
LUSA - THE LATTICE UNIFIED SET OF ALGORITHMS LIBRARY 1

LUSA: the HPC library for lattice-based
cryptanalysis

Artur Mariano

Abstract—This paper introduces LUSA - the Lattice Unified
Set of Algorithms library - a C++ library that comprises many
high performance, parallel implementations of lattice algorithms,
with particular focus on lattice-based cryptanalysis. Currently,
LUSA offers algorithms for lattice reduction and the SVP.

LUSA was designed to be 1) simple to install and use, 2) have
no other dependencies, 3) be designed specifically for lattice-
based cryptanalysis, including the majority of the most relevant
algorithms in this field and 4) offer efficient, parallel and scalable
methods for those algorithms.

LUSA explores paralellism mainly at the thread level, being
based on OpenMP. However the code is also written to be efficient
at the cache and operation level, taking advantage of carefully
sorted data structures and data level parallelism.

This paper shows that LUSA delivers these promises, by being
simple to use while consistently outperforming its counterparts,
such as NTL, plll and fplll, and offering scalable, parallel
implementations of the most relevant algorithms to date, which
are currently not available in other libraries.

Index Terms—Lattices, lattice-based cryptanalysis, algorithms,
hpc, parallel.

I. INTRODUCTION

Quantum computing: a new era. Although the most skep-
tical disbelief the idea that quantum computers will ever exist,
that possibility has already started to redefine the landscape of
many scientific fields. While in some of those fields, scientists
wait eagerly for their arrival, in others, such as cryptography,
they represent a race against the clock. Back in the nineties,
the news broke that several classical cryptographic schemes
(such as RSA and ElGamal) were insecure against quantum
computers [1], [2]. The key change with quantum computers in
the game is that mathematical problems used as the foundation
of many cryptosystems (e.g. factoring large numbers in RSA
and solving discrete logarithms in ElGamal) would no longer
be a hard row to hoe, which would render those cryptosystems
insecure [3]. After this discovery, many cryptographers sprang
to the challenge of designing cryptosystems that are safe
even in the presence of quantum computers, which eventually
became known as post-quantum cryptography.

Lattice-based cryptography and cryptanalysis. Over the
years, several types of so-called “post-quantum” cryptosystems
have been proposed, in order to prevent that the rise of
quantum computers does pose a challenge from a security
standpoint. Not long after the security of classical cryp-
tosystems was found to be compromised in the presence
of quantum computers, Ajtai discovered that certain lattice
problems have interesting properties for cryptography [4],

Artur Mariano thanks DFG for supporting this work. Artur Mariano is
funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) Projektnummer 382285730.

[5], [6]. This startling discovery marked the beginning of
lattice-based cryptography, leading many researchers to engage
on an intensive investigation of lattice-based cryptosystems.
Not only lattice-based cryptography holds the promise to be
quantum immune, as lattice-based schemes enjoy very strong
security proofs based on worst-case hardness1. To date, no fast
quantum algorithms to solve hard lattice problems efficiently
were found. In 2009, lattices became very attractive as a
candidate to post-quantum cryptography, since Gentry used
them, in 2009, to construct a Fully Homomorphic Encryption
(which allows cryptosystems to perform operations on data
without decrypting it) scheme [7], something whose feasibility
scientists wondered for over 30 years [8], [9], [10], after
Rivest et al. introduced this idea in 1978 [11]. Over time,
lattice-based cryptosystems became increasingly popular and
a hot topic of research, because not only do they support fully
homomorphic encryption as they are also easy to implement
e.g. [12], [13], [14] and quite efficient in practice e.g. [15],
[16], [14]. Today, lattice-based cryptography stands out as one
of the most prominent and rapidly growing fields of post-
quantum cryptography.

Lattices. Lattices are discrete subgroups of the n-
dimensional Euclidean space Rn, with a strong periodicity
property2. A lattice L generated by a basis B, a set of linearly
independent vectors b1,...,bm in Rn, is denoted by:

L(B) =

{
x ∈ Rn : x =

m∑
i=1

uibi, u ∈ Zm

}
, (1)

where m ≤ n is the rank of the lattice. When m = n, the
lattice is said to be of full rank. When n is at least 2, each
lattice has infinitely many different bases.

Lattice-based cryptography uses integer lattices primarily,
because even though there are non-integer lattices, solving
lattice problems on integer lattices is still (very) hard, but
they are easier to handle computationally because there are
no/fewer precision problems. There are also different types
of lattices, including Goldstein-Mayer lattices (which are
commonly referred to as random lattices [19], which we use in
this paper) and Ajtai lattices [4], which typically have vectors
with relatively small coordinates. There are other lattices, with
additional structure, such as ideal lattices [20]. Although we do
not use ideal lattices in this paper, they are still important in the
context of lattice-based cryptography [21], [22]; it is important

1Put simply, this means that breaking cryptosystems based on randomly
chosen, average-case lattice problem instances, is at least as hard as solving
certain lattice problems in the worst case.

2We refer the reader to the papers [17], [18] in order to learn more about
lattices, especially in the context of lattice-based cryptography.

LUSA - THE LATTICE UNIFIED SET OF ALGORITHMS LIBRARY 2

to say that LUSA works with ideal lattices (and every kind of
lattices, to that matter) although there are currently no routines
in the algorithms to explore the structure of ideal lattices.
In the context of cryptanalysis, we should keep in mind that
adversaries may take advantage of this additional structure in
lattices, and so this is a very relevant point. In the future,
LUSA may include versions of algorithms that can indeed
explore ideal lattices.

For visual purposes, we show a lattice and lattice vector
operations in Figure 1. This is a lattice in R2, where the
basis B is composed of b1 and b2, i.e. B = {b1,b2}. The
vector b3 is an example of an operation with lattice vectors:
it is a linear combination of the basis vectors, in particular
b3 = b1−2×b2. This particular linear combination also shows
that b1 can be made shorter (in terms of Euclidean norm) at
the cost of b2, given that b3 is smaller than b1. This process
of making lattice vectors (bases) shorter by adding/subtracting
other lattice vectors is often referred to as vector (basis)
reduction, which is widely used in various lattice algorithms
and is itself carried out with specific algorithms.

0

b1

b2

b3 = b1 − 2b2

Fig. 1. Example of a lattice in R2 and its basis (b1,b2) in red.

Notes, terminology and notation. Let Rn be a n-
dimensional Euclidean vector space. In this paper, we write
vectors and matrices in bold face (or italic if represented
with Greek letters), while vectors are written in lower-case
and matrices in upper-case (or lower-case if represented with
Greek letters), as in vector v and matrices M and µ. Vectors
(also called lattice points or simply points) in Rn represent
1× n matrices, from both a mathematical and computational
perspective. The Euclidean norm (or length) of a given vector
v in Rn, ‖v‖, is

√∑n
i=1 v2i , where vi is the ith coordinate of

v. When we mention a “short” vector, we refer to its Euclidean
norm (or length). The term zero vector is used for the vector
whose norm is zero, i.e., the origin of the lattice.

“Schemes” is the short version of “cryptoschemes” or “cryp-
tosystems” (the reader may also recognize the term “code”,
which means the same).

Cryptology is the science that focuses on the study of
cryptography and cryptanalysis. While “cryptography” can be
defined as the practice of creating and understanding codes
that keep information secret, “cryptanalysis can be defined
as the science that studies the procedures, processes and
methods used to translate or interpret secret writings, as
codes and ciphers, for which the key is unknown. In practice,

cryptanalysis enables one to analyze cryptosystems, so that
one can trust them. As we show later, crypanalysis is also
fundamental, as it is the tool used to define the parameters of
new cryptosystems, so that they are secure and efficient.

Security of lattice-based crytposystems. Cryptosystems
base their security on hard mathematical problems. For in-
stance, the security of the RSA cryptosystem is based on the
hardness of factoring certain large integers. In practice, this
means that an attacker is able to break the scheme if he/she
can efficiently factor large numbers with the same number of
bits as the key in the scheme. Therefore, the security of RSA
relies on the fact that factoring large integers is a very hard
problem, and its complexity grows fast with the input size. In
practice, key sizes are chosen such that there is no attacker
who can factor a large number of that size in a reasonable
amount of time. We comment on this problem in the next
subsection.

Lattice-based cryptosystems also base their security on
hard mathematical problems, in particular lattice problems.
Depending on the exact scheme, these may be 1) lattice basis
reduction, 2) the Shortest Vector Problem (SVP), 3) the Closest
Vector Problem (CVP), 4) the Learning with Errors (LWE) and
several variants of these, to name the most relevant ones. Due
to the connection between the problems and the security of the
corresponding cryptosystems, the algorithms that solve these
problems are sometimes referred to as attacks.

How to choose security parameters such as the key size
of the scheme? Till deployment of cryptosystems, we must
carry out an intense scrutiny of possible attacks against those
cryptosystems, so that one can have increased confidence on
their security and appropriate parameters of practical imple-
mentations of these systems can be chosen.

Selecting security parameters is not a simple, deterministic
process. Intuitively, we would simply define “very high”
parameters, but these would lead to slow (also said inefficient)
schemes. In practice, parameter selection is a two-step, rather
empirical process. First, the potential of attacks has to be deter-
mined in practice and not just in theory. This has to be done in
the highest-end computer architectures, which adversaries may
have access to. Having determined this potential, the second
step is to define security parameters of schemes such that it
is intractable to solve the underlying security problems with
those parameters, based on the known potential of the available
attacks and computer architectures.

Thus, the scrutiny for possible attacks to these systems
must consist of comprehensive and tenacious efforts at solving
these problems. Until the arrival of quantum computers, the
strongest attacks one can envision in this context are efficient
implementations of the best algorithms to solve the aforemen-
tioned lattice problems. In particular, it should be investigated
how suited and scalable these algorithms are on parallel,
high performance computer architectures. At the same time,
it is important to note that the necessity for serious testing
in practice also stems from the fact that lattice algorithms
tend to behave differently in practice than predicted in theory,
especially in large-scale experiments.

These arguments alone go to show that high performance
computing is a key tool in cryptanalysis, as it only makes

LUSA - THE LATTICE UNIFIED SET OF ALGORITHMS LIBRARY 3

sense to assess the potential of attacks on the highest-end
computer architectures. In fact, this is why we have witnessed
considerable efforts in the development of parallel, efficient
implementation of attacks. In short, implementing the best
attacks known on the best parallel multi- and many-core
architectures is the only way to actually determine the potential
of attacks in practice and therefore accurately select security
parameters for lattice-based cryptosystems, such that they are
both secure and efficient.

We note that there are no “standard” lattice dimensions
which we would see in real case scenarious; instead, the goal
of lattice based cryptanalysis is, fundamentally, to determine
how high one can go with the available algorithms and
computer architectures. For the sake of this paper, we have
limited lattice dimensions to 60 and 65, depending on the
algorithm. We note that although LUSA could, in theory,
perform very differently for much higher dimensions, the goal
is of this paper is to show how the library performs per se and
how it compares to other available implementations.

Why LUSA? First off, implementing a library with attacks
(and building blocks for the development of new attacks) is
of paramount importance in the context of lattice-based crypt-
analysis, because as we showed, assessing the performance of
attacks on high-end computer architectures is vital.

LUSA was primarily developed due to the lack of some
features on some of the existent lattice libraries, such as NTL3,
plll4 and fplll5.

First, neither NTL nor fplll are specifically coded for low-
level efficiency (although they are efficient libraries to some
extent, they are better known for offering several methods,
with great focus on mathematical aspects), and no parallel im-
plementations are generally offered. For instance, NTL’s BKZ
implementation is often used in high dimensional lattices as a
common pre-processor, and it can require days of computation,
depending on the lattice dimension and BKZ parameters. This
has indeed been a limiting factor in the context of trying to
break into higher dimensions of the SVP-Challenge6.

Second, NTL, fplll and plll depend upon other libraries,
rendering the overall installation cumbersome and time-
consuming. Also, this increases compilation and execution
time of the used library algorithms, among other problems.

Third, although a very useful library in many fields related
to number theory, NTL it is not specifically designed to be
used in the context of lattice-based cryptanalysis. NTL is a
number theory library that includes a myriad of algorithms
that, although useful and relevant in many scientific fields, are
usually not used by the lattice-based cryptanalysis community.
In fact, the complexity of NTL served as the subject of many
offline (interesting) conversations at cryptography conferences
the author attended over the past 6 years. The target public
of lattice libraries are mainly users with a strong background
on mathematics, who prefer to work with libraries that are
simple to install and use. Also, because NTL comprises so
many classes of algorithms, some of which growing by the

3https://www.shoup.net/ntl/
4https://github.com/fplll/fplll
5https://felix.fontein.de/plll/
6https://www.latticechallenge.org/svp-challenge/

day, it is difficult to catch up with the headway made on lattice
algorithms and their implementations. This means that NTL is
not specifically designed for lattice-based crytptography and
cryptanalysis, and it is often regarded as “a sledgehammer”
even if we only want to kill a fly. At the same time, the
same mathematicians who find the current libraries too hard
to install are interested in performance.

fplll, in contrast to NTL, was mainly designed for lattice-
based crytptography and cryptanalysis purposes, offering sev-
eral lattice algorithms, such as LLL [23] and BKZ [24] (cf.
Section II for more details), including BKZ 2.0 [25]. The
central algorithm of the library is LLL, thus the name of
the library; it is also very much based on floating-point or-
thogonalization. The floating-point LLL reduction algorithms
offered by fplll [26], [27] are based on a trade-off between
speed and guarantees. fplll is thus a very centered library, as
it it very focused on this particular angle (which is surely very
relevant for the cryptanalysis and cryptography communities).
There is some effort in creating a very modular library and
specific operations to be oblivious to the user. However, as we
will show in this paper, LUSA not only offers more algorithms
than fplll as it also offers efficient, parallel versions of those
algorithms (to our knowledge, although fplll is somewhat
thread-safe, there are no built-in functions that can run in
parallel - there are only such functions in the context of fplll
“ecosystems”, i.e. external modules/libraries).

Released in 2014, plll is another major library in this
context. The library was also mainly designed for lattice-
based crytptography and cryptanalysis purposes, judging by
the implementations offered, but while it includes a vast array
of algorithms and options for those algorithms, it does not
include the most recent ones (e.g. sieving). Additionally, plll
depends upon other libraries (GMP, MTFR and the boost
library) and there is only one parallel algorithm in the entire
library, enumeration (with some form of pruning).

LUSA was designed to be simple - we made LUSA 100%
independent from other libraries - efficient and specifically
thought out for lattice-based cryptography. Plus, all algorithms
in LUSA (except for LLL, whose execution time is not large
in most cryptanalysis setups - if LLL is to be run on high
lattice dimensions then LUSA is probably not the best library
to that end) can run with multiple threads and scale very well.

LUSA’s promises. LUSA promises two things: simplicity
- it is simple to install and use, depending upon no other
library - and performance/parallelism, as most methods are
also very efficient and parallel. The majority of the provided
implementations are considerably faster that those in similar
libraries, such as NTL, fplll and plll, as we show in this paper.

But why are cryptographers interested in usability and
performance, for such a library? Most cryptographers do
not have a strong background in computer science (as they are
mainly mathematicians) so usability is very important7. As for
performance, there are mainly two reasons for its need:

1) The first reason is parameter selection, as we mentioned
before. If LUSA’s algorithms are directly used to esti-

7Yet, some cryptographers have presented beautiful works on algorithms
coded for efficiency, let alone computer libraries.

LUSA - THE LATTICE UNIFIED SET OF ALGORITHMS LIBRARY 4

mate security parameters of schemes, they need (and are)
to be efficient. In fact, to this day, there is no standard
library for this matter; this is currently done relying
on many different, isolated implementations, which are
typically not normalized as they are tested and assessed
in different architectures, compilers, and other variables.

2) The second reason is because new algorithms are often-
times developed using existing ones as building blocks.
Having a set of parallel, efficient algorithms will ensure
that the new attacks are themselves efficient and parallel.
This is very relevant in order to assess the actual
performance of new attacks in practice, as they are
developed. In fact, some algorithms are very good in
theory but intractable in practice e.g. a Voronoi-based
SVP-solver proposed in [28]. Having a tool to assist
experimentation right after design is crucial to shed light
on the tractability of attacks.

LUSA’s scientific contribution. LUSA contributes to the
scientific field of lattice-based cryptanalysis in the following
ways:

i) LUSA includes implementations of algorithms that are
the fastest implementations known. These implementa-
tions contain a variety of novel HPC and parallel com-
puting techniques/strategies.

ii) As LUSA offers algorithms that can be used in a modular
way, LUSA is itself a platform that enables crypto-
graphers to create new, high performance attacks. This
is especially true for attacks that include other lattice
algorithms as part of their execution (e.g. some lattice-
based reduction algorithms use SVP-solvers as part of
their logic). As a result, cryptographers will have a much
better sense of the performance of the algorithms as they
develop them.

iii) Not only LUSA allows for the development of new
algorithms in terms of performance and parallelism, but
it can also suport the development of new algorithms by
containing many routines which can be used as building
blocks (e.g. from the Gram-Schmit ortogonalization to
lattice reduction algorithms).

iv) LUSA presents itself as a standard library to normalize
performance assessment across several attacks and lattice
algorithms, a crucial problem in parameter selection. The
community can simply download LUSA and test the
algorithms therein on their desired CPU platform (in the
future, we will extend this to GPUs).

Roadmap. The rest of this paper is organized as follows.
In Section II, we provide a brief overview of the lattice-based
cryptography and cryptanalysis field, its evolution in recent
years and how LUSA fits in. In Section III, we present LUSA,
by explaining how the library is structured and what methods
are available. In Section IV we present the benchmark platform
used in this paper, which was chosen to be well representative
of a possible LUSA end user. In Section V we present and
comment on the performance of LUSA, including how well it
compares to other libraries and how it scales with the number
of cores. In Section VI, we wrap up the paper, with some brief
conclusions and comments. In Section VII, we provide lines

of future work, providing timelines for LUSA’s next versions.

II. LATTICE BASED CRYPTANALYSIS TODAY

”Do you hack cryptosystems for a living? Not quite...”

Lattice-based cryptanalysis has evolved quite rapidly, as
a way to scrutinize lattice-based schemes which developed,
themselves, very quickly. As for lattice-based cryptography,
there are a few papers, reports and notes published on the field.
In particular, emphasize 1) introductory papers from 2006 and
2009 [17], [29], 2) an extensive tutorial for beginners, from
2015 [30] and and 3) a paper/survey from 2016, which also
provides an introduction to lattice-based cryptography as well
as the progress in the field over a decade [31]. As for lattice-
based cryptanalysis, there is a comprehensive survey, from
2017, solely on the advances of the field, which we refer the
reader to [32], shall he want to know more. Yet, we provide
a brief overview of the field, stating where and how LUSA
frames in. Other resources on both lattice-based cryptography
and cryptanalysis include surveys and overviews ([33], [34],
[35], [36], [37], [38], [10], [39]), PhD theses (e.g. [7], [40],
[41], [42], [43], [44]) and books [45], [46], [47]. There are
also multiple talk slides and videos available online for free
on the topic.

A. Problems on lattice-based cryprography: SVP, CVP and
lattice reduction

There are many lattice problems in the context of cryptogra-
phy and cryptanalysis. As we show in the following, LUSA’s
first release version (v1.0) addresses the SVP and lattice basis
reduction.

SVP. The norm of a shortest vector8 of a lattice is denoted
by λ1(L). The norm of the shortest vector in the lattice is
also the minimal distance between any two vectors in the
lattice. Finding the shortest vector in the lattice is a problem
known as the Shortest Vector Problem (SVP). The SVP is one
of the most studied problems in lattice-based cryptanalysis.
Formally, the SVP can be defined as: given a basis B of the
lattice L, find a non-zero vector p ∈ L such that: ‖p‖ =
min ‖v‖ : v ∈ L(B), ‖v‖ 6= 0. This is typically called
“exact SVP” as there are approximate versions of the SVP
(e.g. α-SVP, which is an approximate version of the SVP
and whose solution is at most α% off the SVP solution). In
fact, the SVP is especially relevant in the context of lattice-
based cryptography because it 1) can actually be used to break
cryptosystems that rely on the α-SVP and 2) it is used in
many other, practical algorithms in the field, such as BKZ 2.0,
the most practical lattice basis reduction algorithm (which can
also be used to solve the α-SVP), uses SVP-solvers as part
of its logic. For a comprehensive review of the approximate
versions of the SVP, the reader is referred to [29]. In order
to understand the impact of LUSA, note that the SVP does
not state anything about the basis, but the used basis has a big
impact on the practical performance of SVP- and other solvers.
Emde Boas showed, in 1981, that the SVP with infinity norms

8Note that due to the natural symmetry in lattices, there is not only one
shortest vector.

LUSA - THE LATTICE UNIFIED SET OF ALGORITHMS LIBRARY 5

is NP-hard [48]. In 1998, Ajtai showed that the SVP is NP-
hard under randomized reductions for the Euclidean norms as
well [6]. The Ajtai-Dwork cryptosystem bases its security on
the γ-Unique SVP, a derivative problem of the SVP [5].

CVP. The Closest Vector Problem can be defined as: given
a basis B of the lattice L, and a target vector v ∈ L, find a
vector p that is closest to v, i.e. such that: p = min ‖v-w‖ :
w ∈ L(B). Just like the SVP, the CVP has also derivative and
approximate versions (cf. [49], [29]). Arora et al. have shown
that the CVP is NP-hard to approximate within any constant
factor [50]. Goldreich et al. showed that the CVP and the SVP
share the same hardness [51]. An example of a cryptosystems
whose security is based on the hardness of the CVP is the
Goldreich-Goldwasser-Halevi (GGH) cryptosystem [52].

Lattice basis reduction. Lattice basis reduction algorithms
aim at improving the “quality” of the lattice bases, by shorting
the basis vectors and making them more orthogonal. Currently,
the main lattice reduction algorithms are LLL and BKZ (both
of which have many versions). Lattice basis reduction is one of
the most well-studied problems in lattice-based cryptography,
as they marked the beginning of remarkable cryptanalytic
events (e.g. LLL was used to attack many lattice-based and non
lattice-based schemes) and render problems such as the SVP
and CVP easier from a computational standpoint, as solvers
become much faster. Also, approximate versions of the SVP
can also be solved with lattice basis reduction algorithms.

There are other lattice problems that are very relevant is the
context of lattice-based cryptography. One of these problems
in the learning with errors (LWE) problem, initially proposed
by Regev in 2015 (cf. [53], which had a preliminary version
at STOC 2005). The LWE is a generalization of the Learning
Parity with Noise (LPN). If the reader wants to know more
about LWE, we refer to [53], [34], [32], [31].

The Short Integer Solution (SIS) problem is another relevant
problem in the context of lattice-based cryptanalysis. Intro-
duced by Ajtai in 1996 [53], it has served as the foundation
for many schemes, ranging from identification schemes to
minicrypt primitives (but not public-key encryption). If the
reader wants to know more about SIS, we refer to [53], [31].

In the future, LUSA will aim at including solvers for LWE
and other lattice problems that are relevant for lattice-based
cryptography.

B. Brief state of the art of SVP- and CVP-solvers

Many algorithms have been proposed to solve the SVP and
the CVP. Table I briefly summarizes them. The algorithms in
blue are included in LUSA, the algorithms in red are scheduled
for the next versions of LUSA; the others are not relevant for
LUSA, in the short term, but they may be integrated in the
long term.

It is also worth noting that the original SE (from “Schnorr-
Euchner”) enumeration algorithm was presented in [28], but
was improved in [66], an improved version which we refer to
as SE++. This algorithm was later improved in [71] by discard-
ing symmetric branches on the enumeration tree, specifically
for SVP computations, which was named “Improved SE++”.
This can be considered as a form of pruning, i.e., a method

Algorithm Family Type Year
Relevant Vectors [28] Voronoi Cell CVP/SVP 2002
Micciancio et al. [33] Voronoi Cell SVP 2010
AKS [54] Sieving SVP 2001
Nguy˜ên-Vidick [55] Sieving SVP 2008
ListSieve (LS) [56] Sieving SVP 2010
GaussSieve (GS) [56] Sieving SVP 2010
LS-birthday [57] Sieving SVP 2009
WLTB sieve [58] Sieving SVP 2011
Three-level sieve [59] Sieving SVP 2013
Overlattice sieve [60] Sieving CVP/SVP 2014
HashSieve [61] Sieving SVP 2015
BGJ sieve[62] Sieving SVP 2015
LDSieve [63] Sieving SVP 2016
3-Sieve from G6K [64] Sieving SVP 2019
Kannan [65] Enumeration CVP/SVP 1983
ENUM [24] Enumeration SVP 1994
SE [28] Enumeration SVP/CVP 2002
SE++ [66] Enumeration SVP/CVP 2002
Improved SE++ [67] Enumeration SVP/CVP 2002
Extreme Pruning [68] Enumeration SVP 2010
MW-Enum [69] Enumeration SVP 2015
Fukase et al. [70] RS SVP 2015

TABLE I
ALGORITHMS FOR THE SVP AND THE CVP. ALGORITHMS IN BLUE ARE
INCLUDED IN LUSA, ALGORITHMS IN RED ARE SCHEDULED TO APPEAR

IN LATER VERSIONS OF LUSA.

to discard computation. The concept of pruning is more
established as a method to discard computation (which may
be redundant or not) in enumeration algorithms, as these are
usually based on trees of computations. The basic enumeration
method in LUSA (enumerate) is based on [24]. The extreme
pruning method in LUSA (enumeratePruned) is based on
[68].

III. LUSA

“Lusitania (Portuguese: Lusitânia) was an ancient Iberian
Roman province located where modern Portugal and a small

part of western Spain lie. The term “lusa” is derived from
“lusitania”.”

In this section, we briefly present LUSA, starting with
LUSA’s ad hoc multiple-precision module and mentioning the
main algorithms offered.

A. Multiple-precision capable LLL

Libraries for lattice algorithms should be prepared to handle
big numbers, because lattices are frequently generated in a way
that vectors end up with mega-large coordinates. The orders
of magnitude of these numbers can be of tens/hundreds or
even thousands of billions (1010 or 1011 digits). This means
that the primitive data types of common languages, such as C
and C++, are not enough to store such numbers and therefore
other datatypes are needed. Lattice libraries must be able to
represent and execute known arithmetic operations, such as
additions and multiplications, on such numbers. This is known
as multiple- or arbitrary-precision capability, which can be
applied to both integer and floating-point numbers.

As we zeroed in on performance when designing LUSA, we
endowed LUSA with a multi-precision module implemented
from scratch, specifically coded for performance. The key
features of this module are:

LUSA - THE LATTICE UNIFIED SET OF ALGORITHMS LIBRARY 6

• An implementation of an extended exponent double pre-
cision data type, or xdouble9, which allows to represent
floating point numbers with the same precision as a
double, but with a much larger exponent. It is provided
in LUSA as a C++ class and supports a multitude of
different operators (the user is referred to LUSA’s manual
for more details on this). This is indeed very similar to
the class with the same name in NTL.

• An implementation of ZZ, a class which allows to repre-
sent integers that do not fit into primitive data types. This
is also provided as a class with a multitude of operators
(the user is referred to LUSA’s manual for more details
on this). Our ZZ class is unique and different from
the implementations of other libraries (although some
operations are based on the same algorithms, as there
are only a handful, if that much, per operation).

• An implementation of RR, which allows to represent
floating point numbers with arbitrary precision. Unlike
primitive floating point data types, the precision of num-
bers represented with this class are not fixed. This class
also supports a multitude of operators (the user is referred
to LUSAs manual for more details on this). The same we
said for ZZ applies to the RR class.

LUSA also contains the basis class (with the basis.h
header), which contains all methods and algorithms provided.

B. Lattice-reduction algorithms: LLL and BKZ

LUSA implements several LLL variants, both heuristic and
exact versions. These include:

• The lll routine, the core implementation of LLL in LUSA,
a floating-point implementation based on Schnorr’s float-
ing point LLL version [24]. This method uses our ZZ
class. In fact, there are two methods in this description,
but one uses native datatypes for the floating point part
of LLL (lllnd) and the other uses our xdouble class
(lll). The former works up until dimension 50, the latter
works on any dimension (we comment on this later on).

• An exact version of LLL, called exactlll, which makes
use of native data types, based on the [23]. This means
that the numbers in the lattice basis should fit, at most,
in long long datatypes (forces 64 bit). There is also
a variant of this version (exactlllmp), which works on
any lattice basis, regardless of their size.

The fastest LLL variant in the library is indeed an heuristic
variant of the LLL algorithm with floating point arithmetic,
which was proposed by Schnorr and Euchner [24] and can
be invoked with the lll method (note that we implemented
this method with xdouble so that there are no precision
problems up until high lattice basis dimensions). The LLL
implementations in LUSA are not parallel, as LLL is not
particularly suitable for parallelization [72], [73], [74], [75]
(most parallel versions of LLL do not scale well in practice;
to improve upon this, many variants of the original algorithm
were created as a way to improve its parallelization potential,

9We have maintained the terminology of NTL in order to reduce the
learning curve of current NTL users.

but LUSA intends to implement the original LLL floating
point algorithm by Schnorr and Euchner). In most lattice-based
cryptanalysis setups, LLL tends to result in a much smaller
portion of time than other algorithms, say BKZ. However, as
LLL may play an important role in specific setups (and in
other areas of crytanalysis), we plan on optimizing LLL in
the future.

LUSA assumes that all lattice bases are LLL-reduced before
any other algorithm is invoked. Therefore, as LLL is the
starting point of any significant computation in LUSA, all LLL
implementations use the multiple precision directly, in order to
handle large numbers that may exist in the raw, unprocessed
input lattices. All LLL variants yield a final basis that fits
into native C datatypes. This means that users should first
LLL-reduce any basis they want to run LUSA’s algorithms
on (even if other lattice-reduction algorithms are to be used
after). Listing 1 is an example of how LUSA can be used in
a main.cpp file and be started off (with an LLL reduction,
in this case). As this paper is not intended to be a manual for
LUSA, please check the manual on LUSA’s webpage10. Each
algorithm has a set of parameters which are both used as input
and output. This can be checked in LUSA’s manual.
i n c l u d e ” b a s i s . h ”

i n t main (i n t argc , char ∗ a rgv [])
{

B a s i s ∗B = new B a s i s (a rgv [1]) ;

f l o a t d e l t a = 0 . 9 9 f ;

B−> l l l (d e l t a) ;

re turn 0 ;
}

Listing 1. Example of how to start LUSA, with an LLL-reduction.

After the input basis is LLL-reduced, any of the algorithms
in LUSA can be called upon it. For instance, after the basis
is LLL-reduced, we can move on to SVP calculations (in this
case with enumeration), as shown in Listing 2.
i n c l u d e ” b a s i s . h ”

i n t main (i n t argc , char ∗ a rgv [])
{

B a s i s ∗B = new B a s i s (a rgv [1]) ;

f l o a t d e l t a = 0 . 9 9 f ;
i n t dim = B−>ge tDimens ion () ;

B−> l l l (d e l t a) ;

B−>c o n v e r t B a s i s () ;

i n t b e t a = 2 0 ;

B−>bkz (be t a , d e l t a) ;

long ∗ S h o r t e s t V e c t o r = (long ∗) c a l l o c (dim , 8) ;
double Shor t e s tNorm = 0 . 0 ;

Shor t e s tNorm = B−>enumera t e (S h o r t e s t V e c t o r) ;

re turn 0 ;

10http://alfa.di.uminho.pt/˜ ammm/lusa.html

LUSA - THE LATTICE UNIFIED SET OF ALGORITHMS LIBRARY 7

}
Listing 2. Example of an SVP-solver (enumeration) call in LUSA, after a
LLL and a BKZ basis reduction.

The Block Korkine Zolotarev (BKZ) algorithm is the other
most prominent algorithm for lattice basis reduction. LUSA
also provides a method to BKZ-reduce a basis (which, as any
other algorithms, assumes that the input basis is LLL-reduced).
LUSA’s BKZ implementation is parallel, thus being able to run
with a single or multiple threads. We also implemented BKZ
2.0, but this version does not yield the optimal result yet, and
is still under development.

C. CVP-solvers

Currently, LUSA does not offer methods to compute the
CVP. However, most of the enumeration methods included
in LUSA (and some of the sieving routines) are capable of
solving the CVP, if a few modifications are conducted. Given
that our goal is to develop an independent library that includes
most lattice algorithms, these will be available in LUSA v2.0
and subsequent versions.

D. SVP-solvers

LUSA offers a wide range of SVP-solvers, as this is the
main focus of v1.0. LUSA implements the enumeration family
(enumerate and enumeratePruned), based on [24], [68],
both of which versions are parallel. In order to run LUSA’s
methods in parallel, each method has an interface that can be
called with a certain number of threads, as we show in Listing
3.
i n c l u d e ” b a s i s . h ”

i n t main (i n t argc , char ∗ a rgv [])
{

B a s i s ∗B = new B a s i s (a rgv [1]) ;

i n t dim = B−>ge tDimens ion () ;

long ∗ S h o r t e s t V e c t o r = (long ∗) c a l l o c (dim , 8) ;
double Shor t e s tNorm = 0 . 0 ;

Shor t e s tNorm = B−>enumera t e (S h o r t e s t V e c t o r , 4) ;

re turn 0 ;
}
Listing 3. This is simply illustrating how to call the enumerate method; in
practice and LLL call and the convertBasis() methods are necessary!

Notice that enumerate in the listing above is called with
4 threads. If no thread count is specified, then LUSA captures
the number of logical cores in the system and executes the
invoked methods with the same number of threads as logical
cores.

LUSA also includes the sieving family, implementing pretty
much all relevant sieving algorithms for the SVP. In particular,
LUSA offers ListSieve (listSieve) [56], [76], GaussSieve
(gaussSieve) [56], [77], and HashSieve (hashSieve) [61],
[78], [79] (LDSieve - ldSieve -, presented in [63], [32],
is scheduled for future work). Recently, a few other sieving
algorithms have been published e.g. [80], [64], but these are
not yet implemented in LUSA, although we do expect to offer
them in v2.0 and subsequent versions.

Finally, LUSA offers other SVP-solvers, such as Voronoi-
cell based ones. In particular, it offers voronoi, which is
based on the “Relevant Vectors” algorithm described in [28],
voronoi2.0, an optimized Voronoi-cell based algorithm pre-
sented in [81]. Both these implementations are also parallel.

LUSA offers some other methods (e.g. Gram-Schmit or-
togonalization) and although they are relevant while doing
extensive algorithmic work with the library, they are not
mentioned in this paper as they are commented on in LUSA’s
manual.

IV. HARDWARE SPECIFICATIONS

In this paper, we show LUSA’s performance and we com-
pare it against other well-established libraries. To carry out
these tests, we picked the machine specified in Table II.
Although this is not the kind of machine that would be
used to carry out attacks or assess algorithms under hard
constraints (e.g. large lattice dimensions), this is a sufficiently
good representative machine of the end user of LUSA.

TABLE II
SPECIFICATIONS OF THE CPU SYSTEM USED FOR BENCHMARK. SMT

STANDS FOR SIMULTANEOUS MULTI-THREADING AND HT STANDS FOR
HYPER THREADING.

Sockets 1
CPU Intel Core i7 740QM
Clock
frequency 1.73 GHz (2.93 GHz)

Cores per
socket 4

SMT Yes
(w/HT, 8 threads)

L1 Cache 32 kB i + 32 kB d
L2 Cache 256 kB
L3 Cache 6 MB
RAM 8 GB
Compiler g++ 7.2.0

The clock frequency in parenthesis is the maximum fre-
quency of the CPU, when Turbo Boost is turned on. L1
cache values are split between instruction cache (i) and data
cache (d). The machine runs Ubuntu 17.10 x86 64 with
kernel version 4.13. All programs were compiled with the
-march=native -O3 optimization flags.

The lattices used on this paper were obtained using the SVP-
Challenge’s lattice basis generator11.

V. LUSA’S PERFORMANCE

”I dont care if it works on your machine! We are not
shipping your machine!”

In this section, we present LUSA’s performance briefly,
while comparing it against the other most popular lattice
libraries: NTL (v. 11.3), plll (v. 1.0) and fplll (v. 5.2.1).

A. Lattice reduction algorithms

Figure 2 shows the performance of LUSA’s LLL and
BKZ. LUSA’s LLL, although coded for performance, encap-
sulates a few operations that make it, overall, slower than

11https://www.latticechallenge.org/svp-challenge/

LUSA - THE LATTICE UNIFIED SET OF ALGORITHMS LIBRARY 8

a “standard C LLL implementation”. This has to do with
managing datatypes, allocating structures that are necessary
for the overall LUSA execution, among others. We made this
decision because LLL is the “entry point” of any substantial
computation with LUSA, and it typically reduces lattices in
less than a few seconds, even for high dimensions. In short,
if one user wants to simply run LLL on a lattice-basis and
aims for maximum performance, LUSA’s LLL is not the go-
to solution.

Fig. 2. Average execution times for the LLL and BKZ (block size 20) routines,
using 1 thread.

As we said, our LLL implementation runs LUSA’s multi-
precision module. This lowers LLL’s overall performance, as
we store the basis in different formats and many datatypes
“conversions” take place. After LLL is executed, the user has
to call the convertBasis method, which converts the basis to
the native datatypes (instead of multiple precision datatypes)
and can then call any other algorithm in LUSA. We opted
to not call this method transparently after an LLL execution
because the user should be aware of this, if basis elements are
read. In Listing 4, note that enumeration is called after LLL,
but the method convertBasis is called in between.

i n c l u d e ” b a s i s . h ”

i n t main (i n t argc , char ∗ a rgv [])
{

B a s i s ∗B = new B a s i s (a rgv [1]) ;

f l o a t d e l t a = 0 . 9 9 f ;

B−> l l l (d e l t a) ;

B−>c o n v e r t B a s i s () ;

long ∗ S h o r t e s t V e c t o r = (long ∗) c a l l o c (dim , 8) ;
double Shor t e s tNorm = 0 . 0 ;

Shor t e s tNorm = B−>enumera t e (S h o r t e s t V e c t o r) ;

re turn 0 ;
}
Listing 4. Example of an enumeration call in LUSA, after a LLL, with the
explicit call of the convertBasis method.

We now compare LUSA against other libraries in terms of
lattice-reduction algorithms.

Given that our LLL makes use of the multi-precision module
to “convert” the lattice basis into one basis that fits in native
datatypes and initiates other libraries functions, our LLL is
slower than NTL’s - which also uses multiple-precision - and
fplll’s implementations12 of LLL (as shown in Figure 3). fplll
implements a different LLL variant.

However, we point out that 1) performance is generally
not a problem in LLL, because LLL can run high lattice
dimensions in a very short time-frame (in Figures 3 and 4
LLL requires more time than BKZ not only because of multi-
precision being required but also because we ran BKZ with
a low block size), and 2) as mentioned before, our LLL
implementation encapsulates several steps that prepare the
execution of following algorithms. In fact, we have centered
LUSA around the premise that all input lattice bases are first
LLL-reduced, and we accepted a loss of performance at that
point. The main reason for this is that, as mentioned, LLL
is one of the fastest lattice algorithms there is, and high
performance is typically not required.

Note that NTL’s LLL becomes significantly slower after
dimension 50, where performance becomes comparable to
LUSA. This is because NTL uses the xdouble class after
dimension 50, whereas LUSA uses it for any dimension (in
practice we could have determined xdouble is necessary for
a given lattice basis and turn it on/off accordingly - note that
LUSA also has an LLL implementation that does not use
xdouble - which we have not as LLL runs very quickly
anyway).

Fig. 3. Comparison of the LLL routine for the LUSA, fplll and NTL
implementations, using 1 thread.

As for BKZ, as Figure 4 shows, our implementation is
considerably faster than both NTL’s and fplll. There are two
main reasons for this: 1) the LLL calls within BKZ are
very much optimized, in terms of memory handling, pointer
arithmetic and coding, and 2) our xdouble module (i.e.
including operations on xdouble datatypes) is more efficient
than NTL’s. In a follow-up paper, we will scrutinize LUSA’s
performance from a computational standpoint, and we will
show analytics pertaining to these factors (e.g. cache miss rates

12fplll was set to run without specifying any options, thus the library uses
as much precision as it desires (it may use GMP).

LUSA - THE LATTICE UNIFIED SET OF ALGORITHMS LIBRARY 9

across different cache levels, computational pointer arithmetic
vs memory usage, etc).

Fig. 4. Comparison of the BKZ (block size 20) routine for the LUSA, fplll
and NTL implementations, using 1 thread.

Another important point is that LUSA’s BKZ is parallel.
In Figure 4, we present the results for a single thread. The
scalability of BKZ is shown in Figure 5. As the figure shows,
BKZ scales well, but only if the BKZ window is large enough.
Essentially, we parallelized BKZ by executing the enumeration
routines on each window with LUSA’s parallel enumeration
routine, which scales itself very well (but only after a certain
window). We believe this is a good choice as small-window
runs of BKZ are not too much time-consuming anyway.

Fig. 5. Performance of LUSA’s parallel BKZ, for 1-8 threads. Beta (window
size) set to 40.

For dimension 60, LUSA’s BKZ implementation obtains
speedups of approximately 2.5x for 4 threads and about 3.5
for 8 threads (4 SMT-based threads).

B. SVP-solvers

This subsection shows the performance of LUSA’s SVP-
solvers, in isolation and compared to other libraries, and their
scalability.

Performance. Figure 6 shows the performance of LUSA’s
enumeration routine with pruning turned on and off

Fig. 6. Average execution times for the enumeration and hash sieve routines,
using 1 thread.

(enumerate and enumeratePruned) and the Hashsieve
routine (hashSieve), for a single thread.

In LUSA, Hashsieve is better than enumeration with (ex-
treme) pruning, which is congruent with previous results on
these algorithms in other contexts other than libraries.

These implementations have all been presented in [79],
[71], [67]. Although slight modifications have been made to
the implementations, so that they fit LUSA (e.g. allowing
for generic parameterization, global variables, thread safety,
etc), their core implementation is the same as presented in
the papers, and LUSA’s performance is in line with that of
those implementations. As data structures are allocated when
each method is called, LUSA incurs overhead that isolated
implementations do not.

LUSA vs other libraries. We now show results of LUSA
compared to other libraries and implementations. Figure 7
compares LUSA’s enumeration routine (enumerate) against
fplll. fplll is faster than LUSA running with one thread, for
this particular algorithm, but fplll does not provide a parallel
version of the algorithm, and LUSA is much faster if the
algorithm is run with multiple threads.

Fig. 7. LUSA’s enumeration, for 1-8 threads, compared to fplll.

The results (i.e. the shortest vector) yielded by the methods

LUSA - THE LATTICE UNIFIED SET OF ALGORITHMS LIBRARY 10

in both libraries are identical.
As for LUSA’s pruned enumeration routine

(enumeratePruned), it is considerably faster than that of
plll for higher dimensions, as shown in Figure 8. This is
indeed the only algorithm that can run with multiple threads
in plll, but it is slower than LUSA for higher dimensions, the
most interesting ones. To our knowledge plll does not offer
a pure enumeration algorithm, while fplll does not offer the
user enumeration with any kind of pruning (although it is
used internally, to compute BKZ 2.0).

Fig. 8. LUSA’s extreme pruned enumeration, for 1-8 threads, compared to
plll.

As for sieving algorithms, LUSA’s ListSieve implementa-
tion (listSieve) compares very well against plll, as shown in
Figure 9. For dimension 50, LUSA attains a speedup of almost
6x with 4 physical and 4 logical threads (i.e. 4 cores with hyper
threading). While it is not a surprise that sieving algorithms
are memory bound, the scalability of LUSA is excellent.

Fig. 9. LUSA’s ListSieve implementation, for 1-8 threads, compared to plll.

LUSA’s GaussSieve implementation (gaussSieve) also
compares very well against both plll and fplll, and scales
considerably well, as shown in Figure 10. We note that this
implementation is based on the lock-free list based implemen-
tation in [77], which scales itself well.

Fig. 10. LUSA’s GaussSieve implementation, for 1-8 threads, compared to
fplll.

To our knowledge, LUSA is the only library to offer a
HashSieve implementation (hashSieve). LUSA’s implemen-
tation is based on a probable lock-free mechanism [79]. There
is another publicly available implementation of HashSieve,
which was presented by Thijs Laarhoven in the original Hash-
Sieve paper [82]. Figure 11 shows the performance of both
LUSA and the baseline implementation, and LUSA performs
considerably better. As the execution time of the baseline
implementation grows much faster than LUSA’s, the difference
becomes quite significant for higher dimensions. We reserved
the tests for those “higher” dimensions for the scalability tests.

Fig. 11. Performance of LUSA’s HashSieve routine, for 1-8 threads, compared
to the baseline implementation (sequential).

LUSA’s provides a sequential and a parallel version of the
Voronoi-based algorithm to solve the SVP, the relevant vectors
routine [28] which LUSA calls Voronoi (voronoi) and scales
according to Figure 12. In the same figure, we show the
performance of LUSA’s Voronoi 2.0 algorithm (voronoi2),
an optimized version of the Voronoi algorithm presented in
[28] (“relevant vectors”).

Scalability. One of LUSA’s strongest points is scalability.
Most implementations in LUSA are based on implementations
that were previously shown to scale linearly or almost linearly

LUSA - THE LATTICE UNIFIED SET OF ALGORITHMS LIBRARY 11

Fig. 12. LUSA’s Voronoi cell-based SVP solver and Voronoi 2.0, using 1-8
threads, compared to plll.

with the number of CPU threads used. In order to integrate
some of these implementations in LUSA, many adaptations
had to be done, in order to connect all LUSA modules and
keep the entire LUSA ecosystem thread safe (e.g. the user can
run multiple LUSA algorithms in parallel, while each algo-
rithm is itself parallel). However, most LUSA implementations
scale linearly with the number of threads, as we show in the
following.

1) Enumeration (with pruning turned on and off). As Figure
13 shows, the scalability of both the enumerate and
the enumeratePruned routines is fairly good with the
number of threads used. Non-pruned enumeration scales
particularly well, with a 3.85x speedup for 8 threads,
and pruned enumeration achieves a speedup of 2.37x
for 8 threads. Note that in these tests 8 threads do not
mean the use of 8 physical cores (but 4 physical and
4 logical cores instead). Pruned enumeration does not
scale as well as pruning introduces workload imbalance
among threads. As pruned enumeration is based on
randomizing the lattice basis a few times and running
pruned enumeration on each lattice instance, each lattice
will take a different amount of time to be executed [67].

2) HashSieve. Even for a relatively low dimension, such
as 50 (which takes less than 2 seconds to solve), LUSA
achieves a speedup of 3.95x for 8 threads (on 4 physical
plus 4 logical cores). Figure 14 shows the scalability
results for HashSieve. Based on these results, LUSA
attains an overall speedup of more than 3x for 4 threads
in dimensions higher than 60, and almost 4x for 8
threads (4 of which are SMT-based).

VI. WRAP UP

This paper presents LUSA, a lattice library specifically de-
signed for lattice-based cryptanalysis. LUSA aims at achieving
simplicity, being very easy to download and install, and high
performance, to which end the code has been thoroughly
optimized, and most implementations come with a parallel
version.

Fig. 13. Performance of LUSA’s enumeration routines (non-pruned and
pruned enumerations), for 1-8 threads.

Fig. 14. LUSA’s HashSieve performance on lattices in dimensions 50-65.

In this paper we show that LUSA is not only generally
faster than other libraries, as it is also the most complete
library in terms of the most relevant algorithms in lattice-based
cryptanalysis, and almost of its methods are parallel and scale
very well with the number of CPU cores used.

In [32], we have reviewed most available implementations
of SVP- and CVP-solvers. We concluded which versions were
better and we did code those versions on LUSA. Yet, such
assessment has many variables (benchmarking machine/CPU
architecture, compiler version, compiler flags, code flags/-
macros, etc) and some users may find out that a specific im-
plementation on their specific computer may have a different
performance than what we concluded in [32]. We will make
an effort to gather feedback from the community members,
especially if they find an implementation that is faster than its
analog in LUSA. If this happens, we intend to integrate such
particular implementation(s) in LUSA, so that LUSA holds
the most efficient implementations of all algorithms offered.

To download and start using LUSA, please go to
http://alfa.di.uminho.pt/˜ ammm/lusa.html.
The documentation to use the library is also available there.

LUSA - THE LATTICE UNIFIED SET OF ALGORITHMS LIBRARY 12

VII. VERSIONS SCHEDULED FOR FUTURE WORK

In the next v1.* versions of LUSA, we plan to:
• Incorporate SIMD instructions in our LLL implementa-

tion, as shown in [83], which should enable our LLL
implementation to be faster;

• Integrate better bounding functions to improve the algo-
rithmic performance of BKZ 2.0 and offer this method;

• Increase the performance of enumeration methods, so that
LUSA’s enumeration is the fastest among all libraries;

In LUSA v2.0, we plan to incorporate CVP algorithms and
newer SVP algorithms that recently became available:

• Add variants of the existent algorithms, such as those
listed in plll (LUSA aims to be the most complete library
available);

• Include other methods that are not solvers;
• Add CVP-solvers (both enumeration- and sieving-based);
• Add newer Sieving algorithms, such as [64];
In LUSA v3.0, we plan to:
• Add solvers of other relevant lattice problems, such as

LWE and SIS;
In LUSA v4.0, we plan to make LUSA capable of executing

code on GPUs, and, for some algorithms, on CPUs and GPUs
simultaneously. As we intend to make LUSA 100% library
independent (except for standard libraries), it is still unclear
whether we will need to implement a run-time system for
CPU+GPU environments, use a built-in system or implement
every method on CPU+GPU environments by hand.

Additionally, we plan to deeply assess LUSA from a com-
putational efficiency standpoint, by 1) characterizing cache
behavior (to which end we will use PAPI and assess cache miss
rates and other factors) and power consumption, 2) identifying
opportunities to cache optimization and code vectorization, 3)
assessing and improving workload balancing/idle time among
threads in parallel methods and 4) implementing built-in
techniques to improve performance on NUMA systems as e.g.
done with HashSieve before [84].

ACKNOWLEDGEMENTS

I would like to thank my previous student Fábio Correia,
for the implementation of the multiple-precision capability
in LUSA module and most enumeration-related algorithms. I
thank my previous student Filipe Cabeleira for implementing
the Voronoi cell based algorithms in LUSA and assisting with
some of the testing and logistics of the library. I thank Özgür
Dagdelen and Robert Fitzpatrick for the work we developed
together, which helped to inspire me to create this library. I
thank particularly Thijs Laarhoven for the beautiful work we
have done together and being the best science partner one can
have. I thank TU-Darmstadt and Christian Bischof in particular
for introducing me to this awesome subject, and all the people
I ever worked with in the context of lattice-based cryptanalysis
(some of whom instilled me to create and develop LUSA, as
they figured my passion for performance and optimization).
I thank my previous hosts, especially Gabriel Falcão at the
University of Coimbra, whom I have worked on lattice-based
cryptography. I thank my current host, professor Luis Paulo

Santos, for hosting me and having taught me since I started my
BSc. I thank Martin Albrecht for insightful comments on early
verions of this paper. Lastly but not least, I thank DFG, who
made this project possible. Artur Mariano is funded by the
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) Projektnummer 382285730.

REFERENCES

[1] P. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM J. Comput.,
vol. 26, no. 5, pp. 1484–1509, Oct. 1997. [Online]. Available:
http://dx.doi.org/10.1137/S0097539795293172

[2] ——, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in Proceedings of the 35th Annual Symposium on
Foundations of Computer Science, ser. SFCS ’94. Washington, DC,
USA: IEEE Computer Society, 1994, pp. 124–134. [Online]. Available:
http://dx.doi.org/10.1109/SFCS.1994.365700

[3] D. Bernstein, J. Buchmann, and E. Dahmen, Eds., Post-
quantum cryptography. Springer, 2009. [Online]. Available:
http://www.springerlink.com/content/978-3-540-88701-0

[4] M. Ajtai, “Generating hard instances of lattice problems (extended
abstract),” in STOC. New York, NY, USA: ACM, 1996, pp. 99–108.

[5] M. Ajtai and C. Dwork, “A public-key cryptosystem with worst-
case/average-case equivalence,” in Proceedings of the Twenty-ninth
Annual ACM Symposium on Theory of Computing, ser. STOC ’97.
New York, NY, USA: ACM, 1997, pp. 284–293. [Online]. Available:
http://doi.acm.org/10.1145/258533.258604

[6] M. Ajtai, “The shortest vector problem in L2 is NP-hard for randomized
reductions (extended abstract),” in STOC, 1998, pp. 10–19.

[7] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. disserta-
tion, Stanford, CA, USA, 2009, aAI3382729.

[8] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on
homomorphic encryption schemes: Theory and implementation,” ACM
Comput. Surv., vol. 51, no. 4, pp. 79:1–79:35, Jul. 2018. [Online].
Available: http://doi.acm.org/10.1145/3214303

[9] C. Fontaine and F. Galand, “A survey of homomorphic encryption
for nonspecialists,” EURASIP Journal on Information Security,
vol. 2007, no. 1, p. 013801, Dec 2007. [Online]. Available:
https://doi.org/10.1155/2007/13801

[10] P. Martins, A. Mariano, and L. Sousa, “A survey on fully homomorphic
encryption: an engineering perspective,” in ACM Computing Surveys,
2017, p. To appear.

[11] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks
and privacy homomorphisms,” Foundations of Secure Computation,
Academia Press, pp. 169–179, 1978.

[12] V. Kuchta and O. Markowitch, “Multi-authority distributed attribute-
based encryption with application to searchable encryption on lattices,”
in Paradigms in Cryptology - Mycrypt 2016. Malicious and Exploratory
Cryptology - Second International Conference, Mycrypt 2016, Kuala
Lumpur, Malaysia, December 1-2, 2016, Revised Selected Papers,
2016, pp. 409–435. [Online]. Available: https://doi.org/10.1007/978-3-
319-61273-7 20

[13] L. Zhou, Z. Hu, and F. Lv, “A simple lattice-based pke scheme,”
SpringerPlus, vol. 5, no. 1, p. 1627, Sep 2016. [Online]. Available:
https://doi.org/10.1186/s40064-016-3300-4

[14] E. Alkim, P. S. L. M. Barreto, N. Bindel, P. Longa, and J. E.
Ricardini, “The lattice-based digital signature scheme qtesla,” IACR
Cryptology ePrint Archive, vol. 2019, p. 85, 2019. [Online]. Available:
https://eprint.iacr.org/2019/085

[15] T. Gneysu, M. Krausz, T. Oder, and J. Speith, “Evaluation
of lattice-based signature schemes in embedded systems,” in
2018 25th IEEE International Conference on Electronics, Circuits
and Systems (ICECS), 2018, pp. 385–388. [Online]. Available:
https://app.dimensions.ai/details/publication/pub.1111608955

[16] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler,
and D. Stehlé, “Crystals-dilithium: A lattice-based digital signature
scheme,” IACR Trans. Cryptogr. Hardw. Embed. Syst., vol. 2018, no. 1,
pp. 238–268, 2018.

[17] O. Regev, Lattice-Based Cryptography. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, pp. 131–141.

[18] P. Nguyen and J. Stern, “The Two Faces of Lattices in Cryptology,” in
CaLC, 2001, pp. 146–180.

[19] J. van de Pol, “Lattice-based cryptography,” Master’s thesis, Technische
Universiteit Eindhoven, The Netherlands, 2011.

LUSA - THE LATTICE UNIFIED SET OF ALGORITHMS LIBRARY 13

[20] V. Lyubashevsky, “Lattice-Based Identification Schemes Secure Under
Active Attacks,” 2008, pp. 162–179.

[21] V. Lyubashevsky, C. Peikert, and O. Regev, On Ideal Lattices and
Learning with Errors over Rings. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 1–23.

[22] D. Stehlé, R. Steinfeld, K. Tanaka, and K. Xagawa, Efficient Public Key
Encryption Based on Ideal Lattices, 2009, pp. 617–635.

[23] A. Lenstra, H. Lenstra, and L. Lovász, “Factoring polynomials with
rational coefficients,” Math. Ann., vol. 261, pp. 515–534, 1982.

[24] C.-P. Schnorr and M. Euchner, “Lattice basis reduction: Improved
practical algorithms and solving subset sum problems,” Mathematical
Programming, vol. 66, no. 2–3, pp. 181–199, 1994.

[25] Y. Chen and P. Q. Nguyen, BKZ 2.0: Better Lattice Security Estimates.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 1–20.

[26] P. Nguyen and D. Stehlé, “An LLL algorithm with quadratic complexity,”
SIAM J. Comput., vol. 39, no. 3, pp. 874–903, 2009.

[27] I. Morel, D. Stehlé, and G. Villard, “H-LLL: using householder inside
LLL,” in ISSAC. ACM, 2009, pp. 271–278.

[28] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point search in
lattices,” IEEE Transactions on Information Theory, vol. 48, no. 8, pp.
2201–2214, Aug 2002.

[29] D. Micciancio and O. Regev, Post-Quantum Cryptography. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, ch. Lattice-based Cryp-
tography, pp. 147–191.

[30] D. P. Chi, J. W. Choi, J. S. Kim, and T. Kim, “Lattice based cryptography
for beginners,” Cryptology ePrint Archive, Report 2015/938, 2015,
https://eprint.iacr.org/2015/938.

[31] C. Peikert, “A decade of lattice cryptography,” Found. Trends Theor.
Comput. Sci., vol. 10, no. 4, pp. 283–424, Mar. 2016. [Online].
Available: http://dx.doi.org/10.1561/0400000074

[32] A. Mariano, T. Laarhoven, and C. Bischof, “A parallel variant of ldsieve
for the svp on lattices,” in 2017 25th Euromicro International Conference
on Parallel, Distributed and Network-based Processing (PDP), March
2017, pp. 23–30.

[33] D. Micciancio, Cryptographic Functions from Worst-Case Complexity
Assumptions. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 427–452.

[34] O. Regev, “The learning with errors problem (invited survey),” in 2010
IEEE 25th Annual Conference on Computational Complexity, 2010, pp.
191–204.

[35] V. Vaikuntanathan, “Computing blindfolded: New developments in fully
homomorphic encryption,” in 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science, Oct 2011, pp. 5–16.

[36] P. Q. Nguyen and J. Stern, “The two faces of lattices in cryptology,” in
Cryptography and Lattices, J. H. Silverman, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2001, pp. 146–180.

[37] D. Stehlé, The LLL Algorithm: Survey and Applications. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, ch. Floating-Point LLL:
Theoretical and Practical Aspects, pp. 179–213.

[38] C. P. Schnorr, The LLL Algorithm: Survey and Applications. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, ch. Progress on LLL and
Lattice Reduction, pp. 145–178.

[39] H. Nejatollahi, N. Dutt, S. Ray, F. Regazzoni, I. Banerjee,
and R. Cammarota, “Post-quantum lattice-based cryptography
implementations: A survey,” ACM Comput. Surv., vol. 51,
no. 6, pp. 129:1–129:41, Jan. 2019. [Online]. Available:
http://doi.acm.org/10.1145/3292548

[40] A. Mariano, “High performance algorithms for lattice-based cryptanal-
ysis,” Ph.D. dissertation, Technische Universität Darmstadt, Darmstadt,
Germany, 2016.

[41] T. Lepoint, “Design and implementation of lattice-based cryptography,”
p. PhD Thesis, 06 2014.

[42] R. Bendlin, “Lattice-based Cryptography: Threshold Protocols and
Multiparty Computation,” Ph.D. dissertation, Department of Computer
Science, Aarhus University, Darmstadt, Germany, 2013.

[43] Y. Chen, “Reduction de reseau et securite concrete du chiffrement com-
pletement homomorphe,” Ph.D. dissertation, Université Paris Diderot,
Paris, France, 2015.

[44] T. Laarhoven, “Search problems in cryptography: From fingerprinting to
lattice sieving,” Ph.D. dissertation, Technische Universiteit Eindhoven,
The Netherlands, 2016.

[45] D. Micciancio and S. Goldwasser, Complexity of Lattice Problems: A
Cryptographic Perspective, 01 2002, vol. 671.

[46] ——, Complexity of Lattice Problems: a cryptographic perspective, ser.
The Kluwer International Series in Engineering and Computer Science.
Boston, Massachusetts: Kluwer Academic Publishers, Mar. 2002, vol.
671.

[47] S. D. Galbraith, Mathematics of Public Key Cryptography, 1st ed. New
York, NY, USA: Cambridge University Press, 2012.

[48] E. Boas, “Another NP-complete partition problem and the complexity
of computing short vectors in a lattice,” Technical Report 81-04, Math-
ematische Instituut, University of Amsterdam, 1981.

[49] D. Micciancio, “Efficient reductions among lattice problems,” in
Proceedings of the Nineteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, ser. SODA ’08. Philadelphia, PA, USA: Society
for Industrial and Applied Mathematics, 2008, pp. 84–93. [Online].
Available: http://dl.acm.org/citation.cfm?id=1347082.1347092

[50] S. Arora, L. Babai, J. Stern, and Z. Sweedyk, “The hardness of
approximate optima in lattices, codes, and systems of linear equations,”
J. Comput. Syst. Sci., vol. 54, no. 2, pp. 317–331, 1997. [Online].
Available: http://dx.doi.org/10.1006/jcss.1997.1472

[51] O. Goldreich, D. Micciancio, S. Safra, and J.-P. Seifert, “Approximating
shortest lattice vectors is not harder than approximating closest lattice
vectors,” vol. 71, no. 2, pp. 55–61, 1999.

[52] O. Goldreich, S. Goldwasser, and S. Halevi, “Public-key cryptosystems
from lattice reduction problems,” in Proceedings of the 17th Annual
International Cryptology Conference on Advances in Cryptology, ser.
CRYPTO ’97. London, UK, UK: Springer-Verlag, 1997, pp. 112–131.

[53] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” J. ACM, vol. 56, no. 6, pp. 34:1–34:40, 2009. Preliminary
version in STOC 2005.

[54] M. Ajtai, R. Kumar, and D. Sivakumar, “A sieve algorithm for the
shortest lattice vector problem,” pp. 601–610, 2001.

[55] P. Nguyen and T. Vidick, “Sieve algorithms for the shortest vector
problem are practical,” Journal of Mathematical Cryptology, vol. 2,
no. 2, pp. 181–207, 2008.

[56] D. Micciancio and P. Voulgaris, “Faster exponential time algorithms for
the shortest vector problem,” pp. 1468–1480, 2010.

[57] X. Pujol and D. Stehl, “Solving the shortest lattice vector
problem in time 22.465n.” IACR Cryptology ePrint Archive,
vol. 2009, p. 605, 2009. [Online]. Available: http://dblp.uni-
trier.de/db/journals/iacr/iacr2009.htmlPujolS09

[58] X. Wang, M. Liu, C. Tian, and J. Bi, “Improved Nguyen-
Vidick Heuristic Sieve Algorithm for Shortest Vector Problem,”
in Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security, ser. ASIACCS ’11.
New York, NY, USA: ACM, 2011, pp. 1–9. [Online]. Available:
http://doi.acm.org/10.1145/1966913.1966915

[59] F. Zhang, Y. Pan, and G. Hu, “A three-level sieve algorithm for the
shortest vector problem,” in SAC, 2013, pp. 29–47.

[60] A. Becker, N. Gama, and A. Joux, “A sieve algorithm based on
overlattices,” in ANTS, 2014, pp. 49–70.

[61] T. Laarhoven, “Sieving for shortest vectors in lattices using angular
locality-sensitive hashing,” in CRYPTO, 2015, pp. 3–22.

[62] A. Becker, N. Gama, and A. Joux, “Speeding-up lattice sieving without
increasing the memory, using sub-quadratic nearest neighbor search,”
IACR Cryptology ePrint Archive, vol. 2015, p. 522, 2015. [Online].
Available: https://eprint.iacr.org/2015/522

[63] A. Becker, L. Ducas, N. Gama, and T. Laarhoven, “New directions in
nearest neighbor searching with applications to lattice sieving,” in SODA,
2016.

[64] M. R. Albrecht, L. Ducas, G. Herold, E. Kirshanova, E. W. Postleth-
waite, and M. Stevens, “The general sieve kernel and new records in
lattice reduction,” in Advances in Cryptology – EUROCRYPT 2019,
Y. Ishai and V. Rijmen, Eds. Cham: Springer International Publishing,
2019, pp. 717–746.

[65] G. Hanrot and D. Stehlé, “Improved analysis of kannan’s shortest
lattice vector algorithm,” in Advances in Cryptology - CRYPTO 2007,
A. Menezes, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 170–186.

[66] A. Ghasemmehdi and E. Agrell, “Faster Recursions in Sphere Decod-
ing.” IEEE Transactions on Information Theory, vol. 57, no. 6, pp. 3530–
3536, 2011.

[67] F. Correia, A. Mariano, A. Proena, C. Bischof, and E. Agrell, “Parallel
Improved Schnorr-Euchner Enumeration SE++ on Shared and Dis-
tributed Memory Systems, With and Without Extreme Pruning,” Journal
of Wireless Mobile Networks, Ubiquitous Computing, and Dependable
Applications (JoWUA), vol. 7, no. 4, pp. 1–19, December 2016.

[68] N. Gama, P. Nguyen, and O. Regev, “Lattice enumeration using extreme
pruning,” in EUROCRYPT, 2010, pp. 257–278.

[69] D. Micciancio and M. Walter, “Practical, predictable lattice ba-
sis reduction,” Cryptology ePrint Archive, Report 2015/1123, 2015,
http://eprint.iacr.org/2015/1123.

LUSA - THE LATTICE UNIFIED SET OF ALGORITHMS LIBRARY 14

[70] M. Fukase and K. Kashiwabara, “An accelerated algorithm for solving
SVP based on statistical analysis,” JIP, vol. 23, no. 1, pp. 67–80, 2015.

[71] F. Correia, A. Mariano, A. Proença, C. H. Bischof, and E. Agrell,
“Parallel Improved Schnorr-Euchner Enumeration SE++ for the CVP
and SVP,” in 24th Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, PDP 2016, Heraklion,
Crete, Greece, February 17-19, 2016, 2016, pp. 596–603.

[72] Y. Luo and S. Qiao, “A parallel lll algorithm,” in Proceedings
of The Fourth International C* Conference on Computer
Science and Software Engineering, ser. C3S2E ’11. New
York, NY, USA: ACM, 2011, pp. 93–101. [Online]. Available:
http://doi.acm.org/10.1145/1992896.1992908

[73] M. Liu and P. Q. Nguyen, Solving BDD by Enumeration: An Update.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 293–309.

[74] W. Backes and S. Wetzel, “A Parallel LLL using POSIX Threads,” 2008.
[75] ——, “Improving the Parallel Schnorr-Euchner LLL Algorithm,” ser.

ICA3PP’11, 2011, pp. 27–39.
[76] A. Mariano, Özgür Dagdelen, and C. Bischof, “A comprehensive em-

pirical comparison of parallel ListSieve and GaussSieve,” in APCI&E,
2014.

[77] A. Mariano, S. Timnat, and C. Bischof, “Lock-free GaussSieve for linear
speedups in parallel high performance SVP calculation,” ser. SBAC-
PAD’14, 2014.

[78] A. Mariano, T. Laarhoven, and C. Bischof, “Parallel (probable) lock-free
HashSieve: a practical sieving algorithm for the SVP,” in ICPP, 2015.

[79] A. Mariano and C. Bischof, “Enhancing the scalability and memory
usage of HashSieve on multi-core CPUs,” in PDP16, to appear, 2016.

[80] T. Laarhoven and A. Mariano, “Progressive lattice sieving,” in Post-
Quantum Cryptography, T. Lange and R. Steinwandt, Eds. Cham:
Springer International Publishing, 2018, pp. 292–311.

[81] A. Mariano, F. Cabeleira, G. Falcao, and L. P. Santos, “Pruned, parallel
Vorönoi cell-based algorithms,” in White paper, 2019.

[82] T. Laarhoven, “Sieving for shortest vectors in lattices using angular
locality-sensitive hashing,” in CRYPTO, 2015, pp. 3–22.

[83] A. Mariano, F. Correia, and C. Bischof, “A vectorized, cache efficient
LLL implementation,” in 12th International Meeting on High Perfor-
mance Computing for Computational Science, Porto, Portugal, June 28th
to 30th, 2016, 2016.

[84] A. Mariano, M. Diener, C. H. Bischof, and P. O. A. Navaux, “Analyzing
and Improving Memory Access Patterns of Large Irregular Applications
on NUMA Machines,” in 24th Euromicro International Conference
on Parallel, Distributed, and Network-Based Processing, PDP 2016,
Heraklion, Crete, Greece, February 17-19, 2016, 2016, pp. 382–387.

