table based fpga designs,” IEEE Trans. on Computer-Aided Design, vol. 13,
pp. 1–12, January 1994.

[47] J. Cing and Y. Ding, “On area/depth trade-off in LUT-based FPGA technology
mapping,” IEEE Trans. on VLSI Systems, vol. 2, pp. 137–148, June 1994.

[48] M. Teslenko and E. Dubrova, “Hermes: LUT FPGA technology mapping algorithm
for area minimization with optimum depth,” in IEEE/ACM Int. Conf. on Computer
Aided Design, pp. 748–751, Nov 2004.

[49] M. Schlag, J. Kong, and P. K. Chan, “Routability-driven technology mapping for
lookup table-based FPGAs,” in Proceedings of the Int. Conf. on Computer Design,
pp. 86–90, 1992.

[50] Z.-H. Wang, E.-C. Liu, J. Lai, and T.-C. Wang, “Power minimization in LUT-
based FPGA technology mapping,” in Proceedings of the Asia South Pacific Design
Automation Confernece, pp. 635–640, 2001.

[51] J. Cong, C. Wu, and Y. Ding, “Cut ranking and pruning: Enabling a general and
efficient FPGA mapping solution,” in Proc. ACM Intl. Symp. on FPGA, pp. 29–35,
February 1999.

[52] P. Trott, “Preventing overbuilding and cloning of electronic systems secure production
programming.” Microsemi Corporation Report, 2015.

[53] Xilinx, “7 series FPGAs Configurable Logic Block User Guide (UG474 v1.8),” Sept.
27, 2016.

[54] K. Wilkinson, “Using encryption and authentication to secure an ultrascale/ultrascale+
fpga bitstream (XAPP1267 v1.3),” Oct. 12, 2018.

[55] A. Moradi, D. Oswald, C. Paar, and P. Swierczynski, “Side-channel attacks on the
bitstream encryption mechanism of Altera Stratix II: facilitating black-box analysis
using software reverse-engineering,” in Proceedings of the ACM/SIGDA Int. Symp.
on Field programmable gate arrays, pp. 91–100, ACM, 2013.

[56] A. Moradi, A. Barenghi, T. Kasper, and C. Paar, “On the vulnerability of FPGA
bitstream encryption against power analysis attacks: extracting keys from Xilinx
Virtex-II FPGAs,” in Proceedings of the 18th ACM Conf. on Computer and commu-
nications security, pp. 111–124, ACM, 2011.

[57] A. Moradi and T. Schneider, “Improved side-channel analysis attacks on Xilinx
bitstream encryption of 5, 6, and 7 series,” in Int. Workshop on Constructive Side-
Channel Analysis and Secure Design, pp. 71–87, Springer, 2016.

[58] S. Drimer, “Volatile fpga design security – a survey,” 2007.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.105.3354.

[59] J. Vliegen, N. Mentcns, and I. Verbauwhede, “A single-chip solution for the secure
remote configuration of fpgas using bitstream compression,” in 2013 International
Conference on Reconfigurable Computing and FPGAs (ReConFig), pp. 1–6, Dec 2013.

[60] I. Verbauwhede, D. Karaklajic, and J.-M. Schmidt, “The fault attack jungle - a
classification model to guide you,” in Proceedings of the 2011 Workshop on Fault
Diagnosis and Tolerance in Cryptography, FDTC ’11, (Washington, DC, USA), pp. 3–8,
IEEE Computer Society, 2011.

Kalle Ngo, Elena Dubrova and Michail Moraitis 19

[61] D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic progression,”
J. Symboic Computation, vol. 9, pp. 251–280, 1990.

[62] S. Hurst, D. Miller, and J. Muzio, Spectral Techniques in Digital Logic. Academic
Press, 1985.

[63] D. Mukhopadhyay and R. S. Chakraborty, Hardware Security: Design, Threats, and
Safeguards. Chapman & Hall/CRC, 1st ed., 2014.

[64] F. Regazzoni, T. Eisenbarth, J. Grobschadl, L. Breveglieri, P. Ienne, I. Koren, and
C. Paar, “Power attacks resistance of cryptographic s-boxes with added error detection
circuits,” in 22nd IEEE Int. Symp. on Defect and Fault-Tolerance in VLSI Systems
(DFT 2007), pp. 508–516, Sept 2007.

[65] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault injection attacks on
cryptographic devices: Theory, practice, and countermeasures,” Proc. of the IEEE,
vol. 100, pp. 3056–3076, Nov 2012.

[66] S. Subramanian, M. Mozaffari-Kermani, R. Azarderakhsh, and M. Nojoumian, “Re-
liable hardware architectures for cryptographic block ciphers LED and HIGHT,”
IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 36,
pp. 1750–1758, Oct 2017.

[67] G. Di Natale, M. Doulcier, M.-L. Flottes, and B. Rouzeyre, “A reliable architecture for
parallel implementations of the advanced encryption standard,” Journal of Electronic
Testing, vol. 25, no. 4-5, pp. 269–278, 2009.

[68] L. Papay, Use of SAT Solvers in Cryptanalysis. MSc. Thesis, Comenius University,
Bratislava, Slovakia, 2016.

[69] F. Regazzoni, T. Eisenbarth, L. Breveglieri, P. Ienne, and I. Koren, “Can knowledge
regarding the presence of countermeasures against fault attacks simplify power attacks
on cryptographic devices?,” in 2008 IEEE Int. Symp. on Defect and Fault Tolerance
of VLSI Systems, pp. 202–210, Oct 2008.

[70] H. Pahlevanzadeh, J. Dofe, and Q. Yu, “Assessing CPA resistance of AES with
different fault tolerance mechanisms,” in 2016 21st Asia and South Pacific Design
Automation Conf., pp. 661–666, Jan 2016.

[71] Y. Yu, F. Marranghello, V. D. Teijeira, and E. Dubrova, “One-sided countermeasures
for side-channel attacks can backfire,” in Proc. of the 11th ACM Conf. on Security
& Privacy in Wireless and Mobile Networks, WiSec ’18, (New York, NY, USA),
pp. 299–301, ACM, 2018.

[72] E. Dubrova, Fault-Tolerant Design. Springer, 2013.

	Introduction
	Background
	FPGA technology mapping
	Reverse Engineering

	Assumptions
	Attack Model
	Attack Scenario

	Design Description
	Attack: The Theoretical Part
	Deriving the last initialization state from the keystream
	Deriving the key form the last initialization state

	Attack: The Practical Part
	Analyzing LUT Network
	Finding Target LUTs in Bitstream
	Example of Key Extraction
	Disabling CRC Check

	Countermeasures
	Dummy LUT Addition
	Camouflaging

	Conclusion

