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Abstract. In this paper we cryptanalyse the two accumulator variants
proposed by Au et al. [1], namely the α-based construction and the
reference string-based (RS-based) construction. We show that if non-
membership witnesses are issued according to the α-based construction,
colluding users can efficiently discover the secret accumulator parameter
α and takeover the Accumulator Manager. More precisely, if p is the or-
der of the underlying bilinear group, the knowledge of O(log p log log p)
non-membership witnesses permits to successfully recover α. Further op-
timizations and different attack scenarios allow to reduce the number of
required witnesses to O(log p), together with practical attack complexity.
Moreover, we show that accumulator collision resistance can be broken
if just one of these non-membership witnesses is known to the attacker.
In the case when non-membership witnesses are issued using the RS-
based construction (with RS kept secret by the Manager), we show that
a group of colluding users can reconstruct theRS and compute witnesses
for arbitrary new elements. In particular, if the accumulator is initialized
by adding m secret elements, m colluding users that share their non-
membership witnesses will succeed in such attack.

Keywords: accumulator · universal · dynamic · cryptanalysis · anony-
mous credentials

1 Introduction

A cryptographic accumulator scheme permits to aggregate values of a possibly
very large set into a short digest, which is commonly referred to as the accu-
mulator value. Unlike hash functions, where, similarly, (arbitrary) long data is
mapped into a fixed length digest, accumulator schemes permit to additionally
show whenever an element is accumulated or not, thanks to special values called
witnesses. Depending on the accumulator design, we can have two kinds of wit-
nesses: membership witnesses, which permit to show that an element is included
into the accumulator, and non-membership witnesses, which, on the contrary,
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permit to show that an element is not included. Accumulator schemes which sup-
port both are called universal and the possibility to dynamically add and delete
elements, give them the name of dynamic accumulators. The first accumulator
scheme was formalized by Benaloh and De Mare [3] in 1993 as a time-stamping
protocol. Since then, many other accumulator schemes have been proposed and
they play very important role in various protocols from set membership, au-
thentication to (anonymous) credentials systems and cryptocurrency ledgers.
However, there is only a small set of underlying cryptographic assumptions on
which such accumulator primitives are based. Currently, three main families of
accumulators can be distinguished in literature: schemes designed in groups of
unknown order [3,2,12,16,21,17,7], schemes designed in groups of known order
[20,15,1,13] and hash-based constructions [18,9,10,11,6]. Relevant to this paper
are the schemes belonging to the second of these families, where the considered
group is a prime order bilinear group. Moreover, when it comes to Dynamic Uni-
versal Accumulators (namely those that support dynamic addition and deletion
of members and can maintain both membership and non-membership witnesses)
we are down to just a few schemes.

In this paper we cryptanalyse one of these universal scheme proposed for
bilinear groups, namely the Dynamic Universal Accumulator by Au et al. [1],
which is zero-knowledge friendly and stood unscathed for 10 years of public
scrutiny. This scheme comes in two variants which we called the α-based con-
struction and the RS-based construction, respectively. For the first one, we show
that the non-membership mechanism, designed to allow for more efficiency on
the accumulator manager side, has a subtle cryptographic flaw which enables
the adversary to efficiently recover the secret of the accumulator manager, given
just several hundred to few thousand non-membership witnesses (regardless of
the number of accumulated elements).

As a consequence the attacker can covertly take over the accumulator man-
agement. Moreover, we show that given only one non-membership witness gen-
erated with this flawed mechanism, it is possible to efficiently invalidate the
assumed collision resistance property of the accumulator by creating a mem-
bership witness for a non-accumulated element. Despite the presence of a valid
security proof, this is possible because the provided security reduction covers the
non-membership mechanism of the RS-based construction only and it doesn’t
take into account non-membership definition given for the α-based construction,
which, in fact, resulted to be weak.

The second attack is on this latter RS-based variant, for which we show that
a group of users is able to compute valid witnesses for unauthorized elements
even when the Accumulator manager keeps secret all the information needed
to compute such witnesses, i.e. the RS. In particular, if the accumulator is
initialized by adding m secret elements, m colluding users would succeed in
reconstructing the RS and will then become able to issue membership and non-
membership witnesses for any accumulated and non-accumulated elements.

The majority of our attacks require that users collude and share their wit-
nesses in order to either subvert the Accumulator Manager or issue witnesses.
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While collusion attacks are usually outside the standard security assumptions
for accumulator schemes, these become relevant when such schemes are used
as building blocks in most of the applications like, for example, authentication
mechanisms (e.g. anonymous credentials systems) and (attribute-based) access
control. We believe that analysing and protecting schemes from such attacks,
will open to a wider and secure use of accumulator schemes.

In Section 2 we recall both variants of Au et al. accumulator scheme. In
Section 3 we present our first attack for the α-based construction −the Collusion
Attack− which allows to fully recover the accumulator secret parameter α and
we provide a complexity analysis in terms of time and non-membership witnesses
needed (Section 3.3). In Section 4 we discuss some further improvements to the
Collusion attack which lead, under different hypothesis, to two new attacks: a
random-y sieving attack and a chosen-y sieving attack, described in Section 4.1
and 4.2, respectively. We implemented all these attacks (Appendix A) and we
compare, in Section 5, their success probability as a function of the total number
of colluding witnesses needed. In Section 6 we detail how collision resistance
doesn’t hold for non-membership witnesses issued accordingly to the α-based
construction and we report another minor design vulnerability we have found
for this latter in Section 7. Finally, in Section 8 we discuss the security of the
RS-construction and we present, in Section 8.2, the Witness Forgery Attack as
well as possible countermeasures. A summary of our main contributions can be
found in Table 1.

Construction Ref. Scenario Witnesses Time Attack Result

α-based

Sec. 3 Random-y O(log p log log p) O(log2 p) Recovery of α

Sec. 4.1 Random-y O(log p log log p) O((1 + `/ log log p) log2 p) Recovery of α

Sec. 4.2 Chosen-y O(log p) O(` log2 p/ log log p) Recovery of α

Sec. 6 Random-y 1 O(1)
Break Collision

Resistance

RS-based Sec. 8.2 Random-y m O(m2) Issue witnesses

Table 1. Time and non-membership witnesses required in our attacks on the Au et
al. accumulator scheme for both α-based and RS-based construction. In this table, p
denotes the order of the underlying bilinear group, m denotes the number of (secret)
elements with which the accumulator is initialized, ` denotes the number of accumu-
lations occurred in between the issues of non-membership witnesses. In the RS-based
construction the RS is unknown to the attacker.

2 Au et al. Dynamic Universal Accumulator

In their paper, Au and coauthors propose two different constructions for their
Dynamic Universal Accumulator, depending on whether information is made
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available to the accumulator managers. The first requires the accumulator’s se-
cret parameter α and is suitable for a centralized entity which efficiently updates
the accumulator value and issues witnesses to the users. The second instead, re-
quires a reference string RS and allows to update the accumulator value and to
issue witnesses without learning α, but less efficiently. We will refer to the first
one as the α-based construction, while we will refer to the latter as the RS-based
construction.

These two are interchangable, in the sense that witnesses can be issued from
time to time with one or the other construction. Moreover, we note that all
operations done with the reference string RS, can be done more efficiently by
using α directly: hence, if the authority which generates α coincides with the
Accumulator Manager, it is more convenient for the latter to always use the
secret parameter α to perform operations and thus we will refer to the two
constructions mainly to indicate the different defining equations for witnesses
(in particular, non-membership witnesses).

We now detail a concrete instance of Au et al. accumulator scheme by using
Type-I elliptic curves3. Where not explicitly stated, each operation refers to both
the α-based and RS-based constructions.

Generation. Let E be an elliptic curve of embedding degree k over Fq, which
is provided with a symmetric bilinear group G = (p,G1, GT , P, e) such that
e : G1 × G1 → GT is a non-degenerate bilinear map, G1 is a subgroup of E
generated by P , GT is a subgroup of (Fqk)∗ and |G1| = |GT | = p is prime.
The secret accumulator parameter α is randomly chosen from Z/pZ∗. The set
of accumulatable elements is ACC = Z/pZ \ {−α}.

- RS-based construction. Let t be the maximum number of accumulatable
elements. Then the reference string RS is computed as

RS = {P, αP, α2P, . . . , αtP }

Accumulator updates.

- α-based construction. For any given set YV ⊆ ACC let fV (x) ∈ Z/pZ[x]
represent the polynomial

fV (x) =
∏
y∈YV

(y + x)

Given the secret accumulator parameter α, we say that an accumulator value
V ∈ G1 accumulates the elements in YV if V = fV (α)P .
An element y ∈ ACC\YV is added to the accumulator value V , by computing
V ′ = (y + α)V and letting YV ′ = YV ∪ {y}. Similarly, an element y ∈ YV
is removed from the accumulator value V , by computing V ′ = 1

(y+α)V and

letting YV ′ = YV \ {y}.

3 We note that Au et al. accumulator scheme and our attacks as well work with any
bilinear group.
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- RS-based construction. For any given set YV ⊆ ACC such that |YV | ≤ t,
let fV (x) ∈ Z/pZ[x] represent the polynomial

fV (x) =
∏
y∈YV

(y + x) =

|YV |∑
i=0

cix
i

Then, the accumulator value V which accumulates the elements in YV is

computed using the RS as V =
∑|YV |
i=0 ci · αiP .

Witnesses Issuing.

- α-based construction. Given an element y ∈ YV , the membership witness
wy,V = C ∈ G1 with respect to the accumulator value V is issued as

C =
1

y + α
V

Given an element y ∈ ACC \YV , the non-membership witness w̄y,V = (C, d) ∈
G1 × Z/pZ with respect to the accumulator value V is issued as

d =
(
fV (α) mod (y + α)

)
mod p, C =

fV (α)− d
y + α

P

- RS-based construction. Given an element y ∈ YV , let c(x) ∈ Z/pZ[x] be
the polynomial such that fV (x) = c(x)(y+ x). Then, the membership witness
wy,V for y with respect to the accumulator value V is computed using the RS
as wy,V = c(α)P .
Given an element y ∈ ACC \ YV , apply the Euclidean Algorithm to get the
polynomial c(x) ∈ Z/pZ[x] and the scalar d ∈ Z/pZ such that fV (x) =
c(x)(y+x) + d. Then, the non-membership witness w̄y,V for y with respect to
the accumulator value V is computed from the RS as wy,V = (c(α)P, d).

Witness Update. When the accumulator value changes, users’ witnesses are
updated accordingly to the following operations:

– On Addition: suppose that a certain y′ ∈ ACC \ YV is added into V . Hence
the new accumulator value is V ′ = (y′ + α)V and YV ′ = YV ∪ {y′}.
Then, for any y ∈ YV , wy,V = C is updated with respect to V ′ by computing

C ′ = (y′ − y)C + V

and letting wy,V ′ = C ′.
If, instead, y ∈ ACC \ YV with y 6= y′, its non-membership witness w̄y,V =
(C, d) is updated to w̄y,V ′ = (C ′, d ·(y′−y), where C ′ is computed in the same
way as in the case of membership witnesses.
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– On Deletion: suppose that a certain y′ ∈ YV is deleted from V . Hence the
new accumulator value is V ′ = 1

y′+αV and YV ′ = YV \ {y′}.
Then, for any y ∈ YV , wy,V = C is updated with respect to V ′ by computing

C ′ =
1

y′ − y
C − 1

y′ − y
V ′

and letting wy,V ′ = C ′.

If, instead, y ∈ ACC \ YV , its witness w̄y,V = (C, d) is updated to w̄y,V ′ =
(C ′, d · 1

y′−y , where C ′ is computed in the same way as in the case of mem-
bership witnesses.

We note that in both cases the added or removed element y′ has to be public
in order to enable other users to update their witnesses.

Verification. A membership witness wy,V = C with respect to the accumulator
value V is valid if it verifies the pairing equation e(C, yP + αP ) = e(V, P ).
Similarly, a non-membership witness w̄y,V = (C, d) is valid with respect to V if
it verifies e(C, yP + αP )e(P, P )d = e(V, P ).

3 The Collusion Attack for the α-based Construction

From now on, we assume that the secret parameter α and the accumulator value
V along with the set of currently accumulated elements YV and the correspond-
ing polynomial fV (x), are fixed.

The following attack on the α-based construction consists of two phases:
the retrieval of fV (α) modulo many small primes and the full recovery of the
accumulator secret parameter α.

3.1 Recovering fV (α)

Let dy =
(
fV (α) mod (y+α)

)
mod p be a partial non-membership witness with

respect to V for a certain element y ∈ ACC \ YV , and let d̃y denote the integer

fV (α) mod (y+ α). We then have dy = d̃y mod p, and we are interested in how

often dy equals d̃y as integers. Attacker benefits from the cases when y+ α < p,

since the reduction modulo p does nothing and dy = d̃y for all y.

The worst case happens when α is maximal, i.e. α = p − 1. Indeed, in this
case, if y = 0 then y + α < p and dy = d̃y with probability 1; if instead y > 0

and y 6= p − α = 1 the probability that dy = d̃y is p
y+α and, hence, is minimal

when compared to smaller values of α. Thus, with α = p − 1 the probability
that dy equals d̃y as integers ranges from 1 (when y = 0) to almost 1/2 (when
y = p− 1). Assuming that y is sampled uniformly at random, we can obtain the
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following lower bound on the probability (for arbitrary α):

P
y∈{0,...,p−1}

y 6=p−α
fV (α)∈Z

(dy = d̃y) ≥ 1

p− 1

1 + p

p−1∑
ỹ=2

1

ỹ + p− 1



=
p

p− 1

(
2p−2∑
i=1

1

i
−
p−1∑
i=1

1

i

)
=

p

p− 1
(H2p−2 −Hp−1)

=

(
1 +

1

p− 1

)
·
(

ln 2− 1

4(p− 1)
+ o

(
p−1
))

= ln 2 +
4 ln 2− 1

4(p− 1)
+ o(p−1)

> ln 2. (1)

where Hn denotes the n−th Harmonic number, and the last inequality holds for
all values of p used in practice.

Assume that q|(y + α) for a small prime q ∈ Z such that q � y + α. If
dy = d̃y we have fV (α) ≡ dy (mod q) with probability 1, otherwise it happens
with probability 0 since then fV (α) ≡ dy + p (mod q). If instead q - (y + α), we
assume dy mod q to be random in Z/qZ and thus fV (α) ≡ dy (mod q) happens
with probability close to 1

q .
More precisely,

P
(
fV (α) ≡ dy (mod q)

)
> ln 2 · 1

q
+
q − 1

q2
=

(ln 2 + 1)q − 1

q2
(2)

while for any other c ∈ Z/qZ such that c 6≡ dy (mod q) we have

P
(
fV (α) ≡ c (mod q)

)
< (1− ln 2) · 1

q
+
q − 1

q2
=

(2− ln 2)q − 1

q2
(3)

In other words, the value dy mod q has a higher chance to be equal to
fV (α) mod q compared to any other value in Z/qZ.

We will use this fact to deduce fV (α) modulo many different small primes.
More precisely, suppose that a certain number of users collude and share their
elements y1, . . . , yn together with the respective partial non-membership wit-
nesses

dyi ≡
(
fV (α) mod (yi + α)

)
mod p

If q is a small prime and n is sufficiently large (see Section 3.3 for the analysis),
fV (α) mod q can be deduced by simply looking at the most frequent value among

dy1 mod q, . . . , dyn mod q

Once we compute fV (α) modulo many different small primes q1, . . . , qk such
that q1 · . . . · qk > p, we can proceed with the next phase of the attack: the full
recovery of the secret parameter α.
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3.2 Recovering α

If the discrete logarithm of any accumulator value is successfully retrieved mod-
ulo many different small primes whose product is greater than p, α can be
recovered with (virtually) no additional partial non-membership witnesses. The
main observation we will exploit is the following:

Observation 1. Let q be an integer and let y ∈ ACC \YV be a non-accumulated
element such that its partial non-membership witness with respect to V satisfies
dy = d̃y. Then dy 6≡ fV (α) (mod q) implies that q - (y + α), or, equivalently,
α 6≡ −y (mod q).

From (1) it follows that for any given q ∈ Z and non-accumulated element y
such that (fV (α)− dy) 6≡ 0 (mod q), we have

P
(
α 6≡ −y (mod q) | fV (α) 6≡ dy (mod q)

)
> 1− (1− ln 2)q

q2 − (1 + ln 2)q + 1
≈ 1−1− ln 2

q

By considering all colluding non-membership witnesses, if q is small and n
is sufficiently larger than q (see Section 3.3), we can deduce α mod q as the
element in Z/qZ which is the least frequent −or not occurring at all− among
the residues

−yi1 mod q , . . . , −yij mod q

such that (fV (α)− dyik ) 6≡ 0 mod q for all k = 1, . . . , j.
It follows that, if q1, . . . , qk are small primes such that q1 · . . . · qk > p, from

the values fV (α) mod qi −computed according to Section 3.1− and the values
α mod qi, with i ∈ [1, k], α ∈ Z can be obtained by using the Chinese Remainder
Theorem.

3.3 Estimating the minimum number of colluding users

We now give an asymptotic estimate of the minimum number of colluding users
such that both phases of the above attack succeed with high probability. We will
use the multiplicative Chernoff bound, which we briefly recall.

Theorem 2. (Chernoff Bound) Let X1, . . . , Xn be independent random vari-
ables taking values in {0, 1} and let X = X1 + . . .+Xn. Then, for any δ > 0

P
(
X ≤ (1− δ)E[X]

)
≤ e−

δ2µ
2 0 ≤ δ ≤ 1

P
(
X ≥ (1 + δ)E[X]

)
≤ e−

δ2µ
2+δ 0 ≤ δ

Proof. See [19, Theorem 4.4, Theorem 4.5].

Our analysis will proceed as follows: first, we introduce two random variables
to model, for a given small prime q, the behaviour of the values fV (α) mod q.
Then, we will use Chernoff bound to first estimate the probability of wrongly
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guessing fV (α) mod q, and then deduce a value for n so that such probability is
minimized for all primes q considered in the attack.

Let q ∈ Z be a fixed prime and let Xg be a random variable which counts
the number of times fV (α) mod q is among the values d1 mod q, . . . , dn mod q.
Similarly, let Xb be a random variable which counts the number of times a certain
residue t ∈ Z/qZ not equal to fV (α) mod q is among the values d1 mod q, . . . ,
dn mod q. Then

E[Xg] = n · (ln 2 + 1)q − 1

q2
≈ (ln 2 + 1)

n

q

E[Xb] = n · (2− ln 2)q − 1

q2
≈ (2− ln 2)

n

q

By applying Theorem 2, we can estimate the probability that Xg and Xb

crosses
E[Xg ]+E[Xb]

2 = 3n
2q as

P
(
Xg ≤

3n

2q

)
= P

(
Xg ≤

(
1− 2 ln 2− 1

2 ln 2 + 2

)
E[Xg]

)
< e−

n
91q

.
= eq,g

P
(
Xb ≥

3n

2q

)
= P

(
Xb ≥

(
1 +

2 ln 2− 1

4− 2 ln 2

)
E[Xb]

)
< e−

n
76q

.
= eq,b

and we minimize these inequalities by requiring that

1− (1− eq,g)(1− eq,b)q−1 ≈ eq,g + (q − 1)eq,b
.
= sq

is small for each prime q considered in this attack phase. Thus, if q = max(q1, . . . , qk),
we can bound the sum

k∑
i=1

sqi ≤ qsq = q(e−
n

91q + (q − 1)e−
n

76q ) ≈ e−
n

91q+log q + e−
n

76q+2 log q

and we make it small by taking n = O(q log q).
In order to apply the Chinese Remainder Theorem for the full recovery of α

we need that q1 · . . . · qk > p. If q1, . . . , qk are chosen to be the first k primes,
we can use an estimation for the first Chebyshev function growth rate to obtain
ln(q1 · ... · qk) = (1 + o(1)) · k ln k ∼ qk by Prime Number Theorem and thus
qk > ln p. We then conclude that

n = O(log p log log p)

colluding users that share their partial non-membership witnesses are enough to
recover fV (α) mod q1 · . . . · qk with high probability.

We note that by using Chernoff bound in order to estimate the minimum
number of witnesses needed to recover α, it can be shown, similarly as done
above for fV (α), that O(log p log log p) non-membership witnesses are enough to
identify with high probability α mod q1 · . . . · qk = α.
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The time complexity is dominated by

(# primes q)× (# witnesses) = O

(
log p

log log p

)
×O(log p log log p)

which is equal to O(log2 p).

4 Improving the Collusion Attack

We will now improve the Collusion attack outlined in Section 3 by giving some
variants under two different attack scenarios, depending on whether the attacker
has access to non-membership witnesses for random-y or chosen-y. These im-
provements will further reduce the number of non-membership witnesses needed
to fully recover the secret accumulator parameter α to a small multiple of log p.

The main idea behind the improved attack is to keep removing wrong can-
didates for α mod q for small primes q (sieving), until only the correct one is
left. As in the previous attack, full value of α is then reconstructed using the
Chinese Remainder Theorem.

Collecting Witnesses Issued at Different States In the Collusion Attack
described in Section 3, O(log p log log p) non-membership witnesses issued with
respect to the same accumulator value V are needed in order to fully recover
α. In the following attacks we drop this condition and allow the colluding users
to share non-membership witnesses issued with respect to different accumulator
values f1(α)P = V1, . . . , f`(α)P = V`, but we require that no deletions occur
between the accumulator states V1 and V`. In this case, since the sequence of
elements added must be public to permit users’ witness update, we have that
the polynomial functions gi,j(x) ∈ Z/pZ such that fj(α) = gi,j(α)fi(α) for any
α ∈ Z/pZ, can be publicly computed for any i, j ∈ [1, `]. It follows that, given
a small prime q, once α mod q and fi(α) mod q for some i ∈ [1, `] are correctly
computed, fj(α) mod q can be computed as gi,j(α)fi(α) mod q for any j ∈ [1, `]
such that j > i.

The requirement that no deletion operation should occur if the colluding
users wish to collect witnesses issued at different states, comes from the fact
that the accumulator can be initialized by accumulating some values which are
kept secret by the accumulator manager.

It follows that, whenever the polynomial f1(x) ∈ Z/pZ is publicly known (or,
equivalently, the set of all accumulated elements YV1) for a certain accumulator
value V1, we can remove the condition that no later deletion operations occur
during attack execution, since the knowledge of α mod q is enough to compute
fi(α) mod q for any i ∈ [1, `]. Thus any non-membership witnesses issued from
V1 on can be used to recover α.
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Removing reduction modulo p. We show that, under some practical as-
sumptions, it is possible to eliminate with high probability the noise given by
the reduction modulo p performed by the accumulator manager when he issues
a non-membership witness. That is, we recover d̃yi = fVj (α) mod (yi + α) for
a large fraction of pairs (yi, Vj), given the partial non-membership witnesses
dyi =

(
fVj (α) mod (yi + α)

)
mod p collected with respect to different accumu-

lator values Vj with j > 1.
Aiming at this, we first observe that from the fact that 0 ≤ y, α < p for any

given y ∈ ACC \ YV , the partial non-membership witness dy for y with respect

to V can be expressed in terms of d̃y in one of the following way:

(1) dy = fV (α) mod (y + α) = d̃y,

(2) dy =
(
fV (α) mod (y + α)

)
− p = d̃y − p.

Since p is odd, whenever y + α is even, these two cases can be easily distin-
guished modulo 2: indeed, in the first case dy ≡ fV (α) (mod 2), while in the
second case dy 6≡ fV (α) (mod 2).

This observation effectively allows to correctly compute d̃y half of the times
given a correct guess for α mod 2 and fV (α) mod 2. Indeed, given a set of partial
non-membership witnesses dy1 , . . . , dyn with respect to V , each guess of α mod 2
and fV (α) mod 2 will split the witnesses in two subsets, namely one where the
corresponding elements yi satisfy yi + α ≡ 0 (mod 2) (and thus d̃yi can be
correctly recovered), and the other where this doesn’t happen.

Checking if α mod 2 and fV (α) mod 2 were actually correct guesses can be
done observing how the attacks described in Section 4.1 and 4.2 (or in Section 3
if witnesses are issued with respect to the same accumulator value) behaves with
respect to the subset of witnesses that permitted to recover the values d̃yi . In
case of a wrong guess, indeed, it will not possible to distinguish α and fVi(α)
modulo some different small primes q: in this case the attack can be stopped
and a new guess should be considered. On the other hand, a correct guess will
permit to correctly recover α and fVi(α) modulo few more primes q greater than
2. Since, whenever α mod q and fV (α) mod q are known, d̃y can be correctly
recovered, analogously to the modulo 2 case, for all those y such that y + α is
divisible by q, this implies that it is possible to iteratively recover more and more
correct values d̃yi given the initial set of considered witnesses.

Repeating this procedure for small primes q up to r, it allows to recover d̃yi
for those yi that are divisible by at least one prime not exceeding r. This fraction
tends to 1 − ϕ(r#)/(r#) as yi tend to infinity, where ϕ is the Euler’s totient
function and r# denotes the product of all primes not exceeding r. For example,
setting r = 101 allows to recover d̃yi for about 88% of all available witnesses.

We conclude that d̃yi can be recovered for practically all i ∈ [1, n].
In the case where witnesses are issued with respect to different accumulator

values V1, . . . , V`, as remarked above, the knowledge of α mod q and fV1
(α) mod q

allows to compute fVj (α) mod q for all Vj with j > 1, so the modulo p noise
reduction can be easily performed independently on when the witnesses are is-
sued.
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4.1 The Random-y Sieving Attack

In this scenario we assume that all elements yi for which the partial non-
membership witnesses dyi are available to the adversary, i.e. colluding users,
are sampled uniformly at random from Z/pZ. Furthermore these witnesses are
pre-processed accordingly to the method described above, in order to eliminate
the noise given by reduction modulo p.

Recovering α mod q. Let q be a small prime, i.e. q = O(log p), and let Yα be
the set containing all pairs (yi, d̃yi) such that yi + α ≡ 0 (mod q) for a certain

guess α mod q. If the latter is guessed wrongly, then the values d̃yi modulo q
are distributed uniformly and independently from the values fVi(α) mod q. On
the other hand, if the guess is correct, then d̃yi ≡ fVi(α) (mod q).

Even in the case when fV1
(α) mod q is unknown, fVi(α) mod q can be

recovered from the first occurrence of yi in the set Yα and verified at all further
occurrences, since all fVj (α) mod q can be computed for any j ≥ i. It follows
that we can easily distinguish if a guess for α mod q is either correct or not.

The attack succeeds if for every wrong guess α× of α mod q we observe a
contradiction within the pairs in Yα× . It’s easy to see that if |Yα× | = t, the
probability to observe at least one contradiction is 1−1/qt−1. Thus, by ensuring
a constant number t of elements in Yα× given each α× 6= α mod q is sufficient
to make the probability of false positives negligible. This requires availability of
O(q log q) witnesses in total.

Recovering α. The final step is the same as in the previous attacks: the secret
value α is recovered by repeating the process for different small primes q and
then by applying the Chinese Remainder Theorem. Furthermore, if for some
primes q there are multiple candidates of α mod q, such primes can be simply
omitted from the application of the Chinese Remainder Theorem. In this case,
in order to fully recover α ∈ Z, the maximum prime q that has to be considered
must be larger than ln p by a constant factor. We conclude that O(q log q) =
O(log p log log p) witnesses are sufficient for full recovery of α with overwhelming
probability.

The time complexity of the attack is dominated by guessing α mod q for
each q considered. Note that for a wrong guess of α mod q, we can expect
on average a constant amount of witnesses to check before an inconsistency is
observed; this amount is thus enough to identify the correct value. For each
such guess, nearly all accumulator states in the history have to be considered
in order to take into account all additions to the accumulator. However, the
non-membership witnesses issued in each state can be classified by guesses of α
mod q in a single scan for each prime q.

We conclude that the time complexity is dominated by

(# primes q)× (q guesses of α mod q)× (# of accumulator states)
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and by classifying all non-membership witnesses for each prime q

(# primes q)× (# witnesses)

The final complexity is O((1 + `/ log log p) log2 p).

4.2 The Chosen-y Sieving Attack

If the adversary is allowed to choose the elements yi for which the partial non-
membership witnesses are issued, no matter with respect to which accumulator
state, the amount of required witnesses can be further reduced by a log log p
factor.

First, we assume that the adversary chooses the elements yi non-adaptively,
i.e. before the accumulator is initialized. The idea is simply to use consecutive
values, that is y0 = r, y1 = r + 1, . . . , yi = r + i, . . . , for some r ∈ Z/pZ.
This choice fills equally all sets Yα̃ for all α̃ ∈ Z/qZ and small q, where α̃
represents either a correct guess for α mod q or a wrong guess α×. As a result,
t = O(q) elements are enough to make the size of each set Yα̃ at least equal to
t. The full total number of required non-membership witnesses is then reduced
to O(q) = O(log p). The time complexity then is improved by a factor log log p
in the case when ` is small: O(` log2 p/ log log p).

We now consider the case when the adversary can adaptively chose the ele-
ments yi. Note that, on average, we need only 2 + 1/(q− 1) elements in each set
Yα× to discard the wrong guess of α mod q, for all q. The adaptive choice allows
to choose yi such that (yi+α×) ≡ 0 (mod q) specifically for those α× which are
not discarded yet. Furthermore, the Chinese Remainder Theorem allows us to
combine such adaptive queries for all chosen primes q simultaneously. As a re-
sult, approximately 2 ln p witnesses for adaptively chosen elements are sufficient
for the full recovery of α. This improves the constant factor of the non-adaptive
attack in term of number of non-membership witnesses required.

Remark 1. As described at the beginning of this Section, non-membership wit-
nesses can be issued with respect to different successive accumulator values
V1, . . . , V`, within which no deletion operation occurs. If the value fV1

(x) ∈ Z[x]
is known to the adversary (or equivalently the set of all accumulated elements in
V1), only ln p non-membership witnesses issued for adaptively chosen elements
are sufficient to recover α. In this case, indeed, instead of verifying uniqueness
of elements in the set Yα× , we can directly compare our guess to the value
fVj (α) mod q given from fV1

(α), thus requiring 1 + 1/(q − 1) elements on aver-
age.

5 Experimental Results

We implemented the collusion attack from Section 3 and both the random-y
and the non-adaptive chosen-y sieving attacks from Sections 4.1 and 4.2. Proof-
of-concept implementations in SageMath [22] can be found in Appendices A.1
and A.2 respectively.
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Fig. 1. Attacks experimental success rate as a function of the total number of colluding
witnesses.

For the verification purpose we used a random 512-bit prime p. We measured
the success rate of the attacks with respect to the number of available non-
membership witnesses. The collusion attack applies to a single accumulator state,
and for the sieving attacks, the number of state changes of the accumulator
was 10 times less than the number of issued witnesses. The initial state of the
accumulator in all attacks was assumed to be secret. Each attack was executed
100 times per each analyzed number of available non-membership witnesses.
The sieving attacks were considered successful if at most 210 candidates for α
were obtained and the correct α was among them. The results are illustrated in
Figure 1.

The collusion attack, while being simple, requires a significant amount of
witnesses to achieve a high success rate, more than 20000 ≈ 10 ln p ln ln p wit-
nesses and finishes in less than 5 seconds. The random-y sieving attack achieves
almost full success rate with about 6000 ≈ 3 ln p ln ln p available witnesses and
completes in less than 10 seconds. The chosen-y sieving attack requires less than
2000 ≈ 4 ln p witnesses to achieve almost perfect success rate and completes in
less than 4 seconds. All timings include the generation of witnesses. The exper-
iments were performed on a laptop with Linux Mint 19.3 OS and an Intel Core
i5-10210U CPU clocked at 1.60GHz.

6 Breaking Collision Resistance

We have seen that whenever an attacker has access to many different non-
membership witnesses, he can learn some information about the accumulator
secret parameter α, up to its full recovery. On the other hand, when only few
non-membership witnesses are known, the learned bits of fV (α) and α don’t
permit any relevant attack against the accumulator manager.
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However, we will now show that, in the α-based construction, the knowledge
of a single non-membership witness is enough to break the (assumed) collision
resistance property of the accumulator scheme when the polynomial fV (x) is
fully known or, equivalently, the set of all accumulated elements is publicly
known (which is typically the case). Informally, collision resistance ensures that
an adversary has negligible probability in forging a valid membership witness for
a not-accumulated element and, respectively, a non-membership witness for an
already accumulated element. In [1], collision resistance is shown under t-SDH
assumption [5]. We briefly recall both of the definitions considered.

Definition 1. (Collision Resistance) A Dynamic Universal Accumulator is
collision resistant if, for any probabilistic polynomial time adversary A that has
access to an oracle O which returns the accumulator value resulting from the
accumulation of the elements of any given input subset of (Z/pZ)∗, the following
probabilities

P

 (G, α, Q̃)← Gen(1λ) , (y, C,Y)← AO(G, Q̃) :
Y ⊂ (Z/pZ)∗ ∧ y ∈ (Z/pZ)∗ \ Y ∧

V =
(∏

yi∈Y(yi + α)
)
· P ∧ e(C, yP̃ + Q̃) = e(V, P̃ )



P

 (G, α, Q̃)← Gen(1λ) , (y, C, d,Y)← AO(G, Q̃) :
Y ⊂ (Z/pZ)∗ ∧ y ∈ Y ∧ d 6= 0 ∧

V =
(∏

yi∈Y(yi + α)
)
· P ∧ e(C, yP̃ + Q̃)e(P, P̃ )d = e(V, P̃ )


are both negligible functions in the security parameter λ.

Definition 2. (t−Strong Diffie-Hellman Assumption [5]) Let G be a prob-
abilistic polynomial time algorithm that, given a security parameter 1λ, outputs a
symmetric bilinear group G = (p,G1, GT , P, e). We say that the t−Strong Diffie-
Hellman Assumption holds for G with respect to an α ∈ (Z/pZ)∗ if, for any
probabilistic polynomial time adversary A and for every polynomially bounded
function t : Z→ Z, the probability

P
(
A(P, αP, α2P, ..., αt(λ)P, P̃ , αP̃ ) =

(
y,

1

y + α
P

))
is a negligible function in λ for any freely chosen value y ∈ Z/pZ \ {−α}.

In the security reduction provided in [1], it is required that given a non-
accumulated element y ∈ ACC \ YV and its non-membership witness w̄y,V =

(Cy, dy) with respect to the accumulator value V , the element d̃y ∈ Z/pZ verifies(
fV (x)− d̃y mod (y + x)

)
≡ 0 (mod p)

which in turn corresponds to d̃y ≡ fV (−y) (mod p).



16 Alex Biryukov, Aleksei Udovenko, Giuseppe Vitto

By using, instead, the defining equation for dy provided in the α-based con-
struction, the partial non-membership witness for y equals dy =

(
fV (α) mod (y+

α)
)

mod p and thus

dy ≡ d̃y (mod p) ⇒
(
fV (−y) mod (y + α)

)
≡ fV (−y) (mod p)

holds only when fV (−y) < y+α, i.e. with negligible probability if V accumulates
more than one element chosen uniformly at random from Z/pZ.

Now, if dy 6≡ d̃y mod p, we have fV (x) − dy 6≡ 0 mod (y + x), and we can
use Euclidean algorithm to find a polynomial c(x) ∈ Z/pZ[x] and r ∈ Z/pZ such
that fV (x)− dy = c(x)(y + x) + r in Z/pZ[x].

Then, by recalling that Cy =
fV (α)−dy
y+α P , under the t−SDH assumption,

the attacker uses the RS = {P, αP, . . . , αtP} to compute c(α)P and obtains a
membership witness with respect to V for an arbitrary non accumulated element
y as

Cy +
dy
r

(
Cy− c(α)P

)
= Cy +

dy
r

(
Cy − Cy −

r

y + α
P

)
=
fV (α)

y + α
P =

1

y + α
V

thus breaking the assumed collision resistance property of the α-based construc-
tion.

We note that this result doesn’t invalidate the security proof provided by Au
et al. in [1]: indeed, the reduction to the t-SDH assumption is shown for (non-
membership) witnesses generated accordingly to theRS-based construction only,
and thus, collision resistance can be guaranteed only for this latter construction.
We speculate that this flaw comes from the wrong assumption that(

fV (x) mod (y + x)
)
≡
(
fV (α) mod (y + α)

)
(mod p)

which, if true, would have implied security of non-membership witnesses issued
accordingly to the α-based construction as well.

7 Weak Non-membership Witnesses

In the α-based construction, non-membership witness definition is affected by
another minor design vulnerability: given a non-membership witness w̄y,V =
(Cy, dy) with respect to an accumulator value V , if dy ≡ fV (α) mod p, then
Cy = O.

Those “weak non-membership witnesses” are issued with non-negligible prob-
ability in the security parameter λ when only one element is accumulated. As-
sume, indeed, that V = (y′+α)P for a certain element y′ ∈ ACC. Then, for any
element y ∈ ACC such that y′ < y, the corresponding non-membership witness
w̄y,V with respect to V is issued as

dy =
(
y′ + α mod (y + α)

)
mod p = y′ + α mod p

and thus Cy = O. In this case, as soon as the element y′ becomes public (e.g.
is removed), the accumulator secret parameter can be easily obtained as α =
dy − y′ mod p.
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8 Preventing Witness Forgery in the RS-based
Construction

All the attacks we have presented so far, which aimed at either recovering the
secret α or breaking accumulator collision-resistance, are ineffective when wit-
nesses (more precisely, non-membership witnesses) are issued by using the defin-
ing equations given for the RS-based construction. It is thus natural to won-
der whether this alternative construction has only efficiency drawbacks when
compared to the more efficient −but vulnerable− one that uses α, or requires,
instead, additional care to be safe, for example, against colluding users.

We note that the knowledge of the RS is functionally equivalent to the
knowledge of α when the set of currently accumulated elements is fully known:
indeed, besides accumulator updates, the RS permits to issue both membership
and non-membership witnesses for arbitrary elements, with the difference that
the knowledge of α permits to break collision-resistance, while the knowledge
of the RS does not. Furthermore, despite what we saw in Section 6, witnesses
definition in the RS-based construction satisfy the hypothesis for the t−SDH
security reduction provided by Au et al., i.e. collision-resistance is enforced when
the RS is used to issue witnesses.

Depending on the use-case application of the accumulator scheme, the pos-
sibility to publicly issue witnesses for arbitrary elements could be undesirable:
for example, this is relevant when the accumulator scheme is used as a privacy-
preserving authorization mechanism, i.e. an Anonymous Credential System. Sup-
pose, indeed, that in this scenario the accumulator value V accumulates revoked
users’ identities and the non-revoked ones authenticate themselves showing the
possession of a valid non-membership witness w̄y,V for an identity y, both is-
sued by a trusted Authentication Authority. If an attacker has access to the
RS, he will be able to forge a random pair of credentials (y′, wy′,V ) and then he
could authenticate himself, even if the Authentication Authority never issued the
identity y′ nor the corresponding witness. This is especially the case when a zero
knowledge protocol is instantiated during users’ credentials verification since it
is impossible to distinguish between a zero knowledge proof for an authorized
identity y and a proof for the never issued, but valid, identity y′.

In the following sections we investigate the security of theRS-based construc-
tion assuming the Accumulator Manager to be the only authority allowed to is-
sue witnesses. In particular, we discuss how witness forgery for never-authorized
elements can be prevented, namely: a) the manager constructs the set YV of cur-
rently accumulated elements in such a way that it is infeasible to fully reconstruct
it; b) the reference string RS is not published and users cannot reconstruct it.

8.1 How to ensure some accumulated elements remain unknown

Given an accumulator value V , assume YV is the union of the disjoint sets YV0
,

whose elements are used exclusively to initialize the accumulator value from P
to V0, and Yid = YV \ YV0

, the set of currently accumulated elements for which
a membership witness have been issued.
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Since the elements in Yid must be public to enable users to update their
witnesses4, the reconstruction of YV = YV0

∪ Yid can be prevented only if YV0

remains, at least partially, unknown.
From YV = YV0 ∪Yid and YV0 ∩Yid = ∅, it follows that the polynomial fV (x)

can be written as

fV (x) = f0(x) · fid(x) =
∏

yi∈YV0

(yi + x)
∏

yj∈Yid

(yj + x)

When non-membership witnesses are generated according to the RS-con-
struction, as soon as deg(fid) ≥ deg(f0), |YV0

| users y1, . . . , y|YV0 | can collude
and share their partial non-membership witnesses

dyi ≡ fV (−yi) ≡ f0(−yi) · fid(−yi) (mod p)

in order to reconstruct the unknown set YV0 . Indeed, with the knowledge of Yid,
the polynomial fid(x) is easily obtained and it’s then possible to compute the
|YV0
| pairs (

− yi, f0(−yi)
)

=

(
−yi,

dyi
fid(−yi)

)
With these pairs, the colluding users are able to uniquely interpolate, using
for example Lagrange interpolation, the monic polynomial f0(x) mod p whose
roots are the elements in YV0

.5

The reconstruction of the set YV can be prevented by initializing the ac-
cumulator with a number of random elements which is greater than the total
number of issuable non-membership witnesses: this clearly avoids the possibil-
ity to interpolate f0(x), even in the case when all users collude and share their
non-membership witnesses.

We note, however, that this approach has some disadvantages. First of all,
the maximum number of issuable non-membership witnesses has to be set at
generation time and cannot be increased once the first witness is issued, since all
further accumulated elements will be public. When this number is reasonable big,
let’s say 1 billion, the Accumulator Manager needs to evaluate at least a 1-billion
degree polynomial when issuing any non-membership witnesses, an operation
that becomes more and more expensive as the number of accumulated elements
increases. On the other hand, by decreasing it, the Accumulator Manager can
issue the non-membership witnesses in a less expensive way, but only to a smaller
set of users.

8.2 Recovering the RS
Alternatively to the countermeasure proposed in Section 8.1, it’s natural to won-
der if unauthorized witness forgery can be prevented by just keeping the RS
secret from users.
4 The very first element for which a membership witness is issued can remain unknown

if there are no other users which need to update their witnesses. In this case, we
assume that this elements belongs to Y0.

5 Since f0(x) is monic, only deg(f0) evaluations are needed to uniquely interpolate it.
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We will now show that by executing what we will refer to as The Witness
Forgery Attack, colluding users which share their witnesses can successfully re-
cover the RS, even if the Accumulator Manager keeps it secret.

The main observation on which this attack is based on is that given any
partial witness Cy (no matter if it is a membership or a non-membership one)
for an element y with respect to the accumulator value V , it can be expressed as
Cy = gy(α)P for a polynomial gy(x) ∈ Z/pZ[x] which depends on y and fV (x)
(i.e. fV (x) = gy(x)(y + x) + dy for some dy ∈ Z/pZ).

Assume n ≥ |YV | = m users collude and share their partial non-membership
witnesses

Cy1 = g1(α)P, . . . , Cyn = gn(α)P

with respect to V . From Section 8.1, we know that the colluding users can fully
recover the polynomial fV (x) and so they can explicitly compute from the shared
elements y1, . . . , yn the n polynomials g1(x), . . . , gn(x) in Z/pZ[x], each of degree
m− 1. We note that by randomly choosing m out of these n polynomials, they
will be linearly independent with probability

1

pm2 ·
m−1∏
k=0

(pm − pk) =

m∏
k=1

(
1− 1

pk

)
≈ 1

and so we assume, without loss of generality, that g1(x), . . . , gm(x) are indepen-
dent. It follows that for any fixed i ∈ [0, . . . ,m − 1], there exist computable
not-all-zero coefficients a1, . . . , am ∈ Z/pZ such that

xi = a1g1(x) + . . .+ amgm(x)

and so
αiP = a1Cy1 + . . .+ amCym

In other words, the partial reference string

RSm
.
= {P, αP, . . . , αm−1P}

can be obtained from the shared witnesses and this enables the colluding users
to compute membership and non-membership witnesses with respect to V for
any accumulated and non-accumulated element, respectively.

We note that it is more convenient to execute the above attack with re-
spect to the accumulator value V0 and the polynomial fV0(x): in fact, any non-
membership witness for a never added element which is issued with respect to a
later accumulator value than V0, can be iteratively transformed back to a non-
membership witness with respect to V0 by just inverting the non-membership
witness update formula outlined in Section 2. Once both fV0

(x) and RS |YV0 | are
computed, the colluding users can issue witnesses with respect to V0 for elements
in and not in YV0 and update them with respect to the latest accumulator value
as usual. Clearly, since it is possible to issue many different non-membership
witnesses with respect to V0, this implies that by updating them, these non-
membership witnesses can be used to iteratively expand the previously computed
partial reference string RS |YV0 |.
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Attack 1: The Witness Forgery Attack

Input : n ≥ |YV0 | non-membership witnesses for never accumulated
elements, the accumulator history (accumulator values and
added/removed elements)

Output: a non-membership witness for a non-accumulated element or a
membership witness for an accumulated one with respect to V

1 Un-update all non-membership witnesses with respect to V0 inverting witness
update formula and using accumulator history.

2 Interpolate the polynomial fV0(x) =
∏

yi∈YV0
(yi + x) from witnesses.

3 Use Euclidean Algorithm to find gi(x) and dyi such that
fV0(x) = gi(x)(yi + x) + dyi for every colluding element yi, i = 1, . . . , n

4 Use linear algebra to write xj as a linear combinations of g1(x), . . . , gn(x) for
any j = 0, . . . , |YV0 | − 1

5 Obtain RS|YV0 | from witnesses.

6 Use RS|YV0 | and fV0(x) to issue many different non-membership witnesses
with respect to V0.

7 Use the additional non-membership witnesses issued to expand the reference
string to RS|YV |.

8 Issue membership and non-membership witnesses with respect to the
accumulator value V .

More precisely, given an accumulator value V we know that

V =

 ∏
yi∈YV \YV0

(y + α)

V0 = fV (α)P

where fV (x) can be publicly computed from the published witness update in-
formation if the monic polynomial fV0(x) is recovered by the colluding users
through interpolation, as outlined in Section 8.1.

Once the colluding users successfully compute RS |YV0 |, they use it to issue
(a multiple of) |YV | − |YV0 | additional non-membership witnesses for random
elements with respect to V0, they update them with respect to V and expand
their starting set of colluding elements and witnesses. Then, for each element yi
in this bigger set, they compute the corresponding polynomial gi(x) of degree
deg(fV )−1 such that fV (x) = gi(x)(yi+x)+dyi . At this point and similarly as be-
fore, the colluding users can explicitly write a linear combinations of computable
polynomials which equals xi for any i such that deg(fV0)− 1 < i ≤ deg(fV )− 1,
and thus they can expand the previously computed RSdeg(fV0 ) to RSdeg(fV ). In
conclusion, colluding users can forge witnesses with respect to the latest accumu-
lator value by sharing |YV0

| non-membership witnesses only. The whole attack
is summarized in Attack 1.

Similarly as discussed in Section 8.1, this attack can be prevented if the total
number of issued non-membership witnesses is less than |YV0

|.
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9 Conclusions

In this paper, we cryptanalysed the Dynamic Universal Accumulator scheme
proposed by Au et al. [1], investigating the security of the two constructions
proposed, to which we refer as the α-based and the RS-based construction.

For the first construction we have shown several attacks in the case of collud-
ing users which permit to recover the accumulator secret parameter α in order
to covertly subvert the Accumulator manager. More precisely, if p is the order
of the underlying bilinear group, O(log p log log p) non-membership witnesses for
random elements are enough for a full recovery attack on α, no matter how many
elements are accumulated. If instead the elements can be chosen by the attacker,
the number of required witnesses reduces down to just O(log p), thus making the
attack linear in the size of the accumulator secret α. Furthermore, we showed
how accumulator collision resistance can be broken in the α-based construction
given one non-membership witness and we described also another minor design
flaw.

For the second, RS-based construction, we have shown that a group of col-
luding users is able to reconstruct the Accumulator Manager RS, which would
enable them to compute witnesses for arbitrary elements. In particular, if the
accumulator is initialized by accumulating m secret elements, we detailed an
attack where m colluding users that share their non-membership witnesses are
able to recover the secret RS.

Countermeasures We have shown that the α-based construction of Au et
al. Dynamic Universal Accumulator is insecure, however one can still use the
witness defining equations provided in the alternative RS-based construction,
which is collision-resistant under the t-SDH assumption. There is one caveat:
knowledge of RS will enable users to issue witnesses for arbitrary elements. If
this needs to be avoided (ex. in authentication mechanisms), then RS should be
kept secret and the accumulator properly initialized. Namely, the accumulator
manager needs to define an upper limit m to the total number of issuable non-
membership witnesses and has to initialize the accumulator by adding m + 1
secret elements to prevent Attack 1.
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A Implementations

A.1 The Collusion Attack

In this appendix we provide a proof-of-concept implementation of the Collusion
Attack. This implementation was tested using SageMath 9.0 [22] (Release date
2020-01-01, Python 3.7.3, the program is ran from a .py file).

from sage.all import *

NBITS = 512

p = next_prime(randrange(2**(NBITS-1), 2**NBITS))
alpha = randrange(p)

INITIAL = 10
WITNESSES = int(8*ln(p)*ln(ln(p)))

# initial polynomial (secret)
f_alpha = 1
for i in range(INITIAL):
    f_alpha *= randrange(p) + alpha

# nom-membership witnesses
witnesses = []
for i in range(WITNESSES):
    y = randrange(p)
    d = (f_alpha % (y + alpha)) % p
    witnesses.append((y, d))

# recover f(alpha)
print("recover f(alpha)")
q = 1
rems = []
mods = []
while prod(mods) < p:
    q = next_prime(q)

    # step 1 : recover f(alpha) mod q
    cntr = [0] * q
    for y, d in witnesses:
        cntr[d % q] += 1

    mx = max(cntr)
    fa_mod_q = [i for i in range(q) if cntr[i] == mx][0]

    # step 2 : recover alpha mod q
    cntr = [0] * q
    for y, d in witnesses:
        if (fa_mod_q - d) % q != 0:
            cntr[(-y) % q] += 1

    mn = min(cntr)
    rem = [i for i in range(q) if cntr[i] == mn][0]

    rems.append(rem)
    mods.append(q)

# final step: Chinese Remainder Theorem
alpha_rec = crt(rems, mods)
print("recovered alpha correct?", alpha == alpha_rec)
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A.2 The Random-y/Chosen-y Sieving Attack

We provide a proof-of-concept implementation of the Sieving Attack. Several optimiza-
tions are omitted for clarity. In particular, detection of the reduction modulo p is done
only by considering witnesses modulo 2, thus the witness complexity is doubled. This
implementation was tested using SageMath 9.0 [22] (Release date 2020-01-01, Python
3.7.3, the program is ran from a .py file).

from sage.all import *
MAX_CANDIDATES = 2**10
NBITS = 512
# chosen-y (sequential) vs known-y (random)
Y_AS_COUNTER = False

p = next_prime(randrange(2**(NBITS-1), 2**NBITS))
RATIO_ADD = QQ(1)/10

INITIAL = 10
if Y_AS_COUNTER:
    WITNESSES = int(5*ln(p))
else:
    WITNESSES = int(4*ln(p)*ln(ln(p)))

# initial f(alpha) - secret
alpha = randrange(p)
f_alpha = 1
for i in range(INITIAL):
    f_alpha *= randrange(p) + alpha

# initialize with few public values
history = []
ys = set()
for i in range(10):
    y = randrange(p)
    f_alpha = (alpha + y) * f_alpha
    ys.add(y)
    history.append((y, []))

# generate history
cntr = randrange(p//2)
curwit = 0
while curwit < WITNESSES:
    if random() < RATIO_ADD:
        y = randrange(p)
        f_alpha = (alpha + y) * f_alpha
        ys.add(y)
        history.append((y, []))
    else:
        # chosen-y (sequential)
        if Y_AS_COUNTER:
            y = cntr
            cntr += 1
        # known-y attack
        else:
            y = randrange(p)

        wit = (f_alpha % (y + alpha)) % p
        history[-1][1].append((y, wit))
        curwit += 1

# attack
alsb = alpha % 2 # "guess"
total_cands = 1
rems = []
mods = []
q = 1
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while reduce(lcm, mods, 1) < p:
    q = next_prime_power(q)
    if q % 2 == 0: continue

    # detect mod p reduction
    # classify n.m.witnesses
    history_q = []
    falsb = 0 #  high probability
    for y, wits in history:
        falsb = (falsb & (y ^ alsb)) & 1
        groups = [list() for _ in range(q)]
        for yw, wit in wits:
            if (yw ^ alsb) & 1 == 0:
                if wit & 1 != falsb: wit += p
                groups[(-yw) % q].append(wit)
        history_q.append((y, groups))

    # sieve out wrong candidates
    cands = []
    for amodq in range(q):
        falsb = 0 # "guess"
        faq = None
        bad = 0
        match = 0
        for y, groups in history_q:
            if faq is not None:
                faq = (faq * (y + amodq)) % q
            group = groups[amodq]
            for wit in group:
                if faq is None:
                    faq = wit % q
                elif wit % q != faq:
                    bad = 1
                    break
                match += 1
            if match >= 100: break
            if bad: break
        if not bad:
            cands.append(amodq)

    assert alpha % q in cands
    print("q", q, "candidates:", len(cands))
    # if len(cands) > 1: continue

    total_cands *= len(cands)
    rems.append(cands)
    mods.append(q)

print("candidates for alpha:", total_cands,
    "= 2^%.5f" % RR(log(total_cands, 2)))
if total_cands < MAX_CANDIDATES:
    from itertools import product
    for rems1 in product(*rems):
        try:
            test = crt(list(rems1), mods)
            if test == alpha:
                print("correct alpha found:", test)
                break
        except:
            pass
else:
    print("too much candidates")
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