
Time-Specific Signatures

Masahito Ishizaka and Shinsaku Kiyomoto

KDDI Research, Inc.
{ma-ishizaka, kiyomoto}@kddi-research.jp

Abstract. In Time-Specific Signatures (TSS) parameterized by an integer T ∈ N, a signer with a secret-
key associated with a numerical value t ∈ [0,T − 1] can anonymously, i.e., without revealing t, sign a
message under a numerical range [L,R] such that 0 ≤ L ≤ t ≤ R ≤ T − 1. An application of TSS is
anonymous questionnaire, where each user associated with a numerical value such as age, date, salary,
geographical position (represented by longitude and latitude) and etc., can anonymously fill in a ques-
tionnaire in an efficient manner.
In this paper, we propose two polylogarithmically efficient TSS constructions based on asymmetric pair-
ing with groups of prime order, which achieve different characteristics in efficiency. In the first one based
on a forward-secure signatures scheme concretely obtained from a hierarchical identity-based signatures
scheme proposed by Chutterjee and Sarker (IJACT’13), size of the master public-key, size of a secret-key
and size of a signature are asymptotically O(log T), and size of the master secret-key is O(1). In the sec-
ond one based on a wildcarded identity-based ring signatures scheme obtained as an instantiation of an
attribute-based signatures scheme proposed by Sakai, Attrapadung and Hanaoka (PKC’16), the sizes are
O(log T), O(1), O(log2 T) and O(log T), respectively.

Keywords: Time-specific signatures, Forward-secure signatures, Wildcarded identity-based ring signatures,
Asymmetric pairing with groups of prime order, Co-computational Diffie-Hellman assumption, Symmetric
external Diffie-Hellman assumption.

1 Introduction

Time-Specific Encryption [19]. In a Time-Specific Encryption (TSE) system with total time periods T ∈ T,
each secret-key is associated with a time period t ∈ [0,T−1] and a plaintext is encrypted under a time interval
[L,R] such that 0 ≤ L ≤ R ≤ T−1. A user who has a secret-key for t can correctly decrypt any ciphertext under
[L,R] if t ∈ [L,R]. Paterson&Quaglia [19] showed that a TSE scheme can be generically constructed from an
identity-based encryption (IBE) [22] scheme or a broadcast encryption (BE) scheme [12]. Kasamatsu et al.
[15,16] proposed a (direct) construction based on Boneh-Boyen-Goh hierarchical identity-based encryption
(HIBE) scheme [8]. Ishizaka&Kiyomoto [14] proposed a generic construction from wildcarded identity-
based encryption (WIBE) [2,6,1] w/o hierarchical key-delegatability.

TSE is less functional compared to functional encryption [9], (ciphertext-policy) attribute-based encryp-
tion [20,5] and etc. Because of that, we require a TSE scheme to be highly efficient. Specifically, in previous
works [19,15,16,14], polylogarithmic efficiency is required. For instance, by instantiating the IBE-based
generic TSE construction by Waters IBE scheme [23], they obtain a TSE scheme, whose size of the mas-
ter public-key |mpk|, that of a secret-key |skt | for a time period t and that of a ciphertext |c[L,R]| under a
time interval [L,R] are asymptotically O(log T). [15,16] proposed a direct construction with (|mpk|, |skt |,
|c[L,R]|) = (O(log T),O(log2 T),O(1)). By instantiating the WIBE-based generic construction [14] by their
original WIBE scheme based on Waters IBE scheme [23], they obtained a TSE scheme with (|mpk|, |skt |,
|c[L,R]|) = (O(log T),O(1),O(log2 T)).

Time-Specific Signatures. In [19], the authors left as an open problem an approach to realize Time-Specific
Signatures (TSS), which are the digital signature analogue of TSE. In TSS system, a signer with a secret-key
associated with a numerical value t ∈ [0,T − 1] can correctly sign a message under a numerical range [L,R]

s.t. 0 ≤ L ≤ R ≤ T − 1. As existing attribute-based signatures (ABS) schemes [18,21,7], we require TSS to
be existentially unforgeable (under a definition like the one used in [18,21]) and perfectly private (under a
definition like the one used in [7]).

One typical application example of TSS is anonymous questionnaire. For instance, a company might need
opinions from consumers in an age group which are useful to invent a product whose main target is the age
group. In a situation where a city plans a development at a location represented by longitude and latitude, the
city might need to efficiently collect opinions from citizens living near the developed point1.

Our Contributions. In this paper, we propose two polylogarithmically efficient TSS schemes, which have
different characteristics in efficiency.

There has existed a folklore to obtain a time-specific cryptosystem from a forward-secure cryptosytem,
which has actually contributed to realize TSE [15,16]. We attempt applying it to TSS. Let us introduce
backward-secure signatures (BSS). In the forward-secure signatures (FSS) [3,4], there exists a polynomial
time algorithm to evolve a secret-key for a time period t ∈ [0,T − 1] into a secret-key for a future time period
t′ > t. On the other hand, in the BSS, we can evolve a secret-key for t into one for a past time period t′ < t.
It is possible to obtain a TSS scheme from FSS and BSS schemes since if we give a secret-key for a time
period t composed of secret-keys of the FSS and BSS schemes for the time period t to a signer, the signer
can generate a signature under a range [L,R] s.t. L ≤ t ≤ R by firstly generating a signature under the time
period R from the FSS secret-key for t, secondly generating a signature under L from the BSS secret-key for t
and finally combining the signatures in a proper manner. It has not been rigorously proven that this approach
properly works in a general manner. We show that the approach actually works to the concrete FSS scheme
obtained by applying the tree-based Canetti-Helevi-Katz transformation [10] to a HIBS scheme proposed by
Chutterjee&Sarker [11]. As a result, we obtain a TSS scheme with a well-balanced efficiency. Specifically, its
size of the master public-key, that of the master secret-key, that of a secret-key for a numerical value t and that
of a signature under a numerical range [L,R] are (2 log T + N +3)(|g|+ |g̃|), |g|, O(log T)|g| and (2 log T +2)|g|,
respectively, where N ∈ N denotes bit length of a (signed-)message, and |g| (resp. |g̃|) denotes bit length of
an element in a bilinear group G (resp. G̃) of prime order for an asymmetric pairing e : G × G̃→ GT .

[14] showed that there exists a generic approach to construct a TSE scheme with time periods T from a
WIBE scheme whose length of a (wildcarded) identity is log T such that each secret-key for a time period
t ∈ [0,T − 1] consists of only one secret-key for identity t ∈ {0, 1}log T . Thus, we can obtain a TSE scheme
with constant size secret-keys from a WIBE scheme with constant size secret-keys. We show that such an
approach also works for TSS. We introduce wildcarded identity-based ring signatures (WIBRS)2 scheme
and show that a concrete scheme with constant size secret-keys is obtained as an instantiation of an ABS
scheme (whose signer-policy is represented as a circuit) proposed by Sakai, Attrapadung and Hanaoka [21].
As a result, we obtain a TSS scheme such that size of the master public-key, that of the master secret-key,
that of a secret-key for t and that of a signature under [L,R] are O(log T)|g̃|, O(log T)|g|, O(1)(|g| + |g̃|) and
O(log2 T)(|g| + |g̃|), respectively. A drawback is that size of a signature can be large. Precisely, we prove that
the size is loosely upper-bounded by (80 log2 T − 54 log T − 34)(|g| + |g̃|).

Paper Organization. Sect. 2 is a section for preliminaries, where we explain some special notations used
in this paper, and provide definitions of asymmetric bilinear pairing with prime order and some hardness
assumptions. In Sect. 3, we provide syntax and security definitions of TSS. In Sect. 4 and Sect. 5, we pro-
pose the FSS-based TSS scheme and the WIBRS-based TSS scheme, respectively. Sect. 6 is the concluding
section.

1 Precisely, this is an application of two-dimensional TSS. It is unknown whether one-dimensional TSS implies two-
dimensional TSS. Two(or multi)-dimensional TSS has still been left as an open problem.

2 In WIBRS, a signer (with an identity) chooses multiple wildcarded identities, (at least) one of which is satisfied by the
identity of the signer.

2

2 Preliminaries

Notations. For an integer λ ∈ N, 1λ denotes a security parameter. PPTλ denotes a set of all probabilistic
algorithms whose running time is polynomial in λ. We say that a function f : N → R is negligible if for
every c ∈ N, there exists x0 ∈ N such that for every x ≥ x0, f (x) ≤ x−c. NGLλ denotes a set of all functions
negligible in λ. Given a bit string x ∈ {0, 1}L, for every i ∈ [0, L − 1], let x[i] ∈ {0, 1} denote its i-th bit. For a
wildcarded identity wID ∈ {0, 1, ∗}L, |wID|∗ ∈ [0, L] denotes number of wildcard symbol ∗ in wID, formally∑

i∈[0,L−1] s.t. wID[i]=∗ 1.

Asymmetric Bilinear Groups of Prime Order. GBG generates bilinear groups of prime order. Let λ ∈ N.
Specifically, it takes 1λ and randomly generates (p,G, G̃,GT , e, g, g̃). First, p is a prime with bit length λ.
Second, (G, G̃,GT) are multiplicative groups of order p. Third, (g, g̃) are generators of G and G̃, respectively.
Fourth, e : G × G̃ → GT is an asymmetric function which is computable in polynomial time and satisfies
the following conditions: (1) Bilinearity: For every a, b ∈ Zp, e(ga, g̃b) = e(g, g̃)ab, and (2) Non-degeneracy:
e(g, g̃) , 1GT , where 1GT denotes the unit element of GT .

2.1 Hardness Assumptions

Definition 1. Co-Computational Diffie-Hellman (Co-CDH) assumption holds if ∀λ ∈ N, ∀A ∈ PPTλ, ∃ε ∈
NGLλ s.t. AdvCo-CDHA,λ (λ) B Pr[gαβ ← A(p,G, G̃, g, g̃, gα, gβ, g̃β)] < ε, where (p,G, G̃, g, g̃) ← G(1λ) and

α, β
U
←− Zp.

Definition 2. Computational Diffie-Hellman (CDH) assumption on G holds if ∀λ ∈ N, ∀A ∈ PPTλ, ∃ε ∈

NGLλ s.t. AdvCDHA,λ (λ) B Pr[gαβ ← A(p,G, G̃, g, g̃, gα, gβ)] < ε, where (p,G, G̃, g, g̃)← G(1λ) and α, β
U
←− Zp.

Definition 3. Computational Diffie-Hellman (CDH) assumption on G̃ holds if ∀λ ∈ N, ∀A ∈ PPTλ, ∃ε ∈

NGLλ s.t. AdvCDHA,λ (λ) B Pr[g̃αβ ← A(p,G, G̃, g, g̃, g̃α, g̃β)] < ε, where (p,G, G̃, g, g̃)← G(1λ) and α, β
U
←− Zp.

Definition 4. Symmetric External (Computational) Diffie-Hellman (SXDH) assumption holds if the CDH
assumption on G and the CDH assumption on G̃ hold.

3 Time-Specific Signatures (TSS)

Syntax. Time-specific signatures (TSS) consists of 4 polynomial time algorithms {Setup, KGen, Sig, Ver},
where Ver is deterministic and the others are probabilistic.

– Let 1λ, where λ ∈ N, denote a security parameter. Let T ∈ N denote total number of numerical values,
which means that [0,T − 1] is equivalent to the space of numerical values. Setup algorithm Setup takes
(1λ,T) as input then outputs a master public-key mpk and a master secret-key msk. Concisely, we write
(mpk,msk)← Setup(1λ,T). Note that all the other three algorithms implicitly take mpk as input.

– Key-generation algorithm KGen takes msk and a numerical value t ∈ [0,T − 1], then outputs a secret-key
skt for the time period. Concisely, we write skt ← KGen(msk, t).

– Signing algorithm Sig takes a secret-key skt for a numerical value t ∈ [0,T − 1], a message m ∈ {0, 1}∗,
and a numerical range [L,R] s.t. 0 ≤ L ≤ R ≤ T − 1, then outputs a signature σ. Concisely, we write
σ← Sig(skt,m, [L,R]).

– Verifying algorithm Ver takes a signature σ, a message m ∈ {0, 1}∗, and a numerical range [L,R] s.t.
0 ≤ L ≤ R ≤ T − 1, then outputs a bit 1/0. Concisely, we write 1/0← Ver(σ,m, [L,R]).

We require every TSS scheme to be correct. A TSS scheme ΣTSS = {Setup, KGen, Sig, Ver} is correct,
if for every λ ∈ N, every T ∈ N, every (mpk,msk) ← Setup(1λ,T), every t ∈ [0,T − 1], every skt ←

KGen(msk, t), every m ∈ {0, 1}∗, every L ∈ [0,T − 1] and every R ∈ [0,T − 1] s.t. L ≤ t ≤ R, and every
σ← Sig(skt,m, [L,R]), it holds 1← Ver(σ,m, [L,R]).

3

Existential Unforgeability [18,21]. For a TSS scheme ΣTSS and a probabilistic algorithm A, we consider an
experiment for (adaptive) existential unforgeability in Fig. 1.

ExptEUF-CMAΣTSS ,A
(1λ,T):

(mpk,msk)← Setup(1λ,T)
(σ∗,m∗, [L∗,R∗])← AReveal,Sign(mpk), where

- Reveal(tι ∈ [0,T − 1]), where ι ∈ [1, qr]: Return skι ← KGen(msk, tι).
- Sign(tθ ∈ [0,T − 1],mθ ∈ {0, 1}∗, Lθ ∈ [0,T − 1],Rθ ∈ [0,T − 1]), where θ ∈ [1, qs]:

skθ ← KGen(msk, tθ). Return σθ ← Sig(skθ,mθ, [Lθ,Rθ]).
Return 1 if 1← Ver(σ∗,m∗, [L∗,R∗])

∧
ι∈[1,qr] tι < [L∗,R∗]∧

θ∈[1,qs] (mθ, Lθ,Rθ) , (m∗, L∗,R∗).
Return 0 otherwise.

Fig. 1. Experiment for (adaptive) existential unforgeability of a TSS scheme ΣTSS

Definition 5. A TSS scheme ΣTSS is (adaptively) existentially unforgeable, if ∀λ ∈ N, ∀T ∈ N, ∀A ∈ PPTλ,
∃ε ∈ NGLλ, AdvEUF-CMAΣTSS,A,T (λ) B Pr[1← ExptEUF-CMAΣTSS,A

(1λ,T)] < ε.

Perfect (Signer) Privacy [7]. For a TSS scheme ΣTSS and a probabilistic algorithm A, we consider experi-
ments for perfect privacy in Fig. 2.

ExptPPΣTSS ,A,0(1λ,T):
(mpk,msk)← Setup(1λ,T)
Return b← AReveal,Sign(mpk,msk), where

- Reveal(tι), where ι ∈ [1, qr]:
Return skι ← KGen(msk, tι).

- Sign(ι ∈ [1, qr],m, L,R):
Return ⊥ if tι < [L,R].
Return σ← Sig(skι,m, L,R).

ExptPPΣTSS ,A,1(1λ,T):
(mpk,msk′)← Setup′(1λ,T)
Return b← AReveal,Sign(mpk,msk), where

- Reveal(tι), where ι ∈ [1, qr]:
Return skι ← KGen′(msk′, tι).

- Sign(ι ∈ [1, qr],m, L,R):
Return ⊥ if tι < [L,R].
Return σ← Sig′(msk′,m, L,R).

Fig. 2. Experiments for perfect privacy of a TSS scheme ΣTSS

Definition 6. A TSS scheme ΣTSS is perfectly (signer) private, if for every λ ∈ N, every T ∈ N and every
probabilistic algorithm A, there exist probabilistic polynomial time algorithms {Setup′, KGen′, Sig′} such
that AdvPPΣTSS,A,T (λ) B |Pr[1← ExptPPΣTSS,A,0(1λ,T)] − Pr[1← ExptPPΣTSS,A,1(1λ,T)]| = 0.

4 TSS Based on Forward-Secure Signatures

In this section, we propose a TSS scheme with well-balanced efficiency based on forward-secure signatures.
It is easy for us to suggest an intuitive idea to obtain a TSS scheme from a forward-secure signatures

(FSS) scheme. As we might have already known, in a FSS system, there exists a one-way algorithm which
transforms a secret-key for a time period t into a secret-key for a future time period t′ > t. As a related
primitive, let us consider backward-secure signatures (BSS), where there exists a one-way algorithm which
transforms a secret-key for a time period t into one for a past time period t′ < t. A secret-key for a numerical
value t ∈ [0,T − 1] consists of (skF , skB), where skF (resp. skB) is a secret-key for the time period t generated
under the pair of keys (mpkF ,mskF) (resp. (mpkB,mskB)) of the FSS (resp. BSS) scheme. A secret-key

4

skt = (skF , skB) generates a signature under a numerical range [L,R] s.t. 0 ≤ L ≤ t ≤ R ≤ T − 1 by firstly
generating a signature under time period R ≥ t by using the secret-key skF , secondly generating a signature
under L ≤ t by using skB, then finally combining the signatures in an adequate way.

As far as we know, there has not existed a generic approach to obtain a TSS scheme from FSS and
BSS schemes3 whose security is guaranteed by a rigorous proof. In this section, we show that the approach
actually works on the concrete FSS scheme obtained by applying the Canetti-Halevi-Katz transformation
[10] to a hierarchical identity-based signatures (HIBS) scheme in [11].

4.1 Construction

We consider the second HIBS scheme proposed in [11]. It adopts an asymmetric bilinear pairing e : G× G̃→
GT , where order of the groups is a prime p. Let g (resp. g̃) denote a generator of G (resp. G̃). Let h − 1 (for
h ∈ N) denote the maximum hierarchical length of an identity. Let H : {0, 1}∗ → {0, 1}N (with N ∈ N) denote

a collision-resistant hash function. At the setup phase, h + N + 2 integers α, α0, · · · , αh, β0, · · · , βN−1
U
←− Zp

are randomly chosen. The master public-key is set as (g, g̃, g1, g2, {ui, ũi | i ∈ [0, h]}, {vi, ṽi | i ∈ [0,N − 1]}),

where g1
U
←− G, g2 B g̃α, ui B gαi , ũi B g̃αi , vi B gβi and ṽi B g̃βi . The master secret-key is set as gα1 . A

secret-key for an identity ID0|| · · · ||IDi with hierarchical length i ∈ [0, h − 1], where ID0, · · · , IDi ∈ {0, 1}∗,

is set as (gα1
∏

j∈[0,i](u j
∏

k∈[0,N−1] vdi[k]
k)r j , gr0 , · · · , gri), where r j

U
←− Zp and d j[0]|| · · · ||d j[N − 1]← H(0||ID j).

Obviously, we can transform a secret-key for an identity into a secret-key for any descendant identity of the
identity. By the secret-key, a signature on a message m is generated as (gα1

∏
j∈[0,i+1](u j

∏
k∈[0,N−1] vdi[k]

k)r j , gr0 ,

· · · , gri), where ri+1
U
←− Zp and di+1[0]|| · · · ||di+1[N − 1]← H(1||m).

Let us apply the CHK transformation [10] to the HIBS scheme with the maximum hierarchical length
h = log T ∈ N to obtain a FSS scheme with total time periods T ∈ N. We consider a (complete) binary tree
with depth log T ∈ N like the one in Fig. 3. The master secret-key and the master public-key are described as
gα1 and (g, g̃, g1, g2, {ui, ũi | i ∈ [0, log T]}, {vi, ṽi | i ∈ [0,N − 1]}), respectively. A secret-key for a time period
t ∈ [0,T − 1] is described as (skt[0]||···||t[log T−1], {skt[0]||···||t[i−1]||1 | i ∈ [0, log T − 1] s.t. t[i] = 0}), where skx

(with x ∈ {0, 1}≤log T) is a randomly-generated secret-key for an identity x by using the secret-key generation
algorithm of the HIBS scheme. By the secret-key for t, a signature for a time period t′ ≥ t on a message m
is generated as a signature for an identity t′[0]|| · · · ||t′[log T − 1] on m by using the signing algorithm of the
HIBS scheme. Note that t ≤ t′ implies that a secret-key for t certainly includes a secret-key for an ancestral
identity of the identity t′, thus, the signature generation always succeeds.

Fig. 3. A complete binary tree with depth 4

Based on the approach to obtain a TSS scheme from FSS and BSS schemes explained earlier, we construct
a TSS scheme ΠTSS as shown in Fig. 4.

3 Or, only a FSS scheme, since a BSS scheme is obtained from a FSS scheme.

5

The master secret-key and the master public-key for the FSS scheme part is normally generated. Thus,
they are gα1 and (g, g̃, g1, g2, {ui, ũi | i ∈ [0, log T]}, {vi, ṽi | i ∈ [0,N − 1]}), respectively. The variables
prepared for the BSS scheme part are {wi, w̃i | i ∈ [0, log T − 1]} (whose roles are analogous to those of
{ui, ũi | i ∈ [0, log T − 1]} for the FSS scheme part), and the other variables are shared by both parts.

A secret-key skt for a numerical value t ∈ [0,T − 1] consists of the FSS part skr and the BSS part skl, and
they are expressed as (skt[0]||···||t[log T−1], {skt[0]||···||t[i−1]||1 | i ∈ [0, log T−1] s.t. t[i] = 0}) and (skt′[0]||···||t′[log T−1], {skt′[0]||···||t′[i−1]||1 |

i ∈ [0, log T − 1] s.t. t′[i] = 0}), respectively, where t′ B T − 1 − t. Each element in skr and each element in
skl are generated from the pseudo master secret-key gα1 gδ and g−δ, respectively, where δ ∈ Zp is a randomly
chosen integer. skt[0]||···||t[log T−1] (resp. skt′[0]||···||t′[log T−1]) which includes log T random variables is normally
generated by choosing log T fresh random variables then using them and the pseudo master secret-key gα1 gδ

(resp. g−δ). On the other hand, each element skt[0]||···||t[i−1]||1 for i ∈ [0, log T − 1] s.t. t[i] = 0 which includes
i + 1 random variables is generated by choosing only one fresh random variable (for depth i) then using the
variable, already chosen i − 1 random variables (for depth 0, · · · , i − 1) in skt[0]||···||t[log T−1] and the pseudo
master secret-key. Likewise, each element in skl is generated. The reason why we have introduced such a
technique is to reduce size of a secret-key from O(log2 T)|g| to O(log T)|g|.

A secret-key skt for t ∈ [0,T−1] signs a message m under a range [L,R] s.t. t ∈ [L,R] as follows. Let L′ B
T − 1 − L. Note that t ∈ [L,R] implies t ≤ R

∧
t′ ≤ L′, which implies ∃ir, il ∈ [0, log T] s.t.

∧
i∈[0,ir−1][t[i] =

R[i]]
∧

[ir , log T =⇒ t[ir] = 0
∧

R[ir] = 1]
∧

i∈[0,il−1][t′[i] = L′[i]]
∧

[il , log T =⇒ t′[il] =

0
∧

L′[il] = 1]. The key-generation algorithm guarantees that secret-key for the identity R[0]|| · · · ||R[ir] (resp.
L′[0]|| · · · ||L′[il]) exists in skr (resp. skl) in skt. Obviously, the secret-key derives a secret-key for the iden-
tity R[0]|| · · · ||R[log T − 1] (resp. L′[0]|| · · · ||L′[log T − 1]), which is expressed as (gα1 gδ

∏
i∈[0,log T−1](uiv

R[i]
0)ri ,

gr0 , · · · , grlog T−1) (resp. (g−δ
∏

i∈[0,log T−1](wiv
L′[i]
0)si , gs0 , · · · , gslog T−1)) with r0, · · · , rlog T−1 ∈ Zp (resp. s0, · · · ,

slog T−1 ∈ Zp). From the two secret-keys, we obtain a signature (gα1
∏

i∈[0,log T−1](uiv
R[i]
0)ri (wiv

L′[i]
0)si (ulog T

∏
i∈[0,N−1] vm[i]

i)rlog T ,
gr0 , · · · , grlog T−1 , gs0 , · · · , gslog T−1 , grlog T) with rlog T ∈ Zp. As shown in Fig. 4, we actually re-randomize the
2 log T + 1 random variables r0, · · · , rlog T−1, s0, · · · , slog T−1, rlog T to make the TSS scheme achieve perfect
privacy under Def. 6.

4.2 Unforgeability

Existential unforgeability of the TSS scheme ΠTSS in Fig. 4 is guaranteed by the following theorem.

Theorem 1. Our first TSS scheme ΠTSS is existentially unforgeable (under Def. 5) under the co-CDH as-
sumption.

Proof. Let A ∈ PPTλ denote a PPT algorithm which behaves as an adversary in existential unforgeability
experiment for our TSS scheme ΠTSS. Let tA ∈ N denote running time of A (which is polynomial in λ). We
prove that there exists another PPT algorithm B ∈ PPTλ which uses A as a black-box and breaks the co-CDH
assumption with

Advco-CDHB (λ) ≥
1

2
{
2
(
log T · qr + qs

)
(N + 1)

}2 log T+1 · Adv
EUF-CMA
ΠTSS,A,N,T (λ). (1)

B behaves as follows.
B is given (g, g̃, gβ, gα, g̃α) as an instance of the co-CDH assumption. B sets g1 B gβ and g2 B g̃α. B

chooses an integer n s.t. n(N + 1) < p. B chooses{
ki, si

U
←− [0,N], xi, zi

U
←− Zn, x′i , z

′
i

U
←− Zp | i ∈ [0, log T − 1]

}
,

klog T
U
←− [0,N], xlog T

U
←− Zn, x′log T

U
←− Zp, and{

yi
U
←− Zn, y′i

U
←− Zp | i ∈ [0,N − 1]

}
.

6

TSS.Setup
(
1λ,N,T

)
:

(p,G, G̃,GT , e, g, g̃)← GBG(1λ). α
U
←− Zp, g2 B g̃α. g1

U
←− G.

For every i ∈ [0, log T − 1], xi, zi
U
←− Zp, ui B gxi , ũi B g̃xi ,wi B gzi , w̃i B g̃zi .

xlog T
U
←− Zp, ulog T B gxlog T , ũlog T B g̃xlog T .

For every i ∈ [0,N − 1], yi
U
←− Zp, vi B gyi , ṽi B g̃yi .

mpk B
(
p,G, G̃,GT , e, g, g̃, g1, g2,

{
ui, ũi,wi, w̃i | i ∈ [0, log T − 1]

}
, ulog T , ũlog T , {vi, ṽi | i ∈ [0,N − 1]}

)
.

msk B gα1 . Return (mpk,msk).
TSS.KGen (msk, t ∈ [0,T − 1]):

δ
U
←− Zp. t̃ B T − 1 − t. Jr B

{
i ∈ [0, log T − 1] s.t. t[i] = 0

}
. Jl B

{
i ∈ [0, log T − 1] s.t. t̃[i] = 0

}
.

For every i ∈ [0, log T − 1], do: ri
U
←− Zp. If t[i] = 0, r′i

U
←− Zp.

skr B
(
gα1 gδ

∏
i∈[0,log T−1]

(
uiv

t[i]
0

)ri
, gr0 , · · · , grlog T−1 ,

{
gα1 gδ

∏
i∈[0, j−1]

(
uiv

t[i]
0

)ri (
u jv0

)r′j , gr′j | j ∈ Jr
})

.

For every i ∈ [0, log T − 1], do: si
U
←− Zp. If t̃[i] = 0, s′i

U
←− Zp.

skl B
(
g−δ

∏
i∈[0,log T−1]

(
wiv

t̃[i]
0

)si
, gs0 , · · · , gslog T−1 ,

{
g−δ

∏
i∈[0, j−1]

(
wiv

t̃[i]
0

)si (
w jv0

)s′j , gs′j | j ∈ Jl
})

.

Return skt B (skl, skr)
TSS.Sig

(
skt,m ∈ {0, 1}N , L ∈ [0,T − 1],R ∈ [0,T − 1]

)
:

Parse skt as (skl, skr). t̃ B T − 1 − t. L̃ B T − 1 − L.
Parse skr as

(
Dlog T , d0, · · · , dlog T−1,

{
D j, d′j | j ∈ [0, log T − 1] s.t. t[j] = 0

})
.

Parse skl as
(
Elog T , e0, · · · , elog T−1,

{
E j, e′j | j ∈ [0, log T − 1] s.t. t̃[j] = 0

})
.

t ∈ [L,R] =⇒ ∃ir ∈ [0, log T] s.t.
∧

i∈[0,ir−1] [t[i] = R[i]]
∧[

ir , log T =⇒ t[ir] = 0
∧

R[ir] = 1
]∧

∃il ∈ [0, log T] s.t.
∧

i∈[0,il−1]

[
t̃[i] = L̃[i]

]∧ [
il , log T =⇒ t̃[il] = 0

∧
L̃[il] = 1

]
.

For every i ∈ [0, ir], r̃i
U
←− Zp. For every i ∈ [ir + 1, log T − 1], r∗i

U
←− Zp.

For every i ∈ [0, il], s̃i
U
←− Zp. For every i ∈ [il + 1, log T − 1], s∗i

U
←− Zp. rlog T

U
←− Zp.

Return σ B(
Dir

∏
i∈[0,ir]

(
uiv

R[i]
0

)r̃i ∏
i∈[ir+1,log T−1]

(
uiv

R[i]
0

)r∗i Eil
∏

i∈[0,il]

(
wiv

L̃[i]
0

)s̃i ∏
i∈[il+1,log T−1]

(
wiv

L̃[i]
0

)s∗i
(
ulog T

∏
j∈[0,N−1]

vm[j]
j

)rlog T

,{
digr̃i | i ∈ [0, ir − 1]

}
, d′ir g

r̃ir ,
{
gr∗i | i ∈ [ir + 1, log T − 1]

}
,{

eigs̃i | i ∈ [0, il − 1]
}
, e′il g

s̃il ,
{
gs∗i | i ∈ [il + 1, log T − 1]

}
, grlog T

)
.

TSS.Ver
(
σ,m ∈ {0, 1}N , L ∈ [0,T − 1],R ∈ [0,T − 1]

)
:

Parse σ as
(
U,V0, · · · ,Vlog T−1,V ′0, · · · ,V

′
log T−1,Vlog T

)
. L̃ B T − 1 − L.

Return 1 if (U, g̃) = e (g1, g2) ·
∏

i∈[0,log T−1] e
(
Vi, ũiṽ

R[i]
0

)
e
(
V ′i , w̃iṽ

L̃[i]
0

)
· e

(
Vlog T , ũlog T

∏
j∈[0,N−1] ṽm[j]

j

)
.

Return 0, otherwise.

Fig. 4. Our TSS scheme ΠTSS, where N,T ∈ N.

7

B sets {
ui B (gα)p−nki+xi · gx′i , ũi B (g̃α)p−nki+xi · g̃x′i | i ∈ [0, log T]

}
,{

wi B (gα)p−nsi+zi · gz′i , w̃i B (g̃α)p−nsi+zi · g̃z′i | i ∈ [0, log T − 1]
}
, and{

vi B (gα)yi · gy′i , ṽi B (g̃α)yi · g̃y′i | i ∈ [0,N − 1]
}
.

B gives mpk B
(
p,G, G̃,GT , e, g, g̃, g1, g2,

{
ui, ũi,wi, w̃i | i ∈ [0, log T − 1]

}
, ulog T , ũlog T , {vi, ṽi | i ∈ [0,N − 1]})

to A. Before defining how B behaves when A issues a query to Reveal or Sign, we define some functions as
follows.

For a bit b ∈ {0, 1} and an integer i ∈ [0, log T],

Fi(b) B p − nki + xi + y0b, Ji(b) B x′i + y′0b,

Li(b) B xi + y0b mod n, and Ki(b) B

0 if Li(b) = 0,
1 otherwise.

For a bit b ∈ {0, 1} and an integer i ∈ [0, log T − 1],

Hi(b) B p − nsi + zi + y0b, Qi(b) B z′i + y′0b,

Ri(b) B zi + y0b mod n, and Ui(b) B

0 if Ri(b) = 0,
1 otherwise.

For m ∈ {0, 1}N ,

Flog T (m) B p − nklog T + xlog T +
∑

i∈[0,N−1]

yim[i], Jlog T (m) B x′log T +
∑

i∈[0,N−1]

y′im[i],

Llog T (m) B xlog T +
∑

i∈[0,N−1]

yim[i] mod n, and Klog T (m) B

0 if Llog T (m) = 0,
1 otherwise.

When A issues tι ∈ [0,T − 1], where ι ∈ [1, qr], as a query to Reveal, B takes different actions in the
following three cases:

(R1)
∨

i∈[0,log T−1] s.t. tι[i]=1

Ki(1) = 1
∧i , 0 =⇒

∧
j∈[0,i−1] s.t. tι[j]=0

K j(1) = 1


 ,

(R2)
∨

i∈[0,log T−1] s.t. t̃ι[i]=1

Ui(1) = 1
∧i , 0 =⇒

∧
j∈[0,i−1] s.t. t̃ι[j]=0

U j(1) = 1


 ,

(R3) Otherwise,

where t̃ι B T − 1 − tι. Specifically, B behaves as follows in each case.

(R1) Let k ∈ [0, log T − 1] denote the integer i which satisfies the condition which appeared in the definition
of the case R1. Note that it is implied that

tι[k] = 1
∧

Fk(1) , 0
∧k , 0 =⇒

∧
j∈[0,k−1] s.t. tι[j]=0

F j(1) , 0

 .
Let δ

U
←− Zp. For i ∈ [0, k], let ri

U
←− Zp. B computes

dk B g−1/Fk(1)
1 grk

8

for i ∈ [0, k − 1], di B gri ,

∆k B g−Jk(1)/Fk(1)
1 (gα)rkFk(1)grkJk(1),

for i ∈ [0, k − 1], ∆i B (uiv
tι[i]
0)ri .

For every i ∈ [k + 1, log T − 1], ri
U
←− Zp and di B gri . Let Dlog T B gδ ·

∏
i∈[0,k] ∆i ·

∏
i∈[k+1,log T−1](uiv0)ri .

Note that (Dlog T , d0, · · · , dlog T−1) correctly distribute since

dk = grk−β/Fk(1) C gr̃k , where r̃k B rk − β/Fk(1),
∆k = gα1 g−αFk(1)/Fk(1)

1 g−Jk(1)/Fk(1)
1 grk(αFk(1)+Jk(1))

= gα1 g−
β

Fk (1) (αFk(1)+Jk(1))grk(αFk(1)+Jk(1))

= gα1 g(rk−
β

Fk (1))(αFk(1)+Jk(1))

= gα1 gr̃k(αFk(1)+Jk(1))

= gα1 gr̃k(α(p−nkk+xk+y0)+x′k+y′0)

= gα1
(
(gα)p−nkk+xk gx′k (gα)y0 gy′0

)r̃k

= gα1 (ukv0)r̃k .

For every i ∈ [k + 1, log T − 1] s.t. tι[i] = 0, B chooses r′i
U
←− Zp and computes d′i B gr′i and D′i B

gδ
∏

j∈[0,k] ∆ j
∏

j∈[k+1,i−1](u jv
tι[j]
0)r j (uiv0)r′i .

If k , 0
∧
∃i ∈ [0, k−1] s.t. tι[i] = 0 is logically true, then for every j ∈ [0, k−1] s.t. tι[j] = 0, B behaves

as follows. We remind us that F j(1) , 0. B computes

d′j B g−1/F j(1)
1 gr′j ,

D j B g−J j(1)/F j(1)
1 (gα)r′jF j(1)gr′jJ j(1)gδ

∏
i∈[0, j−1]

(
uiv

tι[i]
0

)ri
.

Note that for every i ∈ [0, j − 1], ri ∈ Zp has already been chosen and known by B. d′j and D j correctly
distribute since

d′j B g−1/F j(1)
1 gr′j C gr̃′j , where r̃′j B r′j − β/F j(1),

D′j = gα1 g−αF j(1)/F j(1)
1 g−J j(1)/F j(1)

1 gr′j(αF j(1)+J j(1))gδ
∏

i∈[0, j−1]

(
uiv

tι[i]
0

)ri

= gα1 g
−

β
F j (1) (αF j(1)+J j(1))

gr′j(αF j(1)+J j(1))gδ
∏

i∈[0, j−1]

(
uiv

tι[i]
0

)ri

= gα1 g
(r′j−

β
F j (1))(αF j(1)+J j(1))

gδ
∏

i∈[0, j−1]

(
uiv

tι[i]
0

)ri

= gα1 gr̃′j(αF j(1)+J j(1))gδ
∏

i∈[0, j−1]

(
uiv

tι[i]
0

)ri

= gα1 gr̃′j(α(p−nk j+x j+y0)+x′j+y′0)gδ
∏

i∈[0, j−1]

(
uiv

tι[i]
0

)ri

= gα1
(
(gα)p−nk j+x j gx′j (gα)y0 gy′0

)r̃′j gδ
∏

i∈[0, j−1]

(
uiv

tι[i]
0

)ri

= gα1 gδ
∏

i∈[0, j−1]

(
uiv

tι[i]
0

)ri
(
u jv0

)r̃′j .

B sets skr to (Dlog T , d0, · · · , dlog T−1, {Di, d′i | i ∈ [0, log T − 1] s.t. tι[i] = 0}).

9

Next, B generates skl as follows. For every i ∈ [0, log T − 1], si
U
←− Zp. For every i ∈ [0, log T − 1] s.t.

t̃ι[i] = 0, s′i
U
←− Zp. skl is set as (Elog T , e0, · · · , elog T−1, {Ei, e′i | i ∈ [0, log T − 1] s.t. t̃ι[i] = 0}), where

Elog T B g−δ
∏

i∈[0,log T−1]

(wiv
t̃ι[i]
0)si ,

for i ∈ [0, log T − 1], ei B gsi ,

for i ∈ [0, log T − 1] s.t. t̃ι[i] = 0, Ei B g−δ
∏

j∈[0,i−1]

(w jv
t̃ι[j]
0)s j (wiv0)s′i ,

for i ∈ [0, log T − 1] s.t. t̃ι[i] = 0, e′i B gs′i .

Finally, B returns skι B (skl, skr) to A.
(R2) B’s behaviour in this case is analogous to the one in the case (R1).

Let k ∈ [0, log T − 1] denote the integer i which satisfies the condition in the definition of the case R2.
Note that it is implied that

t̃ι[k] = 1
∧

Hk(1) , 0
∧k , 0 =⇒

∧
j∈[0,k−1] s.t. t̃ι[j]=0

H j(1) , 0

 .
Let δ

U
←− Zp. For i ∈ [0, k], let si

U
←− Zp. B computes

ek B g−1/Hk(1)
1 gsk ,

for i ∈ [0, k − 1], ei B gsi ,

∆k B g−Qk(1)/Hk(1)
1 (gα)skHk(1)gskQk(1),

for i ∈ [0, k − 1], ∆i B (uiv
t̃ι[i]
0)si .

For every i ∈ [k + 1, log T − 1], si
U
←− Zp and ei B gsi . Let Elog T B gδ

∏
i∈[0,k] ∆i

∏
i∈[k+1,log T−1](wiv0)si .

Note that (Elog T , e0, · · · , elog T−1) correctly distribute since

ek = gsk−β/Hk(1) C gs̃k , where s̃k B sk − β/Hk(1),
∆k = gα1 g−αHk(1)/Hk(1)

1 g−Qk(1)/Hk(1)
1 gsk(αHk(1)+Qk(1))

= gα1 g−
β

Hk (1) (αHk(1)+Qk(1))gsk(αHk(1)+Qk(1))

= gα1 g(sk−
β

Hk (1))(αHk(1)+Qk(1))

= gα1 gs̃k(αHk(1)+Qk(1))

= gα1 gs̃k(α(p−nsk+zk+y0)+z′k+y′0)

= gα1
(
(gα)p−nsk+zk gz′k (gα)y0 gy′0

)s̃k

= gα1 (wkv0)s̃k .

For every i ∈ [k + 1, log T − 1] s.t. t̃ι[i] = 0, B chooses s′i
U
←− Zp and computes e′i B gs′i and Ei B

gδ
∏

j∈[0,k] ∆ j
∏

j∈[k+1,i−1](w jv
t̃ι[j]
0)s j (wiv0)s′i .

If k , 0
∧
∃i ∈ [0, k−1] s.t. t̃ι[i] = 0 is logically true, then for every j ∈ [0, k−1] s.t. t̃ι[j] = 0, B behaves

as follows. We remind us that U j(1) = 1. B computes

e′j B g−1/H j(1)
1 gs′j ,

E j B g−Q j(1)/H j(1)
1 (gα)s′jH j(1)gs′jQ j(1)gδ

∏
i∈[0, j−1]

(
wiv

t̃ι[i]
0

)si
.

10

Note that for every i ∈ [0, j − 1], si ∈ Zp has already been chosen and known by B. e′j and E j correctly
distribute since

e′j B g−1/H j(1)
1 gs′j C gs̃′j , where s̃′j B s′j − β/H j(1),

E j = gα1 g−αH j(1)/H j(1)
1 g−Q j(1)/H j(1)

1 gs′j(αH j(1)+Q j(1))gδ
∏

i∈[0, j−1]

(
wiv

t̃ι[i]
0

)si

= gα1 g
−

β
H j (1) (αH j(1)+Q j(1))

gs′j(αH j(1)+Q j(1))gδ
∏

i∈[0, j−1]

(
wiv

t̃ι[i]
0

)si

= gα1 g
(s′j−

β
H j (1))(αH j(1)+Q j(1))

gδ
∏

i∈[0, j−1]

(
wiv

t̃ι[i]
0

)si

= gα1 gs̃′j(αH j(1)+Q j(1))gδ
∏

i∈[0, j−1]

(
wiv

t̃ι[i]
0

)si

= gα1 gs̃′j(α(p−ns j+z j+y0)+z′j+y′0)gδ
∏

i∈[0, j−1]

(
wiv

t̃ι[i]
0

)si

= gα1
(
(gα)p−ns j+z j gz′j (gα)y0 gy′0

)s̃′j gδ
∏

i∈[0, j−1]

(
wiv

t̃ι[i]
0

)si

= gα1 gδ
∏

i∈[0, j−1]

(
wiv

t̃ι[i]
0

)si
(
w jv0

)s̃′j .

B sets skl to (Elog T , e0, · · · , elog T−1, {Ei, e′i | i ∈ [0, log T − 1] s.t. t̃ι[i] = 0}).

Next, B generates skr as follows. For every i ∈ [0, log T − 1], ri
U
←− Zp. For every i ∈ [0, log T − 1] s.t.

tι[i] = 0, r′i
U
←− Zp. skr is set as (Dlog T , d0, · · · , dlog T−1, {Di, d′i | i ∈ [0, log T − 1] s.t. tι[i] = 0}), where

Dlog T B g−δ
∏

i∈[0,log T−1]

(uiv
tι[i]
0)ri ,

for i ∈ [0, log T − 1], di B gri ,

for i ∈ [0, log T − 1] s.t. tι[i] = 0,Di B g−δ
∏

j∈[0,i−1]

(u jv
tι[j]
0)r j (uiv0)r′i ,

for i ∈ [0, log T − 1] s.t. tι[i] = 0, d′i B gr′i .

Finally, B returns skι B (skl, skr) to A.
(R3) B aborts the simulation.

When A issues (tθ, Lθ,Rθ,mθ), where θ ∈ [1, qs], as a query to Sign, B takes different actions in the
following four cases: (S1)

∨
i∈[0,log T−1] Ki(Rθ[i]) = 1, (S2)

∨
i∈[0,log T−1] Ui(L̃θ[i]) = 1, (S3) Klog T (mθ) = 1 and

(S4) Otherwise, where L̃θ B T − 1 − Lθ.

(S1) Let iθ denote the integer i ∈ [0, log T − 1] satisfying Ki(Rθ[i]) = 1. Note that Kiθ (Rθ[iθ]) = 1 implies that
Fiθ (Rθ[iθ]) , 0.

For every i ∈ [0, log T − 1], ri, si
U
←− Zp. rlog T

U
←− Zp. B computes

U B g
−Jiθ (Rθ[iθ])/Fiθ (Rθ[iθ])
1 (gα)riθFiθ (Rθ[iθ])griθ Jiθ (Rθ[iθ])

·
∏

i∈[0,log T−1]\{iθ}

(
uiv

Rθ[i]
0

)ri
∏

i∈[0,log T−1]

(
wiv

L̃θ[i]
0

)si

ulog T

∏
i∈[0,N−1]

vmθ[i]
i

rlog T

,

for i ∈ [log T − 1] \ {iθ},Vi B gri ,

Viθ B g
−1/Fiθ (Rθ[iθ])
1 griθ ,

11

for i ∈ [log T − 1],V ′i B gsi ,

Vlog T B grlog T .

B sets σθ B (U,V0, · · · ,Vlog T−1,V ′0, · · · ,V
′
log T−1,Vlog T) and returns it to A. We can verify that it correctly

distributes as we did in the case R1.
(S2) This is analogous to the case S1. Let iθ denote the integer i ∈ [0, log T − 1] satisfying Ui(L̃θ[i]) = 1. Note

that Uiθ (L̃θ[iθ]) = 1 implies that Hiθ (L̃θ[iθ]) , 0.

For every i ∈ [0, log T − 1], ri, si
U
←− Zp. rlog T

U
←− Zp. B computes

U B g
−Qiθ (L̃θ[iθ])/Hiθ (L̃θ[iθ])
1 (gα)siθHiθ (L̃θ[iθ])gsiθQiθ (L̃θ[iθ])

·
∏

i∈[0,log T−1]\{iθ}

(
wiv

L̃θ[i]
0

)si
∏

i∈[0,log T−1]

(
uiv

Rθ[i]
0

)ri

ulog T

∏
i∈[0,N−1]

vmθ[i]
i

rlog T

,

for i ∈ [log T − 1] \ {iθ},V ′i B gsi ,

V ′iθ B g
−1/Hiθ (L̃θ[iθ])
1 gsiθ ,

for i ∈ [log T − 1],Vi B gri ,

Vlog T B grlog T .

B sets σθ B (U,V0, · · · ,Vlog T−1,V ′0, · · · ,V
′
log T−1,Vlog T) and returns it to A. We can verify that it correctly

distributes as we did in the case R2.
(S3) Note that Klog T (mθ) = 1 implies Flog T (mθ) , 0.

Let rlog T
U
←− Zp. B computes

dlog T B g−1/Flog T (mθ)
1 grlog T ,

∆log T B g−Jlog T (mθ)/Flog T (mθ)
1 (gα)rlog T Flog T (mθ)grlog T Jlog T (mθ).

For every i ∈ [0, log T − 1], ri, si
U
←− Zp. B computes

U B ∆log T ·
∏

i∈[0,log T−1]

(
uiv

Rθ[i]
0

)ri
∏

i∈[0,log T−1]

(
wiv

L̃θ[i]
0

)si
,

for i ∈ [log T − 1],Vi B gri ,

for i ∈ [log T − 1],V ′i B gsi ,

Vlog T B dlog T .

B sets σθ B (U,V0, · · · ,Vlog T−1,V ′0, · · · ,V
′
log T−1,Vlog T) and returns it to A. It correctly distributes since

dlog T = grlog T−β/Flog T (mθ) C gr̃log T , where r̃log T B rlog T − β/Flog T (mθ),

∆log T = gα1 g
−α

Flog T (mθ)

Flog T (mθ)

1 g
−

Jlog T (mθ)

Flog T (mθ)

1 grlog T (αFlog T (mθ)+Jlog T (mθ))

= gα1 g
−

β
Flog T (mθ) (αFlog T (mθ)+Jlog T (mθ))grlog T (αFlog T (mθ)+Jlog T (mθ))

= gα1 g
(rlog T−

β
Flog T (mθ))(αFlog T (mθ)+Jlog T (mθ))

= gα1 gr̃log T (αFlog T (mθ)+Jlog T (mθ))

= gα1 gr̃log T (α(p−nklog T +xlog T +
∑

i∈[0,N−1] yimθ[i])+x′log T +
∑

i∈[0,N−1] y′i mθ[i])

= gα1

(gα)p−nklog T +xlog T gx′log T

∏
i∈[0,N−1]

(gα)yimθ[i]gy′i mθ[i]

r̃log T

12

= gα1

ulog T

∏
i∈[0,N−1]

vmθ[i]
i

r̃log T

.

(S4) B aborts the simulation.

When A finally outputs a forged signature σ∗ for (m∗, L∗,R∗), B takes different actions in the following
two cases: (F1)

∧
i∈[0,log T−1] Fi(R∗[i]) = 0

∧
i∈[0,log T−1] Hi(L̃∗[i]) = 0

∧
Flog T (m∗) = 0 and (F2) Otherwise,

where L̃∗ B T − 1 − L∗.

(F1) If σ∗ is a correct signature, it is described asgα1 ∏
i∈[0,log T−1]

(
uiv

R∗[i]
0

)ri
∏

i∈[0,log T−1]

(
wiv

L̃∗[i]
0

)si

ulog T

∏
i∈[0,N−1]

vm∗[i]
i

rlog T

,

gr0 , · · · , grlog T−1 , gs0 , · · · , gslog T−1 , grlog T) ,

where r0, · · · , rlog T−1, s0, · · · , slog T−1, rlog T ∈ Zp. Let σ∗ be denoted by (U,V0, · · · ,Vlog T−1,V ′0, · · · ,
V ′log T−1,Vlog T).
Note that the condition in the case F1 implies that∧

i∈[0,log T−1]

uiv
R∗[i]
0 = gαFi(R∗[i])+Ji(R∗[i]) = gJi(R∗[i]),∧

i∈[0,log T−1]

wiv
L̃∗[i]
0 = gαHi(L̃∗[i])+Qi(L̃∗[i]) = gQi(L̃∗[i]), and

ulog T

∏
i∈[0,N−1]

vm∗[i]
i = gαFlog T (m∗)+Jlog T (m∗) = gJlog T (m∗).

B outputs U/W, where W B VJlog T (m∗)
log T

∏
i∈[0,log T−1] VJi(R∗[i])

i V ′i
Qi(L̃∗[i]), as an answer for the co-CDH prob-

lem. If σ∗ is a correct signature, the answer is the correct one, i.e., gα1 = gαβ.
(F2) B aborts the simulation.

B behaves as above. Let Abort denote the event where B aborts. Let ¬Abort denote the event where B
does not abort. We obtain

Advco-CDHB (λ) = Pr
[
B correctly answers gαβ

∧
Abort

]
+ Pr

[
B correctly answers gαβ

∧
¬Abort

]
≥ Pr

[
B correctly answers gαβ

∧
¬Abort

]
= Pr

[
B correctly answers gαβ | ¬Abort

]
Pr [¬Abort]

= Pr
[
1← ExptEUF-CMAΠTSS,A (1λ,N,T)

]
Pr [¬Abort] (2)

= AdvEUF-CMAΠTSS,A,N,T (λ) · Pr [¬Abort] . (3)

(2) is obtained since, in the case where B does not abort the simulation, B perfectly simulates the existential
unforgeability experiment for A, and B correctly answers if (and only if) A behaves to make the experiment
output 1.

Finally, we analyse Pr[¬Abort]. Let H denote the event where B has not aborted the simulation until A
outputs the forged signature. Let ¬H denote the event where the event H does not occur. Obviously, it holds
Pr[¬Abort] = Pr[H] Pr[F | H] = Pr[F] Pr[H | F].

Let Rι denote the event where, on the ι-th query to Reveal, B aborts. Likewise, let Sθ denote the event
where, on the θ-th query to Sign, B aborts. We obtain

Pr[¬Abort] = Pr[H | F] Pr[F]

13

= (1 − Pr[¬H | F]) Pr[F]

=

1 − Pr

 ∨
ι∈[1,qr]

¬Rι

∨
θ∈[1,qs]

¬Sθ

∣∣∣∣∣∣∣∣F

 Pr[F]

≥

1 − ∑
ι∈[1,qr]

Pr[¬Rι | F] −
∑

θ∈[1,qs]

Pr[¬Sθ | F]

 Pr[F]

≥

{
1 −

1
n

(
log T · qr + qs

)} 1
{n(N + 1)}2 log T+1 (∵ Lemmata 1, 2, 3)

=
1
2

1
{2(log T · qr + qs)(N + 1)}2 log T+1 (∵ n B 2(log T · qr + qs)) (4)

By (3) and (4), we obtain (1). ut

Lemma 1. For every ι ∈ [1, qr], Pr[¬Rι | F] ≤ (log T)/n.

Lemma 2. For every θ ∈ [1, qs], Pr[¬Sθ | F] ≤ 1/n.

Lemma 3. Pr[F] ≥ 1/{n(N + 1)}2 log T+1.

Proof of Lemma 1. For every ι ∈ [1, qr], A must query tι s.t. tι < [L∗,R∗], which implies that at least one of
the following two condtions holds: (I) tι > R∗ and (II) tι < L∗.

In the case where the condition (I) holds, we obtain

Pr[¬Rι | F] ≤ Pr

 ∧
i∈[0,log T−1] s.t. tι[i]=1

Ki(1) = 0
∨i , 0 =⇒

∨
j∈[0,i−1] s.t. tι[j]=0

K j(1) = 0




∣∣∣∣∣∣∣∣ F


≤ Pr

Kiι (1) = 0
∨iι , 0 =⇒

∨
j∈[0,iι−1] s.t. tι[j]=0

K j(1) = 0


∣∣∣∣∣∣∣∣ F

 (5)

=

Pr [K0(1) = 0 | F] (if iι = 0),
Pr

[
Kiι (1) = 0

∨
j∈[0,iι−1] s.t. tι[j]=0 K j(1) = 0

∣∣∣ F
]

(otherwise).

For (5), iι denotes the smallest integer i ∈ [0, log T − 1] s.t. tι[i] = 1∧R∗[i] = 0. Note that tι > R∗ implies that
such an integer i must exist. If iι = 0, we obtain

Pr [K0(1) = 0 | F] = Pr [L0(1) = 0 | F]

= Pr

L0(1) = 0

∣∣∣∣∣∣∣∣
∧

i∈[0,log T−1]

Li(R∗[i]) = Ri(L̃∗[i]) = 0
∧

Llog T (m∗) = 0


(where L̃∗ B T − 1 − L∗) (6)

= 1/n.

(6) is obtained from the previous equation since the conditional event is implied by F. If iι ∈ [1, log T − 1],
we obtain

Pr

Kiι (1) = 0
∨

j∈[0,iι−1] s.t. tι[j]=0

K j(1) = 0

∣∣∣∣∣∣∣∣ F


≤ Pr

[
Kiι (1) = 0

∣∣∣ F
]
+

∑
j∈[0,iι−1] s.t. tι[j]=0

Pr
[
K j(1) = 0

∣∣∣ F
]

14

= Pr

Liι (1) = 0

∣∣∣∣∣∣∣∣
∧

i∈[0,log T−1]

Li(R∗[i]) = Ri(L̃∗[i]) = 0
∧

Llog T (m∗) = 0


+

∑
j∈[0,iι−1] s.t. tι[j]=0

Pr

L j(1) = 0

∣∣∣∣∣∣∣∣
∧

i∈[0,log T−1]

Li(R∗[i]) = Ri(L̃∗[i]) = 0
∧

Llog T (m∗) = 0


≤

1
n

+
log T − 1

n
=

log T
n

.

Hence, we obtain Pr[¬Rι | F] ≤ log T/n.
In the case (II), in the same manner as (I), we obtain Pr[¬Rι | F] ≤ log T/n. ut

Proof of Lemma 2. For every θ ∈ [1, qs], A must query Lθ,Rθ and mθ s.t. (Lθ,Rθ,mθ) , (L∗,R∗,m∗), which
implies that at least one of the following three conditions holds: (I) Rθ , R∗, (II) Lθ , L∗ and (III) mθ , m∗.

In the case where the condition (I) holds, we obtain

Pr[¬Sθ | F] ≤ Pr[
∧

i∈[0,log T−1]

Ki(Rθ[i]) = 0 | F] = Pr[
∧

i∈[0,log T−1]

Li(Rθ[i]) = 0 | F]

≤ Pr[Liθ (Rθ[iθ]) = 0 | F] (where iθ ∈ [0, log T − 1] s.t. Rθ[iθ] , R∗[iθ]) (7)

= Pr

Liθ (Rθ[iθ]) = 0

∣∣∣∣∣∣∣∣
∧

i∈[0,log T−1]

Li(R∗[i]) = Ri(L̃∗[i]) = 0
∧

Llog T (m∗) = 0


(where L̃∗ B T − 1 − L∗) (8)

= 1/n. (9)

For (7), we used a fact that Rθ , R∗ implies that at least one integer iθ ∈ [0, log T − 1] s.t. Rθ[iθ] , R∗[iθ]
exists. (8) is obtained from the previous equation since the conditional event is implied by F.

In the case (II), in the same manner as (I), we obtain Pr[¬Sθ | F] ≤ 1/n.
In the case (III), we obtain

Pr[¬Sθ | F] ≤ Pr[Klog T (mθ) = 0 | F] = Pr[Llog T (mθ) = 0 | F]

= Pr

Llog T (mθ) = 0

∣∣∣∣∣∣∣∣
∧

i∈[0,log T−1]

Li(R∗[i]) = Ri(L̃∗[i]) = 0
∧

Llog T (m∗) = 0


= 1/n.

ut

Proof of Lemma 3. We obtain

Pr[F]

= Pr

 ∧
i∈[0,log T−1]

xi + R∗[i] · y0

= n · ki

 ∧
i∈[0,log T−1]

zi + L∗[i] · y0

= n · si

∧

xlog T +

∑
j∈[0,N−1]

m∗[j] · y j

= n · klog T




= Pr

 ∧
i∈[0,log T−1]

∨
k∈[0,N]

xi + R∗[i] · y0 = n · k∧
k = ki

 ∧
i∈[0,log T−1]

∨
s∈[0,N]

zi + L∗[i] · y0 = n · s∧
s = si


∧ ∨

k∈[0,N]

xlog T +
∑

j∈[0,N−1]

m∗[j] · y j = n · klog T

∧
klog T = k




15

= Pr

 ∧
i∈[0,log T]

∨
k∈[0,N]

[
Xi,k

∧
X̃i,k

] ∧
i∈[0,log T−1]

∨
s∈[0,N]

[
Yi,s

∧
Ỹi,s

](
where Xi,k B

[
xi + R∗[i] · y0 = n · k

]
, X̃i,k B [k = ki] ,Yi,s B

[
zi + L∗[i] · y0 = n · s

]
,

Ỹi,s B [s = si] ,Xlog T,k B

xlog T +
∑

j∈[0,N−1]

m∗[j] · y j = n · k

 , X̃log T,k B
[
k = klog T

]
= Pr

 ∨
(k0,··· ,klog T ,s0,··· ,slog T−1)∈[0,N]2 log T+1

∧
i∈[0,log T]

[
Xi,ki

∧
X̃i,ki

] ∧
i∈[0,log T−1]

[
Yi,si

∧
Ỹi,si

]
=

∑
(k0,··· ,klog T ,s0,··· ,slog T−1)∈[0,N]2 log T+1

Pr

 ∧
i∈[0,log T]

[
Xi,ki

∧
X̃i,ki

] ∧
i∈[0,log T−1]

[
Yi,si

∧
Ỹi,si

]
(10)

=
∑

(k0,··· ,klog T ,s0,··· ,slog T−1)∈[0,N]2 log T+1

Pr

 ∧
i∈[0,log T]

Xi,ki

∧
i∈[0,log T−1]

Yi,si

 · Pr

 ∧
i∈[0,log T]

X̃i,ki

∧
i∈[0,log T−1]

Ỹi,si


(11)

=
1

(N + 1)2 log T+1

∑
(k0,··· ,klog T ,s0,··· ,slog T−1)∈[0,N]2 log T+1

Pr

 ∧
i∈[0,log T]

Xi,ki

∧
i∈[0,log T−1]

Yi,si

 (12)

=
1

(N + 1)2 log T+1 Pr

 ∨
(k0,··· ,klog T ,s0,··· ,slog T−1)∈[0,N]2 log T+1

 ∧
i∈[0,log T]

Xi,ki

∧
i∈[0,log T−1]

Yi,si


 (13)

=
1

(N + 1)2 log T+1 Pr

 ∧
i∈[0,log T]

∨
k∈[0,N]

Xi,k

∧
i∈[0,log T−1]

∨
s∈[0,N]

Yi,s


=

1
(N + 1)2 log T+1 Pr

 ∧
i∈[0,log T−1]

Li(R∗[i]) = 0
∧

i∈[0,log T−1]

Ri(L∗[i]) = 0
∧

Llog T (m∗) = 0


=

1
{n(N + 1)}2 log T+1 . (14)

(10) is obtained because for every (k0, · · · , klog T , s0, · · · , slog T−1) ∈ [0,N]2 log T+1 and every (k′0, · · · , k
′
log T , s

′
0,

· · · , s′log T−1) ∈ [0,N]2 log T+1 such that (k′0, · · · , k
′
log T , s

′
0, · · · , s

′
log T−1) , (k0, · · · , klog T , s0, · · · , slog T−1), the

event
∧

i∈[0,log T][Xi,ki

∧
X̃i,ki]

∧
i∈[0,log T−1][Yi,si

∧
Ỹi,si] is exclusive with the one

∧
i∈[0,log T][Xi,k′i

∧
X̃i,k′i]

∧
i∈[0,log T−1][Yi,s′i

∧
Ỹi,s′i].

(11) is because the the event
∧

i∈[0,log T] Xi,ki

∧
i∈[0,log T−1] Yi,si is independent with the one

∧
i∈[0,log T] X̃i,ki

∧
i∈[0,log T−1] Ỹi,si .

(13) is because for every (k0, · · · , klog T , s0, · · · , slog T−1) ∈ [0,N]2 log T+1 and every (k′0, · · · , k
′
log T , s

′
0, · · · ,

s′log T−1) ∈ [0,N]2 log T+1 such that (k′0, · · · , k
′
log T , s

′
0, · · · , s

′
log T−1) , (k0, · · · , klog T , s0, · · · , slog T−1), the event∧

i∈[0,log T] Xi,ki

∧
i∈[0,log T−1] Yi,si is exclusive with the one

∧
i∈[0,log T] Xi,k′i

∧
i∈[0,log T−1] Yi,s′i . ut

4.3 Perfect Privacy

Perfect privacy of the TSS scheme ΠTSS in Fig. 4 is guaranteed by the following theorem.

Theorem 2. Our TSS scheme ΠTSS is perfectly private under Def. 6.

Proof. We define the three algorithms (Setup′, KGen′, Sig′) which are used in ExptPPΠTSS,A,1 as shown in Fig.
5. The first two algorithms run in the same manner as the original setup and key-generation algorithms of

16

Setup′
(
1λ,N,T

)
:

(mpk,msk′)← TSS.Setup(1λ,N,T) which are parsed as (p,G1,G2,GT , e, g, g̃, g1, g2,{
ui, ũi,wi, w̃i | i ∈ [0, log T − 1]

}
, ulog T , ũlog T , {vi, ṽi | i ∈ [0,N − 1]}

)
and gα1 , respectively.

Return (mpk,msk′).
KGen′ (msk, t ∈ [0,T − 1]):

Return skt ← TSS.KGen(msk′, t) which is parsed as (skl,t, skr,t).
Sig′

(
msk′,m ∈ {0, 1}N , L,R ∈ [0,T − 1]

)
:

L̃ B T − 1 − L. For every i ∈ [0, log T − 1], ri, si
U
←− Zp. rlog T

U
←− Zp.

Return σ B
(
gα1

∏
i∈[0,log T−1]

(
uiv

R[i]
0

)ri ∏
i∈[0,log T−1]

(
wiv

L̃[i]
0

)si
(
ulog T

∏
j∈[0,N−1]

vm[j]
j

)rlog T

,{
gri | i ∈ [0, log T − 1]

}
,
{
gsi | i ∈ [0, log T − 1]

}
, grlog T

)
.

Fig. 5. Algorithms (Setup′, KGen′, Sig′) used to prove the perfect privacy of our TSS scheme

ΠTSS. The signing algorithm Sig′ directly generates a signature on m under [L,R] from the master secret-key.

From A’s point of view, the two experiments ExptPPΠTSS,A,0 and ExptPPΠTSS,A,1 identically distribute. Hence,
|Pr[1← ExptPPΣTSS,A,0(1λ,T)] − Pr[1← ExptPPΣTSS,A,1(1λ,T)]| = 0. ut

4.4 Efficiency Analysis

The master public-key includes 2 log T + N + 3 elements from G and the same number of elements from G̃4.
Thus, its size is |mpk| = (2 log T + N + 3)(|g| + |g̃|). Size of the master secret-key is |msk| = |g|. Size of a
signature under any range [L,R] is |σ[L,R]| = (2 log T + 2)|g|. For size |skt | of a secret-key skt for a numerical
value t, let us independently analyse the first part skr and the second part skl of skt. The maximum size of skr

is ((log T + 1) + 2 log T)|g| = (3 log T + 1)|g| when t = 0. The maximum size of skl is also (3 log T + 1)|g|
when t = T − 1. Thus, |skt | is at most (6 log T + 2)|g|. Thus, asymptotically, |skt | = O(log T)|g|. Table 1 in
Sect. 6 compares our two TSS schemes in terms of efficiency and assumption for security.

5 TSS Based on Wildcarded Identity-Based Ring Signatures

In this section, we propose another TSS scheme with constant-size secret-keys based on wildcarded identity-
based ring signatures (WIBRS).

IBE-based TSE [19]. In [19], the authors generically constructed a time-specific encryption (TSE) scheme
from an identity-based encryption (IBE) [22] scheme. For the TSS scheme, a (complete) binary tree with
T leaf nodes is introduced, e.g., the one in Fig. 3 in Subsect. 4.1. Each leaf node corresponds to each time
period t ∈ [0,T − 1]. Let anc(t) denote a set consists of ancestor nodes of t and the node t itself. Let skID=str

denote a (randomly-generated) secret-key for a bit string str ∈ {0, 1}∗ (as an identity) of the underlying IBE
scheme. The secret-key for a time period t ∈ [0,T − 1] is skt = {skID=str | str ∈ anc(t)}.

When we encrypt a message m under a range [L,R], where 0 ≤ L ≤ R ≤ T−1, a set of nodes (or identities)
T[L,R] which covers the range is (deterministically) chosen. For a node str ∈ {0, 1}≤log T , let dec(str) denote a
set of leaf nodes any one of which is descendant of the node str. The set of nodes T[L,R] is chosen to satisfy that
[
⋃

str∈T[L,R]
dec(str) = [L,R]]

∧
str,str′∈T[L,R] s.t. str,str′ [dec(str)

⋂
dec(str′) = ∅]

∧
[The cardinality |T[L,R]| is the minimum].

Formally, the process where we choose T[L,R] is described in Fig. 6. Then, a ciphertext for m under the range
[L,R] is set as a set of ciphertexts {ctID=str | str ∈ T[L,R]}, where ctID=str denotes a (randomly-generated)
ciphertext for the message m under str (as an identity) of the underlying IBE scheme. A secret-key skt for a

4 We have ignored information about the pairing (i.e., p,G, G̃ and e) included in mpk.

17

time period t ∈ [0,T − 1] can correctly decrypt a ciphertext ct[L,R] under a range [L,R] s.t. t ∈ [L,R] since
t ∈ [L,R] implies that there must exist only one node str ∈ {0, 1}≤log T which is included in both anc(t) and
T[L,R], i.e., anc(t)

⋃
T[L,R] = {str}.

Coverlog T (L,R), where 0 ≤ L ≤ R ≤ 2log T − 1:
l B L, r B R, T[L,R] B ∅. While l < r, do:

If l = 0 mod 2, l B Parent(l). Else, T[L,R] B T[L,R]
⋃
{l} and l B Parent(l) + 1.

If r = 0 mod 2, T[L,R] B T[L,R]
⋃
{r} and r B Parent(r) − 1. Else, r B Parent(r).

If l = r, T[L,R] B T[L,R]
⋃
{l}.

Return T[L,R].

Fig. 6. An algorithm Coverlog T , which appeared as Algorithm 1 in [19], where Parent takes a node and returns its
parental node.

WIBE-based TSE [14]. One disadvantage of the IBE-based TSE construction is that size of secret-keys
is linearly dependent on log T , thus cannot be constant. The authors in [14] showed that by using wild-
carded identity-based encryption (WIBE) [2,6,1] (w/o hierarchical key-delegatability) instead of the IBE in
the IBE-based TSE construction, we can obtain a TSE scheme with contant-size secret-keys. In the WIBE-
based TSE construction, each node str ∈ {0, 1}≤log T in the binary tree with depth log T (like the one in
Fig. 3) is added log T − |str| wildcarded symbols ∗log T−|str| from right, which means that it is changed into
str||∗log T−|str| ∈ {0, 1, ∗}log T . The set of identities T[L,R] is wildcarded, which means that it is changed into
T∗[L,R] B {str||∗log T−|str| | str ∈ T[L,R]}. A secret-key for t ∈ {0, 1}log T can correctly decrypt a ciphertext under
[L,R] since t ∈ [L,R] implies that there must exist only one wildcarded identity wID ∈ {0, 1, ∗}log T in T∗[L,R]
which is satisfied by t. Each secret-key for t ∈ [0,T − 1] consists of a single secret-key for t ∈ {0, 1}log T of
the underlying WIBE scheme, which implies that if the WIBE scheme is with constant-size secret-keys, the
obtained TSS scheme is also with constant-size secret-keys.

Our Approach. Analogously, we consider WIBS-based TSS construction. From the standard WIBS 5 scheme,
we cannot (or at least need to invent a sophisticated methodology to) obtain an expected result. We introduce
wildcarded identity-based ring signatures (WIBRS). Its syntax and security definition are described in Sub-
sect. 5.1. It is parameterized by an integer n ∈ N and makes each signer choose l ≤ n number of wildcarded
identities wID1, · · · ,wIDl ∈ {0, 1, ∗}L such that the signer’s identity ID ∈ {0, 1}L satisfies at least one wIDs
among the l wIDs. We show that a TSS scheme can be generically constructed by a WIBRS scheme with
L = log T and n = 2 log T − 2 in Subsect. 5.2. We instantiate an attribute-based signatures (ABS) scheme
[21] to obtain a WIBRS scheme with constant-size secret-keys in Subsect. 5.3. We rigorously evaluate the
efficiency of the TSS scheme instantiated by the WIBRS scheme in Subsect. 5.4.

Remark. In [14], another sophisticated generic TSE construction from WIBE was also proposed. It achieves
smaller size of ciphertexts than the simple WIBE-based TSE construction explained above. Precisely, for
every range [L,R], size of a ciphertext under the range of the sophisticated WIBE-based TSE is smaller than
or (at least) equivalent to that of the simple WIBE-based TSE. Especially, for some ranges, the former can
be (almost) the half of the latter. The sophisticated WIBE-based TSE adopts a refined way to binarize a time
period t ∈ [0,T − 1], and that effectively works to shorten each ciphertext. We can analogously consider
a sophisticated WIBRS-based TSS construction, which can shorten size of each signature. In this paper,
however, we basically only consider the simple WIBRS-based TSS construction because of its simplicity.

5 The digital signature analogue of the WIBE.

18

5.1 Wildcarded Identity-Based Ring Signatures (WIBRS)

Syntax. Wildcarded Identity-Based Ring Signatures (WIBRS) consist of 4 polynomial time algorithms
{Setup, KGen, Sig, Ver}, where Ver is deterministic and the others are probabilistic.

– Let 1λ, where λ ∈ N, denote a security parameter. Let L ∈ N denote bit length of a (wildcarded) identity.
Let n ∈ N denote the maximum cardinality of a ring of wildcarded identities. Setup algorithm Setup
takes (1λ, L, n) as input, then outputs a master public-key mpk and a master secret-key msk. Concisely,
we write (mpk,msk) ← Setup(1λ, L, n). Note that all the other three algorithms implicitly take mpk as
input.

– Key-generation algorithm KGen takes msk and an identity ID ∈ {0, 1}L, then outputs a secret-key sk for
the identity. Concisely, we write sk ← KGen(msk, ID).

– Signing algorithm Sig takes a secret-key sk for an identity ID ∈ {0, 1}L, a message m ∈ {0, 1}∗, and
wildcarded identities (wID1, · · · ,wIDl) s.t. l ≤ n

∧
i∈[1,l] wIDi ∈ {0, 1, ∗}L, then outputs a signature σ.

Concisely, we write σ← Sig(sk,m,wID1, · · · ,wIDl).
– Verifying algorithm Ver takes a signatureσ, a message m ∈ {0, 1}∗, and wildcarded identities (wID1, · · · ,wIDl),

then outputs a bit 1/0. Concisely, we write 1/0← Ver(σ,m,wID1, · · · ,wIDl).

Additionally, we introduce a deterministic polynomial-time algorithm which verifies whether an ID satisfies
a wildcarded ID. The algorithm MatchL is defined as shown in Fig. 7.

MatchL(ID ∈ {0, 1}L,wID ∈ {0, 1, ∗}L):
Return 1 if ∀i ∈ [0, L − 1] s.t. wID[i] ∈ {0, 1}, ID[i] = wID[i]. Return 0, otherwise.

Fig. 7. A formal definition of MatchL, where L ∈ N

We require every WIBRS scheme to be correct. A WIBRS scheme ΣWIBRS = {Setup, KGen, Sig, Ver}
is correct, if for every λ ∈ N, every L ∈ N, every n ∈ N, every (mpk,msk) ← Setup(1λ, L, n), every
ID ∈ {0, 1}L, every sk ← KGen(msk, ID), every m ∈ {0, 1}∗, every l ∈ N s.t. l ≤ n, every (wID1, · · · ,wIDl)
s.t.

∧
i∈[1,l] wIDi ∈ {0, 1, ∗}L

∧∨
j∈[1,l] 1← MatchL(ID,wID j) and every σ← Sig(sk,m,wID1, · · · ,wIDl), it

holds 1/0← Ver(σ,m,wID1, · · · ,wIDl).

Existential Unforgeability. For a WIBRS scheme ΣWIBRS and a probabilistic algorithm A, we consider an
experiment for (adaptive) existential unforgeability in Fig. 8.

ExptEUF-CMAΣWIBRS ,A
(1λ, L, n):

(mpk,msk)← Setup(1λ, L, n)
(σ∗,m∗,wID∗1, · · · ,wID∗l∗)← AReveal,Sign(mpk), where

- Reveal(IDι ∈ {0, 1}L), where ι ∈ [1, qr]: Return skι ← KGen(msk, IDι).
- Sign(IDθ ∈ {0, 1}L,mθ ∈ {0, 1}∗,wID1,θ ∈ {0, 1, ∗}L, · · · ,wIDlθ ,θ ∈ {0, 1, ∗}

L),
where θ ∈ [1, qs]:

skθ ← KGen(msk, IDθ). Return σθ ← Sig(skθ,mθ,wID1,θ, · · · ,wIDlθ ,θ).
Return 1 if 1← Ver(σ∗,m∗,wID∗1, · · · ,wID∗l∗)

∧
ι∈[1,qr]

∧
i∈[1,l∗] 0← MatchL(IDι,wID∗i)∧

θ∈[1,qs] (mθ,wID1,θ, · · · ,wIDlθ ,θ) , (m∗,wID∗1, · · · ,wID∗l∗).
Return 0 otherwise.

Fig. 8. Experiment for (adaptive) existential unforgeability of an WIBRS scheme ΣWIBRS

Definition 7. A WIBRS scheme ΣWIBRS is (adaptively) existentially unforgeable, if ∀λ ∈ N, ∀L ∈ N, ∀n ∈ N,
∀A ∈ PPTλ, ∃ε ∈ NGLλ, AdvEUF-CMAΣWIBRS,A,L,n(λ) B Pr[1← ExptEUF-CMAΣWIBRS,A

(1λ, L, n)] < ε.

19

Pefect Privacy. For a WIBRS scheme ΣWIBRS and a probabilistic algorithm A, we consider experiments for
perfect privacy in Fig. 9.

ExptPPΣWIBRS ,A,0(1λ, L, n):
(mpk,msk)← Setup(1λ, L, n)
Return b← AReveal,Sign(mpk,msk), where

- Reveal(IDι), where ι ∈ [1, qr]:
Return skι ← KGen(msk, IDι).

- Sign(ι ∈ [1, qr],m,wID1, · · · ,wIDl):
Return ⊥ if

∧
i∈[1,l] 0← MatchL(IDι,wIDi).

Return σ← Sig(skι,m,wID1, · · · ,wIDl).

ExptPPΣWIBRS ,A,1(1λ, L, n):
(mpk,msk′)← Setup′(1λ, L, n)
Return b← AReveal

′ ,Sign′ (mpk,msk), where
- Reveal′(IDι), where ι ∈ [1, qr]:

Return skι ← KGen′(msk, IDι).
- Sign′(ι ∈ [1, qr],m,wID1, · · · ,wIDl):

Return ⊥ if
∧

i∈[1,l] 0← MatchL(IDι,wIDi).
Return σ← Sig′(msk′,m,wID1, · · · ,wIDl).

Fig. 9. Experiments for perfect privacy of an n-WIBRS scheme ΣWIBRS

Definition 8. A WIBRS scheme ΣWIBRS is perfectly (signer) private, if for every λ ∈ N, every L ∈ N,
every n ∈ N and every probabilistic algorithm A, there exist probabilistic polynomial time algorithms
{Setup′, KGen′, Sig′} such that AdvPPΣWIBRS,A,L,n(λ) B |Pr[1← ExptPPΣWIBRS,A,0(1λ, L, n)]−Pr[1← ExptPPΣWIBRS,A,1(1λ, L, n)]| =
0.

5.2 A TSS Scheme from WIBRS Scheme with L = log T and n = 2 log T − 2

A TSS scheme is generically constructed from a WIBRS scheme parameterized by L = log T and n =

2 log T − 2 as described in Fig. 10. Theorem 3 guarantees that security of the TSS scheme is reduced to that
of the underlying WIBRS scheme. We omit a proof for the theorem since it is almost obvious.

Setup(1λ,T):
Return (mpk,msk)← Setup′(1λ, 1log T , 12 log T−2).
Sig(skt,m, L,R), where 0 ≤ L ≤ R ≤ T − 1:
T[L,R] ← Coverlog T (L,R).
T∗[L,R] B {ID||∗log T−|ID| | ID ∈ T[L,R]}.
Note that t ∈ [L,R] =⇒ ∃wID ∈ T∗[L,R]

s.t. 1← Matchlog T (t,wID).
Return σ[L,R] ← Sig

′(sk,m,T∗[L,R]).

KGen(msk, t), where t ∈ [0,T − 1]:
Parse t as t[0]|| · · · ||t[log T − 1].
Return skt ← KGen

′(msk, t).
Ver(σ[L,R],m, L,R), where 0 ≤ L ≤ R ≤ T − 1:
T[L,R] ← Coverlog T (L,R).
T∗[L,R] B {ID||∗log T−|ID| | ID ∈ T[L,R]}.
Return 1 / 0← Ver′(σ[L,R],m,T∗[L,R]).

Fig. 10. A generic TSS construction from a WIBRS scheme ΣWIBRS = {Setup′, KGen′, Sig′, Ver′} with L = log T and
n = 2 log T − 2.

Theorem 3. If the underlying WIBRS scheme is existentially unforgeable (resp. perfectly private) under Def.
7 (resp. Def. 8), then the generic TSS construction from the WIBRS scheme is existentially unforgeable (resp.
perfectly private) under Def. 5 (resp. Def. 6).

5.3 A WIBRS Scheme as an Instantiation of ABS Scheme [21]

ABS with a Signer-Policy Represented as a Circuit. In [21], an ABS scheme, where signer-policy is described
as a circuit φ : {0, 1}L → {0, 1}, is proposed. Each secret-key is associated with an attribute x ∈ {0, 1}L. A
signer with a secret-key for x, who chooses a circuit φ as the signer-policy, can correctly sign a message if the

20

attribute satisfies the circuit, i.e., φ(x) = 1. It is supposed that each circuit is constructed by only NAND gates
with fan-in 2. Their ABS scheme is built by a structure-preserving signatures (SPS) scheme [17], a non-
interactive witness-indistinguishable (NIWI) proof system [13] and a collision-resistant hash function. A
secret-key for an attribute x ∈ {0, 1}L is a signature θx of the SPS scheme on a message (g0, gx[0], · · · , gx[L−1]),
where g is a generator of G of an asymmetric pairing e : G × G̃ → GT with prime order. A signer with
x ∈ {0, 1}L signs a message m under a circuit φ by proving on NIWI proof system that x satisfies φ and θx is a
correct signature on (g0, gx[0], · · · , gx[L−1]), where the message m is inserted into the circuit φ in an adequate
way.

Describing an AND or OR Gate with Fan-in (Larger than or Equal to) 2 by Using Only NAND Gates with
Fan-in 2. It has been commonly known that an AND (resp. OR) gate with fan-in 2 can be constructed by
two (resp. three) NAND gates with fan-in 2 as shown in Fig. 11 (resp. 12).

Fig. 11. An AND gate with fan-in 2 from two
NAND gates with fan-in 2

Fig. 12. An OR gate with fan-in 2 from three
NAND gates with fan-in 2

Fig. 13. An AND gate with fan-in L from L− 1 AND gates with
fan-in 2 (in case where log L ∈ N)

Fig. 14. An OR gate with fan-in L from L − 1 OR gates with
fan-in 2 (in case where log L ∈ N)

Since an AND (resp. OR) gate with fan-in L ∈ N s.t. log L ∈ N can be constructed by L − 1 AND (resp.
OR) gates with fan-in 2 as shown in Fig. 13 (resp. Fig. 14) 6 , it can be constructed by 2(L−1) (resp. 3(L−1))
NAND gates with fan-in 2.

6 Although the figures (Figs. 13, 14) describe a case where the integer L ∈ N is 2 to the power of an integer, i.e., ∃l ∈ N
s.t. 2l = L, we can easily prove that for L ∈ N s.t. @l ∈ N s.t. 2l = L, an AND (resp. OR) gate with fan-in L can be
constructed by L − 1 AND (resp. OR) gates with fan-in 2.

21

Fig. 15. A circuit representing a disjunctive signer-policy
defined on l(≤ n) wildcarded identities wID1, · · · ,wIDl ∈

{0, 1, ∗}L.

Fig. 16. A circuit representing a disjunctive signer-policy de-
fined on n (non-)wildcarded identities wID1, · · · ,wIDn s.t.∧l

i=1 wIDi = 0L.

Describing a Disjunctive Signer-Policy Defined on l ≤ n Wildcarded Identities as a Circuit. A circuit rep-
resenting a disjunctive signer-policy defined on l ≤ n wildcarded identities wID1, · · · ,wIDl ∈ {0, 1, ∗}L is
described as shown in Fig. 15.

Analysing Efficiency of the WIBRS Scheme. The master public-key mpk includes a common reference
string crs of non-interactive witness indistinguishable proof system [13], a verification key vk of structure-
preserving signature scheme [17] and a hash key hk of a collision-resistant hash function. vk includes L + 7
elements in G̃, and crs and hk are independent of L. Thus, |mpk| = O(L)|g̃|. The master secret-key msk
is the signing key of the signature scheme [17] itself. It includes 2L + 8 elements in G, which means that
|msk| = O(L)|g|. A secret-key for an identity ID ∈ {0, 1}L is a signature of the signature scheme [17]. The
signature is generated by considering the ID as a message. Thus, |skID| = 6|g| + 2|g̃|, which means that it is
asymptotically O(1)(|g| + |g̃|).

Lastly, size of a signature for a disjunctive policy on (less than or equal to) n number of wildcarded
identities (wID1, · · · ,wIDl) (where l ≤ n) is asymptotically |σ| = O(nL)(|g| + |g̃|). The reason is explained
below. According to [21], size of a signature for a circuit is determined by total number of input wires Nin
of the circuit and that of NAND-gates Nga in the circuit. Precisely, it is described as |σ| = (6Nin + 10Nga +

16)(|g| + |g̃|). For the WIBRS scheme, it is (almost) obvious that both Nin and Nga are maximized when the
signer-policy is a disjunctive policy defined on n number of wildcarded identities wID1, · · · ,wIDn, every
one of which is 0L 7. The signer-policy is described as a circuit shown in Fig. 16. The circuit takes L input
wires. Thus, Nin = L. The circuit includes nL NOT gates, n AND gates with fan-in L, and one OR gate
with fan-in n. Based on the explanation given in the second last paragraph, we derive a fact that the circuit
includes 3nL + n − 3 NAND gates. Thus, Nga = 3nL + n − 3. We conclude that size of a signature is loosely
upper-bounded by (6Nin +10Nga +16)(|g|+ |g̃|) = (40nL+6L+10n−14)(|g|+ |g̃|). Asymptotically, it is O(nL).

Security of the WIBRS Scheme. Its security is reduced to the security of the original ABS scheme [21]. Thus,
we obtain the following theorem.

Theorem 4. If the ABS scheme [21] is existentially unforgeable (resp. perfectly private) under Def. 9 (resp.
Def. 10 8), then the WIBRS scheme as an instantiation of the ABS scheme is existentially unforgeable (resp.
perfectly private) under Def. 7 (resp. Def. 8).

7 In other words, for every possible signer-policy (or ring of wildcarded identities), Nin and Nga are smaller than or equal
to the largest Nin and Nga, respectively.

8 Although the definition of perfect privacy used in [21] is different from Def. 10, it has been shown by Blömer et al. [7]
that the ABS scheme [21] is perfectly private under Def. 10

22

5.4 Analyzing Efficiency of the TSS Scheme

Our TSS scheme is obtained from the WIBRS scheme in the last subsection parameterized by L = log T and
n = 2 log T − 2. The reason why n = 2 log T − 2 is that among every range [L,R], where 0 ≤ L ≤ R ≤ T − 1,
the maximum number of wildcarded identities for the range is |T[L,R]| = 2 log T − 2 when [L,R] = [1,T − 2].

(Space-)Efficiency of the TSS scheme is rigolously analyzed as follows. mpk, msk and a secret-key skt

for a time period t ∈ [0,T − 1] are unchanged from the WIBRS scheme. Thus, |mpk| = O(log T)|g̃|, |msk| =
O(log T)|g| and |skt | = 6|g| + 2|g̃| = O(1)(|g| + |g̃|).

In the last subsection, we explained that a loose upper bound for the size of a signature of the WIBRS
scheme is (40nL + 6L + 10n − 14)(|g| + |g̃|). By substituting log T and 2 log T − 2 for L and n, respectively,
we obtain (80 log2 T − 54 log T − 34)(|g| + |g̃|) as a loose upper bound for the size of a signature of the TSS
scheme. Asymptotically, it is O(log2 T)(|g| + |g̃|).

6 Conclusion

In this paper, we proposed two TSS schemes, each one of which is polylogarithmically efficient, based on
an asymmetric bilinear pairing with prime order, and secure, i.e., adaptively existentially unforgeable and
perfectly private, under standard assumption. Their characteristics are summarized in Table 1. The first one
achieves a well-balanced efficiency. The second one has secret-keys of constant size, but has signatures of
large size.

Table 1. Comparison of Our TSS Schemes

TSS Scheme |mpk| |msk| |skt | |σ[L,R]| Assumption
FSS-based TSS
(in Sect. 4) (2 log T + N + 3)(|g| + |g̃|) |g| O(log T)|g| (2 log T + 2)|g| co-CDH

WIBS-based TSS
(in Sect. 5) O(log T)|g̃| O(log T)|g| O(1)(|g| + |g̃|) O(log2 T)(|g| + |g̃|) SXDH

|mpk| (resp. |msk|, |skt |, |σ[L,R]|) denotes bit length of the master public-key (resp. bit length of the master secret-key, bit
length of a secret-key for a time period t, bit length of a signature for a range [L,R]). For FSS-based TSS scheme, N ∈ N
denotes bit length of an message. |g| (resp. |g̃|) denotes bit length of an element in bilinear group G (resp. G̃).

References

1. M. Abdalla, J. Birkett, D. Catalano, A.W Dent, J. Malone-Lee, G. Neven, J.C.N. Schuldt, and N.P. Smart. Wildcarded
identity-based encryption. Journal of Cryptology, 24(1):42–82, 2011.

2. M. Abdalla, D. Catalano, A.W. Dent, J. Malone-Lee, G. Neven, and N.P. Smart. Identity-based encryption gone
wild. In ICALP 2006, volume 4052 of LNCS, pages 300–311. Springer, 2006.

3. R. Anderson. Two remarks on public key cryptology. http://www.cl.cam.ac.uk/users/rja14, 1997.
4. M. Bellare and S.K. Miner. A forward-secure digital signature scheme. In CRYPTO 1999, volume 1666 of LNCS,

pages 431–448. Springer, 1999.
5. J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based encryption. In 2007 IEEE symposium on

security and privacy (SP’07), pages 321–334. IEEE, 2007.
6. J. Birkett, A.W. Dent, G. Neven, and J.C.N. Schuldt. Efficient chosen-ciphertext secure identity-based encryption

with wildcards. In ACISP 2007, volume 4586 of LNCS, pages 274–292. Springer, 2007.
7. J. Blömer, F. Eidens, and J. Juhnke. Enhanced security of attribute-based signatures. In CANS 2018, volume 11124

of LNCS, pages 235–255. Springer, 2018.
8. D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity based encryption with constant size ciphertext. In EURO-

CRYPT 2005, volume 3494 of LNCS, pages 440–456. Springer, 2005.

23

http://www.cl.cam.ac.uk/users/rja14

9. D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and challenges. In TCC 2011, volume 6597
of LNCS, pages 253–273. Springer, 2011.

10. R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme. In EUROCRYPT 2003, volume
2656 of LNCS, pages 255–271. Springer, 2003.

11. S. Chatterjee and P. Sarkar. Practical hybrid (hierarchical) identity-based encryption schemes based on the decisional
bilinear diffie-hellman assumption. International Journal of Applied Cryptography (IJACT), 3(1):47–83, 2013.

12. A. Fiat and M. Naor. Broadcast encryption. In CRYPTO 1993, volume 773 of LNCS, pages 480–491. Springer,
1993.

13. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. In EUROCRYPT 2008, volume
4965 of LNCS, pages 415–432. Springer, 2008.

14. M. Ishizaka and S. Kiyomoto. Time-specific encryption with constant size secret-keys secure under standard as-
sumption. Cryptology ePrint Archive: Report 2020/595, 2020.

15. K. Kasamatsu, T. Matsuda, K. Emura, N. Attrapadung, G. Hanaoka, and H. Imai. Time-specific encryption from
forward-secure encryption. In SCN 2012.

16. K. Kasamatsu, T. Matsuda, K. Emura, N. Attrapadung, G. Hanaoka, and H. Imai. Time-specific encryption
from forward-secure encryption: generic and direct constructions. International Journal of Information Security,
15(5):549–571, 2016.

17. E. Kiltz, J. Pan, and H. Wee. Structure-preserving signatures from standard assumptions, revisited. In CRYPTO
2015, volume 9216 of LNCS, pages 275–295. Springer, 2015.

18. H.K. Maji, M. Prabhakaran, and M. Rosulek. Attribute-based signatures. In CT-RSA 2011, volume 6558 of LNCS,
pages 376–392. Springer, 2011.

19. K. G. Paterson and E. A. Quaglia. Time-specific encryption. In SCN 2010, volume 6280 of LNCS, pages 1–16.
Springer, 2010.

20. A. Sahai and B. Waters. Fuzzy identity-based encryption. In EUROCRYPT 2005, volume 3494 of LNCS, pages
457–473. Springer, 2005.

21. Y. Sakai, N. Attrapadung, and G. Hanaoka. Attribute-based signatures for circuits from bilinear map. In PKC 2016,
volume 9612 of LNCS, pages 283–300. Springer, 2016.

22. A. Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO 1984, volume 196 of LNCS, pages
47–53. Springer, 1984.

23. B. Waters. Efficient identity-based encryption without random oracles. In EUROCRYPT 2005, volume 3494 of
LNCS, pages 114–127. Springer, 2005.

A Attribute-Based Signatures (ABS) for Circuits

Syntax. Attribute-based signatures (ABS) for circuits [21] consists of 4 polynomial time algorithms {Setup,
KGen, Sig, Ver}, where Ver is deterministic and the others are probabilistic.

– Let 1λ, where λ ∈ N, denote a security parameter. Let L ∈ N denote length of an attribute. Setup algorithm
Setup takes (1λ, L) as input then outputs a master public-key mpk and a master secret-key msk. We write
the procedure as (mpk,msk) ← Setup(1λ, L). Note that all the other three algorithms implicitly take
mpk as input.

– Key-generation algorithm KGen takes msk and an attribute x ∈ {0, 1}L, then outputs a secret-key skx for
the attribute. We write it as skx ← KGen(msk, x).

– Signing algorithm Sig takes a secret-key skx for an attribute x ∈ {0, 1}L, a message m ∈ {0, 1}∗, and
a signer-policy φ : {0, 1}L → {0, 1} s.t. 1 ← φ(x), then outputs a signature σ. We write it as σ ←
Sig(skx,m, φ).

– Verifying algorithm Ver takes a signature σ, a message m ∈ {0, 1}∗, and a signer-policy φ, then outputs a
bit 1/0. We write it as 1/0← Ver(σ,m, φ).

We require every ABS scheme to be correct. An ABS scheme ΣABS = {Setup, KGen, Sig, Ver} is correct,
if for every λ ∈ N, every L ∈ N, every (mpk,msk) ← Setup(1λ, L), every x ∈ {0, 1}L, every skx ←

KGen(msk, x), every m ∈ {0, 1}∗, every allowed φ s.t. 1 ← φ(x), and every σ ← Sig(skx,m, φ), it holds
1/0← Ver(σ,m, φ).

24

ExptEUF-CMAΣABS ,A
(1λ, L):

(mpk,msk)← Setup(1λ, L)
(σ∗,m∗, φ∗)← AReveal,Sign(mpk), where

- Reveal(xι ∈ {0, 1}L), where ι ∈ [1, qr]: Return skι ← KGen(msk, xι).
- Sign(xθ ∈ {0, 1}L,mθ ∈ {0, 1}∗, φθ), where θ ∈ [1, qs]:

skθ ← KGen(msk, xθ). Return σθ ← Sig(skθ,mθ, φθ).
Return 1 if 1← Ver(σ∗,m∗, φ∗)

∧
ι∈[1,qr] 0← φ∗(xι)

∧
θ∈[1,qs] (mθ, φθ) , (m∗, φ∗).

Return 0 otherwise.

Fig. 17. Experiment for (adaptive) existential unforgeability of an ABS scheme ΣABS

Existential Unforgeability. For an ABS scheme ΣABS and a probabilistic algorithm A, we consider an exper-
iment for (adaptive) existential unforgeability in Fig. 17.

Definition 9. An ABS scheme ΣABS is (adaptively) existentially unforgeable [18,21], if ∀λ ∈ N, L ∈ N,
∀A ∈ PPTλ, ∃ε ∈ NGLλ, AdvEUF-CMAΣABS,A,L(λ) B Pr[1← ExptEUF-CMAΣABS,A

(1λ, L)] < ε.

Pefect Privacy. For an ABS scheme ΣABS and a probabilistic algorithm A, we consider experiments for
perfect privacy in Fig. 18.

ExptPPΣABS ,A,0(1λ, L):
(mpk,msk)← Setup(1λ, L)
Return b← AReveal,Sign(mpk,msk), where

- Reveal(xι), where ι ∈ [1, qr]:
Return skι ← KGen(msk, xι).

- Sign(ι ∈ [1, qr],m, φ):
Return ⊥ if 0← φ(xι).
Return σ← Sig(skι,m, φ).

ExptPPΣTSS ,A,1(1λ, L):
(mpk,msk′)← Setup′(1λ, L)
Return b← AReveal,Sign(mpk,msk), where

- Reveal(xι), where ι ∈ [1, qr]:
Return skι ← KGen′(msk, xι).

- Sign(ι ∈ [1, qr],m, φ):
Return ⊥ if 0← φ(xι).
Return σ← Sig′(msk′,m, φ).

Fig. 18. Experiments for perfect privacy of an ABS scheme ΣABS

Definition 10. An ABS scheme ΣABS is perfectly (signer) private [7], if for every λ ∈ N, every L ∈ N and
every probabilistic algorithm A, there exist probabilistic polynomial time algorithms {Setup′, KGen′, Sig′}
such that AdvPPΣABS,A,L(λ) B |Pr[1← ExptPPΣABS,A,0(1λ, L)] − Pr[1← ExptPPΣABS,A,1(1λ, L)]| = 0.

25

	Time-Specific Signatures

