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Abstract. Persistent fault analysis (PFA) consists in guessing block
cipher secret keys by biasing their substitution box. This paper improves
the original attack of Zhang et al. on AES-128 presented at CHES
2018. By a thorough analysis, the exact probability distribution of the
ciphertext (under a uniformly distributed plaintext) is derived, and the
maximum likelihood key recovery estimator is computed exactly. Its
expression is turned into an attack algorithm, which is shown to be
twice more efficient in terms of number of required encryptions than
the original attack of Zhang et al. This algorithm is also optimized
from a computational complexity standpoint. In addition, our optimal
attack is naturally amenable to key enumeration, which expedites full 16-
bytes key extraction. Various tradeoffs between data and computational
complexities are investigated.
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1 Introduction

Cryptographic algorithms are generally “mathematically secure”. As an example,
the current best mathematical attack on AES cryptosystem is the biclique at-
tack [4] that has a complexity of 2254.4 for AES-256. However, the implementation
of a cryptographic algorithm can leak information that can greatly reduce the
complexity of attacks. For example, any implementation for which the encryption
time or the power consumption depends on the secret key gives the attacker some
sensitive information about that key. Attacks exploiting physical leakages are
known as side-channel attacks.

Another class of attacks, known as fault attacks [1,5,7,12], deliberately creates
errors in the cryptographic algorithm to help the attacker find the secret key. There
are many types of fault attacks. Differential fault attacks [3,8,16,18,21] compare
a faulted ciphertext with a correct one. Statistical fault attacks [10] perform
multiple faulted encryptions to get sensitive information through statistical tools.
Persistent fault attacks [6,20,23] consist in making a fault that remains persistent
during the whole encryption and across several consecutive encryptions. Persistent
fault injection can be performed in various ways: laser injection [19], which requires
a local access and which is possibly expensive; RowHammer attack [2,9,11,14,17]
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or PlunderVolt [13] which can be triggered remotely and which do not require
any expensive laboratory equipment. Combining fault attacks with side-channel
attacks subsequently gives an attacker the ability to break a cryptosystem in a
very efficient way.

1.1 Zhang et al.’s Attack

The attack of Zhang et al. [23] focuses on injecting a fault in the SBOX of AES
that is used to perform the SubBytes operation. Such a fault eliminates an element
y− of the SBOX and creates a new one y+ 6= y− instead. As a consequence, the
element y+ appears twice in the SBOX after the fault injection. This results in a
bias on the output of the SubBytes operation: Assuming a uniformly distributed
input, the value y− cannot be observed at all as the output, while the value y+ is
observed with a higher probability of 2/256; other values are observed with an
unchanged probability of 1/256. The resulting output probability distribution D
is then

D : P(y) =

 0 if y = y−,
2/256 if y = y+,
1/256 otherwise.

(1)

The attack of Zhang et al. [23] requires enough encryptions to obtain an empirical
distribution where only one element per byte is not observed, as shown in
figure 1. From such never observed byte value x−, the key byte can be obtained
as k = x− ⊕ y−.

Because each AES round gives a 16-byte output and consumes a 16-byte key,
there are 16 possible biased distributions for an AES output, which only differ
by the key byte value. In figure 1, each subplot represents one byte distribution
among the 16 bytes of an AES ciphertext.

Fig. 1. Empirical distributions for each byte of the ciphertext. The bias depends on
the last round key value.
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Thus, for the attack of Zhang et al. to work, the number of required encryptions
should be such that all values are observed but one. This is an instance of the
coupon collector problem. Figure 2 shows the success rate of the reproduced Zhang
et al. [23] attack to recover a full 128 bits AES key. Their attack typically requires
more than 2500 encryptions to obtain the AES master key with probability
≥ 80%.

Fig. 2. Success rate of the Zhang et al. attack over 1000 retries to recover the complete
AES key. With such a strategy, the attacker needs at least 2500 encryptions to obtain
the AES master key with probability ≥ 80%.

1.2 Contributions

The Zhang et al. [23] attack assumes a uniform distribution at the input of the
last round SBOX. Since the faulted SBOX is used in each AES round, it is not
obvious that this uniformity assumption actually holds. In this paper, we assume
that the fault location and the fault value are known by the attacker. We first
give a formal proof of uniformity at the input of the last round SBOX, thanks
to a property of the MixColumns operation. Then, under this assumption, the
maximum likelihood estimator for n encryptions is determined and an efficient
attack algorithm is derived from this estimator. The maximum likelihood principle
aims at maximizing the probability of obtaining the correct key.

The attack of Zhang et al. only exploits the only element x− that is never
observed, but does not exploit the fact that another element is more likely to be
observed than the others. When relatively few encrypted messages are collected,
there may be more than one element not observed. Therefore, there are as many
key candidates as unobserved elements, which are equally likely. To prevent these
limitations, we leverage the maximum likelihood principle to optimize the attack.
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The proposed attack improves the state-of-the-art performance by reducing
the required number of encryptions. Less encryptions can still give the correct key
without having to use a full instance of the coupon collector problem. Specifically,
about 1000 encryptions are required to get a success rate of 80% with our strategy
compared to about 2500 encryptions for the attack of Zhang et al. Besides, we
detail a computationally efficient version of the attack algorithm.

Reducing the number of encryptions is important in a product evaluation
context that uses, for instance, the Common Criteria (ISO/IEC 15408) since it
influences the quotation. Indeed, in Common Criteria parlance, the quotation is
a score which results from a combination of different factors, including time for
trace collection and time for analysis.

More important, our result allows to calibrate one countermeasure against a
persistent fault analysis: We derive a lower bound on the number of encryptions
to successfully extract the correct key and the designer can simply refresh the key
more frequently than this bound to avoid such attack. The number of encryptions
can further be reduced thanks to a key enumeration algorithm. Our analysis is
very amenable to such enumeration since it provides likelihoods to each subkey.

This paper also improves the proposed attack using various techniques such
as key byte enumeration and key combination, exploring multiple strategies for
each technique.

The attack presented in this paper is optimal for full key recovery since it
is optimal at byte level in term of number of traces and also computationally
optimal at the combination level of all bytes.

1.3 Outline

This paper is organized as follows. Section 2 mathematically shows that, even if
the SubBytes operation gives a biased distribution due to a persistent fault, this
bias is eventually cancelled by the MixColumns operation. Section 3 improves
Zhang et al. attack: An algorithm to find the most probable key for each last
round key is developed in subsection 3.1. Then, multiple combination strategies
are discussed in subsections 3.2 and 3.3 in order to find the complete last round
key and eventually the master key. Subsection 3.4 compares the success rate of
our approaches compared to the one of Zhang et al. Section 4 concludes and
gives some perspectives.

2 Bias Cancelling Effect of MixColumns

The attack of Zhang et al. is possible provided the distribution of the last round
SubBytes operation is uniformly distributed. This assumption is not obvious since
the output of SBOX in each AES round is not uniformly distributed due to the
persistent fault which biases the SBOX. Proposition 1 shows that, in the context
of this paper, the MixColumns operation returns a uniform distribution even for
a biased input (output of corrupted SubBytes). Therefore, as AES consists in
alternations between SubBytes and MixColumns (and other functions such as
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ShiftRows and AddRoundKey which do not change the distributions), provided
the plaintext is uniformly distributed, so is the output of each MixColumns at
every round.

Lemma 1 (Convolutional Identity). For any u ∈ F256, we have∑
b∈F256

D(b)D(u− b) = 1

256

(
1 +D(u+ y+)−D(u+ y−)

)
. (2)

where y− and y+ were defined in Subsection 1.1.

Proof. Observe that (1) writes D(b) = 1
256 (1 + 1{y+}(b)− 1{y−}(b)). Therefore

256
∑

b∈F256

D(b)D(u− b) =
∑

b∈F256

(1 + 1{y+}(b)− 1{y−}(b))D(u− b)

=
∑

b∈F256

D(u− b) +D(u+ y+)−D(u+ y−)

= 1 +D(u+ y+)−D(u+ y−) ut

Lemma 2 (Uniformity of the AES State Bytes). If the plaintext is uni-
formly distributed, then any intermediate variable in the AES algorithm is also
uniformly distributed.

Proof. AES being a Substitution-Permutation Network (SPN), each operation is
bijective on the states. Therefore, uniformity property is maintained from the
plaintext down to any intermediate state. ut

Corollary 1 (Uniformity Implies Independence). Provided the AES plain-
text is uniformly distributed, all bits or bytes at any stage of the algorithm are
mutually independent.

Therefore, under the hypothesis of plaintext uniformity, the input bytes of the
MixColumns operation are independent.

Proposition 1 (Bias Cancelling Effect of MixColumns). Let y−, y+ ∈ F256

and distribution D be defined by equation (1). Let B0, B1, B2, B3 ∈ F256 be
four bytes representing an AES state column before a MixColumns operation,
independent and identically distributed according to distribution D. Then each
byte Z0, Z1, Z2, Z3 ∈ F256 representing an AES state column after a MixColumns
operation is uniformly distributed.

Proof. For any z ∈ F256, given the assumed independence of B0, B1, B2, B3:

P(Z0 = z) = P(02B0 + 03B1 +B2 +B3 = z)

=
∑

b0,b1,b2∈F256

P(02b0+03b1+b2+B3=z|B0=b0, B1=b1, B2=b2)D(b0)D(b1)D(b2)

=
∑

b0∈F256

D(b0)
∑

b1∈F256

D(b1)
∑

b2∈F256

D(b2)P(B3 = z − 02b0 − 03b1 − b2)
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=
∑

b0∈F256

D(b0)
∑

b1∈F256

D(b1)
∑

b2∈F256

D(b2)D(z − 02b0 − 03b1 − b2). (3)

where the + (XOR) sign denotes addition (same as subtraction) in F256. Using
Lemma 1, Eq. (3) is simplified by collapsing the sums using Eq. (2). Each sum
(lefthand-side of Eq. (2)) generates three terms (righthand-side of Eq. (2)), and
the first constant term further simplifies by noting that

∑
b∈F256

D(u− b) = 1.
After three recursive applications of Equation (2), Equation (3) becomes:

P(Z0 = z) =
1

256
+

1

2563


D(z+02y++03y++y+)−D(z+02y−+03y++y+)

− D(z+02y++03y−+y+)−D(z+02y++03y++y−)
+ D(z+02y−+03y−+y+) +D(z+02y−+03y++y−)
+ D(z+02y++03y−+y−)−D(z+02y−+03y−+y−)


where we observe that the terms in D pairwise cancel, as per:

D(z + 02y+ + 03y+ + y+) = D(z + 0) = D(z + 02y− + 03y− + y−),
D(z + 02y− + 03y+ + y+) = D(z + 02(y+ + y−)) = D(z + 02y+ + 03y− + y−),
D(z + 02y+ + 03y− + y+) = D(z + 03(y+ + y−)) = D(z + 02y− + 03y+ + y−),
D(z + 02y− + 03y− + y+) = D(z + y+ + y−) = D(z + 02y+ + 03y+ + y−).

Hence P(Z0 = z) = 1/256, the uniform distribution. ut

The independence hypothesis in Proposition 1 assumes the rounds prior to
the last round are executing the genuine AES, so that lemma 2 applies, and
yields the independence between any tuple of bytes in an AES intermediate state.

This proposition considerably simplifies the modeling of the problem, and
allows us to derive exact results in the sequel. Additionally, the obtained uni-
formity at the output of the MixColumns operation, despite SubBytes is not
uniform (after persistent fault), makes it possible to prove that, provided the
plaintext is uniformly distributed, all configurations are explored, hence attack
success rate does reach 100% asymptotically.

Fig. 3. Empirical distribution of a byte of an AES state after a MixColumns operation
that takes a small biased input given by distribution D of proposition 1.
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This proposition also shows that only one MixColumns operation is required
to cancel the bias. This is confirmed by taking many observations and building
the empirical distribution from these observations as shown in figure 3 where each
element indeed appears to have the same probability to be observed. This means
that one can consider the input of the last round as being uniformly distributed,
no matter where the persistent fault occurred.

3 Improvement Using Maximum Likelihood

This section explains how the Zhang et al. attack can be improved. First of all,
the most likely key value for each byte of the last round key is extracted. In this
step, each key per byte of the last round key is ranked from the most to the least
probable. Then, a combination strategy is used to guess each byte of the last
round key in a complete 128-bit last round key. Eventually, the correct master
AES key is extracted from that last round key. Note that the value of the last
round key is not necessarily the correct one, typically when the key schedule
uses the faulted SBOX. This situation can be considered marginal, since most of
the time, the keys are scheduled once, then reused multiple times. Hence, if the
permanent fault in the SBOX occurs after the key is scheduled, then the round
keys are correct, and the master key can be recovered from the last round key.
Otherwise, the key schedule can also be inverted, although with some uncertainty:
when a key byte is equal to y+, then the two antecedents shall be considered
when inversing the round of the key schedule. The number of possible master
keys is in the order of 2

256 × 16× 10 (< 2), which is manageable to enumerate.

3.1 Optimal Distinguisher

In this section, n AES encryptions are used to find the most probable key. For
pedagogical reasons, only the first byte of an AES ciphertext is considered in this
section, but other bytes are treated in a similar way. For the same reason, only
the first byte of the last round key is considered. In this section, the term key
refers to one byte of the last round key of AES. Precisely, this section focuses on
the extraction of the last round key. From these n encryptions, n bytes x1, . . . , xn,
that can be viewed as elements of F256, are observed.

Maximum Likelihood Optimality. This section shows that the application
of the MLE is optimal in the sense that it maximizes the attack success rate in a
Bayesian context.

Figure 4 summarizes the idea of the attack until the success to find one byte
of the last round key. In this illustration, y− = 0x63 and y+ = 0x41. This section
first assumes that each possible key is equally probable before any observation,
meaning that P(k) = 1/256 for each of the 256 possible keys k. Note that the
fault also alters the round keys since the key scheduler uses SBOX. However, the
biased output of an SBOX in the key scheduler is added to a uniform random
variable in F256 before to output a round key. This eventually gives uniformly
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SBOX = [0x63, . . . ,0x41, . . . , 0x16]

ˆSBOX = [0x41, . . . ,0x41, . . . , 0x16]

E. PFA on an SBOX at any round of AES

Uniform input
(Proposition 1)

ShiftRows, last AddRoundKey

Observations on the first byte of each ciphertext: x1, . . . , xn

Analysis (MLE/MAP)

Most probable key (Alg. 1) / Keys ranked (from most likely downwards)

L
as
t
ro
un

d
of

A
E
S

Fig. 4. Fault model and attack principle for this paper (with y− = 0x63, y+ = 0x41).

distributed round keys. Thus, even with the fault, it makes sense to assume a
uniform distributed key for each of the AES round before any observations. Then,
these probabilities are updated after the observations. This is then a Bayesian
context of statistical inference in which this paper is written.

Finding the most probable key k means finding the key that maximizes the
conditional probability P(k | x1, . . . , xn) for observations x1, . . . , xn. This is a well
known problem in a Bayesian context known as Maximum a posteriori (MAP)
estimator that is a generalisation of Maximum Likelihood Estimator (MLE).
These estimators are defined in the definition 1.

Definition 1 (MAP and MLE). Given a joint distribution of k, x1, . . . , xn of
such distribution, we define two estimators:

– Maximum A Posteriori (MAP) estimator k̂MAP = argmax
k

P(k | x1, . . . , xn).

– Maximum Likelihood Estimator (MLE) k̂MLE = argmax
k

P(x1, . . . , xn | k).

For uniformly distributed key hypotheses the estimators coincide:

Lemma 3 (MAP=MLE for Uniform Distribution). In a Bayesian context,
k̂MAP = k̂MLE for a uniform a priori distribution of k.

Lemma 3 is a classical result but we include its proof for completeness.

Proof. MAP is defined as k̂MAP = argmax
k

P(k | x1, . . . , xn). By Bayes’ formula,
this also writes

k̂MAP = argmax
k

P(x1, . . . , xn | k)P(k)
P(x1, . . . , xn)

= argmax
k

P(x1, . . . , xn | k)P(k)
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since P(x1, . . . , xn) does not depend on k. Moreover, for a uniform a priori
distribution, P(k) is constant and, therefore,

k̂MAP = argmax
k

P(x1, . . . , xn | k) = k̂MLE . ut

Since we assume that, before any observation, each possible key has the same
probability, MLE is used to compute the MAP and find the most probable key.
The choice of using MLE instead of directly computing MAP is motivated by
the fact that, since observations are independent, computing P(x1, . . . , xn | k)
is much easier that computing P(k | x1, . . . , xn), since the former simplifies to
a product P(xi | k) = D(xi ⊕ k) for all 1 ≤ i ≤ n. This distribution can be
extended for multiple observations. Such distribution is given in the lemma 4.

Lemma 4 (Computation of the Likelihoods). Given k, y−, y+ ∈ F256, y− 6=
y+,

P(x1, . . . , xn | k) =
{
0 if ∃i, 1 ≤ i ≤ n | xi ⊕ k = y−,
2mk,2−8n otherwise

where mk,2 = #{i ∈ {1, . . . , n} | xi ⊕ k = y+}.

Proof. Since the observations are conditionally independent given k, one has
P(x1, . . . , xn | k) =

∏n
i=1 P(xi | k) =

∏n
i=1D(xi ⊕ k). This product is equal to

zero if at least one D(xi ⊕ k) is equal to zero. For a given k, there is only one
element xi for which D(xi ⊕ k) = 0 since it can only happen when xi ⊕ k = y−
where y− is the only element that is never observed at the output of the SBOX
due to the fault. If no such term is equal to zero, then there are two options:

– if xi ⊕ k = y+, then D(xi ⊕ k) = 2
256 since y+ appears twice at the output of

the faulted SBOX;
– otherwise, xi ⊕ k 6= y+ and xi ⊕ k 6= y−. Thus xi ⊕ k only appears exactly

once in the faulted SBOX and D(xi⊕k) = 1
256 , which happens for 254 SBOX

unique outputs.

Thus, P(x1, . . . , xn | k) is equal to

n∏
i=1

P(xi | k) =

 ∏
i|xi⊕k=y−

0

 ∏
i|xi⊕k=y+

2

256

 ∏
i|xi⊕k 6∈{y−,y+}

1

256


= (0)

mk,0

(
1

256

)mk,1
(

2

256

)mk,2

=

{
0 if ∃i | xi ⊕ k = y−,(

1
256

)mk,1
(

2
256

)mk,2 otherwise

where we have noted mk,0 = #{i | xi ⊕ k = y−}, mk,1 = #{i | xi ⊕ k 6∈ {y−, y+},
and mk,2 = #{i | xi ⊕ k = y+}. Note that mk,0 +mk,1 +mk,2 = n. Moreover,
when P(x1, . . . , xn | k) 6= 0, one has mk,0 = 0, thus mk,1 = n−mk,2. Therefore,
when there is no i, 1 ≤ i ≤ n, such that xi ⊕ k = y−, one has

P(x1, . . . , xn | k) =
(

1

256

)n−mk,2
(

2

256

)mk,2

=
1

256n
2mk,2 = 2mk,2−8n. ut
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From Lemma 4, a two-step strategy is developed to find the correct key:

1. Eliminate keys that have the value x⊕ y− for each observation x since the
probability to observe such element is null;

2. Among the remaining keys, declare the most likely key to be the one that
has the value x+ ⊕ y+, for an observation x+ that appears the most often
among all the observations. Indeed, x+ is the value that should appear the
largest number of times, owing to lemma 4.

This strategy is optimal in the sense that it maximizes the likelihood. We
now go one step further by applying the strategy without actually comput-
ing the probabilities. The computationally efficient strategy is exposed in our
Proposition 2.

Proposition 2 (Operational MLE Computation for PFA). Consider n
observations of ciphertext bytes {x1, . . . , xn}, and known PFA characteristic
values y−, y+ ∈ F256, y− 6= y+. Define

A = {x⊕ y− | x ∈ F256 − {x1, . . . , xn}}
Bj = {i ∈ {1, . . . , n} | xi = j and xi ⊕ y+ ∈ A} (0 ≤ j ≤ 255)

We have k̂MLE ∈ A, and k̂MLE is the index of Bj which is the largest set, i.e.,
k̂MLE = argmaxj(#{Bj}).

Proof. First, note that {x ∈ F256 − {x1, . . . , xn}}} and {x ∈ {x1, . . . , xn}}}
are complementary sets. This implies that A and {x⊕ y− ∈ {x1, . . . , xn}}} are
complementary. Since P(xj | k) = 0 for xj ⊕ k = y−, then value k 6= xj ⊕ y−.
Thus, k̂MLE ∈ A.

For the second point, we note that Bm contains the element that is the most
often observed for which the condition xm ⊕ y+ ∈ A holds. In other word, xm is
the most often observed value after removing elements xi such that xi ⊕ y− = k.

The proof then consists in showing that the maximum likelihood estimator is
given by eliminating values k such that xi ⊕ k = y− and for which xi appears
the most often. Let k̂ = argmaxk P(x1, . . . , xn | k) be the maximum likelihood
estimator. The values of k such as xi ⊕ k = y− for at least one observation
give P(x1, . . . , xn; k) = 0. Such keys can then be eliminated from the maximiza-
tion. Since m 7→ 2m−8n is strictly increasing in variable m ∈ N, we have that
argmaxk 2

mk,2−8n = argmaxkmk,2, i.e., the most likely key values are the values
k that maximize mk,2 (amongst k values which have not been ruled out). ut

Note that the set A contains all the possible keys. Thus, all impossible keys
have been eliminated to get this set. This is the first remarkable point of our
strategy. The elements contained in each class Bj are chosen in such a way that
they match with a possible key. For the correct key, one observation has to appear
the most often compared to the others. This observation can then be found by
taking the class Bj that has the maximum number of elements. This is the second
peculiarity of our strategy.
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Based on Proposition 2, Algorithm 1 consists in eliminating the impossible
keys and selecting the most likely one through the most observed value. Note
that line 5 of this algorithm counts the number of times a key, related to an
observation, can be observed and also takes care to only select possible keys
by using the term A[xi ⊕ y−] that is equal 0 for the key k = xi ⊕ y−. At line 2,
the algorithm discards a key candidate if the value k = xi ⊕ y− is not already
in set A. Therefore, the set of impossible keys is increasing with respect to the
inclusion. When all the 255 unique values of the ciphertexts xi have been seen,
the set A has cardinality 255, and the algorithm returns the key (in a singleton).
As a corollary, when the correct key is found, more ciphertexts do not alter the
outcome of the attack. This behavior differs from that of side-channel attacks
where the measurements are noisy (e.g., powerline attacks, etc.).

Algorithm 1: Algorithm to extract the most likely key
input :The SBOX erased value y− ∈ {0, . . . , 255}, the SBOX duplicated value

y+ 6= y−, and n observations (x1, . . . , xn) of ciphertext bytes.
output :Most likely key

1 h[256]← 0, . . . , 0 // Histogram storing the occurrence count of a
possible key. Notice that h[j] = #{Bj} as per proposition 2

2 A[256]← 1, . . . , 1 // Indicator of the set of possible keys. A[k] = 1
if k is a possible key, otherwise A[k] = 0

3 for i ∈ {1, . . . , n} do // Iterating on the observations
4 A[xi ⊕ y−]← 0 // Eliminate impossible key xi ⊕ y−. This builds

the set A of proposition 2
5 h[xi ⊕ y+]← A[xi ⊕ y+]× (h[xi ⊕ y+] + 1) // Among the remaining keys,

count the ones that appear the most

6 return argmaxj h[j] // Returns a list in case of ex æquo keys

Fig. 5. P(k̂ = k) for one byte of multiple last round key of AES, averaged over 1 000
tries.
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In our case, k is an AES last round key and an observation is a byte resulting
from an encryption. We evaluate the number of required encryptions for all of
the 256 possible keys. Figure 5 gives the success rate. The maximum likelihood
estimator is known to be consistent. Thus, P(k̂ = k) = 1 for enough observations,
where k is the correct key. For clarity, only 7 keys are represented in this figure.
However, the 256 possible keys follow the same trend.

Fig. 6. Remaining values of one byte of last round keys after eliminating impossible
keys (blue) and remaining values of one byte of last round keys that maximize the
likelihood (black), averaged over 1000 tries. The line y = 256 − x is represented as
a reference, to illustrate the optimistic situation where one values of one byte of a
last round key hypothesis is ruled out at each new encryption (never twice the same
ciphertext byte).

Figure 6 shows how many key bytes remain, averaged over 1000 set of
plaintexts, possible as a function of the number of encryptions by considering
only the keys that are eliminated from the first figure or the keys that maximize
the likelihood. Note that, some keys have the same likelihood and, thus, multiple
key can maximize the likelihood. Note that the number of keys that maximizes
the likelihood can locally increase but will eventually decrease down to 1. For less
than 800 encryptions, the figure shows that more than 15 keys byte candidates
are possible.

A Note about Guessing Entropy Another approach to find a key k such as
P(x1, . . . , xn | k) is maximal from n observations is to use the guessing entropy
defined as GE =

∑256
i=1 kP(x1, . . . , xn | k) where {P(x1, . . . , xn | k)} are sorted in

decreasing order. Due to this sort, the guessing entropy is approximately equal
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to 1 if P(x1, . . . , xn | k) is the biggest probability and other are small relatively
to it. We thus estimate the number of observations required to get GE = 1
and observe that the guessing entropy becomes equal to 1 between 1200 and
1400 observations meaning that we require between 1200 and 1400 observations
to be able to get the AES master key. This mean that, between 1200 to 1400
encryptions are required to get the correct key.

3.2 Key Byte Ranking

Algorithm 1 returns not one unique value of a byte of the last round key, but
a set of values of a byte of the last round key (since there are possibly ties in
the likelihood values). Full 128 bits key can be reconstructed using key ranking
algorithms, such as [22]. Indeed, one byproduct of our attack is that, in addition
to be optimal, it is based on MLE, hence can sort out key candidates based
on probabilities. Therefore, key ranking algorithms apply in a straightforward
manner. In most cases, this requires to modifying Algorithm 1 so that instead of
returning the most probable value of a byte of the last round key (the argmaxj h[j]
at line 6), it returns the most probable value of a byte of the last round key
sorted with decreasing probabilities.

3.3 Combination of Several Key Bytes to Reconstruct the Full Key

In case not enough observations are available, the key byte ranking (Sec. 3.2)
can fail to rank the keys correctly. In order to get around this limitation, a
combination algorithm is given in this section.

The complete last round key can be recovered by combining key byte can-
didates in an empirical algorithm consisting in 16 imbricated loops. The first
loop (outer loop) iterates over the candidates of the first key byte. The second
loop iterates over the candidates for the second key byte and so on. Noting Ni

the number of candidates for the last round key byte i, the total number of
candidates for the whole last round key is N =

∏16
i=1Ni. This product can be

very large and can induce a high time complexity of the attack. For instance, for
100 candidates per byte of the last round key, we have N = 10016 last round key
candidates. More specifically, assuming the key byte rank algorithm gives the
correct key byte as the first candidate for key bytes except the first one, then
the attacker has to test between 2× 10015 and 10016 last round key candidates
which is not practical.

One strategy to mitigate this issue is to only test a predefined maximum
number of key byte candidates. This assumes that the key byte rank algorithm
is efficient enough. For instance, assuming that the key byte rank algorithm
always rank the correct key byte between the first and the third rank, the time
complexity is then reduced from N = 10016 to N = 316. While this assumption
is not always met, for each key byte candidate, the first key byte candidate is
often the correct one and only very few key byte candidates are not correctly
ranked. Thus we can consider only the first key byte candidate for most of the
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bytes and only iterate over the few other bytes. Due to this observation, our
strategy consists in building the last round key candidates through 16 stages.

The first stage consists in trying all possibilities for only one byte over the 16
bytes. This gives a maximum of 16× 256 = 4096 possibilities. At this stage, each
of the 15 other key byte candidates is fixed to the first candidate. Those 15 bytes
are called small varying bytes. If the full 128 bits key is not found, the second
stage is used.

The second stage consists in trying all possibilities for two bytes among all
combinations of two bytes among the 16 bytes. This gives a maximum number of
testing key equal to 16× 15× 2562. At this stage, each of the 14 other key byte
candidates is fixed to the first candidate. Those 14 bytes are called small varying
byte. If the full 128 bits key is not found, the third stage is used.

All stages are built along the same scheme for at most
∑n=16

k=1
16!

(16−k)!256
k

keys to test. Even if this appears to be a huge number, in practice the correct
key is found in the first stages. To reduce again the time complexity, we can limit
the number of byte candidates to pi for byte i instead of 256. The parameter pi
is chosen experimentally to optimize the time it takes to perform the attack can
be performed in a relatively short time.

For each stage, the small varying bytes were fixed to the first candidates. A
more general strategy consists in choosing the first n candidates instead of the
first. In such case, the maximum number of tested key is 16!

(16−i)!p
i
iα

16−i
i per stage

where αi is the value of the small varying bytes.

Table 1. Time, expressed in second, required to perform the attack and get the 16-bytes
AES-128 master key, as a function of the number of stages used (in rows) and the value
of the small varying byte (in columns).

1 2 3
1 256 / 0.005 s 256 / 0.291 s 18 / 7.652 s
2 256 / 0.067 s 33 / 4.376 s -
3 108 / 2.424 s 5 / 5.947 s -
4 17 / 2.887 s - -
5 6 / 2.975 s - -
6 3 / 2.993 s - -
7 2 / 3.022 s - -

Table 1 gives the time required to perform the attack and get the AES master
key, according to the number of stages and the number of small varying bytes.
The rows describe the number of stages that is used to perform the attack. The
stages are used in order. For example, for 3 stages, the stage 1, 2 and 3 are
used one after the other. The columns describe the value of the small varying
bytes. For a small varying byte equal to 1, we used p1 = 256, p2 = 256, p3 = 108,
p4 = 17, p5 = 6, p6 = 3 and p7 = 1. For a small varying byte equal to 2 we used
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p1 = 256, p2 = 33, p3 = 5 in the same idea to not test an excessive number of
keys. For the same reason, the stage 4 to 7 is not used in this case. For a small
varying byte count equal to 3, we use only one stage with p1 = 18. Each cell of
the table reminds pi before the time ti in the format pi/ti.

Figure 7 gives a comparison of success rates, according to the number of
stages and the value of the small varying byte in the same configuration given by
table 1. Only two stages is quite efficient compared to the success rate illustrated
in 2. The figure shows that the best curve in term of number of encryption is for
small varying byte equal to 2 with only 3 stages with 1371 encryptions.

Fig. 7. Our MLE attacks for the complete last round key of AES— Comparison of
success rates, according to the number of used stages. The value of small varying bytes
is taken equal to 1 (plain line), 2 (dotted line), and 3 (semi dotted line). One color by
number of stage is used, respectively red, green, blue, black, yellow, cyan, purple for 1,
2, 3, 4, 5, 6, 7 stages. Note that the result of stages six and seven are almost identical.

3.4 Efficiencies of Key Byte Rank and Combination Algorithms

In order to test the efficiency of the key byte rank and combination algorithms,
we compare multiple strategies that are combinations of three tactics:

1. Using the key byte algorithm or not. If the key byte algorithm is not used,
the key byte candidates are tested in the order of the non observed values.

2. Getting ciphertexts until the histograms are full, meaning that all possible
values are observed, or not. If we do not require the histograms to be full, we
limit the number of candidates and stages with the better strategy discussed
before that consists in using only three stages.

3. Using the combination algorithm or not.
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This leads to 23 = 8 possible strategies. However, there are 22 = 4 strategies,
for which we get enough encryption to fill the empirical histograms, that yield
the same results. Indeed, in such cases, there is only one key byte candidate and
then testing all candidates is the same than testing only one candidate. Moreover,
and for the same reason, using the key byte rank algorithm necessarily gives the
same results whether used or not. This reduces 4 strategies to only 1 and thus
only 5 strategies remain.

We also note that, if we do not use the key byte rank algorithm and if we do
not ensure a full histogram, then the success rate does not depend whether we
use the combination algorithm or not. This shows the importance of a key byte
rank and it is also due to the fact that our combination algorithm relies on the
results of this key byte rank.

Thus four strategies remain. They are listed hereafter:
Strategy 1. Use the key byte ranking algorithm; Do not require to fill his-

tograms; Use the combination algorithm.
Strategy 2. Use the key byte ranking algorithm; Do not require to fill his-

tograms; Do not use the combination algorithm.
Strategy 3. Do not use the key byte ranking algorithm; Do not require to fill

histograms.
Strategy 4. Require to fill histograms. As far as we understand, this strategy

is the one used by Zhang et al. [23].

Figure 8 (top) gives the success rates over 1000 tries of the four strategies.
The last one, in blue, is the worst since it necessarily requires more encryptions to
fill histograms. The best one, in black color, is the most efficient one and is also
the one that uses the key byte rank algorithm and the combination algorithm.
Not using the combination algorithm is less efficient as shown by the red curve,
but is still better than the green curve that shows the strategy that does not use
the key byte ranking algorithm. One can note that the combination algorithm
greatly improves the efficiency.

Each curve of the top figure of 8 is obtained by computing an average over
1000 curves where each of the 1000 curves describes a success rate for a given
plaintext. For each of those 1000 curves, the success rate becomes equal to one
more or less rapidely. The repartition of when the success rate is equal to 1
over those 1000 curves are given by the bottom of the figure 8 that shows the
distribution of minimum number of encryptions over 1000 tries. On this figure,
mean µ and standard deviation σ are also given. Less than 1000 encryptions are
required with the first strategy whereas more than 2000 are required for the last
one. Also the best dispersion is reached for the first strategy and the worst one is
reached on strategy four where no ranking algorithm is used. Strategy 1 is thus
relevant to go further than the theoretical number encryption induced by the
Coupon Collector Problem and discussed by Zhang et al. [23].

3.5 Comparison with the Tool of Veyrat-Charvillon et al. [22]

Our methodology to combine bytes can be compared to the C++ tool of Veyrat-
Charvillon et al., which implements the maximum likelihood algorithm to give
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Fig. 8. Our MLE attacks for the complete last round key of AES — Success rates of
strategies 1 to 4 over 1000 tries (top). Distribution of minimum number of encryptions
over 1000 tries (bottom). Less than 1000 encryptions are required with the first strategy
whereas more than 2000 are required for the last one. The smallest dispersion is reached
for the first strategy whereas the worst one is reached by strategy four where no ranking
algorithm is used.

the rank of the full 16-byte key based on the distribution of each individual key
byte. This tool is pessimistic, in that, in case of ties (recall black curve in Fig. 6),
it provides the largest rank. While the tool of Veyrat-Charvillon et al. is generally
more efficient, our strategy focuses in reducing the time for small number of
encryptions. For instance, getting the AES last round key with 893 encryptions
requires about 20 minutes where the tool of Veyrat-Charvillon et al. takes about
3 hours.
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Fig. 9. Comparison between the combination algorithm described in in paper with the
tool of Veyrat-Charvillon et al. for one trace (no average)

Figure 9 shows the rank of the correct key estimated by the tool of Veyrat-
Charvillon et al. and our method. For less than 903 encryptions our method gives
the correct key at a lower rank compared to the tool of Veyrat-Charvillon et al.

4 Conclusion and Perspectives

4.1 Conclusion

In this paper, we revisited the fault attack that makes a permanent fault in the
AES SBOX and we improve it by using multiple techniques including estimation
theory, rank and key combination algorithms. With enough observations, if
one focuses on the most observed value x+, the most likely key will be k =
x+ ⊕ y+. Some observations can have exactly or approximately the same number
of occurrences among the overall observations. In such case, since an observation
x cannot be equal to k⊕y−, one can eliminate some keys. The strategy developed
in this paper, and derived from the maximum likelihood analysis, to find the
correct key therefore consists in two steps:

1. eliminate keys that have the value x⊕ y− for each observation x;
2. declare the most likely key among the remaining keys to be the one that has

the value x+ ⊕ y+, for an observation x+, that appears the most often.

The key byte rank algorithm uses maximum likelihood estimation and guess-
ing entropy. Various techniques have been experimented to build combination
algorithms such as using imbricated loops, truncating the number of key byte
candidates or to a more specific strategy that uses so-called stages.
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After recalling some basics about how AES encryption works and how AES
round keys are derived from the master key, the paper shows how a single byte
fault can affect the final ciphertext. This fault can be stepped on at any time of
the encryption. The attacker can also permanently fault the SBOX before or after
key scheduling. The fault is only assumed to be persistent for all encryptions.
The paper first assumes that an attacker can encrypt any messages, that are not
necessarily chosen, in order to get an ideal empirical distribution for each of the
16 bytes of the ciphertext. In the state-of-the-art, more than 2000 encryptions
were required to get such ideal distribution for each byte of the last round key.
The attack in this paper works because the MixColumns operation is performed
on all of the AES rounds but the last one. From those distributions, the paper
explains how an attacker can find the last round of AES by analysing only the
ciphertexts. Since the fault can affect the key scheduler, this last round key can
be wrong but the paper shows that an attacker can still get the correct master
key from a wrong last round key, and then derives the correct round keys.

The attack was further improved by considering non ideal empirical distribu-
tions. This was done by using a key rank algorithm for multiple key candidates
with a combination algorithm that combines each potential byte of the last round
key to get a complete round key. On average, less than 922 encryptions to get
the AES master key with a high probability was necessary. In order to check
whether the correct key is found, one can decrypt a ciphertext and check whether
the resulting plaintext does make sense.

4.2 Perspectives

TBOX. In this paper, we focused on the faults on AES SBOX. Some implemen-
tations of AES use tables called TBOX to perform jointly the SubBytes and the
MixColumns operations [15, Sec. 5.2.1, page 18]. Cryptographic libraries that
implement AES with TBOX uses 4 tables of 256 elements. Each of those elements
has 4 bytes size and those tables are used for all AES rounds except the last one
since it does not require the MixColumns operation. For the last round, some
implementations use a fifth table whereas others, like OpenSSL, mask 3 of the 4
bytes of the TBOX elements in order to only use the SubBytes operation out of
the TBOX. In cryptographic libraries that use TBOX, two cases are possible to
perform the attack described in this paper. These two cases are discussed here
for future works.

In the first case, an attacker can try to target the SubBytes operation im-
plemented by the TBOX. To reach this aim on implementations that uses 5
tables, an attacker can only target the fifth table that does not implement the
MixColumns operation. For implementations that only use 4 tables, an attacker
can only target 1/4 of the tables. Note that for implementations that only uses 4
tables, one fault per table has to be made in order to get the same effect with
a single fault on an SBOX table. If one only targets one table it actually only
targets one column of an AES state and thus, 4 bytes of a key.

In the second case, an attacker targets the MixColumns operation implemented
by the TBOX. In such cases, we do not observe any bias for all of the bytes of the
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ciphertexts. However, we observe a bias on column of an AES states. The attack
described in this document could then be adapted at column-level instead of byte-
level. However, since a column represents 232 possible values instead of 28 for a
byte, more encryptions are required. If we assume that the number of encryptions
is proportional to the number of values, and since we need 1371 encryption for an
analysis at a byte level, we then need 1371× 232/28 = 23001563136 encryptions.
We could also need a more efficient key rank algorithm since we will have to test
more keys.

Knowledge about the fault. This paper considers that the location of the
fault in the SBOX and also the value of the fault are known. In other words, it
is assumed that the values y− and y+ are known by the attacker. Based on this
assumption, if uniform byte values were submitted to each sbox, then the attack
would converge in 255 plaintexts (because, at each newly observed byte c, the
attacker knows that c⊕ y− is not a valid key byte). This is depicted by the curve
y = 256− x in Fig. 6. This assumption was originally accepted in the case of a
rowhammer attacker on a shared SBOX where the attacker can read the fault
in memory. This assumption is invalid on some implementations, such as the
AES-NI instruction set, where the SBOX is not exposed to the user (it can for
instance be some firmware). Without the knowledge of y− and y+, one can still
use a ranking algorithm to get the most likely value of y+ ⊕ y−. Only 256 guess
values are required to guess y−, and y+ will directly follow from the most likely
value of y+ ⊕ y− when analyzing the ciphertext distribution.

4.3 Note Added after Revision of the Accepted Paper

We became aware of the recent work “Persistent Fault Attack in Practice” [24].
This paper elaborates on the attack converge speed and attributes it to MLE.
Our work does further in that we mathematically derive the attack from the MLE.
Besides, we show the merit of exploiting the likelihood for each key candidate
to enumerate them by decreasing probability, thereby further speeding up the
attack. This results in “strategy 1”, whereas [24] consists in the strategy we called
“strategy 2”.
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