Calamari and Falafl: Logarithmic (Linkable) Ring Signatures from
[sogenies and Lattices

Ward Beullens', Shuichi Katsumata?, Federico Pintore3

Limec-COSIC, KU Leuven, Belgium
ward.beullens@esat.kuleuven.be
2National Institute of Advanced Industrial Science and Technology (AIST), Japan
shuichi.katsumata@aist.go. jp
3Mathematical Institute, University of Oxford, UK

federico.pintore@maths.ox.ac.uk

29th May 2020

Abstract

We construct efficient ring signatures from isogeny and lattice assumptions. Our ring signatures are

based on a logarithmic OR proof for group actions. We then instantiate this group action by either the
CSIDH group action or an MLWE-based group action to obtain our isogeny-based or lattice-based ring
signature scheme respectively. Even though this OR proof has a binary challenge space and therefore
needs to be repeated a linear number of times, the size of our ring signatures is small and scales better
with the ring size N than previously known post-quantum ring signatures. We also construct linkable
ring signatures that are almost as efficient as the non-linkable variant.
The signature size of our isogeny-based construction is an order of magnitude smaller than all previously
known logarithmic post-quantum ring signatures, but is relatively slow (e.g. 5.5 KB signatures and 79 s
signing time for rings with 8 members). In comparison, our lattice-based construction is much faster, but
has larger signatures (e.g. 30 KB signatures and 90 ms signing time for the same ring size). For small
ring sizes our lattice-based ring signatures are slightly larger than state-of-the-art schemes, but they are
smaller for ring sizes larger than N =~ 1024.

Keywords: Isogeny-based cryptography, Lattice-based cryptography, Linkable Ring Signature, Post-
Quantum cryptography

1 Introduction

Ring signatures, introduced by Rivest, Shamir, and Tauman-Kalai [39] allow a person to sign a message on
behalf of a group of people (called a ring), without revealing which person in the ring signed the message.
A ring signature is required to be unforgeable, meaning that one cannot produce a signature without having
the secret key of at least one person in the ring and anonymous, meaning that it is impossible to learn which
person produced the signature. The original motivation behind ring signatures is to allow a whistleblower
to leak information without revealing his own identity while still adding credibility to the information by
proving that it was leaked by one of the people in the ring. Linkable ring signatures are an extension where
one can publicly verify whether two messages were signed by the same person or not. This has found ap-
plications in e-voting and privacy-friendly digital currencies. In the e-voting application, each person signs

This work was supported by CyberSecurity Research Flanders with reference number VR20192203 and the Research Council
KU Leuven grants C14/18/067 and STG/17/019. Ward Beullens is funded by an FWO fellowship. Shuichi Katsumata was
supported by JST CREST Grant Number JPMJCR19F6.



his vote on behalf of all the people eligible to vote. The linkable anonymity property protects the privacy of
the voter, while still making it possible to verify that each person has only voted once. Since elections can
have a very large number of participants it is therefore important to use a ring signature scheme that can
efficiently support very large ring sizes.

The security of many cryptosystems, including ring signatures, relies on the hardness of factoring integers
or computing discrete logarithms in finite cyclic groups. Unfortunately, these problems can be solved in
quantum polynomial time [40], and hence these schemes are no longer secure in the presence of adversaries
with access to a sufficiently powerful quantum computer. To resolve this issue it is necessary to construct
(linkable) ring signatures based on hard problems that resist attacks from quantum computers. Previous
works have constructed such ring signature schemes - with the signature scheme scaling poly-logarithmically
with the ring size - based on symmetric cryptographic primitives [27], [16] and the hardness of lattice prob-
lems [20, 211, 6, 41}, 32].

1.1 Owur contributions

In this paper, we construct concretely efficient logarithmic ring signatures and linkable ring signatures from
isogeny-based and lattice-based hardness assumptions. This is to the best of our knowledge the first con-
struction of (linkable) ring signatures from isogeny-assumptions. Our (linkable) ring signature schemes are
realized by first constructing a (linkable) ring signature scheme based on a group action that satisfies certain
cryptographic properties, and then instantiating this group action by either the CSIDH group action or a
MLWE-based group action. To avoid multi-target attacks similar to those of Dinur and Nadler [I7] we made
a detailed security proof with concrete expressions for the security loss in each step of the proof. This led
us to include a unique salt value in each signature and to carefully separate the domain of various calls to
the random oracles.

An advantage of our scheme is that the signature size scales very well with the ring size N, even compared
to other logarithmic (linkable) ring signatures. In our scheme, the only dependence on N is due to the
signatures containing a small number of paths (in the clear) in Merkle trees of depth log N. Therefore,
the term in the signature size that depends on log IV is independent of the CSIDH or Lattice parameters.
Previous works relied on a hidden path in a Merkle tree and had to prove the consistency of a Merkle hash
in zero-knowledge. Therefore, the multiplicative factor on log N was much larger than ours. The very mild
dependence on log N can be observed in Figure [} where we see that for our lattice-based ring signature
scheme a signature for ring size N = 2048 is only 17% larger than a signature for ring size N = 2.

For efficiency and convenience we chose to implement our (linkable) ring signature scheme with parameter
sets from pre-existing signature schemes: For our isogeny instantiation we consider the CSIDH-512 parameter
set, used by CSI-FiSh, and for our lattice instantiation we use the Dilithium IT parameter set. This allows
us to reuse large portions of code from CSIDH, CSI-FiSh, and Dilithium implementations. The signature
size and signing speed of our implementations are shown in Figure [l We see that the signature size can be
estimated as log N + 3.5 KB for the isogeny-based instantiation and 0.5log N + 29 KB for the lattice-based
instantiation. For ring size N = 8 our lattice-based instantiation is with a signing time of 90 ms, faster than
our isogeny-based instantiation (79 s) by almost 3 orders of magnitude. Table [1| lists the signature size of
our ring signatures and those of some other post-quantum ring signatures. Not surprisingly, the signature
size of our isogeny-based ring signature is very small compared to the other proposals; the signature size is
an order of magnitude smaller than existing logarithmic post-quantum ring signature schemes. It is hard
to make a meaningful comparison between our schemes and schemes which claim different security levels.
We compute the signature size for a parameter set that achieves NIST security level I]E| to allow for a fair
comparison with the work of Esgin et al. [2I]. We see that for small ring sizes our lattice-based signatures

1We used the Dilithium III parameters, 168-bit seeds and commitment randomness and a challenge space of size 2168, which
suffices to achieve NIST level II for low MAXDEPTH.



Lattice RS (Faafl) 6 60 - Lattice RS (Faafl)
1015 4 Lattice LRS (Falafl) 10 Lattice LRS (Falafl)
— Iso i —_— i
= geny RS (Camari) . 50 Isogeny RS (Camari) .
& | e Isogeny LRS (Calamari) 10° I Isogeny LRS (Calamari)
o B —
g 1013 N ﬂ‘_) 40 4
2 o
= g
= " . L 102 Ei 30 A
210t e g
5 220 -
7] n
0 100
10° 1 10 A ///
21 22 23 24 5 26 7 28 9 olo I 0 o1 22 23 4 5 26 7 28 29 l0 oll
Ring size Ring size

Figure 1: Signing time (left) and signature size (right) of our isogeny-based and lattice-based (linkable)
ring signatures. The left and right scales in the figure of signing time correspond to the isogeny-based and
lattice-based schemes, respectively. Signing time is measured on an Intel i5-8400H CPU core.

N hardness Security
2! 23 26 212 221 assumption Level

Calamari 3.5 5.4 8.2 14 23 CSIDH-512 *
Falafl 29 30 32 35 39 MSIS, MLWE NIST 1
Falafl for 2 49 50 52 55 59 MSIS, MLWE NIST 2
RAPTORJ[33] ~ 2.5 ~ 10 81 5161 / NTRU 100 bits
EZSLLI[20, 21] 18 19 31 59 148 MSIS, MLWE NIST 2
KKW|[27] / / 250 456 / LowMC NIST 5

Table 1: Comparison of the signature size (KB) of some concretely efficient post-quantum ring signature
schemes.
* 128 bits of classical security and 60 bits of quantum security [37].

are larger than those of Esgin et al., but for ring sizes larger than N & 1024 our signatures are the smallest.
Since our isogeny scheme is compact and our lattice scheme is fast we call our schemes, respectively, the
“Compact And Linkable Anonymous Message Authentication fRom Isogenies”-scheme (Calamari) and the
“Fast Authentication with Linkable Anonymity From Lattices”-scheme (Falafl).

1.2 Technical overview

Our (linkable) ring signatures are based on the classical sigma protocol for the Graph Isomorphism Problem
which is straightforwardly generalized for any group actions: Let x : G x X — X be a group action and fix
Xy € X. To prove knowledge of a group element g such that gx Xy = X, the prover samples r € G uniformly
at random and sends R = rx X as commitment. The verifier responds with a random challenge bit c. If the
challenge bit is 0 the prover sends resp = r + g and if the challenge bit is ¢ = 1 he sends resp =7r. If c =0
the verifier checks if resp x Xg = R and otherwise he checks resp x X = R.

A key observation is that the verification algorithm is independent of X when the challenge bit is 0. This

allows us to come up with the following OR proof for group actions: For some Xg, X1,---,Xn € X, the
prover wants to prove knowledge of g such that g x Xg = X for some I € {1,--- N}. The prover starts by
simulating a commitment for each X; with ¢ € {1,--- , N}, so that he can respond to the challenge ¢ = 1



and sends these commitments in a random order to the verifier. If the verifier sends ¢ = 1 we let the prover
respond for all the commitments (and hence he does not leak I). If the verifier sends the challenge bit ¢ =0
the prover can answer the I-th challenge, but not the other challenges, because he does not know group
elements g such that g x Xo = X; for ¢ # I. Therefore, we let the prover respond only to R;. This does not
reveal I, because verification is independent of X7;.

More concretely, the prover sends N elements Ry = r; * X1,--- , Ry = rny * Xy in a random order to the
verifier, where the r; are uniformly random group elements. Then, after the verifier sends a challenge bit
¢, the prover responds with resp = r; + g if the challenge bit ¢ is 0, or responds with r1,--- ,ry in case
the challenge bit ¢ is 1. The verifier checks whether resp x Xo € {R;,--- , Ry} in case ¢ = 0 and he checks
whether {ry x X1, - ,7n * Xy} = {R1,--- , Ry} in case ¢ = 1. Here, note that the commitments are sent
in a random order, so the response hides the index I in case ¢ = 0.

Since the prover sends N elements Ry, -+ , Ry as commitment and N group elements r1,--- , 7y as response
in case ¢ = 1 it looks like the proof size is linear in N, and that there is no improvement over the generic
OR proof. However, since the r; are chosen at random, they can be generated from a PRG instead, which
reduces the communication cost to just sending a seed as the response in case ¢ = 1. Moreover, instead of
sending all the R; we can commit to them using a Merkle tree and only send the root as the commitment.
To make verification possible, the prover then sends a path in the Merkle tree to the verifier as part of the
response in case ¢ = 0. This makes the total proof size logarithmic in IV, a clear improvement over generic
OR proofs. For some group actions it is more efficient to compute N group actions r x X; with the same
group element r, compared to computing N general group actions r; x X; with distinct ;. Therefore, in our
protocol we set ry = --- = ry = r. Since this would break the ZK property of the Sigma protocol, we fix
this by replacing each R; by a hiding commitment Com(R;, bits;), and we let the prover include bits; in the
response in case ¢ = 0.

To obtain ring signature schemes we apply the Fiat-Shamir transform to the OR proof and we instantiate
the group action x by either the CSIDH group action or the MLWE group action:

xRy X R (s,e) xt > Axs+e+t

where Ry = Z[X]/(X? +1). To get one-wayness we need to restric the domain to Sp*™ x R™, where S,
is the set of elements of R, with coefficients bounded in absolute value by 7. Therefore we need to use the

Fiat-Shamir with aborts technique to ensure that the signatures do not leak the secret key [34].

We expand our OR-proof to an OR-proof-with-tag, where given two group actions x : G x X — & and
o : G xT — T, alist of elements Xg, X1,---, Xy € X and Ty, T € T the prover proves knowledge of g
such that g x Xo = X for some I € {1,--- ,N} and g e Ty = T. This naturally leads to a linkable signature
scheme. The signer includes the tag T' = ge T in the signature and then proves knowledge of g. Linking two
signatures can be done by checking if the tags are equal (or close with respect to a well defined metric). We
require a number of properties from x and e to make the linkable ring signature secure (see Theorem |4.2)).
For example, it should not be possible to learn gx X given geTj, because that would break the anonymity of
the LRS. We give instantiations of « and e based on the CSIDH group action (where we put ge X := (2g)xX)
or based on the hardness of MLWE and MSIS.

Finally, we like to point out several optimization tricks that allow us to further lower the size of the signature.
Since our base protocol has a binary challenge, we must apply parallel repetition to lower the soundness
error to make it useable for (linkable) ring signatures. A naive way to accomplish this would be to run the
OR-proof A-times, where A is the security parameter. However, by noticing that opening to ¢ = 1 (which
requires communicating only a single seed value) is much cheaper than opening to ¢ = 0, we can do much
better. Specifically, we choose integers M, K such that (}) > 2* and do M > X executions of the protocol
of which exactly K executions are chosen to have challenge bit 0. Setting K < A, we get a noticeable gain in



the signature size. Moreover, since we now only need to open to seed values in most of the parallel runs, we
use a seed tree to assist further lowering of the signature size. Informally, the seed tree generates a number
of pseudorandom values and can later disclose an arbitrary subset of them, without revealing information
on the remaining values. Further details on our optimization tricks are found in Section [3:4]

Roadmap. In Section [2] we provide some necessary preliminaries. In Section [3| we first define an admissible
group action, then we construct a base OR-proof for group actions with binary challenge space, which we then
extend to a main OR-proof with exponential challenge space. Finally we apply the Fiat-Shamir transform to
this main OR-proof for an admissible group action to obtain a ring signature scheme. Section []follows a same
structure, where we define an admissible pair of group actions, for which we define a full OR-proof-with-tag,
which we convert into a linkable ring signature. In Section [5| we instantiate the group actions from isogeny
and lattice-based assumptions. Finally, in Section [6] we discuss our parameter choices and implementation
results.

2 Preliminaries

A note on random oracles. Throughout the paper, we instantiate several standard cryptographic primitives
such as pseudorandom number generators (Expand) and commitment schemes by hash functions modeled as
a random oracle O. We always assume the input domain of the random oracle is appropriately separated
when instantiating several cryptographic primitives by one random oracle. With abuse of notation, we may
occasionally write for example O(Expand||-) instead of Expand(-) to make the usage of the random oracle
explicit. Here, we identify Expand with a unique string when inputting it to ©. Finally, we denote by A® an
algorithm A that has black-box access to O, and we may occasionally omit the superscript O for simplicity
when the meaning is clear.

2.1 (Relaxed) sigma protocols

A sigma protocol Iy, for a relation R C {0,1}* x {0, 1}* is a special type of public-coin three-move interactive
protocol between a prover and a verifier. Below, we define a relaxed version of sigma protocol where the
extractor of special-soundness only extracts a witness for a slightly wider relation R (ie., RC R) As long
as R is still a sufficiently hard relation, then this relaxed definition is still useful, e.g., [23] 14} 2 [7| [26]. We
also define the sigma protocol in the random oracle model, where the prover and verifier have access to a
random oracle.

Definition 2.1 ((Relaxed) sigma protocol). A sigma protocol Iy, for relations (R, R) such that R C R
consists of four oracle-calling PPT algorithms (P = (P1, P2),V = (V1,V3)), where Vs is deterministic and
we assume Py and P, share states. Let ChSet denote the challenge space. Then, Iy in the random oracle
model has the following three-move flow:

e The prover on input (X,W) € R, runs com < PP (X, W) and sends a commitment com to the verifier.
e The verifier runs chall +- V,©(com) to obtain a random challenge and sends chall to the prover.

e The prover, given chall, runs rsp < P (X, W, chall) and returns a response rsp to the verifier. Here, we
allow Py to abort with some probability. In such cases we assign rsp with a special symbol 1L denoting
abort.

e The verifier runs Vi (X, com, chall, rsp) and outputs accept or reject.

Here, O is modeled as a random oracle and we often drop O from the superscript for simplicity when the
meaning is clear. In addition, we assume X is always given as input to Po and Vs, and omit them. The
protocol transcript (com,chall,rsp) is said to be valid in case Va(com, chall,rsp) outputs accept.



We require a sigma protocol IIys; in the random oracle model to satisfy the following three properties.

Correctness with abort. Conditioning on the prover not aborting, we require the sigma protocol to be
correct. In particular, we require the following holds for all (X, W) € R:

com + PP (X, W),
Pr | Vi2(com,chall,rsp) = accept chall + V€ (com), =1,
rsp < P’ (W,chall) s.t. rsp # L.

where the probability is taken over the randomness used by (P, V) and by the random oracle. Namely,
conditioned on the prover not aborting, the verifier always accepts. We note that the aborting probability §
can be non-negligible.

High min-entropy. We require the commitment com output by PP to have high min-entropy for any
statement-witness pairs. In particular, we say the sigma protocol has o min-entropy if for any (X, W) € R,
we have

Pr [com = com’|com « P (X, W), com’ +— A°(X,W)] < 27°.

We say Ilx;, has high min-entropy if 27¢ is negligible.

(Non-abort) special zero-knowledge. In our definition of special zero-knowledge we allow the adversary,
the prover and the simulator to make queries to a common random oracle @. We say Iy is non-abort special
zero-knowledge, if there exists a PPT simulator Sim® with access to a random oracle @ such that for any
(X, W) € R, chall € ChSet and any computationally unbounded adversary .4 that makes at most a polynomial
number of queries to O, we have

Pr[A® (PO (X, W, chall)) — 1] — Pr[A®(Sim® (X, chall)) — 1]| = negl(}\),

where P is a non-aborting prover P = (Py, P;) run on (X, W) with challenge fixed as chall.

In words, Sim simulates to 4 the view of an honest non-aborting executions of the sigma protocol
without using the witness. The reason why we consider zero-knowledge in the presence of a random oracle
and decide to not use the standard definition is to make the security proof concrete. Namely, since we
prove zero-knowledge by combining several lemmas together, which themselves are proved in the random
oracle model, it is convenient to also consider zero-knowledge in the random oracle model. Finally, note that
although stronger definitions where Sim allows inputs such that X & Lp := {X | 3 W : (X,W) € R} can be
considered, the above suffices for our application as we are guaranteed that A outputs X € Lg.

(Relaxed) special soundness. We say Iy has relaxed special soundness if there exists a PT extrac-
tion algorithm Extract such that, given a statement X and any two valid transcripts (com,chall rsp) and
(com, chall’, rsp’) such that chall # chall’, outputs a witness W satisfying (X, W) € R. Here, note that Extract
is only required to recover a (weaker) witness in R rather than in R.

2.2 Ring signatures

In this subsection, we review the definition of ring signatures.

Definition 2.2 (Ring signature scheme). A ring signature scheme Ilgs consists of four PPT algorithms
(RS.Setup, RS.KeyGen, RS.Sign, RS.Verify) such that:

RS.Setup(1*) — pp : On input a security parameter 1*, it returns public parameters pp used by the scheme.

RS.KeyGen(pp) — (vk,sk) : On input the public parameters pp, it outputs a pair of public and secret keys
(vk, sk).

RS.Sign(sk,M,;R) — o : On input a secret key sk, a message M, and a list of public keys, i.e., a ring, R =
{vky,...,vkyx}, it outputs a signature o.



RS.Verify(R,M, o) — 1/0: On input a ring R = {vky,...,vkx}, a message M, and a signature o, it outputs
either 1 (accept) or 0 (reject).

We require a ring signature scheme Ilgs to satisfy the following properties: correctness, full anonymity,
and unforgeability. Informally, correctness means that verifying a correctly generated signature will always
succeed. Anonymity means that it should not be possible to learn which secret key was used to produce
a signature, even for an adversary that knows the secret keys for all the public keys in the ring. Finally
unforgeability means that it should be impossible to forge a valid signature without knowing a secret key
that corresponds to one of the public keys in the ring.

Correctness: For every security parameter A € N, N = poly(}), j € [N], and every message M the following
holds:

pp < RS.Setup(1%),
(vki,sk;) < RS.KeyGen(pp) Vi € [N],
R:= (Vkl7 tee ,VkN),
o < RS.Sign(sk;, M, R).

Pr | RS.Verify(R,M,0) =1 =1.

Anonymity: A ring signature scheme Ilgrs is anonymous (against full key exposure) if, for all A € N and
N = poly(\), any PPT adversary A has at most negligible advantage in the following game played
against a challenger.

(i) The challenger runs pp <+ RS.Setup(1?) and generates key pairs (vk;,sk;) = RS.KeyGen(pp;rr;)
for all ¢ € [N] using random coins rr;. It also samples a random bit b <— {0, 1};

(ii) The challenger provides pp and {rr;};c(n) to A;

(iii) A outputs a challenge (R, M, i, 1) to the challenger, where the ring R must contain vk;, and vk, .
The challenger then runs o* < RS.Sign(sk;,, M, R), and provides o* to A;

(iv) A outputs a guess b*. If b* = b, we say the adversary A wins.

)

The advantage of A is defined as Advga®"(A) = | Pr[A wins] — 1/2|.

Unforgeability: A ring signature scheme Ilrs is unforgeable (with respect to insider corruption) if, for all
A € Nand N = poly()), any PPT adversary A has at most negligible advantage in the following game
played against a challenger.

(i) The challenger runs pp < RS.Setup(1*) and generates key pairs (vk;,sk;) = RS.KeyGen(pp;rr;)
for all i € [N] using random coins rr;. It sets VK := {vk;};c[n) and initializes two empty sets SL
and CL.

(ii) The challenger provides pp and VK to A;
(iii) A can make signing and corruption queries an arbitrary polynomial number of times:

— (sign, i, M,R): The challenger checks if vk; € R and if so it computes the signature o «
RS.Sign(sk;, M, R). The challenger provides o to A and adds (i, M, R) to SL;

— (corrupt, i): The challenger adds vk; to CL and returns rr; to A.

(iv) A outputs (R*, M*,¢*). If R* C VK\CL, (-, M*,R*) & SL, and RS.Verify(R*,M*,0*) = 1, then we
say the adversary A wins.

The advantage of A is defined as Advpe (A) = Pr[A wins).



2.3 Linkable ring signatures

In this subsection, we review the definition of linkable ring signatures, a variant of ring signatures where
anyone can efficiently check if two messages were signed with the same secret key.

Definition 2.3 (Linkable ring signature scheme). A linkable ring signature scheme Il gs consists of the four
PPT algorithms of a Ring signature scheme and one additional PPT algorithm LRS.Link such that:

LRS.Link(cg,01) = 1/0: On input two signatures oo and o1, it outputs either 1 or 0, where 1 indicates that
the signatures are produced with the same secret key.

In addition to the correctness property, we require a linkable ring signature scheme Il rs to satisfy the
following properties: linkability, linkable anonymity, and non-frameability. Informally, linkability means
that if an adversary produces more than k messages with a set of k (potentially malformed) public keys,
then the Link algorithm will output 1 on at least one pair of signatures. Linkable-anonymity means that
an adversary cannot tell which secret key was used to produce signatures. Note that in contrast to the
ring signature case, the adversary is not given all the secret keys. Otherwise he could use the linkability
property to deanonymize the signer. Finally, the non-frameability property says it should be impossible for
an adversary to produce a valid signature that links to a signature produced by an honest party.

Correctness: For every security parameter A\ € N, N = poly()), j € [N], sets Do, D1 C [N] such that
j € Do N Dy, and every messages Mg, M; the following holds:

pp < LRS.Setup(1?),
(vks, sk;) < LRS.KeyGen(pp) Vi € [N],
Ry := {vki}iep,,
Op < LRS.Sign(skj, Mg, Rb) Vb € {0, 1}

LRS.Verify(Rb, Mb, O’b) =1
Pr Vb e {0,1} and
LRS.Link(Uo,O'l) =1

=1

Compared to standard ring signatures, we additionally require signatures signed by the same secret key to
link together. That is, there is a public procedure to check whether two signatures were generated by the
same user.

Linkability: A linkable ring signature scheme II| gs is linkable if, for all A € N and N = poly(}\), any PPT
adversary .4 has at most negligible advantage in the following game played against a challenger.

(i) The challenger runs pp < LRS.Setup(1*) and provides pp to A;
(ii) A outputs VK := {vk;};c(n) and a set of tuples (o;, My, R;)ie[n1];
(ili) We say the adversary A wins if the following conditions hold:
- For all ¢ € [N + 1], we have R; C VK;
- For all ¢ € [N + 1], we have LRS.Verify(R;, M;,0;) = 1;
- For all 4,5 € [N 4 1] such that i # j, we have LRS.Link(o;,0;) = 0.

The advantage of A is defined as Advin&(A) = Pr[A wins].

Below, we follow the refined linkability anonymity definition of [3]. Informally, even if an adversary
obtains multiple signatures from the same signer, it should still be infeasible to tell which exact user from a
ring produced the signature.

Linkable anonymity: A linkable ring signature scheme Il gs is linkable anonymous if, for all A € N and
N = poly(\), any PPT adversary A has at most negligible advantage in the following game played
against a challenger.



(i) The challenger runs pp < LRS.Setup(1*) and generates key pairs (vk;,sk;) = LRS.KeyGen(pp; rr;)
for all ¢ € [N] using random coins rr;. It also samples a random bit b < {0, 1};

(ii) The challenger provides pp and VK := {vk; };cn] to A;

(iii) A outputs two challenge verification keys vk{, vk} € VK to the challenger. The secret keys corres-
ponding to vkj,vk] are denoted by skj, ski, respectively;

(iv) The challenger provides all rr; of the corresponding vk; € VK \ {vkg, vk} };

(v) A queries for signatures on input a verification key vk € {vky,vki}, a message M, and a ring R
such that {vkg,vki} C R:
- If vk = vk, then the challenger returns o < LRS.Sign(sk;, M, R);
- If vk = vkj, then the challenger returns o < LRS.Sign(skj_,, M, R);

(vi) A outputs a guess b*. If b* = b, we say the adversary A wins.

The advantage of A is defined as AdviRe"(A) = | Pr[A wins] — 1/2|.

Non-frameability: A linkable ring signature scheme Iljgrs is non-frameable if, for all A € N and N =
poly(\), any PPT adversary A has at most negligible advantage in the following game played against
a challenger.

(i) The challenger runs pp < LRS.Setup(1*) and generates key pairs (vk;,sk;) = LRS.KeyGen(pp; rr;)
for all ¢ € [N] using random coins rr;. It sets VK := {vk;};c[n) and initializes two empty sets SL
and CL.

(ii) The challenger provides pp and VK to A;
(iii) A can make signing and corruption queries an arbitrary polynomial number of times:

— (sign,i,M,R): The challenger checks if vk; € R and if so it computes the signature o <«
LRS.Sign(sk;, M,R). The challenger provides ¢ to A and adds (i, M, R) to SL;

— (corrupt, i): The challenger adds vk; to CL and returns rr; to A.
(iv) A outputs (R*,M*,o*). We say the adversary A wins if the following conditions are satisfied:
~ LRS.Verify(R*,M*,0*) = 1 and (-, M*, R*) ¢ SL;

— LRS.Link(c*,0) = 1 for some o returned by the challenger on a signing query (i, M,R) € SL
where vk; € VK\CL.

The advantage of A is defined as Advi=2"(A) = Pr[A wins].

Remark 2.4 (Unforgeability). We can also require a linkable ring signature to be unforgeable as defined
above for a ring signature. However, it can be shown that unforgeability is implied by linkability and non-
frameability.

2.4 Isogenies and ideal class group actions

Let I, be a prime field, with p > 5. In the following F and E’ denote elliptic curves defined over F,. An
isogeny ¢ : E — E’ is a non-constant morphism mapping Og to 0g/. Each coordinate of ¢(z,y) is then the
fraction of two polynomials in F, [z, y], where F,, denotes the algebraic closure of F,,. If their coefficients lie
in Fp, then ¢ is said to be defined over [F,,. We restrict our attention to separable isogenies (which induce
separable extensions of function fields) between supersingular elliptic curves, i.e. curves E defined over F,
whose set of rational points E(F,) has cardinality p + 1.

An isogeny ¢ : E — E' is an isomorphism if its kernel is equal to {Og}, and an endomorphism of E
if E = E’. The set End,(FE) of all endomorphisms of E that are defined over F, together with the zero



map form a commutative ring under pointwise addition and composition. End,(E) is isomorphic to an
order O of the quadratic field K = Q(y/—p) [12]. We recall that an order is a subring of K, which is also a
finitely-generated Z-module containing a basis of K as Q-vector space. A fractional ideal a of O is a finitely
generated O-submodule of K. We say that a is invertible if there exists another fractional ideal b such that
ab = O, and that it is principal if @ = aO for some a € K. The invertible fractional ideals of O form an
abelian group whose quotient by the subgroup of principal fractional ideals is finite. This quotient group is
called the ideal class group of O, and denoted by C¢(O).

The ideal class group C4(O) acts freely and transitively on the set £6¢,(O, 7), which contains all supersin-
gular elliptic curves E over IF,, - modulo isomorphisms defined over I, - such that there exists an isomorphism
between O and End,(E) mapping /—p € O into the Frobenius endomorphism (z,y) — (2?,3”). We denote
this action by *. Recently, it has been used to design several cryptographic primitives [12} 15, 9], whose
security proofs rely on (variations of) the Group Action Inverse Problem (GAIP), defined as follows:

Definition 2.5 (Group Action Inverse Problem (GAIP)). Let [Ey] be a an element in ££0,(O, ), where p is
an odd prime. Given [E] sampled from the uniform distribution over E€0,(O, ), the GAIP, problem consists
in finding an element [a] € CL(O) such that [a] x [Ey] = [E].

The best known classical algorithm to solve the GAIP problem has time complexity O(\/N ), where
N = |Cl(O)|. The best known quantum algorithm, on the other hand, is Kuperberg’s algorithm for the
hidden shift problem [30} 29]. It has a subexponential complexity, for which the concrete security estimates
are still an active area of research [8, 37, [10].

For the security of the isogeny-based instantiations of the (linkable) ring signature schemes presented in
Section 4] we will rely on a newly-introduced hard problem, called the Squaring Decisional CSIDH Problem
(sdCSIDH in short) defined as follows:

Definition 2.6 (Squaring Decisional CSIDH (sdCSIDH) Problem). Let [Ey] be an element in E44,(O, ),
where p is an odd prime. Given [a] sampled from the uniform distribution over C£(O), the sdCSIDH,, problem
consists in distinguishing the two distributions ([a] x [Eo], [a]? * [Eo]) and ([E], [E']), where [E], [E’] are both
sampled from the uniform distribution over E00,(O, ).

In analogy with the classical group-based scenario [5], we assume that the above problem is equivalent
to the decisional CSIDH problem, which has been recently used in [19, [13].

2.5 Lattices

Let R and R, denote the rings Z[X]/(X"+1) and Z[X]/(g, X™+1) for integers n and ¢, respectively. Norms
over R are defined through the coefficient vectors of the polynomials, which lie over Z". Norms over R, are
defined in the conventional way by uniquely representing coeflicients of elements over R, by elements in the
range (—¢q/2,q/2] when ¢ is even and [—(¢ — 1)/2,(¢ — 1)/2] when ¢ is odd (see for example [I8] for more
detail).

The hard problems that we rely on are the module short integer solution (MSIS) problem and module
learning with errors (MLWE) problem, first introduced in [31].

Definition 2.7 (Module short integer solution). Let n,q, k, ¢, be integers. The advantage for the (Hermite
normal form) module short integer solution problem MSIS,, , k¢ for an algorithm A is defined as

AdvY>5 o (A) =Pr[0 < [lue < yAA [T u=0| A+ RF‘ue AA)].

Definition 2.8 (Module learning with errors). Let n,q, k, ¢ be integers and D a probability distribution over
R,. The advantage for the decision module learning with errors problem dMLWE,, ; 1.¢.p for an algorithm
A is defined as

Adve" YT (A) = [Pr[A(A, As + e) — 1] — Pr[A(A,v) — 1],

10



where A + R’;Xé, s« D! e« DF gnd v « R’;.
The advantage for the search learning with errors problem sMLWE,, ; 1 ¢.p is defined analogously to above
as the probability that A(A, v := As+e) outputs (3, &) such that As+é = v and (8,&) € Supp(D*)xSupp(D¥).

When it is clear from context, we omit the subscript n and ¢ from above for simplicity. The MLWE
assumptions are believed to hold even when D is the uniform distribution over ring elements with infinity
norm at most B, say B ~ 5, for appropriate choices of n, ¢, k, ¢ [I]. We write MLWEy, ; g when we consider
such distribution D. For example, the round-2 NIST candidate signature scheme Dilithium [I8] uses such
parameters. Looking ahead, we will choose our parameters for MSIS and MLWE in accordance with [I8§].

2.6 Index-hiding Merkle trees

Merkle trees [35] allow one to hash a list of elements A = (ag,--- ,an) into one hash value (often called
the root). At a later point, one can efficiently prove to a third party that an element a; was included at a
certain position in the list A. In the following, we consider a slight modification of the standard Merkle tree
construction, such that one can prove that a single element a; was included in the tree without revealing its
position in the list.

Formally, the Merkle tree technique consists of three algorithms (MerkleTree, getMerklePath, ReconstructRoot)
with access to a common hash function Hcey : {0,1}* — {0, 1}2*.

e MerkleTree(A) — (root, tree): On input a list of 2¥ elements A = (ay, - , aqx ), with k € N, it constructs
a binary tree of height k with {l; = HC0||(ai)}ie[2k] as its leaf nodes, and where every internal node h
with children hiee and hiighe equals the hash digest of a concatenation of its two children. While it is
standard to consider the concatenation h|eft|\hright, we consider a variation which consists in ordering
the two children according to the lexicographical order (or any other total order on binary strings).
We denote by (Rieft, Pright )iex this modified concatenation. The algorithm then outputs the root root of
the Merkle tree, as well as a description of the entire tree tree.

e getMerklePath(tree, I) — path: On input the description of a Merkle tree tree and an index i € [2¥], it
outputs the list path, which contains the sibling of I; (i.e. a node, different from I;, that has the same
parent as [;), as well as the sibling of any ancestor of [;, ordered by decreasing height.

e ReconstructRoot(a, path) — root: On input an element a in the list of elements A = (a1, ,aqx)
and path = (nq, - ,nk), it outputs a reconstructed root root’ = hy, which is calculated by putting
ho = Hcon(a) and defining h; for i € [k] recursively as h; = Heon((hi—1, 7 )iex)-

If the hash function Hcoy that is used in the Merkle tree is collision-resistant, then the following easy
lemma implies that the Merkle tree construction is binding, i.e. that one cannot construct a path that
“proves” that a value b ¢ A = (ay,...,an) is part of the list A that was used to construct the Merkle tree
without breaking the collision-resistance of the underlying hash function Hcey.

Lemma 2.9 (Binding for Merkel tree). There is an efficient extractor algorithm that, given the description
tree of a Merkle tree (having root root and constructed using the list of elements A) and (b, path) such that
b ¢ A and ReconstructRoot(b, path) = root, outputs a collision for the hash function Hcol-

The use of the lexicographical order to concatenate two children nodes in the Merkle tree construction
implies that the output path of the getMerklePath algorithm information-theoreticallt hides the index i € [N]
given as input. Formally, we have the following.

Lemma 2.10 (Index Hiding for Merkel tree). Let N € N be a power of 2, D, D' be two arbitrary distributions
over {0,1}* and Dy, with I € [N], be the distribution defined as

ar < D,
a; < D" V1<i#I<N,
(tree, root) <— MerkleTree(A),
path < getMerklePath(tree, I)

Dy = | (ay,path, root)

11



where A = (ay,...,an). Then we have Dy = Dy for all I,J € [N].

Proof. The distribution of a; is independent of I, as it depends only on D. Analogously, each component
n; of path is either the hash of an element sampled from D’ (when ¢ = 1) or the root of a subtree obtained
from 2° independent samples from D’ (when 1 < i < k). Consequently, also the distribution of path is
independent of I. Finally, since root can be computed running ReconstructRoot on inputs a; and path, also
its distribution is independent of I. O

2.7 Seed tree

We formalize a primitive called a seed tree. The purpose of a seed tree is to first generate a number of
pseudorandom values and later disclose an arbitrary subset of them, without revealing information on the
remaining values. The seed tree is a complete binary treﬂ of A\-bit seed values such that the left (resp.
right) child of a seed seedy, is the left (resp. right) half of Expand(seed||h), where Expand is a pseudorandom
generator (PRG). The unique identifier h of the parent seed is appended to separate the input domains of
the different calls to the PRG. A sender can efficiently reveal the seed values associated with a subset of the
set of leaves by revealing the appropriate set of internal seeds in the tree. We provide the full detail of the
seed tree below. Let Expand : {0, 1}AT11g2(M=11 5 £0 112X be a PRG for any A, M € N, instantiated by a
random oracle O. Then, a seed tree consists of the following four oracle-calling algorithms.

° SeedTreeO(seedroot, M) — {leaf;},c(ar) - On input a root seed seedyoor € {0, 1}* and an integer M € N,
it constructs a complete binary tree with M leaves by recursively expanding each seed to obtain its
children seeds. Calls are of the form O(Expand||seed,||h), where h € [M — 1] is a unique identifier for
the position of seed in the binary tree.

° ReleaseSeedsO(seedroot,c) — seedSinternal : On input a root seed seed,oor € {0,1}*, and a challenge
c € {0, 1}M , it outputs the list of seeds seedsinternal that covers all the leaves with index i such that
¢; = 1. Here, we say that a set of nodes D covers a set of leaves S if the union of the leaves of the
subtrees rooted at each node v € D is exactly the set S.

. RecoverLeavesO(seedsintema|,c) — {leaf;}i st. ;=1 : On input a set seedsiyternal and a challenge ¢ €
{0, 1}M , it computes and outputs all the leaves of subtrees rooted at seeds in seedsiyternal- By construc-
tion, this is exactly the set {leaf;}; 5. ¢;=1-

o SimulateSeedsO(c) — seedSinternal : On input a challenge ¢ € {0, 1}, it computes the set of nodes
covering the leaves with index i such that ¢; = 1. It then randomly samples a seed from {0,1}* for

each of these nodes, and finally outputs the set of these seeds as seedsinternal-

By construction, the leaves {leaf;}; st. ;=1 output by SeedTree(seed,oor, M) are the same as those output
by RecoverlLeaves(ReleaseSeeds(seed,oot, ), ¢) for any c € {0,1}*. The last algorithm SimulateSeeds can be
used to argue that the seeds associated with all the leaves with index 4 such that ¢; = 0 are indistinguishable
from uniformly random values for a recipient that is only given seedsiyternal and c.

Lemma 2.11. Fiz any M € N and any c € {0,1}M. If we model Expand as a random oracle O, then any
(computationally unbounded) adversary A® that makes Q queries to the random oracle O can distinguish
the following two distributions Dy and Dy with distinguishing advantage bounded by %

seedoor < {0, 1}
Dy : { seedSinternal; {1€afi}i 5.t ¢;=o| {l€af; bicar < SeedTreeo(seedmot,M)
seedSinternal < ReleaseSeeds? (seedoot, €)

Vi s.t. ¢; =0 : leaf; < {0,1}* }

D5 : < seeds; leaf; }; = .
2 internal, {leafi}i ot ci=0 seedSinternal < SimulateSeeds® (c)

2 A complete binary tree is a binary tree in which every level, except possibly the last, is completely filled, and all nodes are
as far left as possible.

12



Here, the distributions take into account the randomness used by the random oracle as well.

Proof. Let S be the set of nodes that are associated to the seeds seedsinternal Or leaves {leaf;}; st ¢,—0, and
define P to be the set {parent(h)||h € S}, where parent(h) denotes the parent of node h. Here, we define the
parent of the root node as an empty string. Moreover, for simplicity we assume that for any h € P, its left
child A is always included in S w.l.o.g. Note that by construction we have S NP = @ and hyigne ¢ S for
any h € P.

Then, in the random oracle model, D; and D, are distributed identically from the view of A®, as long
as A never queries to O a seed seed), associated to a node h € P such that seedy,, is equal to the seed/leaf
value associated to the node hiee € S, which we denote as seed}{lLe': € seedsinternal U {leaf; }i st. ¢;=0. Here,
recall seedy,, ||seedy,.,, = O(Expand||seed||indexy). For each h € P, let @ be the number of queries that

A makes to O of the form Expand|| - [[index,. Then, because seedj"* is distributed uniformly random over

right

{0,1}*, the probability that A queries a seed seed;, which leads to seed}"* is at most % Summing over all
h € P, we get the probability that A queries O on such seed;, is bounded by

Q. _ 0
> o Sav

heP

3 From group actions to ring signatures

In this section, our main result is showing an efficient OR sigma protocol for group actions. Unlike generic
OR sigma protocols, whose proof size grows linearly in N, the proof size of our construction will only grow
logarithmically in N. Moreover, the multiplicative overhead in log N is much smaller (i.e., only the size of
a single hash) compared to previous works. To obtain ring signatures, we apply the Fiat-Shamir transform
(with aborts) to our OR sigma protocol.

3.1 Admissible group actions

Definition 3.1 (Admissible group action). Let G be an additive group, S1,S2 two symmetric subsets of G,
X a finite set, 6 in [0,1] and Dy be a distribution over a set of group actions x : G x X — X. We say that
AdmGA = (G, X, 51,52, Dx) is a §-admissible group action with respect to Xo € X if the following holds:

1. One can efficiently compute g X for all g € S1 U Sy and all X € X, sample uniformly from Sy, Sa
and Dy, and represent elements of G and X uniquely.

2. The intersection of the sets So+g, for g € S1, is sufficiently large. More formally, let S5 = ﬂq€S1 Sa+g,
then ‘
|Ss| = 0152].

Furthermore, it is efficient to check whether an element g € G belongs to Ss.

3. It is difficult to output ¢ € Sa + S3 such that g’ x Xg = X with non-negligible probability, given
X = gx Xy for some g sampled uniformly from Sy. That is, for any efficient adversary A we have

* < Dy

g € Sy+ Ss, g+ S
g/*XOZX X(—g*XO
g« A(x, X)

Pr < negl(\).

Hereafter, when the context is clear, we omit the description of the group action x provided to the adversary
and implicitly assume the probabilities are taken over the random choice of x.

13



C:O C:l

C1<— *Rl%r*in

Com
B Ul
C3<— *R3<77’*7X3
C4<— *R4<;7"*7X4

Merkle treei
root

Figure 2: The base sigma protocol Hgs'base to prove knowledge of (s7,I) such that s x Xog = X (In the
drawing N = 4 and I = 2). If the challenge bit is 0, then the left side of the picture is revealed, otherwise
the right side of the picture is revealed.

3.2 From an admissible group action to base OR sigma protocol 15>,

Before presenting the main OR sigma protocol used for our ring signature, we present an intermediate base
OR sigma protocol with a binary challenge space. Looking ahead, our main OR, sigma protocol will run the
base OR sigma protocol several times to amplify the soundness.

Let AdmGA = (G, X, 51,52, Dx) be an admissible group action with respect to Xy € X, and suppose
that X7 = 51 x Xg,--- , Xny = sy x Xo are N public keys, where the corresponding secret keys s1, -+, sy
are drawn uniformly from S;. In this section, we give an efficient binary challenge OR sigma protocol
[1RS-base — (P! = (P{, Py), V' = (V{,V3)) proving knowledge of (s;,I) € Sy x [N], such that s; x Xy = XIE'

We sketch the description of our base OR sigma protocol Hgs‘base. First, the prover samples an element r
uniformly from S, and computes R; = rx X; for all i € [N]. The prover further samples random bit strings
{bits; };e;n) uniformly from {0,1}*, and commits to R; with the random oracle as C; < O(Com||R; | bits;).
Then, the prover builds a Merkle tree with the (Cy,---,Cx) as its leavesﬂ Note that this procedure can
be done deterministically, by generating randomness by a pseudorandom number generator (PRG) Expand
from a short seed seed. The prover sends the root root of the Merkle tree to the verifier, who responds with
a uniformly random bit c.

If the challenge bit is 0, then the prover computes z = r + sy. If z € S3, then the prover aborts (this
happens with probability 1 — §). Otherwise the prover sends z, the path in the Merkle tree that connects
C; to the root of the tree and the opening bits bits; for the commitment C;. The verifier then computes
R=2z%Xpand C := Com(]:?, bits;), and uses the path to reconstruct the root root of the Merkle tree. It
finally checks whether z € S3 and root = root.

If the challenge bit is 1 then the prover reveals r to the verifier, as well as the opening bits bits; for all
i € [N]. This allows the verifier to recompute the Merkle tree and check if its root matches the value of root
that he received earlier. Note that in this case, it suffices for the prover to just send seed, since r and the
bits; are derived pseudorandomly from this seed.

A toy protocol is displayed in Figure [2| and the full protocol is displayed in Figure[3| In the full protocol,
we assume the PRG Expand and the commitment scheme to be instantiated by a random oracle O. We
further assume w.l.o.g. that the output length of the random oracle is adjusted appropriately.

3 Note that, to be accurate, we prove knowledge of s; € Sz + S3 since we consider “relaxed” special soundness.
4For simplicity, we will assume that N is a power of 2. If this is not the case we add additional dummy commitments to
ensure that the number of leaves of the Merkle tree is a power of 2.

14



round 1: PO((Xy,---,Xn), (s1,1))

1: seed < {0,1}* > The only randomness used by the Prover
2: (7, bitsy, -+ , bitsyy) + O(Expand||seed) > Sample r € Sy and bits; € {0,1}*
3: for i from 1 to N do

4 R, +r*X;

5: C; < O(Com||R;||bits;) > Create commitment C; € {0, 1}
6: (root, tree) <+ MerkleTree(Cy, - ,Cxn)

7: Prover sends com < root to Verifier.

round 2: V/(com)
1. ¢+ {0,1}
2: Verifier sends chall < ¢ to Prover.

round 3: P;((sr,I),chall)

1: ¢ < chall

2: if ¢ =0 then

3: Z24—1r+ S8y

4: if z ¢ S; then

5: P aborts the protocol.

6: path < getMerklePath(tree, I)
7 rsp < (z, path, bitsy)

8: else

9: rsp < seed

10: Prover sends rsp to Verifier

Verification: VJ(com, chall, rsp)
1: (root, c) + (com, chall)
2: if ¢ =0 then
(z, path, bits) < rsp
E — 2k XO _
C «+ O(Com||R||bits)
root < ReconstructRoot(C, path)
Verifier outputs accept if z € S5 and root = root, and otherwise outputs reject
else
Verifier repeats the computation of round 1 with seed < rsp
10: Verifier outputs accept if the computation results in root, and otherwise outputs reject

© o NPT w

Figure 3: Construction of the base OR sigma protocol 118> = (P' = (P, Py),V' = (V/,V3)), given an
admissible group action AdmGA = (G, X, S1, S2, Dx) with respect to Xy € X together with a random group
action x < Dy. Above, the PRG Expand and commitment scheme Com is modeled by a random oracle O.

15



3.3 Security proof for the base OR sigma protocol I1§>-Pase
The following Theorems [3.2] and [3.3| provide the security of TT}>-base,

Theorem 3.2. Let O be a random oracle. Define the relation
R= {((Xl, ,XN),(S,I)HS S Sl,Xi e X, X; :S*Xo}

and the relaxed relation

X; € X and
w=(s,I): s€82+ 853, X;=s*xX, or
w=(x,2"): x#2" Heon(x) = Heon(z') or
O(Com||z) = O(Coml||z’)

Then the OR sigma protocol TIR>P3s¢ of Fz‘gure~ has correctness with probability of aborting (1 —9)/2 and
relazed special soundness for the relations (R, R)

Proof. Correctness. If the protocol is executed honestly with input (sy,I) such that s; x Xg = X and if
the prover does not abort, then the verifier accepts with probability 1. If ¢ = 0, then

Z*XOZ(’I’-I-S[)*XO:’I“*X[:R[

Now, since C; = O(Com||R;||bitsy), the reconstructed root from the I-th leaf of the Merkle tree will match
root and the verifier accepts. If ¢ = 1, then the verifier just repeats the calculation done by the prover in the
first round and will obtain the same root and accept.

It remains to prove that the prover aborts with probability (1 — d)/2. First of all, if ¢ = 1, then the
prover does not abort. If ¢ = 0, then the prover aborts if z = r 4+ s; & S3. Notice that r is chosen uniformly
at random in Sy since we assume Expand is instantiated by the random oracle. Then, it follows that z is
distributed uniformly at random in s; + S5. The probability that z € S3 C sy + S5 is therefore

|5 |5

sl sl
|sr + 2| |52

Relaxed special soundness. We describe an extractor that, given two accepting transcripts (root, 0, (z, path, bits))
and (root, 1, seed) outputs either of the following: an s € Sy + S5 such that s x Xo = X for some I € [N];
a collision in Hcgy; or a collision in (.The extractor first expands the seed seed to obtain r € Sy and bits;
for all ¢ € [N]. It then computes (root’, tree) <— MerkleTree(Cy,---,Cx), where C; = O(Com||r x X;||bits).
Notice that, since (root, 1,seed;) is a valid transcript, we have root’ = root. Also (root, 0, (z, path, bits)) is a
valid transcript, hence we have ReconstructRoot(E, path) = root where C= (’)(ComHE = z x Xp||bits, salt).
The extractor then checks if C # C,; for all ¢ € [N]. If so, by using the Merkle tree extractor of Lemma
with input (tree,E, path), it can find a collision for Hcoy. The extractor then outputs the collision as the
witness w. Otherwise, if C = C; for some I € [N], the extractor further checks if (R)||bits) # (r + X;||bits;).
If so, the extractor outputs the pair (appended with the string Com) as witness w, as it is a collision for O.
Otherwise, the extractor outputs w = (—r + z) € Sy + S5 that satisfies (—r + z) * Xg = X7. O

Theorem 3.3. The OR sigma protocol TIf>™2¢ of Figure|d is non-abort honest-verifier zero-knowledge. More
concretely, there exists a simulator Sim as in definition such that for any (X, W) € R, chall € ChSet and
any (computationally unbounded) adversary A that makes Q queries to the random oracle O, we have

Pr[AC (PP (X, W, chall)) — 1] — Pr[A°(Sim® (X, chall)) — 1]| < 227?

5 We note that the notion of collision in © may seem non-standard at this point since the truth table of @ is typically filled
in one at a time when queried so it is not clear who is querying the O right now. However, we see that this non-standard notion
suffices for our (linkable) ring signature application w.l.o.g.

16



Proof. The simulator Sim is defined as follows:

e If chall = 1, the simulator runs P'® (X, L, chall) and output the result.

e If chall = 0, the simulator picks z € S3 and bits € {0,1}* uniformly at random. Then it queries the
random oracle C; < O(Coml||z % Xy||bits). It picks N — 1 dummy commitments Cy,--- ,Cy € {0,1}?*
uniformly at random. It creates an index-hiding Merkle tree (tree, root) +— MerkleTree(Cy, -+ ,Cx) and
extracts a Merkle path path < getMerklePath(tree,1). Finally the simulator outputs (root, 0, resp =
(z, path, bits)).

Since the prover does not use the witness when chall = 1, it is clear that the simulator simulates transcripts
with chall = 1 perfectly. It remains to prove that for any adversary A that makes @ queries to O and any
(X,W) € R we have

0(po O(ci O 2Q
Pr[A% (PY(X,W,0)) — 1] — Pr[A¥ (Sim~(X,0)) — 1]| < o

We do by introducing of a sequence of simulators Sim; = P’ --- Sims = Sim. We fix an adversary and

(X,W) € R and we define for each i the event E; that A®(Sim;(X,0)) = 1.

e Simy: The second simulator is equal to the honest prover P’, except that instead of obtaining r, bitsy, - - - , bitsy
by querying O on input Expand||seed, the simulator picks r, bitsy, - - - , bitsy uniformly at random. This
does not change the view of A, unless the adversary queried O on input Expand||seed. Since seed has
A bits of min-entropy and since it is information-theoretically hidden from A, the probability that this
happens is bounded by @/2*. Therefore we have |Pr[E;] — Pr[Es]| < %

e Simz: The third simulator is equal to Simy except that the commitments C; for ¢ # I are chosen
uniformly at random, instead of obtained by querying O(Com||R;||bits;). This does not change the
view of A, unless the adversary queried O on input Com||R;||bits; for an i € {1,--- N}, with i # I.
Without loss of generality we can assume that all the X; in the statement are distinct. Otherwise, if
X; = X, for i # j then X; can be dropped from X without altering the meaning of the statement. Let
Q R, be the number of queries to O of the form Com||R;||-. Then because bits; has A bits of min-entropy
and because it is information-theoretically hidden from A the probability that A queries O on input
Com|| R;||bits; is at most Q;;‘ . Summing over all ¢ € [N] we get that the probability that A queries O

on one of the bad inputs is bounded by

N

QRi<Q
Z oA = ox
i=1

Note that the inequality Zf\il Qr;, < Q holds because all the R; are distinct, so that each query can
count towards at most one of the Qg,. Therefore we have |Pr[E;] — Pr[Es]| < %

e Simy: The fourth simulator is equal to Simgz except that instead of computing R; as r* X conditioning
on z =r + s € S5, the simulator just picks z € S5 uniformly at random and puts Ry = z * Xy. Recall
we only consider non-aborting transcripts. Therefore, this does not change the output distribution of
the simulator, so |Pr[E3] — Pr[E4]| = 0.

e Sims(= Sim): The final simulator only differs from Sim4 because it uses I = 1 instead of the value of
I that was given in the witness. Lemma [2.10| says that the distribution of root and path remains the
same, regardless of the value of I that is used, so we have |Pr[E,] — Pr[E5]| = 0.

Combining all the steps together we get |Pr[E;] — Pr[Es]| < 22—6;2 O

17



3.4 From base OR sigma protocol I1§>"*¢ to main OR sigma protocol II¥°

To have an OR sigma protocol where a prover cannot cheat with more than negligible probability, we have
to enlarge the challenge space. In this section, we show how to obtain our main OR sigma protocol TI§> with
a large challenge space from our base OR sigma protocol Hgs'base with a binary challenge space. Below, we
incorporate three optimization techniques that lead to a much more efficient protocol compared to simply
running H;S'base in parallel A-times.

3.4.1 Unbalanced challenge space Cj; k.

Notice that in TI§>-"2¢ responding to a challenge with challenge bit ¢ = 0 is more costly than responding
to the challenge bit ¢ = 1 (which requires communicating only a single seed value). Therefore rather than
executing A independent executions of Hgs'base, it is better to choose integers M, K such that (%) > o)
and do M > )\ executions of the protocol of which exactly K executions are chosen to have challenge bit
0. For example, when targeting 128 bits of security, we can do M = 250 executions out of which K = 30
correspond to the challenge ¢ = 0 and M — K = 220 correspond to ¢ = 1. Assuming the cost of responding
to the ¢ = 1 challenges is negligible, this reduces the response size by roughly a factor 2. Moreover, this
optimization makes the response size constant and reduces the probability that the prover needs to abort
and restart (which allows for better parameter choices). Below, denote Cs i as the set of strings in {0, 1}M
such that exactly K-bits are 0.

3.4.2 Using seed tree.

Using the unbalanced challenge space, we now run our base OR sigma protocol Hgs'base in parallel M times,
and in (M — K) =~ M of the runs, we simply output the random seed sampled by H%S'base. Here, we use
the seed tree (explained in Section to optimize this step. In particular, instead of choosing independent
seeds for each of the M instances of Hgs‘base, we generate the M seeds using the seed tree. Instead of
responding with (M — K) seeds, the prover outputs seedsiyermal < ReleaseSeeds(seed,oot, €), where ¢ is the
challenge sampled from Cps . The verifier can then use seedsinternal along with ¢ to recover the (M — K)
seeds by running RecoverlLeaves. This reduces the response length.

3.4.3 Adding salt.

As a final tweak to the standard parallel repetition of sigma protocols, the prover P; of the main OR sigma
protocol TIR® picks a 2\ bit salt and runs the i-th (i € [M]) instance of TI§>52 with the random oracle
O;() := O(salt]|i]|-). The prover also salts the seed tree construction. This tweak allows us to prove a tighter
security proof for the zero-knowledge property. In practice, this modification does not affect the efficiency
of the protocol by much, but it avoids multi-target attacks such as those by Dinur and Nadler [17].

The description of our main OR sigma protocol with all the above optimizations is depicted in Figure [4

Remark 3.4 (Commitment recoverable). Notice that the underlying base OR sigma protocol Hgs'base 15
commitment recoverable. That is, given the statement X, the challenge chall and response rsp, there is
an efficient deterministic algorithm RecoverCom(X, chall,rsp) that recovers the unique commitment com that
leads the verifier to accept. This property allows the signer of a Fiat-Shamir type signature to include
the challenge rather than the commitment, which shortens the signature size. Our main sigma protocol is
“almost” commitment recoverable; one can recover the entire commitment except for the random salt. We
use this property in Section[3.6

3.5 Security proof for the main OR sigma protocol TI§°
The following Theorems and provide the security of H;S_

18



round 1: PP ((Xy, -, Xn), (s1,1))
1: seedoor < {0,137
salt « {0,1}2*
O'(+) := O(salt]]-)
(seedy, - - ,seedps) SeedTree®’ (seedyoot, M)
for i from 1 to M do
0i(-) = O(salt|[i]|-)
com; « P9 ((Xy, -+, Xn), (s1,1); seed;) > Run P; on randomness seed;

@ NS TR

Prover sends com < (salt,comy, -+ ,comjs) to Verifier.

round 2: Vj(com)
1: € < CM,K
2: Verifier sends chall < ¢ to Prover.

round 3: P ((sy, 1), chall)
1: ¢c= (Cl, s ,C]\/[) «+ chall
: for ist. ¢; =0 do
rsp, < P3((s1,1), ¢;;seed;) > Run Pj on randomness seed;
- O'(+) = O(salt]]-)
seedSinternal < ReleaseSeeds®’ (seedyoot, salt, )
: Prover sends rsp < (seedsinternal, {rsp; }i s.t. ¢;—0) to Verifier

Verification: V,°(com, chall, rsp)
: ((salt,comy, -+ ,comps),c = (¢1, -+ ,car)) < (com, chall)

: (seedsinternalv {rspi}i s.t. ci:O) < rsp
: O'() == O(salt||)

’

1

2

3

4: {resp; }ist. c;=1 < RecoverLeaves® (seedsinternal, €)
5: for i from 1to M do

6:  Oi(-) == O(salt|[i[|)

7
8

Verifier outputs reject if V5% (

com;, ¢;, rsp;) outputs reject

: Verifier outputs accept

Figure 4: Construction of the main OR sigma protocol 11§ = (P = (P, P,),V = (Vi,Vk)) based on
the base OR sigma protocol TI§¥>b*¢ = (P’ = (P] P}), V' = (V{,VJ)). The challenge space is defined as
Cux ={c€{0,1}M | |c|ly = M — K}. The seed tree and T8> have access to the random oracle O.

19



Theorem 3.5. Define the relation R and the relaxed relation R as in Theorem then the OR sigma pro-
tocol Hgs has correctness with probability of aborting 1 — 6%, high min-entropy and relazed special soundness
for the relations (R, R).

Proof. Correctness. If none of the underlying runs of 1852 end in an abort, then due to the correctness

of the SeedTree, the verifier will accept with probability 1. This can be checked by observing that in case
c; = 1, Py((sr,I),ci;seed;) outputs seed; as rsp,. Recall IR ahorts with probability 1 — § when the
challenge is 0 and does not abort when the challenge is 1. Therefore, since the challenge ¢ € Cys x has
exactly K-bits of 0, the aborting probability is 1 — 6.

High min-entropy. Since a random salt of length 2\ is included in com, it has at least 2\ bits of min-
entropy.

Relaxed special soundness. This is a direct consequence of the relaxed special soundness of the underlying
sigma protocol Hgs‘base. Let (com,chall = ¢, rsp) and (com, chall’ = c’, rsp’) be the two accepting transcripts
with the same first message such that ¢ # ¢’. Let j € [M] be the index such that ¢; # ¢, where ¢; and
¢ are the j-the element of ¢ and ¢’, respectively. Assume without loss of generality that (c;,c;) = (0,1).
Let rsp = (seedsinternal, {rsp; }ics), where S = {i s.t. ¢; = 0}. Then, V5(com;,0,rsp;) = accept. Moreover,
let {seed;}; . /=1 = Recoverleaves(seeds e, ¢'). Then, V3(comy, 1,seed)) = accept. Therefore, we can

I
invoke the extractor of the underlying sigma protocol H%S‘base

on (comj, 0,rsp;) and (comy, 1, seed}) to extract
a witness for R as desired. Note that in case the witness returned by the base OR proof extractor is a collision

w = (R)||bits, R'||bits") for O;, we output a collision w’ = (salt||i|| R||bits, salt||i|| R’||bits") for O. O

Theorem 3.6. The OR sigma protocol H;s is non-abort special zero-knowledge. More concretely, there
exists a simulator Sim such that for any (X,W) € R, chall € ChSet and any (computationally unbounded)
adversary A that makes Q queries of the form salt||- to the random oracle O, where salt is the salt value
included in the transcript returned by P or Sim, we have
ote) O(ci,O 3Q
Pr[ A% (PY (X, W,chall)) = 1] — Pr[A¥ (Sim~ (X, chall)) — 1]| < o
Proof. We provide a zero-knowledge simulator Sim that works as follows:

Sim(X, chall) : First, Sim calls SimulateSeeds(c) to get seedsinternal- Then he runs Recoverleaves(seeds;nternal, €)
to get {seed;};st. ¢;—1. For each ¢ such that ¢; = 1 the simulator computes com; = root; from seed; ex-
actly like an honest prover would. For the i such that ¢; = 0, the simulator runs Sim’(X,0) to receive
com; and resp,, where Sim’ is the simulator for the base protocol. Finally, Sim outputs the transcript
((salt,comyq, - -+ ,comy), c, (seedSinternal; {resp; }i s.t. ¢i=0))-

To prove that Sim is indistinguishable from P we define a sequence of simulators Simy,---Sims that
gradually changes from Sim; = P to Simg = Sim. We fix an adversary and (X,W) € R and we define for
each i the event E; that A (Sim;(X,chall)) = 1.

e Simy: The second simulator is equal to ]5, except that instead seedsiniernal and {seedi}ie[ M) are determ-
ined differently. Instead of picking a root seed and using Seed Tree(seed,o0t, M) and ReleaseSeeds(seed oot €),
the simulator runs SimulateSeeds(c) and RecoverLeaves to determine seedsipternal and {seed;}; st. c;=1-
The simulator chooses the remaining seeds {seed; }; s+. ¢;—¢ uniformly at random. Lemmasays that
the distributions for seedsiyternal and {seedi}ie[ M can be distinguished with a distinguishing advantage

of at most <&, which implies that |Pr[E;] — Pr[Ey]| < 2%

2X

e Simz(= Sim): The only difference between Simy and Sims is that Simsz uses Sim’ to compute com; and
resp, for ¢ such that ¢; = 0, instead of running the honest prover protocol with a uniformly random
seed;. The non-abort special zero-knowledge property of the base OR proof (Theorem says that
for each i such that ¢; = 0 the output of Sim’ can be dinstinguished from the output of the honest

prover protocol with advantage bounded by 22%, where ); is the number of queries that A makes to

20



O;, (i.e. the number of queries that A makes to O of the form O(salt||i||-)). Therefore, a standard
hybrid argument says that that

Q

2
S?'

|Pr[Es] — Pr[BEs)| < Q;ii

1 8.t.c;=0

Note that the inequality ), st.e;—0 @i < @ follows from the fact that each query of the form salt||- can
contribute to at most one of the Q;.

Putting the 2 steps together we get |Pr[E1] — Pr[Es]| < 32—? O

Remark 3.7. We notice that, for the application of (linkable) ring signatures, it suffices to be able to
stmulate non-aborting transcripts, because an aborting transcript will never be released by the signer.

3.6 From main OR sigma protocol II¥° to ring signature

We apply the Fiat-Shamir transform [22] to our main OR sigma protocol HES to obtain a ring signature. This
is illustrated in Figure |5, where we also rely on the (almost) commitment recoverable property of TI§° (see
Theorem [3.4f). Here, HFs is a hash function, with range Cys, i, modeled as a random oracle. The correctness,
anonymity, and unforgeability of the ring signature are a direct consequence of the correctness, high min-
entropy, non-abort special zero-knowledge, and (relaxed) special soundness property of the underlying OR
sigma protocol TIX°. Since we believe the proofs are folklore (see for example [24, Theorem 4] for some details),
we only provide a brief sketch of them in Appendix Although slightly different, similar arguments can
be found in the concrete proof for our linkable ring signature scheme in Section [£.4]

RS.KeyGen(pp) RS.Sign(sk, M, R)

1: < S 1: (vky,---vky) < R > Let vk; be associated to sk = s;.
2. X + s Xo com = (salt, (com;);e(nr]) + PP (R, (sk, I))

3: return (vk = X, sk = s) chall < Hrs(M, R, com)

rsp < PY((sk, I), chall)

return o = (salt, chall, rsp)

RS.Verify(R, M, o)

1: (Vkl, e VkN) +~ R

(salt, chall, rsp) « o

com < RecoverCom(R, salt, chall, rsp)

if accept = V2 (com, chall, rsp) A chall = Hgs(M, R, com) then
return T

else
return |

Figure 5: Ring signature Ilrs from our main OR sigma protocol Hgs with commitment revocability and
access to a random oracle O. The setup algorithm RS.Setup(1*) outputs a description of an admissible group
action (G, X, S1,S2, Dy) together with a random group action x < Dy and a fixed Xy € X as the public
parameters pp.

4 From a pair of group actions to Linkable ring signatures.

In this section we construct a linkable ring signature from a pair of group actions x : G x X — X and
o : G x T — T that satisfy certain properties. The linkable ring signature is similar to the ring signature in
Section [3} a secret key is a group element s € S; C G and the corresponding public key is s x Xy € X for a
fixed public Xy. To achieve linkability, in this section the signature contains a tag T' € T, which is obtained

21



as T = s e T for a fixed public Ty. The signature consists of the tag T', as well as a proof of knowledge of
s such that simultaneously T' = s @ Ty and s x X is a member of the ring of public keys. To check if two
signatures are produced by the same party we simply check whether the tags included in the two signatures
are “close”. Looking ahead, the notion of closeness depends on the underlying algebraic structure used to
instantiate the pair of group actions; in the isogeny setting, this amounts to checking whether the tags are
equal and in the lattice setting, this amounts to checking whether the tags are close for the infinity norm.

We require a number of properties from the group actions to make the signature scheme secure. Informally,
we need one property per security property of linkable ring signatures (see Section [2.3):

e Linkability. It is hard to find a secret key s and s’ such that s’ x Xg = s x X but s’ e Ty % s e Tj.
Otherwise, an adversary can use s and s’ to sign two messages under the same public key that do not
link together.

e Linkable anonymity. For a random secret key s, the distributions (sx X, seTp) and (X, T) «+ X' xT
are indistinguishable. Otherwise, an adversary could link the tag to one of the public keys and break
anonymity.

e Non-Frameability. Given X = s* Xy and T = s e T it is hard to find s’ such that s’ e Ty =~ T.
Otherwise, an adversary can register s’ x X as a public key and frame an honest party with public key
5% X for signing a message.

e (Unforgeability.) Given X = s* Xg and T = s e Ty it is hard to find s’ such that s’ x Xy, = X.
Otherwise the adversary can recover a secret key and sign arbitrary messages.

Remark 4.1 (Unforgeability). The unforgeability property would require that, given X = sx X and T =
s ® Ty, it should be hard to find s’ such that s’ x Xo = X (otherwise the adversary can recover a secret
key and sign arbitrary messages). However, it is not necessary to separately require that property, since
an adversary that breaks the unforgeability property can be used to break either the non-frameability or the
linkabilty property. This observation reflects the fact that unforgeability of linkable ring signatures is implied
by linkablity and non-frameability.

4.1 Admissible pairs of group actions

Definition 4.2 (Admissible pair of group actions). Let G be an additive group, Si,S2 two symmetric
subsets of G, X and T two finite sets, 6 in [0,1], and Dx and Dy be distributions over a set of group actions
*: GXxX = X and e : G X T — T, respectively. Finally, let Linkga : T x T — 1/0 be an associated
efficiently computable function. We say that AdmPGA = (G, X, T, S1,S2, Dy, D7, Linkga) is a d-admissible
pair of group actions with respect to (Xo,Tp) € X x T if the following hold:

1. One can efficiently compute gx X, goT for any g € S1USy and any (X, T) € X x T, sample uniformly
from Sy, So, Dx and Dy, and represent elements of G, X and T uniquely.

2. We have that for any T € T, Linkga(T,T) = 1.
3. The intersection of the sets Sy + g, for g € S1, is large. Let S3 = ﬂgesl So + g, then
|S3] = d|S2].
Furthermore, it is efficient to check whether an element g € G belongs to Ss.

4. We have that (gx Xo,geTy) for g sampled uniformly from Sy is indistinguishable from (X, T) sampled
uniformly from X x T :

{(*3'79*X079.T0)|(*7‘7g) « Dx x DT X Sl}
Re {(x,0, X, T)|(%,0,X,T) < Dy x Dy x X x T}

22



5. It is difficult to output g,g’ € Sz + Sz such that g x Xo = ¢’ * X and Linkga(g’ ® Ty, g ® To) = 0. That
is, for any efficient adversary A, the following is negligible:

9,9 € S2+ 53
Pr gxXo=g"*Xo )
Linkga(g ® To, g’ @ Tp) =0 (9,9) + A(x, )

(*, .) — Dy X Dy < negl(/\)

6. It is difficult to output ¢’ € Sy + S5 such that Linkga(g' @ To,T) = 1 with non-negligible probability,
given X = g% Xg and T = g e Ty for some g sampled uniformly from S1. That is, for any efficient
adversary A we have

(*,.,g) HDX X DTX Sl
g € Ss+ S5 X +—gxXo
Linkga(g' @ 1o, T) =1 T+ geTy
g — A(x, e, X, T)

< negl(})

Hereafter, when the context is clear, we omit the description of the group actions x and e provided to the
adversary and implicitly assume the probabilities are taken over the random choice of the group actions.

4.2 From an admissible pair of group actions to base OR sigma protocol with
tag

As in Section [3] we start by introducing an intermediate base OR sigma protocol with a tag that has a
binary challenge space. The main OR sigma protocol with tag used for our linkable ring signature will run
parallel executions of the base OR sigma protocol with tag to amplify the soundness.

Let AdmPGA = (G, X, T, S1,S2, Dx, D) be a pair of admissible group actions with respect to (X, Tp) €
X x T, and suppose that X; = s1%xXg, -+ , Xy = sy*Xg are N public keys and T' = s;eTj a tag associated to
the I-th user, where the corresponding secret keys sy, - - - , sy are drawn uniformly from S;. In this section, we
introduce an efficient binary challenge OR sigma protocol with tag TItRS-Pase — (P/ = (P{ Py), V' = (V{,V3))
proving knowledge of (s,I) € S; x {1,---, N}, such that s;x Xo = X7 and se T = TE|

We outline the base OR sigma protocol with tag H'iRS'base. First, the prover samples an element r uniformly
from Sy, and computes R; = r* X; for all i € {1,--- N} and T’ = r ¢ Ty. The prover further samples ran-
dom bit strings bits; uniformly from {0,1}* for i € [N] and commits R; as O(Com|| R;||bits;) (or equivalently
Com(R;, bits;)). Then, the prover builds a Merkle tree with (Cy,...,Cy) as its leaves. The prover further
hashes the root root of the Merkle tree and T as h = Hcon(T”,root). Here, we note the only reason for
hashing (77, root) is to lower the communication complexity and has no impact on the security. Moreover,
note that this whole procedure can be done deterministically, with randomness generated from a seed seed.
Finally, the prover sends the hash value h to the verifier, who responds with a uniformly random bit c.

If the challenge bit is 0, then the prover computes z = r+s;. If z € S5, then the prover aborts (this happens
with probability 1 — §). Otherwise, the prover sends z, the opening bits bits; for the commitment C; and
the path in the Merkle tree that connects C; to the root of the tree. The verifier then computes R==z * X0,
T = ze Ty and C = Com(R, bitsy), and uses the path to reconstruct the root root of the Merkle tree. It
finally checks and accepts if and only if A is equal to HCO"(T, rgc;c). If the challenge bit is 1 then the prover
reveals r and the bits;, for all i € [N], to the verifier. This allows the verifier to recompute the Merkle tree
and 7" = r e T and to check if the hash of 7" and the root matches the value h received earlier. Note that in
this case, it suffices for the prover to just send seed, since r and bits; are derived pseudorandomly from this

6 Note that to be accurate, we prove knowledge of s; € So 4 S3 since we consider “relaxed” special soundness.

23



Ty (r+sy)e T re T
C1<— *Rl <7T*7X1
Com
—)RQ*’CQE *RQ‘*T**XQ
Xy — (r+s1)% Com
C3 < F Ry «— rx — X3
C4<— *R4<¥7’*7X4

Merkle treei
root

Figure 6: The base OR sigma protocol with tag H%;Rs'base to prove knowledge of (sy, I') such that s;xXg = X7
and s;eTy =T. (In the drawing N = 4 and I = 2.) If the challenge bit is 0, then the left side of the picture
is revealed, otherwise the right side of the picture is revealed.

seed. A toy version of the protocol is depicted in Figure[6] while the full protocol is displayed in Figure[7} In
the full protocol, we assume the PRG Expand and the commitment scheme to be instantiated by a random
oracle O. We further assume w.l.o.g. that the output length of the random oracle is adjusted appropriately.

The following Theorems and provide the security of HgRs‘base. Their proofs are almost identical
to those in Section [3.3] and we refer the details to Appendix

Theorem 4.3. Let O be a random oracle. Define the relation
R= {((le 7XN3T)7(S7I)) | s € ShXi eX,Te TaXI :S*Xo,T:S.To}

and the relaxed relation

X, e X, T €T and w such that :
’U.):(S,I)Z 8€SQ+53,X[:S*X0,T:S.TO
R={ (X1, -, Xn,T),w) or
w=(z,z'): x # ', Heon(z) = Heon(a') or
O(Com||z) = O(Coml|z’)
Then the OR sigma protocol with tag TI5RS-2s¢ of Figyrelj has correctness with probability of aborting (1—4§)/2
and relazed special soundness for the relations (R, R).

Theorem 4.4. The OR sigma protocol HERS'base of Figure |1 is non-abort honest-verifier zero-knowledge.
More concretely, there exists a simulator Sim as in definition such that for any (X, W) € R, chall € ChSet
and any (computationally unbounded) adversary A that makes QQ queries to the random oracle O, we have

‘Pr[AO(]SO(X,W,chaII)) — 1] — Pr[A°(Sim® (X, chall)) — 1]| < 22—?

4.3 From base OR sigma protocol with tag 15?53 to0 main OR sigma protocol
with tag TILRS
As in Section we enlarge the challenge space of our base OR sigma protocol with a tag TTItRS-base to

our main OR sigma protocol with a tag HERS. We include the same optimization techniques explained in

24



round 1: PO((Xy, -, Xn,T),(s1,1))

1: seed < {0,1}* > The only randomness used by the Prover
. (r,bitsy, - -+, bitsy) < O(Expand||seed) > Sample 7 € Sy and bits; € {0,1}*.
T «—reT
: for i from 1 to N do
R; + r*X;
C; < O(Coml||R;||bits;) > Create commitment C; € {0, 1}
. (root, tree) < MerkleTree(Cy, -+ ,Cy)
. h + Hcon (T, root)
: Prover sends com < h to Verifier.

e R

round 2: V/(com)
1: ¢+ {0,1}
2: Verifier sends chall < ¢ to Prover.

round 3: P((sr,I),chall)

1: ¢ + chall

2: if ¢ =0 then

3: 241+ 81

4: if z¢& S; then

5: P aborts the protocol.

6: path < getMerklePath(Z, tree)
7 rsp < (z, path, bits;)

8: else

9: rsp < seed

10: Prover sends rsp to Verifier

Verification: VJ(com, chall, rsp)
1: (h,¢) < (com, chall)
2: if ¢ =0 then
3: (z, path, bits) < rsp
4 E — z*x Xp _
5 C = O(Com|| R||bits)
6: T+ ze To _
7 root <— ReconstructRoot(C, path)
8: Verifier outputs accept if z € S3 and HCO”(T, r?)\c?c) = h, and otherwise outputs reject.
9: else
10: Verifier repeats the computation of round 1 with rsp as seed.
11: Verifier outputs accept iff the computation results in h, and otherwise outputs reject.

Figure 7: Construction of the base OR sigma protocol with tag II5RSb2e = (P = (P, P}), V' = (V{,V3)),
given an admissible pair of group actions AdmPGA = (G, X,T,S1,S2, Dy, Dy, Linkga) with respect to
(Xo0,T0) € X x T, together with random group actions (x,e) < Dy x Dy. Above, the PRG Expand and
commitment scheme Com is modeled by a random oracle O.

25



Section Since the description of our main OR sigma protocol with tag is almost identical to the one
depicted in Figure |4 we omit the details. The only notable difference between Hgs from Figure 4| and HERS
is that in the later, the statement additionally includes a tag T' and runs TT15RSP3 as a subroutine instead
of H%S‘base. Otherwise, the way we transform our base to our main OR sigma protocol is identical. We also
note that it is easy to check that our HERS'base also enjoys (almost) commitment revocability as explained
in Theorem We use this fact when constructing a linkable ring signature Section The following
Theorems d provide the security of TItRS. Their proofs are almost identical to those in Section
and we refer the details to Appendix

Theorem 4.5. Define the relation R and the relazed relation R as in Theorem@ then the OR sigma pro-
tocol Hgs has correctness with probability of aborting 1 — 6%, high min-entropy and relazed special soundness
for the relations (R, R).

Theorem 4.6. The OR sigma protocol HERS is mon-abort special zero-knowledge. More concretely, there
exists a simulator Sim such that for any (X,W) € R, chall € ChSet and any (computationally unbounded)
adversary A that makes Q queries of the form salt||- to the random oracle O, where salt is the salt value
included in the transcript returned by P or Sim, we have:

’Pr[AO(ﬁO(x,W,chau)) — 1] — Pr[A9(Sim® (X, chall)) — 1]| < 3Q

4.4 From main OR sigma protocol with tag IIt*° to linkable ring signatures

We apply the Fiat-Shamir transform [22] to our main OR sigma protocol H%RS to obtain a ring signature. This
is illustrated in Figure |8} where we also rely on the (almost) commitment recoverable property of TI5S (see
Theorem [3.4]). Here, Hrs is a hash function, with range Cj x, modeled as a random oracle. The correctness
and security of Il gs are provided in the following theorem, whose proof can be found in Appendix

LRS.KeyGen(pp) LRS.Link(cg,01)
L s+ 5 1: (Ty, comy, rsp,) < oy for b € {0,1}
2: X :=s5% X 2: if 1+ Linkga(7p,71) then
3: return (vk = X, sk = s) 3: return T
4: else
5: return |
LRS.Sign(sk, M, R) LRS.Verify(R, M, o)
1: (vkq,---vky) < R > Let vk be associated to 1: (vky,---vky) < R
sk = s;. 2: (salt, T, chall, rsp) «+ o
2: T :=s7 07Ty 3: com < RecoverCom((R, T, salt, chall, rsp)
3: com = (salt, (com;);e(nr)) < PP((R,T), (sk, 1)) 4: if accept =  ViZ(com,chall,rsp) A chall =
4: chall <~ Hps(M, (R, T"), com) Hes(M, (R,T),com) then
5: rsp < P§’((sk, I), chall) 5: return T
6: return o = (salt, T, chall, rsp) 6: else
7 return |

Figure 8: Linkable ring signature I gs from our main OR sigma protocol with a tag TItRS with commitment
revocability and access to a random oracle O. The setup algorithm LRS.Setup(1?) outputs a description of a
pair of admissible group action (G, X, S1, S, Dy, D7) together with random group actions (x,e) < Dy X D
and fixed (Xo,Tp) € X x T as the public parameters pp.

Theorem 4.7. Assuming that AdmPGA is an admissible pair of group actions (Theorem and Heon 1S @
collision-resistant hash function, then the linkable ring signature scheme I gs in Figure[§is correct, linkable,
linkable anonymous and non-frameable in the random oracle model.

26



5 Post-quantum admissible (pair of) group actions from standard
assumptions

For concrete instantiations of our generic framework for ring signatures (Section [3)) and linkable ring signa-
tures (Section , we consider three admissible (pairs of) group actions, based on isogenies between elliptic
curves and lattices.

5.1 Isogeny-based instantiations

The isogeny-based instantiations we propose follow the CSIDH paradigm. From the three sets of CSIDH
parameters that have been proposed so far - CSIDH-512, CSIDH-1024 and CSIDH-1792 ([12, [15]) - the
structure of the corresponding ideal class group C£(O) is only known for the first set[9]. We can instantiate
our LRS with any CSIDH parameter set regardless of whether the class group is known or not, but the
resulting LRS is much more efficient when the class group is known. We first discuss our instantiation when
the structure of C4(O) is known.

5.1.1 Known class group

For simplicity, we assume that the ideal class group C¢(Q) is cyclic with generator g of order N. Then, the
group Zy acts freely and transitively on £00,(O, ) via the group action * defined as a * X := g% * X (see
Section . In practice, the action of each a € Zy can be computed efficiently, assuming k is sufficiently
small so that the approximate closest vector problem can be solved efficiently in the relation lattice [9]. Tt
can be verified (see Theorem that this group action satisfies all the properties of an admissible group
action. In this case we have S; = S = S5 = G, so § = 1 and the signing algorithm will never need to abort.
Moreover, if we define %, to be the group action of Zy on £0£,(O, ) defined by a+*> X := (2a) x X. Then
(*,%%) satisfies all the properties of an admissible pair of group actions, assuming the hardness of the GAIP,,
and sdCSIDH,, problem (Theorem [5.1)).

Theorem 5.1 (AdmGA and AdmPGA from CSIDH-512). Let p, Dx and Dy be as in the first subsection of
Section ad suppose that GAIP, and sdCSIDH,, are hard. Then, AdmGAgaip—_512 = (G, X, 51,52, D)
is a d-admissible group action with respect to Xog € X, while AdmMPGAgcsipH—512 = (G, X, T,S51, 52, Dy,
D7, Linkga) is a d-admissible pair of group actions with respect to (Xo,Tp) € X X T, where G, X, T, Xo,
To, S1, Sa, Linkga and & are defined as follows:

e G,51,5 :=7Zn;

o X, T :=E&,(0,);

o Xo=Tp;

o Linkga(T,T") =1 if and only if T =T";
e j=1.

Proof. The proof consists of checking that each property required to an admissible (pair of) group action(s)
- Theorem [3.1] and Theorem [4.2] - hold. Some of the properties are common to both definitions, so we first
prove those from Theorem (labeling each item with “a” ) and then the extra conditions from Theorem
(labeled by “b” ).

Item : For the efficiency of the computation of the actions x and e, we refer the reader to [9, Sec. 4]. All
the other conditions can be easily verified.
Item [2p: For every g in Sy, we have Sy + g = Zy. Hence S5 =Zy and § = 1.

Item : Since So + S3 = Zy, the adversary A is requested to solve the GAIP, problem. Therefore, A’s
success probability is negligible by hypothesis.

27



Item [2b: The property is guaranteed by the definition of Linkga.

Item : Since Ty = Xy, the two distributions (a* Xo,a e Tp), (X,T), where a is uniformly random in Zy,
are indistinguishable thanks to the hardness of the sdCSIDH,, problem.

Item [Bb: If a,b € Zy = Sz + S3 are such that a x Xo = b * Xy, then a = b since the action « is free and
transitive. Therefore a @ Ty = v @ Ty, and the success probability of any adversary A is zero.

Item @3: Since a @ Ty = a’ @ Ty implies a = a’, the adversary A is requested to output a given the pair
(ax Xo,aeTp). Let € be A’s success probability. The adversary A can be used to construct a distinguisher
D for the sdCSIDH,, problem. In particular, given the challenge pair (X,T), D calls A on the same input
(X,T). If A outputs an integer b € Zy, then D outputs 1 if bx Xg = E and a @ Xy = H, 0 otherwise.
Therefore

|Pr[D(a* Xo,a e Xo) = 1] — Pr[D([E], [H]) = 1]| = |e — ¢/N]|

where the last term is due to the fact that a random pair ([E], [H]), satisfies [E] = ¢ * Xy, [H] = c # X for
some ¢ € Zy with probability 1/N. By the hardness assumption on sdCSIDH,,, € must be negligible. O

5.1.2 Unknown class group.

When the structure of the ideal class group O in not known, computing the action [a] * [Ep] of an arbitrary
[a] € CL(O) on some [Ey| € £0L,(O, ) has exponential complexity. However, the ideal class action * can
still be efficiently computed for a small set of class group elements [I2]. In particular, considering p of the
form 4410y - - - € — 1, with ¢4, ..., ¢, small odd primes, a special fractional ideal J,, can be associated to each
prime ¢;. The action of these ideals (and their inverses) can be computed very efficiently, since they are
determined by an isogeny whose kernel is the unique subgroup of Ey(F,) of order ¢;. We can thus efficiently
compute the action of elements in C£(O) of the form Hle [J¢,]¢, where the integral exponents e; are chosen
from some small interval [—B, B].

We denote by x the group action of Z* on £0£,(O, ) defined by

k
(1, vex), X) = [ ]3]+ X .
i=1
Then it can be verified that for the sets S; = [-B, B]¥ and Sy = [-M, M]* the group action * satisfies

all the properties of an admissible group action with § = ((2(M — B) 4+ 1)/(2M +1))*. We note that, for
a fixed value of B, the bigger the value of M, the bigger §, and the smaller the aborting probability of
the (linkable) ring signature scheme. However, a big M implies high computational costs for the action of
elements in S5 and S3. Consequently, in concrete instantiations the value of M must be tuned to balance
the two effects. Moreover, if we define x* as before then (x,%?) satisfies all the properties of an admissible
pair of group actions, assuming the hardness of the GAIP, and sdCSIDH,, problem (Theorem [5.1]).

When the structure of C4(O) in unknown, under heuristical arguments, it is assumed that the set C =
{Hle[hi]ei le;] < B} coincides with C4(O) for a suitable choice of B, and that the uniform distribution
over [—B, B]¥ induces a distribution Dp that is close to the uniform distribution on C¢(Q). In this setting,
Theorem and Theorem can be reformulated as detailed below, obtaining variants that are believed
to be equivalent to the original problems.

Definition 5.2 (Group Action Inverse Problem (GAIP)). Let [Ey] be a an element in E£,(O, ), where
p=4l1ly -l — 1 is an odd prime. Given [a]x[Ep], where [a] = Hle[jgi]ei is sampled from the distribution
Dg, the GAIP, i 5 problem consists in finding any vector (fi,. .., fr) € Z* for which Hle[fjgi]fi = [a] holds.

Definition 5.3 (Squaring Decisional CSIDH (sdCSIDH) Problem). Let [Ey] be an element in E£4,(O, ),

where p = 410y --- L — 1 is an odd prime. Given [a] x [Ey|, where [a] = Hle[%i]ei is sampled from the

distribution Dg, the sdCSIDH,, . g problem consists in distinguishing the two distributions ([a]*[Eo], [a]?*[Ey])
and ([E], [E']), where [E],[E’] are both sampled from the uniform distribution over E00,(O, ).

28



Theorem 5.4 (AdmGA and AdmPGA from CSIDH-1024, CSIDH-1792). Let p = 44145 --- £, — 1 be a prime,
with {1, ..., 0, small odd primes. Assume that GAIP, ;g and sdCSIDH, , g are hard. Then, AdeAéﬁP
= (G, X,S1, S2,Dx) is a d-admissible group action with respect to Xo € X, while AdeGAfd’gSlDH =
(G, X,T,S1,52, Dy, Dy, Linkga) is a 0-admissible pair of group actions with respect to (Xo,Tp) € X X T,
where G, X, T, Xo, To, S1, S2, Dx, D7, Linkga and § are defined as follows:

o G:=TF:

o X, T :=EUULO,n);

o Xo=Tp;

e Sy :=[-B,BJ*, Sy :=[-M, M|* where B,M € N and M > B;

Dy is the constant distribution over {x}, where x is the group action of ZF over &, (O, ) defined by
((ela B ek)aX) — Hle[j[i}ei * X,'

D is the constant distribution over {e}, where o is the group action of Z* over E44,(O,m) defined by
((61, . ~7ek)7X) = (2617 .. '72ek) *X;

Linkga(T,T") =1 if and only if T =T";

k
2(M—B)+1
° = ( (2M+)1 ) :

Proof. The proof of the theorem resembles that of Theorem with the GAIP, ;. p and sdCSIDH,, ;. p in
place of GAIP, and sdCSIDH,, respectively. For completness, we only spend a few words about Item |§| and
Item [6] of Theorem £.2

Ttem (e1,...,ex)xXo = (f1,..., frx)* Xo implies (eq,...,ex) ® Xo = (f1,..., fr) ® X since, being * free
and transitive, we have [a] = [T\_,[35,] = [T+_,[J,,]%" = [b], and hence [a]? = [b]%. Therefore also in this
scenario the succes probability of an adversary A is zero.

Item [6} the reduction detailed in the proof of Theorem [5.1] applies also in this case, with the only difference

that here the group order N is unknown. However, heuristic evidences support the approximation N ~ ,/p.
O

Remark 5.5. To avoid the sdCSIDH hardness assumption, we can formulate an admissible pair of group
actions differently: If we can use @ = x and a base point Ty for the tag space that is chosen uniformly at
random. Instead of the sdCSIDH hardness assumption we then only require the standard CSIDH assumption.
The drawback of this approach is that we require a trusted setup to choose Ty. Alternatively, we can look at
this as a linkable group signature scheme where the group manager sets Ty = t x Fy and remembers t. The
group manager can deanonymize any signature because (—t) x T is the public key of the signer.

Remark 5.6. Recently, a variant of CSIDH, called CSURF, has been proposed [I1)]. This work considers
the mazimal order O and the corresponding set of supersingular elliptic curves E00,(Ok, ). This group
action can be used in our framework instead of the CSIDH group action.

5.2 Lattice-based instantiation

We instantiate an admissible group action (AdmGA) and an admissible pair of group action (AdmPGA)
based on lattices under the MSIS and MLWE assumptions. For AdmGA, we consider (G, X’) to be the set
(RS x RL, RE) and S, := {(s,e) € G | ||s]l, [[€[|oc < By} for b € {0,1}. Then, the group action x4, uniquely
defined by a matrix A € R’;XZ, is defined as (s,e) xa W := (As +e) + w, for any w in R}

29



Theorem 5.7 (AdmGA from lattices). Let n be a power of 2 and ¢ =5 mod 8 and let k, £ be integers. Let
B, By be integers such that B1 < By < q and assume the MSISy, ¢ 2, and SMLWE, ¢ g, assumptions hold.
Then, AdmGAmwe = (G, X, S1, 52, Dy) is a d-admissible group action with respect to any Xo € X, where
(G, X, 51,82, Dx) are defined as follows:

e (G, X):= (Rl x RF,RF),
e Forbe {0,1}, Sp:={(s,e) € G| |Is|loo; ||€]lcc < By},

e The group action xa : G x X — X, uniquely defined by a matriz A € Rfj”, is defined as (s,€) %A W :=
(As+e)+w,

e Dy is the uniform distribution over R’;XZ,

n(k+)
. (2(B2—B1)+1
° 0= (%) :

Proof. The proof consists of checking that each property of the admissible group actions in Theorem
Items [I] to [3| hold. Since Item [I] clearly holds, we prove the remaining items below.

Item Define S as the set {(s,e) € R, x RF | ||s||lso, [l€]lsc < Bs}, where Bs = By — By. Note that
this is well-defined since By > B; by assumption. Here, each S;, S; and S3 can be represented as a
hypercube in the space Z™"**+0) by viewing R, as Zy and using the fact that By < ¢. Then, it is clear that
S3 = (s,e)es, (S:€) + S2. Moreover, |S3| consists of (2B3 + 1)*(*+6) points. Hence, we obtain the § as in
the statement as desired.

Item [3} Assume we have an adversary A against Item [3| with advantage e. We then construct an adversary
B which breaks either the MSISy ¢ 2p, problem or the sMLWEy, ¢ g, problem with advantage ¢ and similar
runtime as 4. We proceed with the proof by breaking A in two cases when provided with input (A, As +
e+ Xo): A outputs (s, e) or A outputs (8, €) not equal to (s,e) that lies in Sy + Ss.

Assume the first case. Then, such an adversary immediately yields an adversary B against the SMLWEy, ¢ 5,
problem. Let us now assume the second case. We construct an adversary B against MSIS, 02B, 88 follows:
Given input A as input, B samples a random (s, e) < S7 and provides A with (A, As + e T XO) When A
outputs (8, &) € Sy + S3 such that it is not equal to (s, e), B outputs (s*,e*) := (s — §,e — &) as its solution.
Since As* + e* = 0 due to the winning condition of A and ||s*||cc, ||€*||cc < B1 + Ba + Bs = 2B5, we have

that B breaks the MSISy ¢ 25, problem as desired. O

We can similarly instantiate AdmPGA. The only difference is that we have to take care of the tag. To
this end, we define G = Rg X Rf; X Rf; and extend Sy, S accordingly to be subsets of G. Then, the group
actions x4, ep are defined as (s,e,&) o w := (As+e)+w and (s,e,&) xg w := (Bs+ &) +w, for any w in
R%. Finally, for two tags v, v’, we define Linkga(v,v’) = 1 if and only if [|[v — v/|lsc < 2- (2B — B1).

Theorem 5.8 (AdmPGA from lattices). Let n be a power of 2 and ¢ =5 mod 8 and let k, £ be integers. Let
By, By be integers such that By < Bs < q and assume the MSISy 4 5.(3p,—B,) and dMLWEz ¢ , assumptions
hold. Then, AdmPGAwwe = (G, X, T, 51,52, Dy, D7, Linkga) with respect to any (Xo,Tp) € X X T is a
d-admissible group action, where (G, X,T,S1, 52, Dx, D7, Linkga) are defined as follows:

o (G,X,T):= (R x RF x Rk Rk RF),
For b€ {0,1}, S := {(s,e,8) € G [ [s]lco; [le]loc, 1Elloc < By}

The group action xa : GXX — X, uniquely defined by a matriz A € R’;XZ, is defined as (s,e,€)xa W :=
(As+e)+w

The group action eg : GXT — T, uniquely defined by a matriz B € R’;”, is defined as (s, e,€)epw :=
(Bs+¢é)+w,

Dx and D are the uniform distributions over R’;X‘],

30



o Forw,w’ € T, Linkga(w,w’) =1 if and only if |Ww — W'|lc <2 (2By — By).

 (2(BaBy)e1 D
[ ] 5 = (ﬁ) .
Proof. The proof consists of checking that each property of the admissible pair of group actions in The-
orem Items [I] to [6] hold. First, it is clear that Items [I] and [2] hold. Also, Item [3]is exactly the same as
what we showed in Theorem Therefore, it remains to prove Items [ to [0}

Item This property is essentially the dMLWEsj, ¢ g, assumption. Namely, (xa, o, *B X0, g o8 T0) is
equivalent to (A,B,va + Xo,ve + Tp), where (A,B,va,ve) is the dMLWEy; ¢ g, sample parsed in the
appropriate way. Here, note that Xg, Ty € R’; can be arbitrary.

Item Assume we have an adversary A against Item [5] with advantage e. We construct an adversary B
that breaks the MSIS;, ¢ 5.(2p,— B,) problem with advantage € and similar runtime as A.

The description of B is as follows. Given A € R’;Xé as the challenge, B samples B + R(’;” and runs A
on input (*a,es). When A outputs (s, e, &) and (s',e’,&"), B outputs (s —s’,e — €’) to its challenger.

Let us analyze B. First, since A wins the game defined by Item [f] we have that the infinity norm of
s,s’,e,e’,é,¢& are bounded by 2By — By, As + e = As’ + €' and Linkga(Bs + &,Bs’ + &) = 0. Here, recall
Ss was the set of elements with infinity norm smaller than By — B; (or equivalently Bs + Bs). The linking
condition in particular implies [|B(s —s') + & — & ||oc > 2- (2B2 — B1). Now, if s = &', then this implies
|6 —&|lcc > 2-(2Bs — By). However, this cannot happen since ||€||so, ||€||cc < 2B2 — B;y. Therefore, s # s'.
Hence, A(s —s') + (e —€’) =0, and (s — s’,e — €) is a non-trivial solution to the MSIS problem satisfying
Is = 'l lle — €/]loc <2+ (282 — By).

Item [6t The proof is similar to above. Assume we have an adversary A against Item [6] with advantage e.
We then construct an adversary B that breaks either the MSISy s 5.35,—p,) problem or the dMLWEz ¢ 5,
problem with advantage ¢ and similar runtime as A. We proceed with the proof by breaking A in two cases.
When A is provided with input (A,B, As + e,Bs + &), where we assume Xy = Ty = 0 w.l.o.g, A outputs
(8',€',€&") where either s’ = s and s # s’

Assume the first case. Then, such an adversary immediately yields an adversary B against the SMLWEyy, ¢, 5,
(which in particular is implied by dMLWEgy, 4 g, ) problem. In particular, B simply outputs (s, v—As,t—Bs).
Let us now assume the second case. We construct an adversary against the B against MSIS;, 4 5.35,—B,) as
follows: Given B € Rf;” as the challenge, B samples A + qucxe_ It also samples (s, e, &) + DéB1 ><D5“31 X D%l,
sets v := As + e, t := Bs + & and runs A on input (A,B,v,t). When A outputs (s’,€e’,&’), B outputs
(s — s, —B(s — §’)) to its challenger.

Let us analyze B. First, since A wins the game defined by Item [6] we have that the infinity norm of
s’,e’,& are bounded by 2By — By and Linkga(t, Bs’+€&’) = 1. The later implies ||t — (Bs'+€&')||oc = ||B(s —
s')+(6—€)|loo <2:(2By— By). Therefore, |B(s—8')||lc0c <2:(2B2—B1)+(2By— B;1)+ By = 2-(3B2— By).
Moreover, we have [|s —s'[|oc < 2B5. Hence, since s’ # s, B outputs a valid solution to the MSIS;, ¢ 2.(38,-B,)
problem.

Further optimization using Bai-Galbraith [4]. Although we can no longer capture it by our generic
construction from admissible (pair of) group actions, we can apply the simple optimization technique of
Bai-Galbraith [4] that uses the specific algebraic structure of lattices to our base OR sigma protocols in
Figures (3| and Effectively, we can lower the signature size of our lattice-based (linkable) ring signature
scheme with no additional cost. The main observation is that for MLWE, proving knowledge of a short s € Rg
indirectly proves knowledge of a short e € R’; since e is uniquely defined as v — As. We incorporate this idea
to our base OR sigma protocol by letting the prover only send a short vector z in Rf} rather than a short
vector z in R’; X Rg (for ring signatures) or z in R’; X Rg X Rg (for linkable ring signatures) as the response.
Since k ~ ¢, this allows us to shorten the response without any actual cost. We believe this optimization
is standard by now as it is used by most of the recent proposals for efficient signature schemes. Therefore
we refer to Appendix [B for the full details. In terms of security, the only difference is that the extracted

31



witness from the base OR sigma protocol will be slightly different than before. Otherwise, all our proofs in
Sections [3] and [] are unmodified by this optimization.

6 Parameter selection and implementation results

We implemented the isogeny-based instantiation with known class group and the lattice-based instantiation
of our (linkable) ring signature scheme. We reuse parameter sets from the pre-existing cryptosystems CSIDH-
512/CSI-FiSh and Dilithium. This allows us to reuse large portions of code from the CSIDH/CSI-FiSh and
Dilithium implementations. Moreover, this means we can rely on earlier work to estimate the concrete
security of our parameter choices. We use 128-bit seeds and commitment randomness, and we use 256-bit
salts, commitments, and hash values.

Isogeny parameters. We use the CSIDH-512 prime p, and define our first group action g x X exactly as
in CSI-FiSh. This parameter set was proposed to achieve NIST security level 1. State of the art analysis
of this parameter set suggests that it provides 128 bits of classical security and about 60 bits of security
against quantum adversaries [37]. We set M = 247 and K = 30 such that the challenge space consists of
binary strings of length M = 247 with hamming weight M — K = 217, of which there exist (23407) ~ 21281

Lattice parameters. We use the “medium” parameter set from the NIST PQC candidate Dilithium.
More concretely we use the Ring R, = Z4[X]/(X?¢ +1), where ¢ = 8380417. The dimensions of the MLWE
problem are (k,1) = (3,4) and the coefficients of the LWE secrets are sampled uniformly from [—6,6]. In
our implementation we use the optimization by Bai and Galbraith [4]. We chop off d = 20 bits of the
commitment vector y, such that the parameters of the MSIS problem match the parameters of the MSIS
problem relevant for the security of the Dilithium scheme. Note that since we work with binary challenges,
the probability that a single rejection sampling check fails is much lower. This effect is roughly canceled
out by the fact that in our protocol we need a number of parallel checks to succeed all at the same time.
For more details on the Bai-Galbraith optimized version of our (linkable) ring signature scheme we refer
to Appendix [Bl The Dilithium “medium” parameters are believed to achieve NIST security level 1. Since the
lattice signatures are fast, we can afford to have a large number of iterations with a small number of ¢ = 0
challenges. This trades signing and verification speed for smaller signatures. Concretely, we set M = 1749
and K = 16.

6.1 Implementation.

For the isogeny-based instantiation we reused the non-constant-time implementation of the group action
CSI-FiSh, which in turn relies on the implementation of the CSIDH group action by Castryck et al. [9] 12].
For the lattice-based instantiation we reused code of the Dilithium NIST submission for arithmetic and pack-
ing/unpacking operations. For both instantiations we use cSHAKE to instantiate the random oracles [2§].
In the isogeny-based implementation, the performance bottleneck is the evaluation of the CSIDH group
action, in the lattice-based implementation the bottleneck is not the lattice arithmetic, but rather the use
of symmetric primitives (i.e. hashing, commitments and expanding seeds). This is especially true in the
case of large ring sizes since the number of multiplications in R, is independent of the ring size. We believe
the lattice-based implementation can be sped up significantly by using more efficient symmetric primitives
and/or by using vectorized implementations. The signature sizes and signing time of our implementation
are displayed in Figure [I} Our implementation is publicly available on

https://github.com/WardBeullens/Calamari-and-Falafl

32


https://github.com/WardBeullens/Calamari-and-Falafl

References

[1]

Martin R. Albrecht, Benjamin R. Curtis, Amit Deo, Alex Davidson, Rachel Player, Eamonn W. Postleth-
waite, Fernando Virdia, and Thomas Wunderer. Estimate all the LWE, NTRU schemes! In Dario
Catalano and Roberto De Prisco, editors, SCN 18, volume 11035 of LNCS, pages 351-367. Springer,
Heidelberg, September 2018.

Gilad Asharov, Abhishek Jain, Adriana Loépez-Alt, Eran Tromer, Vinod Vaikuntanathan, and Daniel
Wichs. Multiparty computation with low communication, computation and interaction via threshold
FHE. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS,
pages 483-501. Springer, Heidelberg, April 2012.

Michael Backes, Nico Déttling, Lucjan Hanzlik, Kamil Kluczniak, and Jonas Schneider. Ring signatures:
Logarithmic-size, no setup - from standard assumptions. In Ishai and Rijmen [25], pages 281-311.

Shi Bai and Steven D. Galbraith. An improved compression technique for signatures based on learning
with errors. In Josh Benaloh, editor, CT-RSA 201/, volume 8366 of LNCS, pages 28-47. Springer,
Heidelberg, February 2014.

Feng Bao, Robert H. Deng, and Huafei Zhu. Variations of Diffie-Hellman problem. In Sihan Qing,
Dieter Gollmann, and Jianying Zhou, editors, ICICS 03, volume 2836 of LNCS, pages 301-312. Springer,
Heidelberg, October 2003.

Carsten Baum, Huang Lin, and Sabine Oechsner. Towards practical lattice-based one-time linkable
ring signatures. In David Naccache, Shouhuai Xu, Sihan Qing, Pierangela Samarati, Gregory Blanc,
Rongxing Lu, Zonghua Zhang, and Ahmed Meddahi, editors, ICICS 18, volume 11149 of LNCS, pages
303-322. Springer, Heidelberg, October 2018.

Fabrice Benhamouda, Jan Camenisch, Stephan Krenn, Vadim Lyubashevsky, and Gregory Neven. Better
zero-knowledge proofs for lattice encryption and their application to group signatures. In Palash Sarkar
and Tetsu Iwata, editors, ASIACRYPT 201/, Part I, volume 8873 of LNCS, pages 551-572. Springer,
Heidelberg, December 2014.

Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny. Quantum circuits for the
CSIDH: Optimizing quantum evaluation of isogenies. In Yuval Ishai and Vincent Rijmen, editors,
EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages 409-441. Springer, Heidelberg, May 2019.

Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. CSI-FiSh: Efficient isogeny based sig-
natures through class group computations. In Steven D. Galbraith and Shiho Moriai, editors, ASIAC-
RYPT 2019, Part I, volume 11921 of LNCS, pages 227-247. Springer, Heidelberg, December 2019.

Xavier Bonnetain and André Schrottenloher. Quantum security analysis of CSIDH. In FEUROCRYPT,
pages 493-522, 2020.

Wouter Castryck and Thomas Decru. Csidh on the surface. In PQCRYPTO 2020, pages 111-129, 2020.

Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes. CSIDH: An ef-
ficient post-quantum commutative group action. In Thomas Peyrin and Steven Galbraith, editors,
ASTIACRYPT 2018, Part III, volume 11274 of LNCS, pages 395-427. Springer, Heidelberg, December
2018.

Daniele Cozzo and Nigel P Smart. Sashimi: Cutting up csi-fish secret keys to produce an actively secure
distributed signing protocol. In PQCRYPTO 2020, pages 169-186, 2020.

Ivan Damgard and Eiichiro Fujisaki. A statistically-hiding integer commitment scheme based on groups
with hidden order. In Yuliang Zheng, editor, ASTACRYPT 2002, volume 2501 of LNCS, pages 125-142.
Springer, Heidelberg, December 2002.

33



[15]

[16]

[21]

Luca De Feo and Steven D. Galbraith. SeaSign: Compact isogeny signatures from class group actions.
In Ishai and Rijmen [25], pages 759-789.

David Derler, Sebastian Ramacher, and Daniel Slamanig. Post-quantum zero-knowledge proofs for
accumulators with applications to ring signatures from symmetric-key primitives. In Tanja Lange and
Rainer Steinwandt, editors, Post-Quantum Cryptography - 9th International Conference, PQCrypto
2018, pages 419-440. Springer, Heidelberg, 2018.

Itai Dinur and Niv Nadler. Multi-target attacks on the Picnic signature scheme and related protocols.
In Ishai and Rijmen [25], pages 699-727.

Léo Ducas, Eike Kiltz, Tancréede Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler, and
Damien Stehlé. CRYSTALS-Dilithium: A lattice-based digital signature scheme. IACR TCHES,
2018(1):238-268, 2018. https://tches.iacr.org/index.php/TCHES/article/view/839.

Ali El Kaafarani, Shuichi Katsumata, and Federico Pintore. Lossy csi-fish: Efficient signature scheme
with tight reduction to decisional csidh-512. In PKC' 2020, pages 157-186, 2020.

Muhammed F. Esgin, Ron Steinfeld, Joseph K. Liu, and Dongxi Liu. Lattice-based zero-knowledge
proofs: New techniques for shorter and faster constructions and applications. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages 115-146.
Springer, Heidelberg, August 2019.

Muhammed F. Esgin, Raymond K. Zhao, Ron Steinfeld, Joseph K. Liu, and Dongxi Liu. MatRiCT:
Efficient, scalable and post-quantum blockchain confidential transactions protocol. In Lorenzo Cavallaro,
Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 567-584. ACM
Press, November 2019.

Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 186—-194. Springer,
Heidelberg, August 1987.

Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge protocols to prove modular poly-
nomial relations. In Burton S. Kaliski Jr., editor, CRYPTO0’97, volume 1294 of LNCS, pages 16-30.
Springer, Heidelberg, August 1997.

Jens Groth and Markulf Kohlweiss. One-out-of-many proofs: Or how to leak a secret and spend a coin.
In Elisabeth Oswald and Marc Fischlin, editors, FEUROCRYPT 2015, Part II, volume 9057 of LNCS,
pages 253-280. Springer, Heidelberg, April 2015.

Yuval Ishai and Vincent Rijmen, editors. EUROCRYPT 2019, Part III, volume 11478 of LNCS.
Springer, Heidelberg, May 2019.

Ali El Kaafarani and Shuichi Katsumata. Attribute-based signatures for unbounded circuits in the ROM
and efficient instantiations from lattices. In Michel Abdalla and Ricardo Dahab, editors, PKC 2018,
Part II, volume 10770 of LNCS, pages 89-119. Springer, Heidelberg, March 2018.

Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-interactive zero knowledge with
applications to post-quantum signatures. In David Lie, Mohammad Mannan, Michael Backes, and
XiaoFeng Wang, editors, ACM CCS 2018, pages 525-537. ACM Press, October 2018.

John Kelsey, Shu-jen Chang, and Ray Perlner. SHA-3 derived functions: cSHAKE, KMAC, TupleHash,
and ParallelHash. Technical report, National Institute of Standards and Technology, 2016.

Greg Kuperberg. Another subexponential-time quantum algorithm for the dihedral hidden subgroup
problem. TQC, 22:20-34, 2005.

34


https://tches.iacr.org/index.php/TCHES/article/view/839

[30] Greg Kuperberg. A subexponential-time quantum algorithm for the dihedral hidden subgroup problem.
SIAM J. Comput., 35(1):170-188, 2005.

[31] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for module lattices. Designs,
Codes and Cryptography, 75(3):565-599, 2015.

[32] Benoit Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. Zero-knowledge arguments for lattice-
based accumulators: Logarithmic-size ring signatures and group signatures without trapdoors. In Marc
Fischlin and Jean-Sébastien Coron, editors, FUROCRYPT 2016, Part II, volume 9666 of LNCS, pages
1-31. Springer, Heidelberg, May 2016.

[33] Xingye Lu, Man Ho Au, and Zhenfei Zhang. Raptor: A practical lattice-based (linkable) ring signature.
In Robert H. Deng, Valérie Gauthier-Umana, Martin Ochoa, and Moti Yung, editors, ACNS 19, volume
11464 of LNCS, pages 110-130. Springer, Heidelberg, June 2019.

[34] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures.
In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 598-616. Springer, Heidel-
berg, December 2009.

[35] Ralph C. Merkle. A digital signature based on a conventional encryption function. In Carl Pomerance,
editor, CRYPTO’87, volume 293 of LNCS, pages 369-378. Springer, Heidelberg, August 1988.

[36] Silvio Micali and Leonid Reyzin. Improving the exact security of digital signature schemes. Journal of
Cryptology, 15(1):1-18, January 2002.

[37] Chris Peikert. He gives C-sieves on the CSIDH. In EUROCRYPT, pages 463-492, 2020.

[38] David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind signatures.
Journal of Cryptology, 13(3):361-396, June 2000.

[39] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In Colin Boyd, editor, ASIAC-
RYPT 2001, volume 2248 of LNCS, pages 552-565. Springer, Heidelberg, December 2001.

[40] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In 35th FOCS,
pages 124-134. IEEE Computer Society Press, November 1994.

[41] Wilson Abel Alberto Torres, Ron Steinfeld, Amin Sakzad, Joseph K. Liu, Veronika Kuchta, Nandita
Bhattacharjee, Man Ho Au, and Jacob Cheng. Post-quantum one-time linkable ring signature and
application to ring confidential transactions in blockchain (lattice RingCT v1.0). In Willy Susilo and
Guomin Yang, editors, ACISP 18, volume 10946 of LNCS, pages 558-576. Springer, Heidelberg, July
2018.

A Security Proofs

A.1 Proof sketch for Fiat-Shamir ring signature
Proof sketch. We provide a proof sketch for the three properties of a ring signature.
Correctness follows from the correctness of the OR sigma protocol.

Anonymity follows immediately from non-abort special ZK. Namely, regardless of the bit b chosen, the
challenger will use the non-abort special ZK simulator Sim to simulate a signature for every signature query
made by the adversary. Here, it programs the random oracle Hgs appropriately (which it can do due to
the high min-entropy property) so that the input-output pairs are consistent. Since the proof (which is the
signature for the ring signature) is generated independently from the secret keys sk;, and sk;,, anonymity
follows. Here, note that the zero-knowledge property holds regardless of the witness being given to the

35



adversary, and hence, we get full key exposure security by default. Moreover, we only require non-abort
special ZK since aborted transcripts are never sent as part of a signature.

Unforgeability follows from non-abort special ZK, special soundness, and the rewinding argument [38].
Similar to the above, the challenger first modifies all the signatures to be signed by the ZK simulator Sim.
Then, assume an adversary succeeds in outputting a forgery (R*,M*,o*) with this challenger. We assume
w.l.o.g. that o* is a proof constructed based on the i-th query to the random oracle. Then, fixing on
the randomness of the adversary up to the i-th random oracle query, if we rerun the adversary and use
fresh randomness to answer the random oracle queries starting from the i-th query, then the adversary will
succeed in outputting a forgery (R/*, M'*,cr/*) with non-negligible probability, where o' * is again a proof
constructed based on the i-th query to the random oracle. Since in both runs we use the same randomness
for the adversary and we answer the random oracle in the same way until the i-th random oracle query, we
have M* = M/*7 R* = R/*, and com* = com*. In particular, we obtain two valid transcripts on the same
commitment com. Therefore, special soundness allows us to extract a witness for the (relaxed) relation R.
However, this cannot happen with non-negligible probability based on Theorem 3.1} Item 3 (one-wayness of
admissible group actions) and Theorem (binding of Merkle tree). O

A.2 Proof of Theorems [4.3] and (4.4
A.2.1 Correctness and relaxed special soundness (Theorem [4.3|)

Proof. Correctness. If the protocol is executed honestly with input (sy,I) such that s; x Xg = X and
sy Ty =T, and if the prover does not abort, then the verifier accepts with probability 1. If ¢ = 0, then

z2xXog=(r+s;)*Xo=rxX;=Rrand zeTy=(r+s;)eTy=reT; =T".

Now, since C; = O(Com||Ry||bits;), the reconstructed root of the Merkle tree from the I-th leaf will match
root. Therefore, the hash of 7" and root equals the hash h sent by the prover in the first round, and hence,
the verifier accepts. If ¢ = 1, then the verifier just repeats the calculation done by the prover in the first
round and will obtain the same hash value h and accept.

It remains to prove that the prover aborts with probability (1 —9)/2. First of all, if ¢ = 1, then the prover
does not abort. If ¢ = 0, then the prover aborts if z = r+ sy € S3. Since r is chosen uniformly at random in
Sy, it follows that z is distributed uniformly at random in Ss + s;. The probability that z € S3 C So + s7 is
therefore

A8l 1Sl
[S2+si| |92

Relaxed special soundness. We describe an extractor that, given two accepting transcripts (h, 0, (z, path, bits))
and (h, 1,seed) outputs either of the following: an s € Sy + S3 such that s * Xo = X; and s e Ty = T for
some I € [N]; a collision in Hcon; or a collision in O. First, the extractor expands seed to obtain r € Sy
and bits; for all ¢ € [N]. It then computes 7" = r e T and (root,tree) <— MerkleTree(Cy, - ,Cx) where

C;, = O(Com||R;||bits;) and R; = rx X;. Since (h,1,seed) is a valid transcript, we have h = Hcon(7", root).
Next, the extractor computes T = z o Ty, R = z x X, and C = O(Com||R||bits). Since (h,0, (z, path, bits)) is

a valid transcript for ¢ = 0, we have h = HCO”(T, root), where root = ReconstructRoot(&, path).

The extractor checks if (T”, root) # (f, root). If so, the extractor outputs the pair as the witness w since
it constitutes a collision in Hcoy. If (T7,root) = (T, root), the extractor further checks if C # C; for all
1 € [N]. If so, using the Merkle tree extractor of Lemmawith input (tree, E, path), it can find a collision
for Hcon. Then the extractor outputs the collision as the witness w. Otherwise, if C=cC 1 for some T € [N],
then the extractor further checks if (Ry, bitsy) # (f%, bits). If so, the extractor outputs the pair (appended
with the string Com) as the witness w, as it forms a collision in @. Otherwise, if Ry = E, then the extractor
outputs the witness w = —r + z € Sy + S3 that satisfies (—r + 2) * Xg = X1 and (—r + 2z) x Top = T, where
we use the fact that T = T". O

36



A.2.2 Non-abort special zero-knowledge Theorem

Proof. The proof is almost identical to the proof of Theorem [3.3] where the only difference is that we have
an additional tag T to consider. On closer inspection of the prior proof, the only thing we have to modify is
the description of Simy in case chall = 0; in addition to uniformly sampling z < S5 and setting Ry = z * X,
we further set 7" = 2+ T}. It is clear that the distribution of the output of the Simy is exactly the same as in
Sims. Except for this slight modification, the proof is identical to the proof of Theorem This concludes
the proof. O

A.3 Security proof of main OR-proof-with-tag
A.3.1 Correctness and relaxed special soundness (Theorem [4.5)

Proof. The proof is identical to the proof of Theorem This can be checked by noticing that the only
difference in TI§° and TI5RS is that the statement additionally includes a tag T and runs IILRS-b3se a5 g
subroutine instead of Hgs‘base. The latter addition does not affect the correctness, high min-entropy, and
relaxed special soundness. Moreover, the relaxed special soundness of II5RS is inherited from that of TI5RS-base,
similarly to what we had in the proof of Theorem [3.5] O

A.3.2 Non-abort special zero-knowledge (Theorem /4.6)

Proof. The proof is identical to the proof of Theorem This can be easily checked by noticing that the
proof of Theorem [3.6] only cares about the overall structure of the transformation form our base to main
OR sigma protocols. Therefore, we can simply rely on the seed tree and non-abort special zero knowledge
of TILRSb2s¢ £ obtain the same proof as before. O

A.4 Proof of Theorem

Proof. Correctness. Owing to the correctness of the underlying OR sigma protocol, it is clear that any
signature output by LRS.Sign verifies against LRS.Verify. Moreover, since two signatures constructed by the
same secret key sk outputs the same tag T', LRS.Link correctly links the two signatures due to the correctness
of Linkga (Theorem [4.2] Ttem [2)). O

Linkability. Assume there exists an efficient adversary A against the linkability game with advantage €
that makes at most ) random oracle queries (including those implicitly queried during the signing query).
We show how to use A to construct an adversary B that breaks one of the following properties: The-
orem Ttem [5| of AdmPGA or the collision resistance of Hco. The advantage of B is a constant close to 1
and the runtime is O(tN2Q/¢) where t is the runtime of A. By assumption, this implies € is negligible.

At a high level, when A outputs a set of verification keys VK := {vk; };c;n) and a set of tuples (o;, Mi, R;)ie[n+1]
satisfying the winning condition, we would like to extract the witness that was used to generate the signatures
(04)iein+1)- We accomplish this by appropriately running A on two specific choices of “good” randomness and
extracting via the special soundness of the underlying OR sigma protocol. Since o; = (salt;, T}, chall;, rsp;) is
valid, we assume without loss of generality that (M;, (R;,T;), com;) was queried to the random oracle at some
point, where com; < RecoverCom((R;,T;), salt;, chall;, rsp,) and chall; is its corresponding output. Otherwise,
A must have guessed chall; correctly, which can happen with at most probability 2=*. Below, without loss
of generality, we assume o; is simply given in the form (73, com;, rsp,;). Assume the only randomness used by
B (other than what is required for running A) is the randomness used to answer the random oracle queries
that A makes. Then, for k € [Q], denote rand<j, (resp. randsj) as the randomness used by A and B up until
(resp. after) the point that A makes the k-th random oracle query. In particular, rand<j includes all the
output to the random oracle query up until the k-th query. Moreover, denote rand as the total randomness
used by A and B (i.e., rand = rand.|[rand>) for any k € [Q]). Note that once rand is fixed, the output of
A is determined.

The description of B follows:

37



1. B runs A on fresh randomness until A succeeds in winning the linkability game. Let VK := {vk;};c[n
and (0;, My, R;)ienv41) be the output of a winning A. Also, let signature o; = (T3, com;, rsp;) be based
on the h;-th (h; € [Q]) random oracle query (which is promised to exist due to the above assumption)
and let chall; be the output of the random oracle on input (M;, (R;,T;),com;). Finally, B prepares a
list L := {(i, My, Ry, T;, com;, chall;, rsp; )ie (v 41 }-

2. For j € [N + 1]: B reruns A on the same randomness rand<j, as in Item [I| together with fresh
randomness rand>h until A succeeds in winning the hnkablhty game. Let VK’ := {vk;}ie[N] and
(o} = (T}, comz,rspz) Mi, R)iciv41) be the output of A. If of is not based on the h;-th random
oracle query, then it starts over from the beginning of Item Otherwise, B updates the list L <«
LU {(j, M’ R],Tj’,com chaIIJ7 rspj)}, where chall} is the h;-th output of the random oracle (for this
run). We note that since the randomness randj,; is fixed for both runs, A runs exactly the same as
in Item [1] up till the point it makes the h;-th random oracle query. Therefore, we are guaranteed to
have (MJ‘7 (Rj,Tj),comj) = (M; (R;,TJ/) COI’T‘I;).

3. For j € [N+1]: Bretrieves the two tuples (j, M, R;, T}, comy, challj, rsp;) and (j, M;, R;, T}, comy, challg-7 rsp;)
from the list L. If chall; = chaII;7 then B terminates and outputs L. Otherwise, B runs the extraction
algorithm of the underling OR sigma protocol on input the statement (R;, T;) and two valid transcripts
with the same commitment (com;, chall;, challg, rsp;, rsp’;), and obtains a witness w.

4. Finally, if for some j,j' € [N + 1], w; = (s;,I) and w;r = (sj,I) € (S2 + S3) x [N], then B outputs
(sj,sj). Else, if for some j € [N + 1], w; forms a collision for the hash function Hcou, then B outputs
w;. Otherwise it outputs L.

Due to relaxed special soundness, B is guaranteed to extract a witness w; in the relaxed relation R (see
Theorem conditioning on that it terminates and does not output L in Item |3[ above. Moreover, since
we are in the random oracle model, finding two inputs mapping to the same output can happen with only
negligible probability. This in particular implies that B outputs some non- L element in Item @ above. Hence,
we have that for each witness in (w;);e[n+1] is either of the following form: w; = (sj, ;) € (S2 + S3) x [N ]
such that X; = sy Xo and T' = s; @ Tj, or w; constitutes a collision for the hash funct1on Hcon- Since
there are N + 1 witnesses, if no collision is occurring, then there must exist some j,j' € [N + 1] such that
w; = (sj,I) and wj = (s;7,I) for the same I € [N]. In this case, this breaks property Item |5( of AdmPGA
(since Linkga(sj @ Ty, s;» ¢ Tp) = 0 but s; x Xo = s;, * X from the winning condition oof A). Otherwise,
there must exist j € [N] such that w; constitutes in a collision. Hence, B breaks either Item [5| of AdmPGA
or the collision resistance of Hcoy.

It remains to show that B terminates in (expected) polynomial time and will output # L with over-
whelming probability. First of all, by assumption on A, Item [I] terminates in expected polynomial time
O(t/€), where t is the runtime of A. Next, in Item [3} B aborts only if chall; = chall} for some j. However,
since for every run the challenge (i.e., the output of the random oracle) is sampled uniformly random, such
an event happens with at most O(N/2*) which is negligible. Also, since Item [4{ clearly runs in polynomial
time, it remains to check that Item 2] terminates as expected. To this end, we use a simple modification of
the standard “heavy row lemma” (see [36, Lemma3] for example) to argue that for each j € [N + 1], with
probability at least (2N +1)/(2(N +1)), if rand was used in the first run, the probability of sampling another
rand>h where randomness rand ||rand> n, leads to the event of A winning the linkability game is at least
e/2(N —I— 1)Q. Let us denote such an event as E;. Then, we have by the union bound that with probability
at least 1/2, for all j € [N + 1], we will be able to sample rand>h where randomness randp,, ||rand>h leads
to event E; with probability at least ¢/2(N + 1)Q. Therefore, “with probability at least 1 /2 Ttem 2] will
terminate in expected polynomial time O(tN2Q/¢), where t is the runtime of A, since for each j € [N], B
runs A O(NQ/¢) times. Combining everything, B terminates in expected polynomial time O(tN?Q/¢) with
advantage negligibly close to 1. Finally, we note by setting a suitable upper bound on the number of time
B reruns A in each item above, we can obtain a bounded polynomial-time algorithm B with running time
O(tN?Q/e¢) with a constant advantage =~ 1. O

38



Linkable anonymity. Assume there exists an efficient adversary A against the linkable anonymity game
with advantage e. We show that any A must have at most a negligible advantage by considering the following
hybrid games. Below, E; denotes the event on which A wins in Game;.

Game;: This is the original game. By assumption we have € = | Pr[E;] — 1/2|.

Game,y: In this game, we modify the way the challenger responds to the signature query made by A by
programming the random oracle. Namely, when A submits (vk,M,R) such that vk € {vkg,vki} C R to
the challenger, the challenger samples a random challenge chall <— Cjs x and programs the random oracle
Hes(M, (R, T),com) := chall. If the input is already defined, then the challenger outputs a random bit on
behalf of A and aborts the game. Otherwise, it is the same as in Game;.

It is easy to see that since the OR sigma protocol has high min-entropy, this makes at most a negligible
difference. Therefore, | Pr[E;] — Pr[Es]| = negl(\).

Gamegs: In this game, we further modify the way the challenger responds to the signature query made by A
by using the zero-knowledge simulator Sim of the underlying OR sigma protocol. Namely, when A submits
(vk, M, R) such that vk € {vkg,vki} C R to the challenger, the challenger first retrieves the corresponding
secret key sk and creates a tag 1" = sk @ Ty. It then samples a random challenge chall <- Cj/ x and runs
(com, chall, rsp) < Sim((R,T'), chall). It programs the random oracle as before. Finally, the challenger returns
o = (salt, T, chall, rsp) as the signature.

Due to non-abort special zero-knowledge (Theorem in the random oracle model, the above game is
statistically indistinguishable from the previous game. Therefore, | Pr[Es] — Pr[Es]| = negl()\).

Gamey: In this game, the challenger first generates the N verification-signing key pars {(vk;,sk;)}iciny. It
then samples ig,i; < [IN] and guesses that the two challenge verification key {vkg,vk]} submitted by the
adversary will correspond to the ip-th and ¢;-th verification keys, respectively. It also generates the two tags
Ty := ski @ Ty and Ty := skj e Tj at the beginning of the game, where sk; corresponds to the secret key
of the i,-th verification key. When the adversary submits the two challenge verification key {vkg, vki}, the
challenger checks whether its guess was correct. If not, then the challenger outputs a random bit on behalf
of A and aborts the game. Otherwise, it simulates the game as in the previous game, where it uses the tag
generated at the beginning of the game to respond to the signing queries. Note that the challenger no longer
needs the secret key to respond to the singing queries.

The challenger guesses the two verification keys correctly with probability 1/N? and the timing on which
the tags are generated is only a conceptual change. Therefore, we have | Pr[E4] —1/2| = - | Pr[Es] — 1/2].

Games: In this game, the challenger first samples ig, i1 < [N] and generates (vk;, sk;) + LRS.KeyGen(pp, rr;)
for all ¢ € [N]\{40,%1}. It then samples (X3, Ty) and (X7,T7) uniformly random from X x 7. Otherwise,
the game is the same as the previous game.

Using Item 4] of the admissible pair of group actions twice, this game is computationally indistinguishable
from the previous game. Therefore, | Pr[E4] — Pr[Es]| = negl()\). Moreover, since the challenge verification
keys and tags are independent of each other and the signing key is no longer used to sign messages, the bit
b chosen by the challenger remains information-theoretically hidden from .A. Therefore, Pr[Es] = 1/2.

Combining everything together, we conclude € = negl()).

Non-frameability. Assume there exists an efficient adversary A4 against the non-frameability game with
advantage e. We show that any .4 must have at most a negligible advantage by considering the following
hybrid games. Below, E; denotes the event on which A wins in Game;.

Game; to Games: These games are modified analogously to the games defined in the proof of linkable
anonymity (Theorem [4.7)). Notably, by the end of Games, the challenger answers to all the signing query
made by A by running the ZK simulator of the underlying OR sigma protocol and programming the random
oracle appropriately.

Gamey: In this game, the challenger generates the tags used within the signature at the beginning of the
game. Namely, after generating the N verification-signing key pars {(vk;,sk;)};c[ny, it also generates the tags
T; = sk; @ Ty for i € [N] and stores them. The only difference between the previous game is that whenever

39



a signing query for index 7 is made, the challenger retrieves T; instead of generating T; on the fly. Since this
is only a conceptual change, this does not alter the view of \A. Hence, Pr[E3] = Pr[E4].

Below, define ¢’ := Pr[E4] and let @ be the number of random oracle queries A makes in Game,. Similarly,
to the proof for linkability (Theorem , we now show that we can construct an adversary B that breaks
one of the following properties by using A4 as a black box: Theorem Item [6] of AdmPGA or the collision
resistance of Hcon. The advantage of B is O(¢’/N) and the runtime is O(tQ)/€’) where ¢ is the runtime of
A. Then by assumption, ¢ and hence ¢ must be negligible. Below, we focus on constructing an adversary B
against Item [6] of AdmPGA. The case follows the same argument.

The description of B is as follows: Given (X,T) as input, B samples a random index j « [N], generates
N —1 verification-signing key pars {(vk;,sk;)}ic(ny\; and finally sets vk; := X and T := T. B then simulates
the view of A in Gamey, where we note that B can perfectly simulate Gamey since in Gamey, no secret keys
are used anymore. At the end of the game, A output a forgery (R*, M*,o* = (salt™, T*, chall*, rsp*)) against
the non-frameability game which happens with probability ¢/. Due to the winning condition, B must have
simulated some signature o = (salt™, 7", chall’, rsp’) on a signing query (i, M, R) where vk; € VK\CL. If i # j,
B terminates and outputs L. Otherwise, B tries to extract the witness from ¢* by rerunning A on partially
new randomness. Here, note that we have T' = T when ¢ = j, and in particular, Linkga(7*,T) = 1. Since the
argument on rewinding A is almost identical to what we’ve shown in the proof for linkability (Theorem ,
we only provide a sketch here. Let h* be the index of the random oracle query associated to ¢*. That is,
the proof included as part of o* was generated with respect to the A*-th output of the random oracle query.
Using the same notations as before, B fixes rand<j~, samples a fresh rand>p+ and runs A again. Due to the
heavy row argument, A succeeds again with probability € /Q. Therefore, B reruns A on fresh randomness
randsp- for O(Q/¢’)-time till A succeeds again. At this point, B will have two transcripts which it can extract
to obtain a witness w in the relaxed relation R (see Theorem . In case w does not constitute a collision
in the hash function Hco or random oracle (where the latter happens with only negligible probability even
for a computationally unbounded adversary), then B obtains w = (s, I) such that s € So+.S3 and seTy = T.
Therefore, s breaks Item |§| of AdmPGA as desired. It is clear that the same reduction (where B does not
need to guess i) works for breaking the collision in the hash function Hcoy. O] O

Remark A.1 (Randomness fed to the adversary). We point out a subtle difference between the proof in
linkability and non-frameability. In the latter proof, B does not rerun A until it succeeds in the first run,
and hence, B’s advantage is upper bounded by e/N. The reason for this is that B is given a fixed instance
from the game defined by Item[f] of AdmPGA, and therefore, it cannot rerandomize the instance input to A
in the first run. We note that this is also true regarding the linkability game as well since the description
of (x,e) is also fized by the admissible group actions and B cannot rerandomize them. However, we gloss
over these issues for simplicity and by the fact that B can rerandomize them in our concrete instantiation of
them. Some concrete treatment on this can be found in [306].

B Details on the Bai-Galbraith-optimized (linkable) ring signa-
ture

In this section, we provide the full detail on the optimization of Bai-Galbraith [4] applied to our base OR
sigma protocols in Figures[3land[7] The generic transformation to their respective main OR sigma protocols
and to (linkable) ring signatures are unmodified. We first prepare some notations below.

Notations. For a € Z and d € N, define [a],. to be the unique integer in the set (—2¢71,2971] such that
a = [a]ya mod 2%. In words, [a],s is essentially the d least significant bits of a. For a € Z,, let a* be the
unique integer in the set [0, ¢ — 1] such that a™ = a mod ¢ and define |a], as the integer (a™ — [a"],4)/2%.
Note that for any a € Z,, |a], is an integer in the set [0,q], where g := [((g — 1) — 2971)/2¢]. Loosely
speaking, |a], discards the d least significant bits of a. These operations extend naturally to vectors over Z
and Z4, and also to rings R and R, by considering them component-wise.

40



Also, for any B € N, we define the set of elements in [0, — 1] that are close to the border defined below

Bordery 4.5 := [0, B) U (L_J {i'2d+2d_1—|—(—B,B]}> U lq—1-B,q—1].

In particular, for any a € Zg, if a™ ¢ Border, 4 g, then |a], = |a + e], for any noise e € [-B, B]. In the
following, when the meaning is clear, we drop the subscript and simply write a € Border, 4 5. With an
overload of notations, we extend the definition of Border, 4 g to vectors and elements over the ring R, in the
natural way.

B.1 Optimized lattice-based ring signature

The base OR sigma protocol for the ring signature with the Bai-Galbraith optimization is provided in
Figure [0l The protocol is the same as our original protocol in Figure [3] except for the details explained in
Section Specifically, in the optimized version, the prover (roughly) discards the d least significant bits
of Ar + v; and only commits to R; = |Ar + v;],; € R* for each i € [N]. Here, we assume Xy, = 0 € R”
in Theorem As explained before, the intuition behind this is that proving knowledge of s; such that
lvi — Asrlloc = “small” suffices to prove knowledge of (sy,er) such that vi = Asy + e;. Then, in the
response phase, the prover generates the response vector z only with respect to the secret s;. Recall, in the
original scheme, the prover also generated z’ =1’ + e € Rf;.

Unfortunately, since the d least significant bits were removed in the first message, the verifier may not
be able to properly reconstruct R; as required in case the challenge is ¢ = 0. Namely, we need

|Az], = |Ar+ As;|, = |[Ar+ v —ef], w |Ar +vr], =Ry,

but the verification may fail since o) does not hold in general. To compensate for this, the Bai-Galbraith

optimization requires the prover to additionally check that Az € Bordery 4 p, to ensure that the above

equality Y holds. Here, we use the fact that |lef||oc < B;. As done by Bai-Galbraith [4], and also by
Dilithium [I8], we can estimate the probability of this check not holding by assuming that Az is distributed
close to uniform over R’;. Namely, we see that the probability of the prover aborting is lower bounded by

1,1 94 9B, —1\"" [(2(By— By)+1\"™
272 9d 2B, + 1 '

As for security, it is clear that high min-entropy and non-abort special zero-knowledge of our main OR,
sigma protocols will be unaffected even if we use the optimized base OR sigma protocol. Namely, zero-
knowledge follows since conditioned on the prover not aborting, the simulator can sample z from DZBQ_ B
and check Az € Border, 4 p,. If not, it resamples z until it succeeds. Relaxed special soundness also holds but
for a slightly different relaxed relation R. Namely, an honest prover will use (s, e) € [~ B, B1]¢ x [-By, B1]*
such that v = As+ e, whileas, an extractor will only be able to extract a pair (s,e) € [—(2By — B1), (2B2 —
B1)] x [-2%,29]% from two valid transcripts with the same first message. The reason for this is because the
extractor can only recover z € [—(Bgy — By), (B2 — B1)]* and r € [~ By, Bs]’ such that |Ar + v], = |Az],.
For example, we can set d = [log,(Bz)] so that we are guaranteed to extract e € [—(By + 1), (By + 1)]*.

Finally, the ring signature obtained through applying the Fiat-Shamir transformation to our base op-
timized OR sigma protocol will remain secure following the exact same proof as our original ring signature.
The only difference is that for unforgeability, the reduction algorithm will extract a witness included in a
slightly different relation than before as explained above. In our concrete parameter selection, we chose the
parameters such that the underlying problem (i.e., MSIS) still remains hard even for such relaxed witnesses.
The parameters are dictated by the MSIS parameters used by Dilithium [18].

41



round 1: P{O((vi---,vn),(s1,1))

: seed <+ {0,1}*

2: (r, bitsy, - -+ , bitsyy) <~ O(Expand||seed) > Sample r from DY and bits; from {0, 1}*
3: for ¢ from 1 to NV do

4 R; + |[Ar+v;], € R*

5: C; O(ComHRlﬂbltsl)
6
7

—

. (root, tree) « MerkleTree(Cy, -+ ,Cxn)
: Prover sends com < root to Verifier.

round 2: V/(com)
1. ¢4 {O, 1}
2: Verifier sends chall < ¢ to Prover.

round 3: Pj((sy,I),chall)

1: ¢ < chall

2: if ¢ =0 then

3: Z<4T+8S5€ Rf;

4: if ||z||ooc > Bz — By or Az € Border, 4 5, then
5: P aborts the protocol

6: path < getMerklePath(Z, tree)

7: rsp < (z, path, bits;)

8: else

9: rsp < seed

10: Prover sends rsp to Verifier

Verification: VJ(com, chall, rsp)
1: (root, c) + (com, chall)
2: if ¢ =0 then
(z, path, bits) < rsp
R« |Az], € RF
C + O(Com|/R/|bits)
root < ReconstructRoot(C, path)
Verifier outputs accept if ||z]|oc < Ba — By, Az & Border, 4.5, and root = root, and otherwise
outputs reject
8: else
9: Verifier repeats the computation of round 1 with seed < rsp
10: Verifier outputs accept if the computation results in root, and otherwise outputs reject

I A

Figure 9: Construction of the base OR sigma protocol (P, V{, Pj,Vy) for ring signatures applying the
optimization of Bai-Galbraith [4], given an admissible group action AdmGAwmwe with respect to X := 0 € R’;
as defined in Theorem [5.71 Here, vi = Asy + er where (s;,e;) € S;. Above, the PRG Expand and
commitment scheme Com is modeled by a random oracle O.

42



B.2 Optimized lattice-based linkable ring signature

The base OR sigma protocol for the linkable ring signature with the Bai-Galbraith optimization is provided
in Figure [9] The protocol is the same as our original protocol in Figure [7] except for the details explained
in the previous section. The only difference from the previous section is that the prover further applies the
optimization for the tag component t = Bs + €. We omit the details as it is essentially the same as the
previous section with an additional check regarding the tag. We note that the probability of the prover not
aborting is now lower bounded by

11 (2d—231—1)2"’“ (2(BQ—B1)—|—1>M

2 "2’ 2d 2By + 1

due to the extra abort that may be caused by the check Bz € Border, 4 5, .

43



round 1: P{((vy,---,vnN,t),(sr,1))
1: seed « {0,1}*
: (v, bitsy, - -+, bitsy) +— O(Expand||seed) > Sample r from D% and bits; from {0, 1}*.
:t/ « [Br+t], € R
: for ¢ from 1 to N do
Ri — LAI‘+V¢]d S Rk
: (root, tree) < MerkleTree(Cy, -+ ,Cy)
: h Hco”(t/, root)
Prover sends com < h to Verifier.

© 2N PR w D

round 2: V{(com)
1: ¢+ {0,1}
2: Verifier sends chall < ¢ to Prover.

round 3: Pj((sy,I),chall)

1: ¢ < chall

2: if ¢ =0 then

3: Z < Sr+re Rg

4: if ||z||coc > B2 — By or Az € Border, 4 g, or Bz € Border, 4 5, then
5: P aborts the protocol

6: path < getMerklePath(Z, tree)

7 rsp < (z, I, path, bitsy)

8: else

9: rsp < seed

10: Prover sends rsp to Verifier

Verification: VJ(com, chall, rsp)
1: (h,¢) < (com, chall)
2: if ¢ =0 then
(z, path, bits) < rsp
R« |Az], € R*
C + O(Com|/R/|bits)
t < |Bz], € R
root < ReconstructRoot(I, E, path)
Verifier outputs accept if ||z|| < By — B1, Az,Bz ¢ Border, 4 5, and ’HCOH(E, r/o\&:) = h, and
otherwise outputs reject.
9: else
10: Verifier repeats the computation of round 1 with seed < rsp.
11: Verifier outputs accept if the computation results in h, and otherwise outputs reject.

© N > qokw

Figure 10: Construction of the base OR sigma protocol (Pj, VY, P;, Vy) for linkable ring signatures applying
the optimization of Bai-Galbraith [4], given an admissible pair of group action AdmPGApwe with respect
to Xo,Tp :=0 € R’; as defined in Theorem Here, vi = As; + e; and t = Bs; + e; where (s;,ej) € 5.
Above, the PRG Expand and commitment scheme Com is modeled by a random oracle O.

44



	Introduction
	Our contributions
	Technical overview

	Preliminaries
	(Relaxed) sigma protocols
	Ring signatures
	Linkable ring signatures
	Isogenies and ideal class group actions
	Lattices
	Index-hiding Merkle trees
	Seed tree

	From group actions to ring signatures
	Admissible group actions
	From an admissible group action to base OR sigma protocol RS-base.
	Security proof for the base OR sigma protocol RS-base
	From base OR sigma protocol RS-base to main OR sigma protocol RS
	Unbalanced challenge space CM, K.
	Using seed tree.
	Adding salt.

	Security proof for the main OR sigma protocol RS
	From main OR sigma protocol RS to ring signature

	From a pair of group actions to Linkable ring signatures.
	Admissible pairs of group actions
	From an admissible pair of group actions to base OR sigma protocol with tag
	From base OR sigma protocol with tag LRS-base to main OR sigma protocol with tag LRS
	From main OR sigma protocol with tag LRS to linkable ring signatures

	Post-quantum admissible (pair of) group actions from standard assumptions
	Isogeny-based instantiations
	Known class group
	Unknown class group.

	Lattice-based instantiation

	Parameter selection and implementation results
	Implementation.

	Security Proofs
	Proof sketch for Fiat-Shamir ring signature
	Proof of thm:baseLRSsound,thm:baseLRSZK
	Correctness and relaxed special soundness (thm:baseLRSsound)
	Non-abort special zero-knowledge thm:baseLRSZK

	Security proof of main OR-proof-with-tag
	Correctness and relaxed special soundness (thm:mainLRSsound)
	Non-abort special zero-knowledge (thm:mainLRSZK)

	Proof of thm:LRS

	Details on the Bai-Galbraith-optimized (linkable) ring signature
	Optimized lattice-based ring signature
	Optimized lattice-based linkable ring signature


