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Abstract. Protocols for secure multi-party computation are commonly composed
of different sub-protocols, combining techniques such as homomorphic encryp-
tion, secret or Boolean sharing, and garbled circuits. In this paper, we design a
new class of multi-party computation protocols which themselves are composed
out of two-party protocols. We integrate both types of compositions, composi-
tions of fully homomorphic encryption and garbled circuits with compositions
of multi-party protocols from two-party protocols. As a result, we can construct
communication-efficient protocols for special problems. Furthermore, we show
how to efficiently ensure the security of composed protocols against malicious
adversaries by proving in zero-knowledge that conversions between individual
techniques are correct. To demonstrate the usefulness of this approach, we give
an example scheme for private set analytics, i.e., private set disjointness. This
scheme enjoys lower communication complexity than a solution based on generic
multi-party computation and lower computation cost than fully homomorphic en-
cryption. So, our design is more suitable for deployments in wide-area networks,
such as the Internet, with many participants or problems with circuits of moderate
or high multiplicative depth.

1 Introduction

Whereas secure two-party computations are deployed in practice [68], designing and
deploying practical secure multi-party computation is still an open challenge. Com-
munication latency is a typical bottleneck for many multi-round protocols, and in re-
sponse constant-round multi-party computations [33, 43, 44] based on Beaver et al.’s
technique [5] have been designed. Their deployment is lacking due to challenges from
implementation complexity, communication bandwidth, and memory requirements. To
address these challenges, protocols using fully-homomorphic encryption (FHE) [11,
23] and dual execution can be used. Yet, designing efficient homomorphic encryption
schemes (for arithmetic circuits) is also an open challenge. Circuits with high multi-
plicative depth, the reason for a high number of rounds in many multi-party computa-
tion protocols, imply high computation costs.

In this paper, we present a design alternative. We specifically consider multi-party
computations that can at least partially be decomposed into a sequence of two-party
computations (2PCs). We first evaluate 2PCs using garbled circuits and then combine
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the output and continue computation using FHE evaluation. The idea of our mixed-
technique protocols is to exploit advantages of each technique, for example, binary
vs. arithmetic circuits, typical in application domains such as machine learning [13, 21,
29, 49]. For fully malicious security, we show how to convert between outputs of gar-
bled circuits and FHE ciphertexts using efficient zero-knowledge proofs. Compared to
conversions in the semi-honest model [39], this requires a different construction, which
has, however, little additional overhead. Other related work [38] sketches malicious
conversions, but only for two parties, whereas we consider the multi-party setting. The
first phase of 2PC reduces multiplicative depth for the following FHE evaluation phase,
but remains small enough to have low communication complexity. As we show by con-
struction, such a combined protocol can keep a constant number of rounds and can
still be secure in the malicious model. Due to their lower communication requirements,
combined protocols have the potential for deployment in wide area networks.

The composition of 2PC protocols into a multi-party protocol can take many forms.
In order to demonstrate the advantages of our constructions, we design and investigate
a combined protocol for private set disjointness, i.e., a protocol that computes whether
the intersection of sets is empty, but does not reveal anything else, including the inter-
section itself. This protocol follows a star topology of communication where each party
Pi engages in 2PC with a central party P1. Our composition of 2PC protocols into a
multi-party protocol is particularly efficient if it follows a star topology. We stress that
even in the star topology, we provide malicious security against an adversary control-
ling the central node (among others) which is the challenge of any such composition.
Furthermore, besides the set disjointness protocol there are (infinitely) many other pro-
tocols that can be implemented in a star topology. The entire class of multi-party private
set analytics protocols [4, 12, 20, 45, 51] is an example. However, our protocols are also
not limited to a star topology, and we also mention other use cases, such as auctions [9],
that do not follow a star topology.

Our example use case is driven by the use case of sharing Indicators of Compro-
mise (IoCs), where multiple parties try to determine whether they have been subject to
a common attack. We design a maliciously-secure protocol which determines whether
the multi-party set intersection is empty. A non-empty intersection would be grounds
for further investigation. With each party’s set holding n elements, our set disjointness
protocol runs in 9 rounds, needs O(n) broadcasts, and has a message complexity linear
in the number of comparisons required to compare all parties’ inputs. We have imple-
mented a semi-honest version of this protocol to show that our design offers perfor-
mance improvements over other multi-party computation protocols in the semi-honest
model. Using our zero-knowledge proofs, our protocol can also be made secure in the
malicious model.

In summary, the main contributions of this paper are:

1. A construction for mixed-technique MPC composed from 2PC which features a
constant number of rounds, low communication complexity, and malicious secu-
rity.

2. Efficient zero-knowledge proofs, included in this construction, converting between
garbled circuit outputs and homomorphic encryption with malicious security.
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3. A demonstration of our construction’s usefulness by realizing a multi-party protocol
for set disjointness.

We also present (Appendix D) a technique replacing standard verification of hash-
based commitments during 2PC by a white-box use of garbled circuits. We use this
technique to reduce communication overhead in our conversion, but the idea is general,
applicable to other scenarios, and of independent interest.

2 Conversion between 2PC and Homomorphic Encryption
To simplify exposition, we start with a motivation and an overview of our conversion
for the special case of d = 2 parties. For space reasons, we defer the extension to any
d ≥ 2 parties to Appendix B. Our goal is malicious security of the conversions which
we describe in Section 2.1.

Parties P1 and P2 want to jointly compute function F (I1, I2) = O on their respec-
tive input bit strings I1 and I2 to receive output string O = (o1, . . . , oN ). For security
reasons, P1 should only learn some subset of bit string O, but nothing else (for exam-
ple not P2’s input). Similarly, P2 should only learn the other bits of O, but nothing
else. To enable secure computation of F , parties can revert to two standard approaches.
Parties could express F as a Boolean circuit and evaluate this circuit using maliciously-
secure two-party garbled circuit computation (2PC). Alternatively, parties express F as
an arithmetic circuit, compute a shared private key of a fully homomorphic encryption
(FHE), and encrypt their inputs with the corresponding public-key. Parties then evalu-
ate the circuit homomorphically and jointly decrypt the final result such that each party
only learns their output bits.

Yet, each of the two approaches comes with performance issues. On the one hand,
FHE evaluation of arithmetic circuits with large multiplicative depth is computationally
expensive. On the other hand, evaluating Boolean circuits with 2PC for large circuits is
expensive regarding the amount of communication.

So, a third alternative and the focus of this paper is for parties to evaluate F using
a mix of both techniques. Parties evaluate F as a circuit decomposed into a sequence
of sub-circuits F (I1, I2) = (C1 ◦ · · · ◦Cm)(I1, I2). Some sub-circuits Ci are Boolean,
while others are arithmetic. Parties agree that Boolean sub-circuits of function F will be
evaluated using garbled circuit 2PC, and arithmetic sub-circuits of F will be evaluated
using FHE. Output of 2PC will serve as input to FHE and vice versa. The goal of such a
mixed-techniques approach is to optimize overall performance by reducing multiplica-
tive depth of FHE circuits and communication complexity of 2PC circuits. For clarity,
we now denote Boolean (sub-)circuits Ci by CBool

i and arithmetic (sub-)circuits Ci by
CArith

i . Assume that P1 and P2 have initially computed a public and private key pair for
a homomorphic encryption Enc, where the private key is shared among both parties.

2.1 Malicious Security
Achieving malicious security for conversion turns out to be a challenge. For exam-
ple, let P1 be the garbler and P2 the evaluator during 2PC evaluation of a simple sub-
circuit CBool

i with two input and two output bits (x, y) = CBool
i (a, b). Evaluator P2

receives both output bits x, y and must convert them into correct homomorphic encryp-
tions Enc(x) and Enc(y). This is hard to achieve against malicious adversaries: as P2
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could be malicious, P2 must prove to P1 that ciphertexts Enc(x) and Enc(y) are cor-
rectly encrypting outputs x and y received during 2PC. Worse, P2 should not even learn
x and y, as they are an intermediate result of C’s evaluation or maybe output bits for
P1. Party P2 should instead receive related information during 2PC which then allows
P2 to indirectly generate homomorphic encryptions Enc(x) and Enc(y). Alternatively,
one might suggest implementing homomorphic encryption Enc inside a 2PC circuit, but
this is too costly.

Similarly, we need to convert FHE ciphertexts output by circuits CArith
i into input for

2PC garbled circuits with malicious security. Moreover, if P1 and P2’s 2PC computation
was part of a larger MPC computation involving d ≥ 2 parties, we also need to consider
the case where both are malicious, so they must prove to all parties that their encryptions
are correct. Finally, the private key is shared among all d parties which impedes easy
zero-knowledge (ZK) proofs.

Important Remarks This paper targets secure output conversion between 2PC and
FHE. To actually evaluate Boolean sub-circuit CBool

i , we assume existence of any ma-
liciously secure 2PC scheme as a building block. Several different approaches exist
which achieve maliciously secure 2PC in practice, see [41, 42, 53, 65] for an overview.

For secure evaluation of arithmetic sub-circuits CArith
i , any FHE scheme could serve

as building block. FHE is maliciously secure by default, as long as parties evaluate
the same circuit on the same ciphertexts. To enforce this, our conversion requires the
FHE scheme to also support distributed key generation and certain ZK proofs detailed
below. There exist several efficient lattice-based FHE schemes with support for both [7,
8, 10, 17, 18, 50, 62], and there are even efficient schemes which allow proving general,
arbitrary ZK statements in addition to distributed key generation [2]. While describing
details of our techniques, we use any of these as an underlying building block, e.g., the
one by Asharov et al. [2].

2.2 Solution Overview

Roadmap There are two different cases for conversion we will have to consider in a
mixed-technique setting. First, parties convert output bits (oi,1, . . . , oi,n) = CBool

i (Ii,1,
Ii,2) from 2PC evaluation of circuit CBool

i on input strings Ii,1 and Ii,2 into n homomor-
phic encryptions Enc(oi,j). Knowing encryptions Enc(oi,j), each party then evaluates
the subsequent arithmetic circuit CArith

i+1 .
Second, parties convert a sequence of ciphertexts Enc(bi), homomorphic encryp-

tions of bits bi (or integers, see Appendix A) into input for a 2PC Boolean circuit eval-
uation. That is, both parties have evaluated arithmetic sub-circuit CArith

i and computed
ciphertexts Enc(bi), respectively. These ciphertexts will now be converted into input for
2PC evaluation of sub-circuit CBool

i+1 .
Actual evaluation of circuits is then secure by definition, as we rely on standard

maliciously-secure 2PC. For arithmetic sub-circuits, both parties evaluate FHE cipher-
texts on their own. An honest party will automatically compute correct output cipher-
texts as long as input ciphertexts are correct.

Parties will also need to securely convert both parties’ plain input into either FHE
encryptions or 2PC inputs. Yet, that part is trivial: if the first sub-circuit is an arithmetic
circuit, a party sends homomorphic encryptions of each input bit. If the first circuit is
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Boolean, we rely on whatever technique the underlying maliciously secure 2PC offers.
Finally, at the end of the last circuit evaluation, FHE ciphertexts or 2PC output has to
be decrypted. Again, this is fairly simple, and we skip details for now. We only consider
the first two cases of converting 2PC output to FHE input and FHE output to 2PC input.

Intuition Our conversions focus on Boolean sub-circuits CBool
i . We design mecha-

nisms which either convert 2PC output of CBool
i to FHE ciphertexts serving as input to

CArith
i+1 or convert FHE ciphertexts coming from CArith

i−1 into input to CBool
i . Each of our

two conversions first modifies CBool
i and evaluates the modified circuit using three new

cryptographic building blocks which we call ZK Protocol (1), ZK Protocol (2), and ZK
Protocol (3). Each ZK Protocol takes as input a Boolean circuit and P1’s and P2’s input
bits. ZK Protocol (1) and ZK Protocol (2) also take FHE ciphertexts as inputs. Each
ZK Protocol again modifies the input circuit internally, 2PC-evaluates the modified ver-
sion, and outputs 2PC output together with a ZK proof which proves certain relations
between input and output in zero-knowledge for malicious security. As ZK Protocols
are general, their interesting property is to be stackable, i.e., they can be combined with
each other. Their internal circuit modification schemes will be merged, and only ZK
proofs enclosing circuit modification have to be adapted, which is rather mechanical.

ZK Protocols Let γ be any Boolean circuit defined by its input and output bits as (ω1,
. . . , ωn) = γ((ι1,1, . . . , ι1,ℓ1), (ι2,1, . . . , ι2,ℓ2)). Parties P1 and P2 want to evaluate this
circuit with 2PC. Bits ι1,i are inputs of P1. Bits ι2,i are inputs of P2, and ωi will be
output bits known to P2. From a high level, our three ZK Protocols implement:

– ZK Protocol (1). P1 sends homomorphic ciphertexts c1,i ← Enc(ι1,i), encrypting
their input bits ι1,i to P2. Circuit γ is evaluated, and P2 receives output. P1 proves in
ZK to P2 that c1,i encrypts ι1,i, used during 2PC evaluation of γ.

– ZK Protocol (2): P2 sends homomorphic ciphertexts c2,i ← Enc(ι2,i), encrypting
their input bits ι2,i to P1. Circuit γ is evaluated, and P1 receives output. P2 proves in
ZK to P1 that c2,i encrypts ι2,i, used during 2PC evaluation of γ. This is ZK Protocol
(1) with roles of P1 and P2 reversed.

– ZK Protocol (3): Circuit γ is evaluated, and P2 receives output ωi. Party P2 sends
homomorphic ciphertext cω,i ← Enc(ωi) and proves in ZK to P1 that cω,i really
encrypts ωi received during 2PC evaluation to P1.

Observe the different notation used in this paper for describing circuits. Boolean
sub-circuits of function F are written as CBool

i , while Boolean circuits we use inside
our ZK Protocol building blocks are written with the Greek letter γ.

Conversion The main idea behind the actual conversion is to modify a circuit CBool
i

into γ which takes shares of CBool
i ’s original input as its input and outputs shares of

CBool
i ’s original output. For example, to convert a 2PC output bit ω1 of CBool

i to an
FHE ciphertext Enc(ω1), we do not evaluate CBool

i , but γ which outputs share ω1 ⊕ s
to P2, and s to P1. Both parties encrypt their shares, exchange resulting ciphertexts,
and homomorphically compute an XOR to get Enc(ω1). During this conversion, ZK
Protocols prove the correctness of operations.

So, we design conversion schemes combining multiple 2PC circuit modification
techniques with efficient ZK proofs. Together, modifications and proofs prove correct-
ness of output conversion between outputs of 2PC and FHE circuit evaluation.
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Semi-Honest Security Our presentation concentrates on the case of fully malicious
security. Nevertheless, even the semi-honest version of our conversion is of interest, as it
enjoys the same properties as the fully-malicious version, e.g., O(1) rounds, support for
d ≥ 2 parties, and moreover its performance is competitive when compared to related
work, see Section 4.4. Essentially, the semi-honest version is just the fully-malicious
one as described in the next section, but does not include the actual FHE ZK proofs
inside ZK Protocols.

3 Technical Details

For simplicity, we keep describing details for d = 2 parties and extend to d ≥ 2 parties
in Appendix B.

For their input bit strings I1, I2 ∈ {0, 1}∗ and function F , parties P1 and P2 want
to compute O = F (I1, I2), O ∈ {0, 1}∗. Function F is represented as a circuit com-
position of Boolean and arithmetic sub-circuits F = (Cm ◦ · · · ◦ C1). Observe that if
the ith sub-circuit is Boolean, then the i+ 1th is arithmetic and the other way around.
We now turn toward technical details on how we enable maliciously-secure mixed-
technique evaluation of sub-circuits. We show how to convert 2PC evaluation output of
a Boolean sub-circuit CBool

i into input for a following arithmetic sub-circuit CArith
i+1 for

FHE evaluation and the other way around.

2PC output bits for P1 In a typical garbled circuit evaluation of Ci, only P2 receives
output, i.e., bits oj . If a specific bit oj is a secret output bit for P1, then a standard trick
is denying P2 to open the last wire label for oj and forwarding the label to P1. As P1

knows both possible labels for oj , they can recover bit oj . Also, this ensures that P1

receives the correct output bit o′j from P2, i.e., ensure authenticity [6]. We silently rely
on this trick for secure computation of all of P1’s plain output bits for the rest of the
paper.

Notation Let Commit denote a computationally hiding and binding commitment scheme.
For some bit string B ∈ {0, 1}∗, computational security parameter λ′, and randomness
R ∈ {0, 1}λ′

, Commit(B,R) outputs a commitment Com. Later in Appendix D, we
show how to efficiently realize commitments with a white-box use of wire labels in
garbled circuits. Encryption Enc over plaintext space M is fully (or somewhat) homo-
morphic. Both parties have already set up a key pair, where the public key is known to
both parties, but the private key is shared. For homomorphic operations on ciphertexts,
we use the intuitive notation of “+” for homomorphic addition, “·” for scalar multipli-
cation, and ⊕ for homomorphic XOR. So for example, if x and y are from M , then
Dec(Enc(x) + Enc(y)) = x + y. During conversion, we will randomly select scalars
from Zp, where p is a prime of λ bits.

Let Π be the set of two single bit permutations π : {0, 1} → {0, 1}. That is,
Π = {π0, π1} with π0(x) = x and π1(x) = 1− x.

3.1 ZK Protocols

Let (ω1, . . . , ωn) = γ((ι1,1, . . . , ι1,ℓ1), (ι2,1, . . . , ι2,ℓ2)) be any Boolean circuit which
parties P1 and P2 want to evaluate using maliciously secure 2PC. Bits ι1,i are P1’s
input, and bits ι2,i are P2’s input.
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P1 P2
(input ι1,1, . . . , ι1,ℓ1 , c1,1 ← Enc(ι1,1), (input ι2,1, . . . , ι2,ℓ2 , c1,1, . . . , c1,ℓ1)
. . . , c1,ℓ1 ← Enc(ι1,ℓ1))

∀i ∈ {1, . . . , ℓ1} :
µi,1, . . . , µi,λ

$← {0, 1}λ σi,1, . . . , σi,λ
$← {0, 1}λ

mi,1 ← Enc(µi,1), . . . , Ri,1, . . . , Ri,λ
$← {0, 1}λ

2

mi,λ ← Enc(µi,λ) Comi,1 = Commit(σi,1, Ri,1),
∀j∈{1,...,λ}:

mi,j−−−→
. . . ,Comi,λ = Commit(σi,λ, Ri,λ)

Comi,j←−−−−−
2PC of γ(1)

⇐=======⇒
∀i ∈ {1, . . . , ℓ1} :

∀j∈{1,...,λ}:
Ri,j , σi,j←−−−−−−−

if [∃j : Commit(σi,j , Ri,j) ̸= Comi,j ]
then abort
∀j : if σi,j = 0 then open

Enc(ιi,j ⊕ µi,j) else open mi,j

λ ZK proofs for
ciphertextsi,j−−−−−−−−→ if ciphertexti,j does not match ti,j

then abort

Fig. 1: ZK Protocol (1) for circuit γ

ZK Protocol (1) In this protocol, P1 proves to P2 that homomorphic ciphertexts c1,i ←
Enc(ι1,i) encrypt all of P1’s input bits ιi,i used during a 2PC evaluation of γ. Assume
that P1 has already sent the c1,i to P2.

The protocol is depicted in Figure 1 and consists of two core building blocks: first,
parties evaluate a modification of circuit γ which we call γ(1). We define circuit γ(1) by
specifying its input and output in Figure 2. The second building block is an actual three
move ZK proof which encompasses γ(1).

First, P1 selects a random masking bit µi and sends both c1,i and mi ← Enc(µi)
to P2. At the same time, P2 selects a random choice bit σi. Then, both parties use
maliciously-secure 2PC and evaluate γ(1) which internally computes γ as a sub-routine.
Party P1 is the garbler and P2 the evaluator. In addition to outputting the same bits as
γ, it also outputs bit ti = ι1,i ⊕ µi (if σi = 0) or ti = µi (if σi = 1) to P2.

After 2PC, P2 reveals their choice σi. If σi = 0, then P1 proves in ZK that the
homomorphic XOR of ciphertexts c1,i and mi to Enc(ι1,i ⊕ µi) really encrypts ti =
ι1,i ⊕ µi. If σi = 1, then P1 proves that mi encrypts ti = µi.

Output bit α = 0 in γ(1) only serves to indicate protocol failure, i.e., non-matching
commitments.

If σi,j = 0, then P1 and P2 homomorphically compute ciphertexti,j = Enc(ι1,i ⊕
µi,j) out of c1,i and mi,j . If choice bit σi,j = 1, then both parties set ciphertexti,j =
mi,j . Party P1 then sends a ZK proof that ciphertexti,j encrypts ti,j to P2, e.g., by
applying an efficient framework for ZK proofs [2].

Note the general structure of ZK Protocol (1), which is similar in the other two ZK
Protocols. Each ZK Protocol comprises a circuit modification technique, here convert-
ing γ to γ(1), and a surrounding ZK proof. When we will combine ZK Protocols later,
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Input to γ(1)

P1 P2

ι1,1, . . . , ι1,ℓ1 , 1 ≤ i ≤ ℓ1 : [µi,1, . . . , µi,λ,
Comi,1, . . . ,Comi,λ]

ι2,1, . . . , ι2,ℓ2 , 1 ≤ i ≤ ℓ1 : [σi,1, . . . , σi,λ,
Ri,1, . . . , Ri,λ]

Output of γ(1)

1 if ∀i, j, 1 ≤ i ≤ ℓ1, 1 ≤ j ≤ λ : Comi,j = Commit(σi,j , Ri,j) then
2 α = 1;
3 (ω1, . . . , ωn) = γ((ι1,1, . . . , ι1,ℓ1), (ι2,1, . . . , ι2,ℓ2));
4 for i = 1 to ℓ1 and j = 1 to λ do
5 if σi,j = 0 then ti,j = ι1,i ⊕ µi,j else ti,j = µi,j ;
6 else α = ω1 = . . . = ωn = t1,1 = . . . = tℓ1,λ = 0;
7 output α, ω1, . . . , ωn, t1,1, . . . , tℓ1,λ;

Fig. 2: Definition of circuit γ(1)

we merge circuit modifications, i.e., output of one ZK Protocol’s circuit modification
will be input into another. Only surrounding ZK proofs require adoption.

ZK Protocol (2) This protocol reverses P1’s and P2’s roles in ZK Protocol (1). So,
circuit γ(2) is similar to γ(1), with P1 having choice bits (and randomness for commit-
ments to them) as additional input, and P2 has masking bits and commitments to choice
bits as input. During 2PC, P1 is the garbler and P2 the evaluator. Also, the actual three-
move protocol from ZK Protocol (1) is reversed, i.e., it is P2 who starts by sending
encryptions of input bits and masking bits. We omit further details to avoid repetition
and refer to Figure 1.

ZK Protocol (3) In this protocol, party P2 proves to P1 that encryptions cω,i ←
Enc(ωi) are encryptions of P2’s output bits ωi. As ZK Protocol (3) is more involved,
Figure 3 starts by presenting a slightly simpler version with a ZK proof which is only
Honest-Verifier-Zero-Knowledge (HVZK), and details for fully-malicious security fol-
low.

As part of ZK Protocol (3), P1 and P2 run 2PC on a modification of circuit γ called
γ(3), defined in Figure 4.

Before 2PC, P1 selects, for an output bit ωi, two random bit strings v0,1 . . . v0,λ
and v1,1 . . . v1,λ and sets V0 = 0||v0,1 . . . v0,λ, V1 = 1||v1,1 . . . v1,λ. Here, “||” denotes
concatenation, and λ is a statistical security parameter. Then, P1 encrypts and sends
ciphertexts Γ0 = Enc(V0) and Γ1 = Enc(V1) to P2. Circuit γ(3) does not output ωi to
P2, but instead outputs Vωi

to P2, i.e., either bit string V0 or bit string V1.
The first bit of strings V0, V1 is output bit ωi. That is, Γωi encrypts a bit string,

where the first bit represents P2’s output bit ωi. So, after evaluating γ(3), P2 gets ωi and
a length λ bit string (vωi,1, . . . , vωi,λ).

The trick is now that P2 proves in ZK to P1 that it knows a string Vωi
which is

either V0 or V1 and which matches encryption cω,i. Recall that the private key for
homomorphic encryption Enc is shared between P1 and P2, so none of the two parties
can decrypt a ciphertext alone. After evaluating γ(3), party P2 sends λ + 1 ciphertexts
cω,i ← Enc(ωi),Enc(vωi,1), . . . ,Enc(vωi,λ) to P1. Both parties use these ciphertexts to
homomorphically generate Γ2 = Enc(Vωi

), an encryption of the concatenation of P2’s
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P1 P2
(input ι1,1, . . . , ι1,ℓ1 ) (input ι2,1, . . . , ι2,ℓ2 )

∀i ∈ {1, . . . , n} :
Γi,0,0 ← Enc(0), Γi,1,0 ← Enc(1)
∀j ∈ {1, . . . , λ} :
[vi,0,j , vi,1,j

$← {0, 1}2
Γi,0,j ← Enc(vi,0,j)

Γi,1,j ← Enc(vi,1,j)]
∀j∈{0,...,λ}:
Γi,0,j , Γi,1,j−−−−−−−−−→

2PC of γ(3)(see text)⇐==============⇒
∀i ∈ {1, . . . , n} :

Γi,2,0 ← Enc(ωi)
∀j ∈ {1, . . . , λ} : [Γi,2,j ← Enc(vi,ωi,j)]

∀j ∈ {0, . . . , λ} : Γi,2,j←−−−−−−−−−−−−−−−−−
Γi,0 =

∑λ
j=0 (2

λ−j · Γi,0,j) Γi,0 =
∑λ

j=0 (2
λ−j · Γi,0,j)

Γi,1 =
∑λ

j=0 (2
λ−j · Γi,1,j) Γi,1 =

∑λ
j=0 (2

λ−j · Γi,1,j)

Γi,2 =
∑λ

j=0 (2
λ−j · Γi,2,j) Γi,2 =

∑λ
j=0 (2

λ−j · Γi,2,j)
∆i,0 = Γi,0 − Γi,2 ∆i,0 = Γi,0 − Γi,2
∆i,1 = Γi,1 − Γi,2 ∆i,1 = Γi,1 − Γi,2

ai
$← Zp, π

$← Π
∆′

i,0 = ai ·∆i,0,∆
′
i,1 = ai ·∆i,1

∆′
i,0,∆

′
i,1,∆

′
i,π(0),∆

′
i,π(1)

ZK proof Scalari,ZK proof Shufflei←−−−−−−−−−−−−−−−−−
if ZK proofs do
not verify then abort

jointly decrypt∆′
i,π(0),∆

′
i,π(1)⇐=====================⇒

if none or both decrypt
to 0 then abort

Fig. 3: ZK Protocol (3)

λ + 1 bits Vωi
. As both parties know Γ0 and Γ1, they both homomorphically compute

∆0 = Enc(Vωi
− V0) and ∆1 = Enc(Vωi

− V1). Observe that, if Vωi
is either V0 or V1,

then one of ∆0, ∆1 encrypts a 0. Consequently, P2 proves to P1 in ZK that either ∆0

or ∆1 is an encryption of 0 (see below for details). If P1 successfully verifies proofs,
parties jointly decrypt ∆′

i,π(0) and ∆′
i,π(1). Note that decryption must include a ZK

proof by P2 about correct (partial) decryption [2, 7, 10].
We run the above techniques for each output bit ωi in parallel.

ZK Proof of 0 Figure 3 also comprises details for the ZK proof, where P2 proves that
either ∆i,0 or ∆i,1 encrypts a zero. In Figure 3, P2 blinds ∆i,0 and ∆i,1 by a random ai
resulting in ∆′

i,0 and ∆′
i,1. Then, P2 prepares sub-ZK proof “Scalari” which proves that

∆′
i,0, ∆

′
i,1 are the result of multiplying ∆i,0, ∆i,1 by the same secret scalar ai. While

such a proof is standard, e.g., P2 could also simply publish the encryption of ai, and
P1 computes ∆′

i,0, ∆
′
i,1 themselves. Party P2 completes the ZK proof by re-encrypting

∆′
i,0 and ∆′

i,1, choosing a random 1-bit permutation π from Π , and preparing ZK proof
Shufflei which proves that (∆′

i,π(0), ∆
′
i,π(1)) is a random shuffle of (∆′

i,0, ∆
′
i,1). Proofs
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Input to γ(3)

P1 P2

ι1,1, . . . , ι1,ℓ1 , 1 ≤ i ≤ n : [vi,0,1, . . . ,
vi,0,λ, vi,1,1, . . . , vi,1,λ]

ι2,1, . . . , ι2,ℓ2

Output of γ(3)

1 (ω1, . . . , ωn) = γ((ι1,1, . . . , ι1,ℓ1), (ι2,1, . . . , ι2,ℓ2));
2 for i = 1 to n do output ωi||vi,ωi,1 · · · vi,ωi,λ;

Fig. 4: Definition of circuit γ(3)

of two-element shuffles are also straightforward. For example, P2 could encrypt a ran-
dom bit to ciphertext β, send β to P1, and prove that ciphertext β − β2 encrypts a
0. Such a proof can be also implemented by, e.g., reverting to an efficient general
proof [2] or by opening randomness of ciphertext β − β2. Party P1 then computes
∆′

i,π(0) = β ·∆′
i,0 + (Enc(1)− β) ·∆′

i,1 and ∆′
i,π(1) = (Enc(1)− β) ·∆′

i,0 + β ·∆′
i,1

themselves.

HVZK to Fully-Malicious Security For fully-malicious security, we replace 2PC
evaluation of γ(3) from Figure 3 by using ZK Protocol (1). More specifically, instead
of 2PC evaluation of γ(3), we run ZK Protocol (1) for circuit γ(3) with both the ι1,i and
the vi,0,j , vi,1,j as P1’s input bits, and the ι2,i as P2’s input bits. To run ZK Protocol (1),
P1 sends encryptions Γi,0,j , Γi,1,j to P2 (as well as dummy encryptions of the ι1,i). As
a result of running ZK Protocol (1) of γ(3) instead of direct 2PC of γ(3), P2 can verify
that the Γi,0, Γi,1 are correct encryptions of P1’s input to γ(3). Note that the output bits
received by P2 after running ZK Protocol (1) comprise all output bits of circuit γ(3).

3.2 Composition of ZK Protocols

Our ZK Protocols can be composed in a natural way, i.e., ZK Protocol (1), (2), and (3)
can be jointly used on a single circuit γ. Protocol steps before and after 2PC evalua-
tion of the modified circuit γ are executed in parallel. Different modifications of ZK
Protocols (1) to (3) to circuit γ are merged into one large garbled circuit. This large
circuit comprises γ’s and all modifications’ functionality and uses P1’s and P2’s input
sets once. Thus, inputs ι1,i and ι2,i are only used once and their wires are connected
to all sub-functions of the large circuit. All other necessary inputs µi,j , σi,j , and vω,j

are present for their respective input and outputs. This ensures the same functionality of
the large circuit as the sub-functions due to its security against malicious adversaries.
Protocol steps outside of 2PC operate on distinct inputs and hence are non-interfering
under parallel composition. We can compose the conversion routines in a natural way.
Figures 5 and 6 depict the details of the conversion from FHE to 2PC and reverse,
respectively.

3.3 Security Analysis

ZK Protocols (1) to (3) prove that the plaintext of an FHE ciphertext (under a shared
key) and the input or output, respectively, of a 2PC are identical. They hence enable to
compose FHE computations with 2PC protocols in a joint, maliciously secure protocol.
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P1 P2
(input c1, . . . , cℓ) (input c1, . . . , cℓ)
∀i ∈ {1, . . . , ℓ} :
si

$← {0, 1},

c′i ← Enc(si)
c′i−→

c′′i = ci ⊕ c′i c′′i = ci ⊕ c′i
jointly decrypt c′′i⇐===========⇒

receives
s′i = si ⊕ bi

composition of ZK Protocols
(1) and (2) of γShare,j⇐=============⇒

receives o1, . . . , on
(see text)

P1 P2
(input i1,1, . . . , i1,ℓ1 ) (input i2,1, . . . , i2,ℓ2 )
∀i ∈ {1, . . . , n} :
si

$← {0, 1},
ci ← Enc(si)

ci−→
composition of ZK Protocols (1)

and (3) of γShare
′

⇐==============⇒
receives receives
c′1 = Enc(s′1), s′1 = o1 ⊕ s1, . . . ,
. . . , s′n = on ⊕ sn,
c′n = Enc(s′n) c′1, . . . , c

′
n

∀i ∈ {1, . . . , n} :
c′′i = ci ⊕ c′i c′′i = ci ⊕ c′i

Fig. 5: FHE to 2PC conversion Fig. 6: 2PC to FHE conversion

Theorem 1. ZK Protocols (1) to (3) are (a) complete, i.e., an honest verifier accepts
the proof, if the prover provides consistent input, (b) zero-knowledge, i.e., any verifier
learns nothing about the prover’s witness except that it satisfies the proof, and (c) sound,
i.e., an honest verifier rejects the proof with overwhelming probability in the security
parameter λ, if the prover’s secret input is not a witness for the proof.

We prove Theorem 1 in Appendix C.

4 Application to Private Set Disjointness

To indicate their usefulness, we apply our mixed-technique conversions to the area
of private set analytics. In particular, we design a new solution to the problem of se-
curely, yet efficiently computing private set disjointness (PSD). In PSD, parties compute
whether their sets’ intersection is empty without revealing the intersection itself. While
protocols computing PSD have been presented before [19, 22, 28, 35, 36, 46, 67], our
new solution features several advantages which, in combination, is unique: any number
of d ≥ 2 parties, fully-malicious security, circuit-based computations, and high effi-
ciency (also due to a constant number of rounds). Computing PSD with a circuit-based
approach is of special interest, as variations of PSD, like whether the size of the inter-
section is larger than a threshold, or other set statistics can then be computed easily, see
discussions in [55, 57].

Each party Pi has an n element input set Si = {ei,1, . . . , ei,n} with elements
ei,j ∈ {0, 1}ℓ. We present a protocol where parties securely compute whether the in-

tersection of the Si is empty, i.e., |
⋂d

i=1 Si|
?
= 0. Crucially, we do not leak the size of

the intersection or any other information about the intersection or elements ei,j . Assume
that parties have previously computed a distributed private key with corresponding pub-
lic key for a fully or somewhat homomorphic encryption scheme. Separately, each party
Pi has a public-private key pair, where the public key is known to all parties. So, parties
can securely communicate.



12 Blass and Kerschbaum

4.1 PSD Protocol Overview

We present a new circuit-based approach to compute PSD. At its core, parties compare
their elements by evaluating a Boolean sub-circuit with pairwise 2PC in a star topology.
The outcome of 2PC comparisons then serves as input to FHE evaluations.

Hash Table Preparation Initially, parties hash their input elements into hash tables.
This is a typical approach of recent protocols for PSI, see Pinkas et al. [56] for an
overview. Specifically, each party Pi starts by creating an empty hash table Ti with
m ∈ O( n

logn ) buckets. To cope with possible hash collisions with very high probability,
each bucket comprises a total of β ∈ O(log n) entries [58, 60]. Each entry has space to
store ℓ bits. Let Ti[j, k] denote the kth entry in the jth bucket Ti[j] of Pi’s hash table Ti.

After initializing hash table Ti, each party Pi iterates over their input elements,
writing element ei,j into bucket Ti[h(ei,j), u], where u is the first empty entry in Ti’s
mth bucket. All remaining entries in the hash table are filled with random bit strings.

Mixed-Circuit Evaluation Parties elect a leader, w.l.o.g. the leader is P1. The main
idea to compute PSD is that, for a randomly chosen r, the following function F is
evaluated securely:

F = r ·
m∑
j=1

β∑
k=1

d∏
i=2

[
β∨

u=1

(T1[j, k]
?
= Ti[j, u])

]
.

Function F implements PSD, as sets Si are disjoint iff F evaluates to 0. The rationale
behind F is that the intersection is not empty if and only if there exists an entry in a
bucket of P1’s table which equals an entry of the same bucket in all other parties’ tables.

We already define F using a mixed arithmetic and Boolean notation, suggesting a
direct application of our mixed-techniques for 2PC-FHE evaluation. To securely eval-
uate F , we set up a simple star topology where leader P1 interacts pairwise with each
other party Pi to compute inner parts fi,j,k =

[∨β
u=1(T1[j, k]

?
= Ti[j, u])

]
with 2PC.

For the kth entry in their jth bucket T1[j, k], P1 evaluates with Pi a separate 2PC cir-
cuit which implements fi,j,k. Using our 2PC to FHE conversion, output of each fi,j,k
2PC evaluation is a homomorphic encryption of its output bit which we denote by
Enc(fi,j,k). After all 2PC computations, P1 sends the Enc(fi,j,k) to all other parties
which continue computing F homomorphically.

The final multiplication of the output by (a random) r in the encrypted domain is

realized by each party Pi randomly selecting ri
$←M and sending Enc(ri) to other par-

ties. All parties homomorphically compute Enc(r) =
∑d

i=1 Enc(ri) and multiply the
output by Enc(r) to get Enc(F ) which is then jointly decrypted. Without multiplying
by r, parties would learn the size of the intersection.

4.2 Malicious Security for PSD

Although 2PC, our conversion, and homomorphic evaluations are secure against mali-
cious adversaries, we need to extend our current security model from two parties to the
case of d parties. Consequently, we now show that adding our ZK protocols leads to a
multi-party protocol secure in the malicious model, despite the fact that both parties of
a two-party computation can be malicious (including the leader).
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Recall that after 2PC to FHE conversion, both parties P1 and Pi have proven to
each other correct computation of c = Enc(s) and c′ = Enc(s′). They homomorphi-
cally combine c and c′ to Enc(fi,j,k) = Enc(s ⊕ s′). The new challenge when dealing
with d > 2 parties is that both P1 and Pi can be malicious, fabricate various different
Enc(fi,j,k), and send different Enc(fi,j,k) to different other parties.

To mitigate, one could somehow run ZK proofs in public such that all other parties
automatically observe the correct Enc(fi,j,k), but this is expensive. A more elegant solu-
tion would be that both parties P1 and Pi sign Enc(fi,j,k) at the end of their conversion,
and Pi sends their signature to P1. Then, P1 could use secure echo broadcast [25] to
send Enc(fi,j,k) and both signatures of Enc(fi,j,k) to all parties. As a result, all parties
would receive the same Enc(fi,j,k) and verify that P1 and Pi have agreed on it.

An interesting situation occurs when both P1 and Pi are malicious and agree on a
wrong Enc(fi,j,k). For example, P1 and Pi could agree on Enc(0) even though Pi has
an entry ei,u in its jth bucket which equals an entry e1,k in P1’s jth bucket. Note that this
is not an attack, as the adversary can anyway control Pi’s input and set it to arbitrary
values. So, the above case would be equivalent to the adversary setting Pi’s input ei,u
to something different from e1,k in the first place. The only property P1 and Pi have to
prove to all other parties is that ciphertext Enc(fi,j,k) encrypts a bit.

As neither P1 nor Pi know fi,j,k, we use a different strategy. Party P1 proves in ZK
that c encrypts a bit, and Pi proves that c′ encrypts a bit. Parties broadcast c and c′ with
both proofs. Using c and c′ all parties compute Enc(fi,j,k) homomorphically.

Finally, to force P1 to always use the same inputs during pairwise comparisons with
different Pi, we require P1 to initially commit to its input using FHE ciphertexts and
securely broadcast those ciphertexts to all other parties. The consistency of inputs is
then verified using ZK Protocol (1).

Joint decryption Recall that the 2PC to FHE conversion internally runs ZK Protocol
(3) and requires a joint decryption between P1 and Pi. In the case of d > 2 parties,
joint decryption is still possible, but involves all d parties. So, both P1 and Pi broadcast
a request to decrypt the current ∆′

i,π(0) and ∆′
i,π(1), and all parties reply to P1 with

their share of the decryption (plus proof of correct decryption). Note that this does not
change our total message complexity. We need to run O(1) broadcasts for each fi,j,k
anyway.

4.3 Complexity Analysis
Due to space constraints, we present and compare complexities of our mixed-techniques
approach for evaluating F with related schemes in Appendix E.

4.4 Implementation
We have implemented our private set disjointness variant with 2PC to FHE conversion
and performed micro-benchmarks. We will release our code into open source upon
publication of the paper.

Our implementation of 2PC-part fi,j,k is done in the framework by Wang et al. [65]
and maliciously secure. Yet, none of the common FHE libraries (HELib, PALISADE,
SEAL, TFHE) provides both distributed key generation with threshold encryption and
ZK proofs, which we need for maliciously-secure conversion. Moreover, an implemen-
tation of a FHE scheme with threshold decryption and ZK proofs, e.g., based on the
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Table 1: Online time (s) to evaluate F , our scheme vs semi-honest and maliciously
secure SPDZ vs BMR vs FHE. 2PC: communication time for circuit evaluation of all
mβd circuits ((γShare

′(1))(3))(1), BC: communication time for broadcasting shares
and partial decryptions, FHE Comp: computation time for arithmetic part, DNF: does
not finish in 15min

Ours (“Semi-Malicious”) Semi-Honest Malicious

n d 2PC BC
FHE Total SPDZSH FHE SPDZ BMR

Comp Total Total Total Total

32

5 2.2 1.1 1.0 4.3 10.1 141.7 16.4 8.5
10 3.9 1.8 1.8 7.5 13.8 283.0 33.1 24.3
20 7.6 5.5 3.6 16.6 48.8 565.5 50.3 Crash
40 14.8 17.6 7.1 39.5 130.3 DNF 215.7 Crash

64

5 4.7 1.4 2.3 8.4 22.7 406.9 35.6 18.5
10 9.0 3.4 4.4 16.8 32.6 813.1 72.4 66.6
20 18.0 10.7 8.6 37.3 101.5 DNF 248.2 Crash
40 35.9 40.9 17.0 93.8 265.8 DNF 784.3 Crash

128

5 10.7 2.2 5.4 18.3 52.3 DNF 117.5 43.0
10 20.8 6.6 10.3 37.7 84.6 DNF 356.7 Crash
20 41.8 24.2 20.1 86.1 358.1 DNF 675.8 Crash
40 83.3 95.3 39.7 218.3 546.3 DNF DNF Crash

1024 5 121.2 17.5 61.6 200.4 727.3 DNF DNF DNF
2048 5 265.0 37.5 135.5 438.0 DNF DNF DNF DNF

one by Asharov et al. [2], deserves its own paper. Thus, for the arithmetic part of F ,
we have only implemented and benchmarked arithmetic operations with FHE (using
TFHE [15, 16] for its simplicity), but not FHE ZK proofs, i.e., a semi-honest secure
conversion. We dub the security setting of our implementation as “semi-malicious”:
2PC is maliciously secure, but the conversion is only semi-honest secure. This setting
is at least as strong as semi-honest security, but weaker than malicious security.

More specifically, we have implemented the actual circuit which is evaluated as part
of the 2PC to FHE conversion of fi,j,k, namely ((γShare

′(1))(3))(1). Here, circuit γShare′

is the modification to fi,j,k due to conversion, γShare′(1) is the modification implied by
ZK Protocol (1) on top of that, (γShare′(1))(3) the modification by ZK Protocol (3) on
top of that, and ((γShare

′(1))(3))(1) the modification by ZK Protocol (1) running inside
ZK Protocol (3).

For all benchmarks, we set m = n
2 , β = log n, and consider ℓ = 32 bit integers as

the elements in each party’s set. It is well known that communication time due to latency
between parties is a dominating factor regarding total runtime, especially for the 2PC
part. For example, raw computation time of evaluating a single ((γShare

′(1))(3))(1)
circuit for β = 5 takes only 1.2 ms on a single 1.6 GHz Core i5, but all computa-
tions can run in parallel on different cores. So, an Amazon EC2 C5d instance with 96
cores computes 80, 000 circuits per second. However, network traffic, i.e., exchanging
177 KByte of data between P1 and Pi during evaluation of that circuit, cannot be par-
allelized. Instead, we can only sequentially send all data for all circuits, and network
latency is here the crucial parameter. While latency of (intercontinental) WAN traffic
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is often unstable and can go over 250 ms [64], we run benchmarks on one machine to
better control network behavior and use netem [52] to set latency to a modest 70 ms.
As a result of this latency, we measured data goodput over TCP to be only 330 MBit/s
on the localhost network (a higher latency would imply less goodput).

In Table 1, 2PC denotes the time to compute all ((γShare′(1))(3))(1). BC denotes
the time for all broadcasts of shares ci, c′i after 2PC to all parties (one TFHE ciphertext
has size 2.5 KByte) plus the time to broadcast a partial decryption of the final result
after FHE from each party (a partial decryption is one TFHE ciphertext). FHE Comp is
the time, for each party, to compute the arithmetic part of F in TFHE.

For comparison, we have also implemented F in the popular MP-SPDZ frame-
work [32] and benchmarked with both their semi-honest (SPDZSH) and maliciously
secure SPDZ variants as well as BMR [33]. SPDZ Total and BMR Total are their total
(online) times to compute F . FHE Total is the total time of a semi-honest “pure-FHE”
implementation of F with TFHE, including broadcasting each party’s mβℓ ciphertexts
to all other parties. Note that BMR crashes even for a small number of parties, e.g.,
n = 128, d = 10, or quickly runs out of memory (> 32 GByte) for d ≥ 20 parties.

Looking at Table 1, our implementation outperforms semi-honest and maliciously
secure SPDZ, BMR, and FHE in all considered settings. While SPDZ and BMR are
competitive for a small number of parties, BMR fails due to its memory consumption,
and our composition from 2PC clearly shows better scalability than SPDZ for larger
numbers of parties.

While timings for our “semi-malicious” implementation look promising regarding
a potential maliciously secure implementation, we do not have such an implementation
for the above stated reasons. However, observing that our techniques outperform even
semi-honest SPDZ while offering stronger security guarantees leads to an interesting
conclusion of our evaluation. Our mixed-techniques protocols might already serve as an
alternative to standard semi-honest MPC in scenarios with a star topology, i.e., where a
multi-party protocol can be decomposed into multiple 2PC protocols.

5 Related Work

Mixed-Techniques MPC Several previous works combine different MPC techniques
to mitigate individual techniques’ drawbacks. Kolesnikov et al. are among the first to
present a conversion between garbled circuits and (additively) homomorphic encryption
in the two-party semi-honest model [37, 39]. Extending their conversion to also support
fully-malicious adversaries is non-trivial: in Appendix D of [38], they present honest-
verifier zero-knowledge proofs which render the protocol secure only if at most one
party is malicious. However, HVZK is insufficient, if proofs are part of a scenario with
more than two parties where more than one party can be malicious.

A long line of research has focused on making mixed-techniques practical and effi-
cient. Henecka et al. [27] design practical tools for conversion between garbled circuits
and additively homomorphic encryption. Their conversion targets semi-honest adver-
saries and circuits for two parties. Demmler et al. [21] present a two party framework to
convert between arithmetic sharing, Boolean sharing, and garbled circuits in the semi-
honest model, and so do Riazi et al. [59]. Mohassel and Rindal [49] extend to three
parties with malicious security. Again in the semi-honest model for two parties, Juvekar
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et al. [31] switch between garbled circuits and additively homomorphic encryption, and
Büscher et al. [13] switch between arithmetic and Boolean sharing. Rotaru and Wood
[61] and Aly et al. [1] convert between MPC based on arithmetic secret sharing and
garbled circuits with malicious security.

For completeness sake, we mention that other powerful MPC frameworks besides
SPDZ exist, e.g., the purely circuit-based EMP-Toolkit [66]. Also note that FHE is
often combined with (arithmetic) MPC to prepare multiplication triplets during offline
phases, as in, e.g., SPDZ and follow-up works [3, 34].

(Multi-Party) PSI and Disjointness While seminal works in PSI are based on dedi-
cated protocols [47], recent papers use a circuit-based approach (see Pinkas et al. [54]
for an overview), culminating in solutions with asymptotically optimal communication
complexity and practical constants [57]. In theory, such circuit-based approaches can
be used to also compute disjointness, but they all focus on the two-party setting with
semi-honest security.

Hazay and Venkitasubramaniam [26] present a maliciously-secure multi-party PSI
protocol based on oblivious polynomial evaluation (OPE). Similar to previous ideas [22],
OPE could then be combined with a maliciously-secure 2PC to compute disjointness.
However, already computing the intersection is expensive with this approach, requiring
O(n2) modular exponentiations. Kolesnikov et al. [40] present an efficient multi-party
PSI protocol in the semi-honest model using only symmetric encryption. However,
PSI protocols cannot be easily converted into PSI analytics protocols (not disclosing
the intersection) while maintaining efficiency [55, 57]. Other works have considered
computing set disjointness, but these target semi-honest security and/or only two par-
ties [19, 22, 28, 35, 36, 46, 67]

Comparing to related work, our work fills a gap with 1) a solution which converts
between FHE and garbled circuits, 2) supports any number of parties, and 3) provides
malicious security. We use this to present the first multi-party PSI analytics protocol
whose communication complexity scales only quadratically in the number of partici-
pants d.

6 Conclusions
In this paper we have shown a new construction of secure multi-party computation
techniques. We have shown i) how to combine them using multiple cryptographic tech-
niques (garbled circuits and FHE), ii) how to combine them from two-party computa-
tions keeping communication cost low for important functions, such as private set ana-
lytics, and iii) how to make them secure against malicious adversaries. It is future work
to implement and evaluate the runtime of our zero-knowledge protocols that make our
construction maliciously secure. However, we analyzed its complexity and provided an
implementation in the semi-honest model showing that our work outperforms existing
approaches. The performance advantages stems from a reduction of the communica-
tion and round complexity which is critical for multi-party computations with many
participants and their adoption in practice.
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[17] I. Damgård and A. López-Alt. Zero-Knowledge Proofs with Low Amortized Communica-
tion from Lattice Assumptions. In SCN, 2012.

[18] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty Computation from Some-
what Homomorphic Encryption. In CRYPTO, 2012.

[19] A. Davidson and C. Cid. An Efficient Toolkit for Computing Private Set Operations. In
ACISP, 2017.

[20] S. Debnath, P. Stanica, N. Kundu, and T. Choudhury. Secure and efficient multiparty private
set intersection cardinality. Advances in Mathematics of Communications, 15(2), 2021.

[21] D. Demmler, T. Schneider, and M. Zohner. ABY - A Framework for Efficient Mixed-
Protocol Secure Two-Party Computation. In NDSS, 2015.

[22] M.J. Freedman, K. Nissim, and B. Pinkas. Efficient Private Matching and Set Intersection.
In EUROCRYPT , 2004.

[23] C. Gentry. Fully homomorphic encryption using ideal lattices. In ACM STOC, 2009.
[24] S. Goldfeder. A Boolean Circuit for SHA-256, 2019. http://

stevengoldfeder.com/projects/circuits/sha2circuit.html.
[25] S. Goldwasser and Y. Lindell. Secure Multi-Party Computation without Agreement. J.

Cryptology, 18(3), 2005.
[26] C. Hazay and M. Venkitasubramaniam. Scalable Multi-party Private Set-Intersection. In

PKC, 2017.
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A Supporting Larger Plaintext Spaces

Our presentation above describes arithmetic sub-circuits CArith
i operating over single

bits. That is, each ciphertext encrypts a single bit and homomorphic operations are over
bits. This can be inefficient as parties often want to compute on larger integers, e.g.,
32 Bit integers. Homomorphic encryption schemes anyway operate over large plaintext
spaces, where addition of a large, multiple bit integer is a single homomorphic opera-
tion. A large plaintext space also allows for SIMD techniques.

To improve performance, we can extend conversion from operating over GF (2)
plaintexts to operate over plaintexts of arbitrary fields GF (q) by instituting the fol-
lowing two modifications. In our conversions, ZK Protocols, and ZK proofs, we replace
using XORs to share a single bit or combine two shares to a bit by additions and subtrac-
tions over GF (q). Random bits serving as a share for a party become random elements
of GF (q). Second, n single bit encryptions ci = Enc(bi) output by our 2PC to FHE
conversion are combined to a single n bit encrypted integer by each party computing∑n−1

i=0 2i · ci+1.

B d ≥ 2 Parties

Secure multi-party computation can be constructed from secure two-party computations
in various ways. One standard way is a star topology as we will present in our exam-
ple in Section 4. We emphasize, however, that our conversions are not limited to star
topologies.

The main idea is that each party Pi engages in secure two-party computation with a
central party P1 to compute some functionality. Such a centralized approach works for
certain functionalities, e.g., equality of inputs, as equality is symmetric and transitive.
If Pi’s input is equal to P1’s and Pj’s input is equal to P1’s, then Pi’s input is also
equal to Pj’s. Hence, computation of the joint result using homomorphic encryption
can leverage this relation.

This approach does not apply to other functionalities, e.g., larger-than comparison.
If Pi’s input is larger than P1’s, and Pj’s input is larger than P1’s, then we cannot im-
ply any larger-than relation between Pi’s and Pj’s input. Consequently, in this case, the
alternative to maintain constant-round complexity is to engage all parties in pair-wise
comparisons. This has been previously considered, e.g., in the context of sealed-bid auc-
tions [9]. However, the result of each pairwise comparison is leaked in previous work,

https://enterprise.verizon.com/terms/latency/
https://enterprise.verizon.com/terms/latency/
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reducing security to a level comparable with order-preserving encryption. In contrast,
constructions in this paper would enable computing the auction result, e.g., the largest
input, using homomorphic encryption with constant round complexity.

In summary, there exist several practically relevant protocols with arithmetic rela-
tions between inputs which can be decomposed into an initial two-party phase followed
by a combination phase of the inputs. We use secure two-party protocols during the
first phase to achieve efficient implementations in a constant number of (communica-
tion) rounds. Similarly, to evaluate low multiplicative depth sub-circuits, we use homo-
morphic encryption efficiently. Our ZK protocols ensure that the conversion is secure
against malicious adversaries.

C Proof of Theorem 1

We emphasize that we only provide a proof-sketch that, however, should convince an
expert reader about the correctness of our theorems and the security of our protocols.
Before presenting this proof sketch of our main Theorem 1, we briefly recall complete-
ness, zero-knowledge, and soundness definitions.

Let P ∈ {P1, P2} be the prover and V ∈ {P1, P2} be the verifier in a ZKP. Let
w ∈ RC be a witness for the correct execution of a conversion which we denote as
relation RC . Let ⟨P (w), V ⟩ be the execution of a ZKP protocol.

Completeness: An honest verifier accepts the proof, if the prover provides consistent
input, that is:

w ∈ RC =⇒ ⟨P (w), V ⟩ ∧ Pr[V = accept] = 1

Zero-Knowledge: The verifier learns nothing about the prover’s witness except that
it satisfies the proof, i.e., there exists a simulator SimP such that:

⟨P (w), V ⟩ c
= ⟨SimP , V ⟩

Soundness: An honest verifier rejects the proof with overwhelming probability in
the security parameter λ, if the prover’s secret input is not a witness for the proof, i.e.,
there exists an extractor ExtV such that:

V = accept =⇒ ⟨P (w),ExtV ⟩ ∧ Pr[ExtV = w] = 1− negl(λ)

Proof (Theorem 1).
Completeness of ZK Protocols (1) to (3) follows immediately from their construc-

tion, so we focus on Zero-Knowledge and Soundness.

Zero-Knowledge To prove zero-knowledge, we construct simulators SimP1
or SimP2

in the hybrid model which do not know the witness of the individual ZK Protocols
(ZKPs), create views for the adversary which are indistinguishable from the real proto-
col, and make the verifier accept the proofs. In the hybrid model, simulators can simu-
late any ZK sub-proofs invoked during the protocol.

First, observe that all messages from the prover to the verifier are semantically-
secure ciphertexts, random numbers or other zero-knowledge proofs.

In ZKP (1) and (2), the simulator SimP1 , or SimP2 (in ZKP (2)), randomly chooses
inputs ι1,i (or ι2,i) and masking bits µi,j as their input into 2PC. The verifier inputs σi,j
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to the 2PC. After the 2PC, the simulator either receives verification bits ti,j (ZKP (1))
or outputs random verification bits (ZKP (2)).

In the last step, we make use of the hybrid model. The simulator invokes the sim-
ulator of the ZKP for correct decryption using those (random) verification bits and the
committed (random) input and masking ciphertexts, simulating a consistent execution
of the ZKP.

In ZKP (3), the simulator SimP1
does not have to output verification bits vi,ωi,j ,

but the verification is done using ZK proofs Scalari and Shufflei. Hence, the simulator
for ZK Protocol (3) chooses a random ωi and invokes the simulators for Scalari and
Shufflei.

Soundness To prove soundness for ZKP (1) and (2), we construct extractors ExtP1
or

ExtP2
. We construct an extractor ExtP2

only for ZKP (1), but stress that the extractor
ExtP1

for (2) is equivalent. The extractor starts the ZK proof and lets the prover commit
to their inputs via homomorphic ciphertexts c1,j (for a known shared key). Then the
extractor chooses challenge bits σi,j and sends them to the 2PC. The prover outputs
verification bits ti,j . The extractor rewinds the prover to just before they received the
challenge bits for the 2PC. The extractor negates all challenge bits to ¬σi,j , sends them
to the 2PC and continues the protocol. Let the prover’s verification bits after rewinding
be t′i,j . We assume that the prover has consistent inputs and hence these inputs are
extractable: the prover’s inputs in ZKP (1) are ti,j ⊕ t′i,j .

The soundness of ZKP (3) is a special case of authenticity of garbled circuits [6],
and we do not need an extractor. Challenge bits vi,0,j and vi,1,j are input to the 2PC.
Note that the soundness of the ZKP (1) ensures that the entire execution of the verifier
is secure against malicious behaviour, including its conversion of the challenge bits
from FHE to 2PC. The output depends on the output of the 2PC. Since the prover
only evaluates the garbled circuit, it is bound to the correct or no output due to the
authenticity property of garbled circuits. It can hence only produce one consistent set
of output labels vi,ωi,j .

This completes our security proof. Note that only the proof of ZKP (3) is recursive
to the proof of ZKP (1), and hence all proofs are valid if ordered from (1) to (3). ⊓⊔

D Replacing Hash-based Commitments

In compositions of multi-party protocols from two-party protocols, an important ap-
plication of our conversions can be used which is of independent interest. In general,
when there are multiple two-party protocols by one party within a composed protocol,
this one party may need to commit to its input before all two-party protocols and prove
that all two-party protocols use the same input by opening the commitment in the 2PC.
The common technique to implement this is to use hash-based commitments and verify
hashes during 2PC. This requires about 22000 AND gates for each 256 input bits us-
ing, for example, SHA2 [24]. Our construction below omits hash verification inside the
circuit and can be used as an alternative.

Details We describe how this technique is applied to ZK Protocols (1) and (2), but
stress that it is general and can be applied in other scenarios, too. More specifically, the
costliest operation during garbled circuit 2PC evaluation in ZK Protocols (1) and (2) is
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Table 2: Complexities for Multi-Party Maliciously-Secure PSD using different tech-
niques. Table shows only online phases (if applicable). Table lists only dominating com-
putation or communication costs, see text.
λ: statistical security parameter, κ: computational security parameter, I : total number
of comparisons (I = dℓn log n), d: number of parties, n : elements per party, ℓ : input
length, CGF (2ℓ+λ)∗: comp. cost for GF (2ℓ+λ) multiplication, H: comp. cost for hash
evaluation, |SYM|: size of symmetric ciphertext of GF (2ℓ+λ) element, |H|: size of a
hash, |FHE|: size of a FHE ciphertext, BCx: secure broadcast of x bit, I : total number
of bit comparisons (I = dℓn log n).
For practical scenarios, we simplify: O(nℓ) · BCκ ⊆ O(I) · BC|FHE|, ℓd3 ∈ O(dI),
λI
logn + dnλ2 ∈ O(I), O(I + ndλ · (ℓ + λ)) · H ⊆ O(I) · CFHE∗, O(n · (ℓ ·
(log n + λ) + λ2)) · |H| ⊆ O(I) · |FHE|, O(nd(λℓ + λ2)) · |FHE| ⊆ O(I) · |FHE|,
O(ℓ) ·BC|H| ⊆ O(nd) ·BC|FHE|.

Comp. / party Comm. / party Rounds
FHE O(I) · CFHE∗ O(ℓn) ·BC|FHE| O(1)

Constant Round MPC
[43]

O(I) · CFHE∗ O(I) ·BC|FHE| O(1)

SPDZ [18] O(dI) · CGF (2ℓ+λ)∗
O(dI) · |SYM|+

O(n) ·BC|GF (2ℓ+λ)|
O(log d+ log logn)

This paper O(I) · CFHE∗
O(I) · |FHE|+O(n) ·

BC|FHE|
O(1)

verification of commitments Comi,j . For hash-based commitments, γ(1) and γ(2) would
need to comprise sub-circuits recomputing expensive hashes.

However with a white-box use of garbled circuits, verifying commitments is un-
necessary. Consider, first, ZK Protocol (1): instead of re-computing commitments in
γ(1), evaluator P2 simply retrieves wire labels Li,j of their input wire σi,j from garbler
P1. During evaluation of γ(1), P1 does not send the standard “translation-table” which
opens the label of output wire ti,j by mapping the label to a 0 or 1. Instead, P1 only
sends a commitment to the table. After 2PC evaluation, P2 sends label Li,j , σi,j , and
Ri,j to P1, P1 verifies Comi,j , checks whether Li,j is the right label, and then sends the
translation table.

In case of ZK Protocol (2) the situation is more subtle. P1 needs to reveal both wire
labels for σi,j = 0 and σi,j = 1 in order to prove integrity of its input. However, P1

can only do so after P2 has revealed output ti,j , but before P2 has opened the cipher-
texts. Hence, another half communication round is necessary where P2 sends ti,j after
evaluating the protocol. This order of operations is similar to the zero-knowledge proof
technique using garbled circuits by Jawurek et al. [30], where the garbler opens the
circuit after a commitment to the output by the evaluator. Note that our protocols se-
cure the garbled circuit computation (in combination with conversion from and to FHE)
whereas Jawurek et al. only construct a single ZKP using garbled circuits.
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E Complexity Analysis

As there is no dedicated protocol for multi-party maliciously-secure PSD, we compare
complexities with those for evaluating F using general MPC techniques SPDZ [18],
constant-round MPC [43], and (semi-honest) FHE. Table 2 shows results of “online”
phases only (SPDZ, constant-round MPC, our techniques). We stress that in contrast
to our more detailed explanations below, Table 2 presents only a summary, focussing
on those costs which dominate computation and communication. For example for the
FHE-based approach, we silently ignore the n FHE additions in the outer part of F , as
O(dℓn log n) FHE multiplications will dominate total computation time. As mentioned
above, we set m ∈ O( n

logn ) and β ∈ O(log n). To implement secure broadcast, we use
the standard echo broadcast [18, 25, 43, 44] which has message complexity O(d2).

(Semi-Honest) FHE Let CFHE∗ be the computational complexity for a FHE multipli-
cation and CFHE+ the computational complexity for a FHE addition. A standard FHE
implementation arithmetizes F ’s inner part fi,j,k. There, two ℓ Bit elements are com-
pared with O(ℓ) multiplications (implementing XNORs and ANDs), followed by log n
multiplications to realize

∨
. Finally, d multiplications are necessary for

∏
. In total,

FHE requires O(dℓn log n) · CFHE∗ homomorphic multiplications with a multiplicative
circuit depth of log ℓ + log log n + log d + 1. Even for reasonable values ℓ = 32,
d = 20, n = 128, the multiplicative depth is already 14 which leads to huge runtimes
in practice [48]. Note that homomorphic additions also increase ciphertext noise. While
noise increased by additions is roughly one order of magnitude less than with multipli-
cations [63], and we do not count additions in our comparison, we stress that additive
noise requires FHE parameter selection to result in even slower computations.

Communication complexity with FHE comprises securely broadcasting all (m·β) ∈
O(n) input elements encrypted bit by bit and partial decryptions for the final ℓ Bit
output. Such a standard FHE evaluation of F leads to a constant round complexity.

Constant-Round MPC An implementation based on recent constant-round MPC pro-
tocols [33, 43, 44] replaces F ’s arithmetic operators with Boolean operators, i.e., the

∏
by

∧
and each

∑
by

∨
. The result is a circuit with dnℓ input wires, nℓ per party, one

output wire, and dℓn log n gates. This circuit is then evaluated in an online phase hav-
ing the following complexities: (I) For each input wire of each party Pi, Pi broadcasts
one PRG seed of length κ (security parameter), and all parties perform a distributed
decryption, also broadcasting partial decryptions. (II) For each gate, all parties per-
form a distributed decryption. Together, per party, this requires a total of O(dℓn log n)
broadcasts of size comparable to a FHE ciphertext and O(nℓ) broadcasts of PRG seeds.
Lindell et al. [43] require 9 rounds and a FHE multiplicative depth of 3.

SPDZ Comparing two ℓ Bit integers is implemented in SPDZ [18] by Catrina and
de Hoogh [14]’s arithmetization. For statistical security parameter λ, each compar-
ison requires d · ℓ multiplications in GF (2ℓ+λ) per party, in a constant number of
rounds. The following

∨
requires log n and the

∏
requires d multiplications. Opening

the final output requires O(ℓ · d3) multiplications per party. So in total, F ’s evalua-
tion requires O(ndlog ndℓ + ℓd3) = O(d2ℓn log n + ℓd3) multiplications per party in
O(log d+log log n) rounds. This is also the amount of shares which have to be securely
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Table 3: Asymptotic circuit complexity. In our notation, “+x” for wires or gates means
that O(x) wires or gates are added by running a particular circuit.

#Input wires
(P1, P2)

#Output wires #Gates

fi,j,k ℓ, ℓlog n 1 ℓlog n
γShare

′ +1,+0 +0 +1
γShare

′(1) +λℓ,+λℓ +λℓ (1 real) +λℓ
(γShare

′(1))(3) +λ,+0 +λ (1 real) +λ
((γShare

′(1))
+λ2,+λ2 +λ2 (1 real) +λ2

(3))(1)
Total ℓ · (log n+ λ) + λ2 λℓ+ λ2 ℓ · (log n+ λ) + λ2

exchanged between two parties. Initial sharing of O(n) elements of each party requires
O(n) secure broadcasts.

Our Mixed-Technique Let C2PC denote the computational complexity for computing
the 2PC sub-protocol for inner circuits fi,j,k of F . For P1, computational complexity
for evaluating F is O(nd) · C2PC plus O(nd) · CFHE∗ plus O(n) · CFHE+. m ∈ O( n

logn )

and β ∈ O(log n), So, the computational complexity is in O(n · (CFHE+ + d · (C2PC +
CFHE∗))).
Circuit complexity Comparison circuit fi,j,k has O(ℓ) input wires for P1, O(ℓlog n)
for P2, and one output wire (for P2). Its number of gates is O(ℓlog n), as two ℓ bit
strings can be compared with O(ℓ) gates.

For our conversion from 2PC to FHE, we run γShare
′ of fi,j,k, which adds additional

complexity, see also Table 3. Specifically, running γShare
′ adds O(1) input wires for P1,

no additional input wire to P2, no additional output wire, and O(1) additional gates
(one XOR).

Running ZK Protocol (1) on γShare
′ leads to circuit γShare′(1). This circuit increases

the number of input wires for P1 by λ wires (the µi,j) for each of P1’s ℓ input wires.
It also increases P2’s input wires by λℓ input wires (choice bits σi,j). The number
of output wires is increased by λℓ (µi,j or µi,j ⊕ ιi,j), and the number of gates, too
(for-loop). Note that all but one output wire are used for ZK proofs, and one single
wire carries the actual output from the previous circuit. ZK Protocol (3) is run, leading
to (γShare

′(1))(3). This circuit adds λ input wires for P1 (the v), λ output wires (all
but one used for ZK proofs), and λ gates. Finally, ZK Protocol (1) is run, resulting in
((γShare

′(1))(3))(1). This circuit adds 2λ2 input wires for P1, i.e., λ wires (µi,j) for
each of the 2λ additional input wires from previous circuit (γShare′(1))(3). Input for P2

is also increased by 2λ2 wires (λ wires for the σi,j for each of P1’s additional input).
Consequently, output wires are increased by 2λ2 (µi,j or µi,j ⊕ ιi,j), and the number of
gates, too.

In total, our conversion leads to a circuit with O(ℓ · (log n + λ) + λ2) input wires,
O(λℓ+ λ2) output wires, and O(ℓ · (log n+ λ) + λ2) gates.

We use the scheme by Wang et al. [65] as 2PC building block which implements
evaluation of each circuit with O(ℓ·(log n+λ)+λ2) calls to a cryptographic hash func-
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tion. There are d parties and O( n
logn ) hash table buckets of O(log n) entries, leading to

a total of O(n · (ℓ · (log n+ λ) + λ2)) hashes per party.

FHE complexity 2PC to FHE conversion also involves additional FHE operations.
That is, the part before and after fi,j,k’s 2PC in Figure 6 requires 1 FHE encryption and
1 FHE multiplication. We then run ZK Protocol (1) which adds λℓ FHE encryptions
and multiplications. Note that the depth of these multiplications is only 1. We then run
ZK Protocol (3) which adds λ FHE encryptions, 1 ZK proof Scalar, 1 ZK proof Shuffle,
and 1 decryption. Multiplicative depth remains 1. Finally, we run ZK Protocol (1) again,
adding λ2 FHE encryptions and multiplications, each of depth 1.

Number of rounds Recall that the maliciously secure 2PC protocol by Wang et al.
requires 3 rounds (steps 5 and 6 in Figure 2 in [65]) during online evaluation. The
first two rounds comprise exchanging shares of masking bits and MACs, and the third
round includes Pi performing offline evaluation of the circuit and generating output.
Note that P1 runs 2PC with all other parties at the same time in parallel. To implement
secure broadcast, we use the simple echo broadcast [18, 25, 44]. Similar to previous
work [43], we consider this broadcast to run in one round.

We now show how we divide our protocol into rounds, integrating 2PC and secure
broadcasts. In the first two rounds of our protocol, we run the first two rounds of 2PC.
As part of these two rounds, P1 also broadcasts commitments to all their input bits and
Enc(r1) which is their share of r. In parallel, P1 sends all Enc(s) from 2PC to FHE
conversion, all Γ for ZK Protocol (3), and the m = Enc(µ) of ZK Protocol (1) to each
Pi, respectively, in parallel. Meanwhile, each Pi broadcasts their share Enc(ri) and
sends commitments Com(σ) for ZK Protocol (1) to P1.

During our third round, Pi finishes the third round of 2PC. As soon as each Pi is
done with 2PC evaluation, they open commitments to σs for P1 and also send their Γ s,
∆s, ∆′s, and ZK proofs.

In the fourth round, Party P1 sends either µ or µ ⊕ ι of ZK Protocol (1) to Pi.
Both parties broadcast a request to decrypt ∆′

i,π(0) and ∆′
i,π(1) such that P1 learns the

decrypted values. In parallel, Pi also broadcasts c′i together with a ZK proof that this
encrypts a bit.

In the fifth round, parties send their contributions to decrypt ∆′
i,π(0) and ∆′

i,π(1) to
P1 (together with a proof of correct decryption), and P1 broadcasts ci together with a
proof that ci encrypts a bit.

In the sixth and last round, all parties homomorphically compute c′′i , evaluate the
arithmetic part of F and broadcast partial decryptions of their outputs together with a
ZK proof of correct (partial) decryption.

Communication complexity Wang et al.’s 2PC communication complexity is domi-
nated by O(1) hashes for each input and output wire. Thus, for evaluation of a single
fi,j,k including 2PC to FHE conversion, we need to transmit O(ℓ · (log n + λ) + λ2)
hash values. For all comparisons, we therefore send O(n · (ℓ · (log n+ λ) + λ2)) hash
values per party for the 2PC part.

For conversion, we first consider only communication between P1 and Pi. More
specifically, P1 begins and sends 1 FHE encryption (Enc(s1)). For ZK Protocol (1),
P1 sends O(λℓ) ciphertexts Enc(m) to Pi and opens ciphertexts by sending as many
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random coins. Party Pi sends O(λℓ) hashes (commitments). For ZK Protocol (3), P1

sends O(λ) ciphertexts (Γ s), P2 also sends O(λ) ciphertexts (their Γ s) as well as ∆′s
and ZK proofs. Party Pi also sends 2 partial decryptions. For the last ZK Protocol (1),
P1 sends O(λ2) ciphertexts (Enc(m)) and later opens with O(λ2) random coins, and
Pi sends O(λ2) (hash) commitments.

In total, we send O(n · (ℓ · (log n + λ) + λ2) hashes per party. Assuming the size
of a random coin and a ZK Proof to be like the size of a FHE ciphertext (up to con-
stant factors), then P1 sends O(nd(λℓ + λ2)) FHE ciphertexts. All other parties send
significantly less (O(nλ) ciphertexts).
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