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Abstract

Classical definitions for secure multiparty computation assume the existence of a single
adversarial entity controlling the set of corrupted parties. Intuitively, the definition requires that
the view of the adversary, corrupting t parties, in a real-world execution can be simulated by
an adversary in an ideal model, where parties interact only via a trusted-party. No restrictions,
however, are imposed on the view of honest parties in the protocol, thus, if honest parties
obtain information about the private inputs of other honest parties – it is not counted as a
violation of privacy. This is arguably undesirable in many situations that fall into the MPC
framework. Nevertheless, there are secure protocols (e.g., the 2-round multiparty protocol of
Ishai et al. [CRYPTO 2010] tolerating a single corrupted party) that instruct the honest parties
to reveal their private inputs to all other honest parties (once the malicious party is somehow
identified).

In this paper, we put forth a new security notion, which we call FaF-security, extending
the classical notion. In essence, (t, h∗)-FaF-security requires the view of a subset of up to h∗

honest parties to also be simulatable in the ideal model (in addition to the view of the malicious
adversary, corrupting up to t parties). This property should still hold, even if the adversary
leaks information to honest parties by sending them non-prescribed messages. We provide a
thorough exploration of the new notion, investigating it in relation to a variety of existing
security notions. We further investigate the feasibility of achieving FaF-security and show that
every functionality can be computed with (computational) (t, h∗)-FaF full-security, if and only
if 2t+ h∗ < m. Interestingly, the lower-bound result actually shows that even fair FaF-security
is impossible in general when 2t + h∗ ≥ m (surprisingly, the view of the malicious attacker is
not used as the trigger for the attack).

We also investigate the optimal round complexity for (t, h∗)-FaF-secure protocols and give ev-
idence that the leakage of private inputs of honest parties in the protocol of Ishai et al. [CRYPTO
2010] is inherent.

Finally, we investigate the feasibility of statistical/perfect FaF-security, employing the view-
point used by Fitzi et al. [ASIACRYPT 1999] for mixed-adversaries.
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1 Introduction

In the setting of secure multiparty computation (MPC), the goal is to allow a set of m mutually
distrustful parties to compute some function of their private inputs in a way that preserves some
security properties, even in the face of adversarial behavior by some of the parties. Classical
security definitions (cf., [28]) assume the existence of a single adversarial entity controlling the set
of corrupted parties. The two most common types of adversaries are malicious adversaries (which
may instruct the corrupted parties to deviate from the prescribed protocol in any possible way),
and semi-honest adversaries (which must follow the instructions of the protocol, but may try to
infer additional information based on the joint view of the corrupted parties).

Classical security definition. Some of the most basic security properties that may be desired
are correctness, privacy, independence of inputs, fairness, and guaranteed output delivery. A general
paradigm for defining the desired security of protocols is known as the ideal vs. real paradigm.
This paradigm avoids the need to specify a list of desired properties. Rather, security is defined
by describing an ideal functionality, where parties interact via a trusted party to compute the
task at hand. A real-world protocol is then deemed secure (against a class C of adversaries), if no
adversary A ∈ C can do more harm than an adversary in the ideal-world. In some more detail, the
definition requires that the view of the adversary, corrupting t parties, in a real-world execution
can be simulated by an adversary (corrupting the same t parties) in the ideal-world.

Classical instantiations of this paradigm, however, pose no restrictions on the view of honest
parties in the protocol. Hence, such definitions do not count it as a violation of privacy if honest
parties learn private information about other honest parties. This is arguably undesirable in many
situations that fall into the MPC framework. Furthermore, when considering MPC solutions for
real-life scenarios, it is hard to imagine that possible users would agree to have their private inputs
revealed to honest parties (albeit not to malicious ones). Indeed, there is no guarantee that an
honest party would not get corrupted at some later point in the future. If that honest party has
learned some sensitive information about another party’s input during the protocol’s execution (say,
the password to its bank account), then this information may still be used in a malicious manner.
Furthermore, as most of us are reluctant to reveal the password to our bank account even to our
own friends, it is natural to consider a model, where every uncorrupted party is honest-but-curious
by itself, operating simultaneously to the malicious adversary.1

There are two manners in which honest parties may come to learn some private information
about other parties (in a secure protocol). The first is if the protocol itself instructs the honest
parties to reveal some information about their private inputs (which is not implied by the output)
to all other honest parties (once all malicious parties are somehow identified). An example of such
a protocol is the 2-round m-party protocol (with m ≥ 5) of Ishai et al. [35], tolerating a single
malicious party.

Alternatively, honest parties may also be exposed to the private information of other parties if
the adversary sends them parts of its view during the execution (although, not instructed to do
so by the protocol). We stress that such an attack is applicable to many classical results in MPC
that assume an upper bound of t malicious parties and rely on (t + 1)-out-of-m secret sharing.
Consider, for example, the BGW protocol [12], which is secure against t < m/3 corruptions. In
the first round of the protocol, the parties share their inputs in a (t+ 1)-out-of-m Shamir’s secret

1This is indeed the origin of the term FaF-security (protecting one’s privacy from friends and foes alike).
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sharing scheme [46]. If an adversary, controlling t parties, sends all its t shares to an honest party,
then this honest party can reconstruct the inputs of all other parties.

It may be natural to try to overcome the second type of information leakage by simply in-
structing honest parties to disregard and erase unsolicited messages sent to them by the adversary.
However, in many settings assuming that the parties are able to reliably erase parts of their state
might be unrealistic, due to e.g., physical limitations on erasures. Moreover, it is not even always
clear how to define what should be erased in the first place. Consider, for example, the case that
the adversary has some room for action or some redundancy in the messages it is instructed to send
by the protocol. In such a case, the adversary can implant additional non-prescribed information
about other parties into these messages. Thus, the honest parties receiving these messages are
not able to detect the leakage of information. If, say, the adversary implanted a sharing of some
private information among a subset of honest parties, then, a ‘semi-honest’ entity can reconstruct
this information by taking control over the parties in this subset and seeing their internal states.

In this paper, we investigate the following question that arises from the above discussion.

Can the classical notion of security for malicious adversaries be extended to also prevent
leakage of private information to (possibly colluding) subsets of (semi)-honest parties?

The issue of honest parties being able to obtain information (not available to them from their
inputs and from the output of the functionality) was already shortly mentioned in [45]. They showed
how to construct verifiable secret sharing (and thus compute any functionality) with unconditional
security, assuming broadcast and an honest majority. Their solution for preventing from honest
parties learning additional information was to increase the threshold for the secret sharing used in
the protocol. However, this came at the expense of the bound on the number of corrupted parties.

The solution of [45] may seem as a natural answer to the above question, and it may further
seem that any secure protocol could be turned into one that prevents leakage to honest parties by
increasing the bound on the number of corrupt parties. Say, for example that the protocol should
withstand t malicious parties and we wish to avoid leakage to sets of size h∗ semi-honest parties.
In this case, taking a protocol that is secure (by classical definition) against t+h∗ malicious parties
may seem to suffice for the desired security. However, now one must consider the efficiency toll
incurred by increasing the security threshold. Furthermore, it could be the case that increasing the
threshold would render the protocol altogether insecure. Indeed, in Section 4.1, we give such an
example of a functionality that cannot be computed in the face of t+h∗ malicious parties, but can
be computed with full security in the face of t malicious, while avoiding leakage to any subset of
h∗ honest parties.

Quite surprisingly, we further show that the approach of increasing the threshold simply does
not work in general. In particular, there exist protocols with standard full security against t + 1
malicious parties, yet t malicious parties could leak information to an honest party.2

1.1 Our Contribution

In this paper, we address the above question by putting forth a new security notion, which we call
FaF-security, extending standard (static, malicious) MPC security (in the stand-alone model). We
give a full-security variant as well as a security-with-abort variant for the new notion. In essence,
(t, h∗)-FaF-security requires that for every malicious adversary A corrupting t parties, and for any

2It remains open whether preventing leakage using a different protocol is possible.

2



disjoint subset of h∗ parties, both the view of the adversary and the joint view of the additional h∗
parties can be simulated (separately) in the ideal model. A more elaborate summary of the various
definitions is given in Section 1.1.1. A comprehensive discussion appears in Section 3.

We accompany the new security notion with a thorough investigation of its feasibility and
limitations in the various models of interest. Most notably, we discuss the feasibility of achieving full
FaF-security against computational adversaries, and show that it is achievable for any functionality
if and only if 2t + h∗ < m. Interestingly, the lower-bound result actually shows that any protocol
admits a round in which the adversary can leak the output to some parties without learning it,
however, not allowing other honest parties to learn it. Hence, even fair FaF-security is impossible in
general when 2t+ h∗ ≥ m. In Section 1.1.2 we elaborate on these results. We also investigated the
optimal round-complexity of FaF-secure protocols, and the feasibility of obtaining statistical/perfect
FaF-security. A summary of these also appears in Section 1.1.2.

Finally, we provide an thorough exploration of how the new notion relates to a variety of existing
security notions. Specifically, we show some counter intuitive facts on how FaF-security relates to
standard malicious security and mixed-adversaries security. See Section 1.1.3 for more on that.

1.1.1 FaF-Security – A Generalization of Classical Security

Before moving on to describe our new security notion in more detail, we first recall the notion of
static, malicious, stand-alone security. We stress that while there are stronger security notions,
some of which we mention below, this is arguably the most standard notion, serving much of
the works on secure multiparty computation. Security is defined via the real vs. ideal paradigm.
Here, the security is described as an ideal functionality, where all parties (including the adversary)
interact with a trusted entity. A malicious adversary is, thus, limited to selecting the inputs of the
subset of corrupted parties.

A real-world protocol (for the functionality at hand) is deemed secure if it emulates the ideal
setting. In a bit more detail, the protocol is t-secure, for a class C of adversaries, if for every
adversary A ∈ C, corrupting at most t parties and interacting with the remaining parties, there
exists an ideal-world adversary (called simulator) that outputs a view for the real-world adversary
that is distributed closely to its view in an actual random execution of the real protocol. A static
adversary is one that chooses which parties to corrupt before the execution of the protocol begins.
A formal definition of security is given in Section 3 as a special case of FaF-security.

The notion of FaF-security. We now give a more detailed overview of the new notion of
security. As above, we follow the real vs. ideal paradigm, and strengthen the requirements of
standard security. We say that a protocol Π computes a functionality f with (t, h∗)-FaF security
(with respect to a class C of adversaries), if for any adversary A ∈ C (statically) corrupting at most t
parties, the following holds: (i) there exists a simulator S that can simulate (in the ideal-world) A’s
view in the real-world (so far, this is standard security), and (ii) for any subsetH (of size at most h∗)
of the uncorrupted parties, there exists a “semi-honest” simulator SH, such that, given the parties’
inputs and S’s ideal-world view (i.e., its randomness, inputs, auxiliary input, and output received
from the trusted party), SH generates a view that is indistinguishable form the real-world view of
the parties in H, i.e.,

(
VIEWREAL

H ,OutREAL
)

is indistinguishable from
(

VIEWIDEAL
SH ,OutIDEAL

)
.

The reason for giving SH the ideal-world view of S is that in the real-world, nothing prevents
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the adversary from sending its view to honest parties. Observe that since the definition requires
that the adversary is simulatable according to the standard definition, it also protects the parties
in H from the adversary. This condition is in agreement with our motivation, where the parties
in H are honest but might later collude in a different protocol. The universal quantifier on H
yields, for example, that the definition also captures the model where every uncorrupted party is
honest-but-curious by itself. The formal definition appears in Section 3.

FaF full-security and FaF security-with-abort. So far, we left vague the way that outputs
are being distributed to parties by the trusted party in the ideal-world. The first option is that the
trusted party sends the appropriate output to each of the parties. This captures the notion of full-
security, as it guarantees that the honest parties always receive the output of the computation (in
addition to other properties, such as correctness and privacy). Cleve [18] showed that (standard)
full-security is not generally achievable. This led to a relaxed notion of security, called security-
with-abort. This notion is captured very similarly to the above full-security, with the difference
being that in the ideal-world, the trusted party first gives the output to the adversary, which in
turn decides whether the honest parties see the output or not. This notion is naturally augmented
with identifiability, by requiring the adversary to identify at least one malicious party in case the
output is not given to all honest parties.

In this work, we appropriately define and consider a full-security variant and a security with
(identifiable) abort variant of FaF-security. To define FaF security-with-identifiable-abort, we need
to account for scenarios, where some of the uncorrupted parties learn their output in the real-world
while others do not. Therefore, in the ideal execution, we explicitly allow the “semi-honest” simula-
tor SH to receive the output from the trusted party. The formal definition appears in Section 3.1.

It is also natural to consider a stronger security notion, where the joint view of the malicious
adversary is simulatable together with the view of parties in H. In Section 5.3, we show that this
variant is strictly stronger than the variant defined above. In fact, we show that the GMW protocol
[29] satisfies the weaker notion of FaF-security, but not the stronger notion. In the following, we
will sometimes refer to the weaker notion as weak FaF-security, and refer to the stronger notion as
strong FaF-security.

A natural property that is highly desirable from any definition is to allow (sequential) com-
position. We show that both the weak variant and the strong variant of FaF-security satisfy this
property. In Section 9, we prove the appropriate composition theorem, similar to that of Canetti
[14] for standard security.

1.1.2 Feasibility and Limitations of FaF-Secure Computation

Our main theorem provides a characterization of the types of adversaries, for which we can compute
any multiparty functionality with computational FaF full-security.

Theorem 1.1 (informal). Let t, h∗,m ∈ N. Assuming OT and OWP exist, any m-party functional-
ity f can be computed with (weak) computational (t, h∗)-FaF full-security, if and only if 2t+h∗ < m.

For the positive direction, we first show that the GMW protocol admits FaF security-with-
identifiable-abort. Then, we reduce the computation to FaF security-with-identifiable-abort, using
a player elimination technique. That is, the parties compute a functionality whose output is an
(m− t)-out-of-m secret sharing of f . Since the joint view of the malicious and semi-honest parties
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contain t + h∗ < m − t shares, they learn nothing from the output. We stress that the adversary
itself cannot see the output unless all honest parties see it, and hence, cannot bias the output.

We now turn to the negative direction. Interestingly, we essentially show that for m ≤ 2t+ h∗,
any m-party protocol admits a round in which an adversary (corrupting t parties) can leak the
output to some h∗ uncorrupted parties, while, not allowing other honest parties to learn the output.

Somewhat surprisingly, for the case where t < m/2, there are protocols where the adversary’s
view consists of only random values throughout the execution. Indeed, in our attack, the adversary
learns nothing about the output, and furthermore, the view of the adversary is not used as a trigger
for the attack.

We next give an overview of the proof. First, by a simple player partitioning argument, we
reduce the general m-party case to the 3-party case, where t = h∗ = 1. Let A, B, and C be three
parties. Let f be a one-way permutation. We consider the following functionality. Party A holds
a string a, party C holds a string c, and party B holds yA, yC. The output of all parties is (a, c) if
f(a) = yA and f(c) = yC, and ⊥ otherwise. We assume the strings a and c are sampled uniformly,
and that yA = f(a), yC = f(c).

An averaging argument yields that there must exists a round i, where two parties, say A together
with B, can recover (a, c) with significantly higher probability than C together with B. Our attacker
corrupts A, acts honestly (using its original input a) until round i and then aborts (regardless of
its view so far). Finally, as the protocol terminates, A will send its entire view to B. This allows
B it to recover (a, c) with significantly higher probability than C.

Intuitively, in order to have the output of the honest party C in the ideal world distributed
as in the real world (where it is with noticeable probability ⊥), the malicious simulator have to
change its input (sent to the trusted party) with high enough probability. However, in this case,
the semi-honest simulator for B, receives ⊥ from the trusted party. Since the only information it
has on c is f(c), by the assumed security of f , the simulator for B will not be able to recover c with
non-negligible probability. Hence, B’s simulator will fail to generate a valid view for B.

We stress that since A aborts at round i, independently of its view, our attack works even if
the parties have a simultaneous broadcast channel. The detailed proof appears in Section 4.2.

Low round complexity. Optimal round complexity of protocols is a well studied question for
classical MPC (see, e.g., [7, 8, 27, 35]). Here, we explore the optimal number of rounds required for
general computation with (1, 1)-FaF full-security. Our motivation for investigating this question
comes from the two-round protocol of Ishai et al. [35], tolerating a single malicious party. In the
second round, the honest parties can either complete the computation or are able to detect the
malicious party. If a party was detected cheating, then the honest parties reveal their inputs to
some of the other honest parties.

Clearly, this is not considered secure according to FaF-security. Indeed, we prove that there
are functionalities that cannot be computed with (1, 1)-FaF security in less than three round. We
interpret this as evidence that some kind of leakage on the inputs of honest parties is necessary in
order to achieve a two-round protocol.3 The next theorem completes the picture, asserting that for
m ≥ 9 parties, the optimal round for (1, 1)-FaF full-security is three.

Theorem 1.2 (informal). Let m ≥ 9. There exists an m-party functionality that has no 2-round
protocol that computes it with (weak) (1, 1)-FaF full-security. On the other hand, assuming that

3Naturally, we do not claim that the protocol must instruct honest parties to leak information. Rather, we prove
that a malicious adversary can leak the private information of honest parties.
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pseudorandom generators exist, for any m-party functionality, there exists a 3-round protocol that
computes it with strong (1, 1)-FaF full-security.

We now present an overview of the proof. For the negative direction, we rely on the proof
by Gennaro et al. [27] of the impossibility to compute (x1, x2,⊥, . . . ,⊥) 7→ x1 ∧ x2 in two rounds
against two corrupted parties. We observe that the adversary they proposed corrupts one party
maliciously and another semi-honestly. Moreover, the semi-honest corrupted party has no input,
hence the actions of the adversary can be adopted into our setting. More concretely, we show that
an adversary corrupting P2, can force all of the parties to gain specific information on x1, yet by
sending its view (at the end of the interaction) to a carefully chosen honest party, it can “teach”
that party some information about x1 that no other party has (not even the adversary itself). This
proof, in fact, works for any m ≥ 3.

For the positive direction, we consider the protocol of Damg̊ard and Ishai [20]. Using share
conversion techniques ([19]) and the 2-round verifiable secret sharing (VSS) protocol of [26], they
were able to construct a 3-round protocol that tolerates t < m/5 corruptions. We follow similar
lines as [20]. First we show how to slightly modify the VSS protocol so it will admit FaF-security.
Then, by making the observation that the parties in the protocol of [20] hold only shares of the
other parties’ input, we are able to show that by increasing the threshold of the sharing scheme, the
protocol admits FaF-security. The construction of the VSS protocol follows similar lines as in [26].
We further show that the protocol can be generalized to admit (t, h∗)-FaF full-security, whenever
5t+ 3h∗ < m.

Information theoretic FaF-security. Information theoretic security have been studied exten-
sively in the MPC literature, see e.g., [12, 45, 24] . We further generalize the corruption model
to allow non-threshold adversaries (for both the malicious and the semi-honest adversaries). We
consider the same adversarial structure as Fitzi et al. [24], called monotone mixed adversarial struc-
ture. Roughly, it states that turning a malicious party to being semi-honest does not compromise
the security of the protocol. As discussed previously, this is not generally the case.

We prove the following theorem, characterizing the types of adversaries, for which we can
compute any multiparty functionality with information theoretic security.

Theorem 1.3 (informal). Let R ⊆ {(I,H) : I ∩ H = ∅} be a monotone mixed adversarial structure
over a set of parties P. Then:

1. Any m-party functionality f can be computed with R-FaF full-security, assuming an available
broadcast channel, if and only if

I1 ∪H1 ∪ I2 ∪H2 6= P,

for every (I1,H1), (I2,H2) ∈ R.

2. Any m-party functionality f can be computed with R-FaF full-security (without broadcast), if
and only if

I1 ∪H1 ∪ I2 ∪H2 6= P and I1 ∪ I2 ∪ I3 6= P,

for every (I1,H1), (I2,H2), (I3,H3) ∈ R.
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3. Any m-party functionality f can be computed with R-FaF full-security, if and only if

I1 ∪H1 ∪ I2 ∪H2 ∪ I3 6= P,

for every (I1,H1), (I2,H2), (I3,H3) ∈ R.

Interestingly, the positive direction holds with respect to strong FaF-security, and the negative
holds with respect to weak FaF-security. Additionally, as Fitzi et al. [24] showed that the same
conditions hold with respect to mixed adversaries, this yields an equivalence between all three
notions of security, as far as general MPC goes for monotone adversarial structures.

The proof follows similar lines as [24]. For the positive direction we show how the parties can
securely emulate a 4-party BGW protocol tolerating a single malicious party. The negative direction
is done by reducing the computation to a functionality known to be impossible to compute securely
(according to the standard definition), using a player partitioning argument. The formal definition
of monotone structures and proofs appear in Section 7.

1.1.3 The Relation Between FaF Security and Other Definitions

The relation between FaF-security and standard full-security. It is natural to explore how
the new definition relates to classical definitions both in the computational and in the information-
theoretic settings.

We start by comparing FaF-security to the standard definition (for static adversaries). It
is easy to see that standard t-security does not imply in general (t, h∗)-FaF full-security, even for
functionalities with no inputs (see Section 5.1 for a simple example showing this). Obviously, (t, h∗)-
FaF-security readily implies its classical t-security counterpart. One might expect that classical
(t + h∗)-security must imply (t, h∗)-FaF-security. We show that this is not the case in general.
Specifically, in Example 5.1, we present a protocol that admits traditional (static) malicious security
against t corruptions, however, it does not admit (t− 1, 1)-FaF-security.

In contrast to the above, we claim that adaptive (t + h∗)-security implies strong (t, h∗)-FaF
full-security. Recall that an adaptive adversary is one that can choose which parties to corrupt
during the execution and after the termination of the protocol and depending on its view. Indeed,
strong FaF-security can be seen as a special case of adaptive security. We do believe, however,
that the FaF model is of special interest, and specifically, that in many scenarios, the full power of
adaptive security is an overkill.

The relation between FaF-security and mixed-adversaries security. The notion of “mixed
adversaries” was introduced in [24]. It considers a single entity that corrupts a subset I maliciously,
and another subset H semi-honestly. Similarly, the simulator for a mixed adversary is a single
simulator controlling the parties in I ∪ H, with the restriction of only being able to change the
inputs of the parties in I.

It is instructive to compare the mixed-adversary notion to that of FaF-security, which in turn,
can be viewed as if there are two distinct adversaries (which do not collude) – one malicious and one
semi-honest. One might expect that (t, h∗)-mixed full-security would imply (t, h∗)-FaF full-security.
However, similarly to the case with standard security, we show the that this is not generally the
case in the computational setting (cf., Example 5.4).
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1.2 Related Works

Definitions of standard MPC where the subject of much investigation in the area of MPC. Notable
works introducing various definitions are [43, 5, 6, 14, 28]. The question of achieving (standard)
full-security was given quite some attention. See, e.g., [4, 18, 21, 31, 42] for two parties, [4, 12, 30]
in the multiparty setting.

The definition we propose can also be viewed as if there where two different adversaries, one is
corrupting actively and the second is corrupting passively, while the adversaries cannot exchange
messages outside of the environment. Some forms of “decentralized” adversaries were considered
in [2, 3, 15, 38], with the motivation of achieving collusion-free protocols. However, unlike our
definition, the definitions they proposed were both complicated, and did not allow an external
entity to corrupt more than a single party.

Fitzi et al. [24] where the first to consider the notion of mixed adversaries. In their model, an
adversary can corrupt a subset of the parties actively, and another subset passively. Moreover, their
work considered general non-threshold adversary structures. They gave a complete characterization
of the adversary structures for which general unconditional MPC is possible, for four different
models: Perfect security with and without broadcast, and statistical security (with negligible error
probability) with and without broadcast. Beerliová-Trub́ıniová et al. [9], Hirt et al. [34] further
studied adversaries that can additionally fail-corrupt another subset of parties. They give the exact
conditions for general secure function evaluation (SFE) and general MPC to be possible for perfect
security, statistical security, and for computational security, assuming a broadcast channel. In all
these settings they confirmed the strict separation between SFE and MPC. Koo [39] considered
adversaries that can maliciously corrupt certain parties, and in addition omission corrupt others.
Omission corruptions allow the adversary to either block incoming and outgoing messages. Zikas
et al. [49] further refined this model by introducing the notions of send-omission corruptions, where
the adversary can selectively block outgoing messages, and receive-omission corruption, where the
adversary can selectively block incoming messages. For a full survey of works on those notions of
mixed adversaries see Zikas [48].

1.3 Organization

In Section 2 we present the required preliminaries. In Section 3 we formally define our new notion
of FaF-security. Then, in Section 4 we characterize computational FaF full-security. In Section 5
we compare the new definition to other existing notions of security. Section 6 is dedicated to the
low-round complexity theorems. In Section 7 we explore the feasibility of general FaF-secure MPC
in the information theoretic settings. In Section 8, we review some of the subtleties in defining the
proposed notion. Finally, the composition theorem is given in Section 9.

2 Preliminaries

We use calligraphic letters to denote sets, uppercase for random variables, lowercase for values, and
we use bold characters to denote vectors. For n ∈ N, let [n] = {1, 2 . . . n}. For a set S we write
s ← S to indicate that s is selected uniformly at random from S. Given a random variable (or
a distribution) X, we write x ← X to indicate that x is selected according to X. A PPTM is a
polynomial time Turing machine.
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A function µ(·) is called negligible, if for every polynomial p(·) and all sufficiently large n, it
holds that µ(n) < 1/p(n). For a vector v of dimension n, we write vi for its i-th component, and
for S ⊆ [n] we write vS = (vi)i∈S . For a randomized function (or an algorithm) f we write f(x)
to denote the random variable induced by the function on input x, and write f(x; r) to denote the
value when the randomness of f is fixed to r.

A distribution ensemble X = {Xa,n}a∈Dn,n∈N is an infinite sequence of random variables indexed
by a ∈ Dn and n ∈ N, where Dn is a domain that might depend on n. The statistical distance
between two finite distributions is defined as follows.

Definition 2.1. The statistical distance between two finite random variables X and Y is

SD (X,Y ) = 1
2
∑
a

|Pr [X = a]− Pr [Y = a]| .

Two ensembles X = {Xa,n}a∈Dn,n∈N and Y = {Ya,n}a∈Dn,n∈N are said to be statistically close,
denoted X

S≡ Y , if there exists a negligible function µ(·), such that for all n and a ∈ Dn, it holds
that

SD (Xa,n, Ya,n) ≤ µ(n).

Computational indistinguishability is defined as follows.

Definition 2.2. Let X = {Xa,n}a∈Dn,n∈N and Y = {Ya,n}a∈Dn,n∈N be two ensembles. We say that
X and Y are computationally indistinguishable, denoted X

c≡ Y , if for every non-uniform PPTM
D, there exists a negligible function µ(·), such that for all n and a ∈ Dn, it holds that

|Pr [D(Xa,n) = 1]− Pr [D(Ya,n) = 1]| ≤ µ(n).

Definition 2.3. Let X = {Xn}n∈N be an ensemble, such that each Xn takes values in {0, 1}m, for
m = m(n). Denote U = {Um}m∈N where Um is the uniform distribution over {0, 1}m. We say that
X is pseudorandom if X c≡ U .

A a polynomial time computable function G : {0, 1}n 7→ {0, 1}m with m = m(n) > n, is called
pseudorandom generator if {G (Un)}n∈N is pseudorandom.

2.1 Cryptographic Tools

Oblivious Transfer. Oblivious Transfer (OT) [44, 23] is a 2-party functionality, fundamental
to secure multiparty computation. In the setting 1-out-of-2 OT, we have a receiver holding a bit
b ∈ {0, 1}, and a sender holding two messages m0,m1. At the end of the interaction, the receiver
learns mb and nothing else, and the sender learns nothing.

Secret Sharing Schemes. A (t + 1)-out-of-m secret-sharing scheme (also called t-private) is a
mechanism for sharing data among a set of parties P of size m, such that every set of size t + 1
can reconstruct the secret, while any smaller set knows nothing about the secret. As a convention,
for a secret s and a party Pi ∈ P, we let s[i] be the share received by Pi. For a subset S ⊆ P we
denote s[S] = (s[i])i∈S . In this work, we rely on several variants of secret sharing scheme. We next
briefly describe the sharing schemes.

In a (t + 1)-out-of-m Shamir’s secret sharing scheme over a field F, where |F| > m, a secret
s ∈ F is shared as follows: A polynomial p(·) of degree at most t+ 1 over F is picked uniformly at
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random, conditioned on p(0) = s. Each party Pi, for 1 ≤ i ≤ m, receives a share s[i] := p(i) (we
abuse notation and let i be the element in F associated with Pi).

We will make use of the following homomorphic property of Shamir secret sharing.

Fact 2.4. Let Q(x1, . . . , xm; r1, . . . , rk) be a multivariate polynomial of degree d over the field
GF(2n). Here, we assume that each xi is being held by party Pi and that each ri ∈ {0, 1}n is
random. In addition, the xi’s and rj’s are all shared among all parties in a (t+1)-out-of-m Shamir
secret sharing scheme, and the value z = 0 is shared among all parties in a (dt+1)-out-of-m Shamir
secret sharing scheme. Then Q (x1[i], . . . , xm[i]; r1[i], . . . , rk[i]) + z[i] is a dt-private Shamir share
of Q(x1, . . . , xm; r1, . . . , rk).

Beimel et al. [11] presented a way to construct a secret sharing scheme with respect to a certain
party. We use that in our construction as well, and refer to it as (t + 1)-out-of-m Shamir secret
sharing scheme with respect to (the designated) party Pj .4

Construction 2.5. Let s be some secret taken from some finite field F. We share s among m
parties with respect to a special party Pj in a (t+ 1)-out-of-m secret-sharing scheme as follows:

1. Choose shares (s[1], s[2]) of the secret s in a two-out-of-two secret-sharing scheme, that is,
select s[1] ∈ F uniformly at random and compute s[2] = s − s[1]. Denote these shares by
maskj (s) and comp (s), respectively.

2. Generate shares (s[2, 1], . . . , s[2, j − 1], s[2, j + 1], . . . , s[2,m]) of the secret comp (s) in a t-
out-of-(m− 1) Shamir’s secret-sharing scheme. For each ` 6= j, denote comp` (s) = s[2, `].

Output:

• The share of party Pj is maskj (s). We call this share, Pj’s masking share.

• The share of each party P`, where ` 6= j, is comp` (s). We call this share, P`’s complement
share.

In the above, the secret s is shared among the parties in P in a secret-sharing scheme such that
any set of size at least t + 1 that contains Pj can reconstruct the secret. In addition, similarly to
Shamir’s secret-sharing scheme, the following property holds: for any set of t′ ≤ t parties (regardless
if the set contains Pj), the shares of these parties are uniformly distributed and independent of the
secret. Furthermore, given such t′ ≤ t shares and a secret s, one can efficiently complete them to
m shares of the secret s and efficiently select uniformly at random one vector of shares completing
the t′ shares to m shares of the secret s.

In a (t + 1)-out-of-m CNF scheme over an Abelian group G, a secret s ∈ F is shared as
follows: For every subset S ⊆ [m] of size t, pick s[S] from G uniformly at random, condi-
tioned on s =

∑
S⊆[m]:|S|=t s[S]. Each party Pi, for 1 ≤ i ≤ m, receives the

(m−1
t

)
shares

s[i] := (s[S])S⊆[m]\{i}:|S|=t.

4In standard secret sharing terminology, the scheme is a secret sharing scheme for an access structure with minterm
set {Pj ∪S : S ⊆ P, |S| = t}.
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Verifiable Secret Sharing Schemes. Verifiable Secret Sharing (VSS) [17, 28] is a secure multi-
party protocol for computing the randomized functionality corresponding to some (non-verifiable)
secret sharing scheme. It is a special type of secret sharing scheme, that allows a dealer to share a
secret among several players in a way that would later allow a unique reconstruction of the secret.
Specifically, when a dealer D shares a secret s the following should hold:

Privacy: If D is honest, then the adversary’s view reveals no information on s.

Correctness: If D is honest, then the honest parties will always be able to reconstruct the secret
s, regardless of the views provided by the adversary.

Commitment: If D is malicious, the honest parties will always reconstruct a unique value s∗,
regardless of the views provided by additional malicious parties.

Error Correcting Secret Sharing Schemes. A (t+ 1)-out-of-m secret-sharing scheme is also
error correcting,5 if the reconstruction algorithm outputs the correct secret even when up to t shares
are arbitrarily modified. It is a known fact that a (t+ 1)-out-of-m Shamir’s secret sharing scheme
is error correcting if d + 2t < m, where d ≥ t is the degree of the polynomial used in the sharing
phase.

Secure Multicast. Secure multicast with sender D and multicast set M ⊆ P, where D ∈ M,
may be formally defined as a secure multiparty evaluation of the following function: D holds a
message M as input, and all other parties have no input. All parties in M receive M as their
output, and all other parties receive no output. Specifically, the computation should satisfy the
following conditions:

Privacy: If all parties in M are honest, then the adversary learns no information on M .

Correctness: If D is honest, then all honest parties in M output x.

Agreement: All honest parties in M output the same value, even if D is corrupted.

One-Way Permutations. A one-way permutation is an efficiently computable permutation,
that no polynomial time algorithm can invert. Formally, it is defined as follows.

Definition 2.6. Let f = {fn : {0, 1}n 7→ {0, 1}n} be efficiently computable permutations. We say
that f is a one-way permutation if for any PPTM A there exists a negligible function µ(·), such
that for all sufficiently large n, we have

Pr
x←{0,1}n

[A (1n, fn(x)) = x] ≤ µ(n).

3 The New Definition – FaF Full-Security

In this section, we present our new security notion, aiming to strengthen the classical definition of
security in order to impose privacy restrictions on (subsets of) honest parties, even in the presence
of malicious behavior by other parties. Crucially, we wish to prevent the adversary from leaking

5Such schemes are also known as robust secret sharing.
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private information of one subset of parties to another subset of parties, even though neither subset
is under its control. The definition is written alongside the classical definition.

We follow the standard ideal vs. real paradigm for defining security. Intuitively, the security
notion is defined by describing an ideal functionality, in which both the corrupted and non-corrupted
parties interact with a trusted entity. A real-world protocol is deemed secure if an adversary in the
real-world cannot cause more harm than an adversary in the ideal-world. In the classical definition,
this is captured by showing that an ideal-world adversary (simulator) can simulate the full view
of the real world adversary. For FaF security, we further require that the view of any subset of
the uncorrupted parties can be simulated in the ideal-world (including the interaction with the
adversary).

To shed some light on some of the subtleties in defining the proposed notion, inSection 8we
review several possible approaches for capturing the desired security notion (avoiding leakage to
honest parties), and demonstrate why they fall short in doing so. In Section 5, we compare the actual
definition we put forth with the standard full-security definition, and with the mixed-adversaries
definition.

To make the above intuition more formal, fix a (possibly randomized) m-ary function f =
{fn : X n1 × · · · × X nm 7→ Yn1 × · · · × Ynm}n∈N and let Π be a protocol for computing f . We further
let X n = X n1 × · · · × X nm.

The FaF Real Model

An m-party protocol Π for computing the function f is defined by a set of m interactive probabilistic
polynomial-time Turing machines P = {P1, . . . ,Pm}. Each Turing machine (party) holds the
security parameter 1n as a joint input and a private input xi ∈ X ni . The computation proceeds in
rounds. In each round, the parties either broadcast and receive messages over a common broadcast
channel, or send messages to an individual party over a secure channel. The number of rounds in
the protocol is expressed as some function r(n) in the security parameter (where r(n) is bounded
by some polynomial). At the end of the protocol, the (honest) parties output a value according
to the specifications of the protocol. When the security parameter is clear from the context, we
remove it from the notations. The view of a party consists of the party’s input, randomness, and
the messages received throughout the interaction.

We consider two adversaries. The first is a malicious adversary A that controls a subset I ⊂ P.
The adversary has access to the full view of all corrupted parties. Additionally, the adversary
may instruct the corrupted parties to deviate from the protocol in any way it chooses. We make
explicit the fact that the adversary can send messages (even if not prescribed by the protocol)
to any uncorrupted party – in every round of the protocol, and can do so after all messages for
this round were sent (see Remark 3.1 for more on this). The adversary is non-uniform, and is
given an auxiliary input zA. The second adversary is a semi-honest adversary AH that controls
a subset H ⊂ P \ I of the remaining parties (for the sake of clarity, we will only refer to the
parties in I as corrupted). Similarly to A, this adversary also has access to the full view of its
parties. However, AH cannot instruct the parties to deviate from the prescribed protocol in any
way, but may try to infer information about non-corrupted parties, given its view in the protocol
(which includes the joint view of parties in H). This adversary is also non-uniform, and is given
an auxiliary input zH. When we say that the adversary is computationally bounded, we mean it
is a PPTM. Both adversaries are static, that is, they choose the subset to corrupt prior to the
execution of the protocol. For a subset of parties S ⊆ P, we let xS be the vector of inputs of the
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parties in S, specifically, xI and xH denote the vector of inputs of the parties controlled by A and
AH respectively.

We next define the real-world global view for security parameter n ∈ N, an input sequence
x = (x1, . . . , xm), and auxiliary inputs zA, zH ∈ {0, 1}∗ with respect to adversaries A and AH
controlling the parties in I ⊂ P and H ⊂ P \ I respectively. Let OUTREAL

A,Π (1n,x) denote the
outputs of the uncorrupted parties (those in P \ I) in a random execution of Π, with A corrupting
the parties in I. Further let VIEWREAL

A,Π (1n,x) be the adversary’s view during an execution of Π,
which contains its auxiliary input, its random coins, the inputs of the parties in I, and the messages
they see during the execution of the protocol. In addition, we let VIEWREAL

A,AH,Π (1n,x) be the view of
AH during an execution of Π when running alongside A (this view consists of their random coins,
their inputs, and the messages they see during the execution of the protocol, and specifically, those
non-prescribed messages sent to them by the adversary).

We denote the global view in the real model by

REALΠ,A,AH
1n,x,zA,zH =

(
VIEWREAL

A,Π (1n,x) , VIEWREAL
A,AH,Π (1n,x) , OUTREAL

A,Π (1n,x)
)
.

It will be convenient to denote

REALΠ,A,AH
1n,x,zA,zH (A) =

(
VIEWREAL

A,Π (1n,x) , OUTREAL
A,Π (1n,x)

)
,

i.e., the projection of REALΠ,A,AH
1n,x,zA,zH to their view of the adversary and the uncorrupted parties’

output (those in P \ I), and denote

REALΠ,A,AH
1n,x,zA,zH (AH) =

(
VIEWREAL

A,AH,Π (1n,x) , OUTREAL
A,Π (1n,x)

)
.

When Π is clear from the context, we will remove it for brevity.

Remark 3.1. A subtlety in the proposed model is how to deal with messages sent by the adversary
at a later point in time, after the protocol execution terminated. Specifically, if honest parties need
to react to such messages, then the protocol has no predefined termination point. It is possible to
incorporate a parameter τ of time to the security definition, asserting that the protocol is secure
until time τ . To keep the definition clean and simple, we overcome this subtlety by only allowing
the real-world adversary to communicate with other (non-corrupted) parties until the last round of
the protocol.

The FaF Ideal Model

We next describe the interaction in the FaF full-security ideal model, which specifies the require-
ments for fully secure FaF computation of the function f with security parameter n. Let A be an
adversary in the ideal-world, which is given an auxiliary input zA and corrupts the subset I of the
parties called corrupted. Further let AH be a semi-honest adversary, which is controlling a set of
parties denoted H and is given an auxiliary input zH. We stress that the classical formulation of
the ideal model assumes H = ∅.

The FaF ideal model – full-security.

Inputs: Each party Pi holds 1n and xi ∈ X ni . The adversaries A and AH are given each an
auxiliary input zA, zH ∈ {0, 1}∗ respectively, and xi for every Pi controlled by them. The
trusted party T holds 1n.
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Parties send inputs: Each uncorrupted party Pj ∈ P\I sends xj as its input to T. The malicious
adversary A sends a value x′i ∈ X ni as the input for party Pi ∈ I. Write (x′1, . . . , x′m) for the
tuple of inputs received by the trusted party.

The trusted party performs computation: The trusted party T selects a random string r and
computes y = (y1, . . . , ym) = f (x′1 . . . , x′m; r) and sends yi to each party Pi.

The malicious adversary sends its (ideal-world) view: A sends to AH its randomness, in-
puts, auxiliary input, and the output received from T.

Outputs: Each uncorrupted party (i.e., not in I) outputs whatever output it received from T, the
parties in I output nothing. A and AH output some function of their respective view.

Note that we gave AH the ideal-world view of A. This is done due to the fact that in the real-
world, we cannot prevent the adversary from sending its entire view to the uncorrupted parties.
Consider the following example. Suppose three parties computed a functionality (⊥,⊥,⊥) 7→
(r,⊥, r), where r is some random string. A corrupted P1 can send r to P2 at the end of the
interaction, thereby teaching it the output of an honest party. In the ideal-world described above,
AP2 will receive r as well, allowing us to simulate this interaction.

We next define the ideal-world global view for security parameter n ∈ N, an input sequence
x = (x1, . . . , xm), and auxiliary inputs zA, zH ∈ {0, 1}∗ with respect to adversaries A and AH
controlling the parties in I ⊂ P andH ⊂ P\I respectively. Let OUTIDEAL

A,f (1n,x) denote the outputs
of the uncorrupted parties (those in P \I) in a random execution of the above ideal-world process,
with A corrupting the parties in I. Further let VIEWIDEAL

A,f (1n,x) be the (simulated, real-world)
view description being the output of A in such a process. In addition, we let VIEWIDEAL

A,AH,f (1n,x)
be the view description being the output of AH in such a process, when running alongside A. We
denote the global view in the ideal model by

IDEALf,A,AH1n,x,zA,zH =
(

VIEWIDEAL
A,f (1n,x) , VIEWIDEAL

A,AH,f (1n,x) , OUTIDEAL
A,f (1n,x)

)
.

As in the real model, it will be convenient to denote

IDEALf,A,AH1n,x,zA,zH (A) =
(

VIEWIDEAL
A,f (1n,x) , OUTIDEAL

A,f (1n,x)
)

and

IDEALf,A,AH1n,x,zA,zH (AH) =
(

VIEWIDEAL
A,AH,f (1n,x) , OUTIDEAL

A,f (1n,x)
)
.

When f is clear from the context, we will remove it for brevity. We first define correctness.

Definition 3.2 (correctness). We say that a protocol Π computes a function f if for all n ∈ N and
for all x ∈ X n, in an honest execution, the joint output of all parties is identically distributed to a
sample of f(x).

We next give the definition for the classical definition of computational security alongside FaF-
security.
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Definition 3.3 (classical malicious and FaF security). Let Π be a protocol for computing f . We say
that Π computes f with computational (t, h∗)-FaF full-security, if the following holds. For every
non-uniform PPTM adversary A, controlling a set I ⊂ P of size at most t in the real-world, there
exists a non-uniform PPTM adversary SA, controlling I in the ideal model; and for every subset of
the remaining parties H ⊂ P\I of size at most h∗, controlled by a non-uniform semi-honest PPTM
adversary AH, there exists a non-uniform PPTM adversary SA,H, controlling H in the ideal-world,
such that{

IDEAL
SA,SA,H
1n,x,zA,zH (SA)

}
x∈X ,zA,zH∈{0,1}∗,n∈N

c≡
{

REALA,AH1n,x,zA,zH (A)
}

x∈X ,zA,zH∈{0,1}∗,n∈N
, (1)

and{
IDEAL

SA,SA,H
1n,x,zA,zH (SA,H)

}
x∈X ,zA,zH∈{0,1}∗,n∈N

c≡
{

REALA,AH1n,x,zA,zH (AH)
}

x∈X ,zA,zH∈{0,1}∗,n∈N
. (2)

We say that Π computes f with computational t-security if it computes it with computational (t, 0)-
FaF full-security.

Finally, we say that Π computes f with strong computational (t, h∗)-FaF full-security if{
IDEAL

SA,SA,H
1n,x,zA,zH

}
x∈X ,zA,zH∈{0,1}∗,n∈N

c≡
{

REALA,AH1n,x,zA,zH

}
x∈X ,zA,zH∈{0,1}∗,n∈N

. (3)

To abbreviate notations, whenever H = {P} we denote its simulator by SA,P.
In Section 7, we give the statistical/perfect security variants of the above definitions. These

variants are obtained naturally from the above definition by replacing computational indistinguisha-
bility with statistical distance.

Remark 3.4. Observe that for the two-party case, since we also protect H from A, (weak) (1, 1)-
FaF-security is equivalent to the security considered by Beimel et al. [10]. There, security holds if
and only if no malicious adversary and no semi-honest adversary can attack the protocol.

Remark 3.5. Observe that according to the definition, we first need to describe a malicious simu-
lator before fixing the semi-honest parties in H. This should be considered in regard to the definition
of the ideal-model, where the malicious simulator SA sends to the semi-honest simulator SA,H its
ideal-world view, implying that SA should know the identities of H. Formally, we let the mali-
cious simulator have an additional tape, where it writes its ideal-world view on it, and then the
semi-honest simulator reads from it.

f-Hybrid Model. Let f be a m-ary functionality. The f -hybrid model is identical to the real
model of computation discussed above, but in addition, each m-size subset of the parties involved,
has access to a trusted party realizing f .

3.1 FaF Security-With-Identifiable-Abort

We also make use of protocols admitting security-with-identifiable-abort. In terms of the definition,
the only requirement that is changed, is to have the ideal-world simulator operate in a different
ideal model. We next describe the interaction in the FaF-secure-with-identifiable-abort ideal model
for the computation of the function f with security parameter n. Unlike the full-security ideal
model, here the malicious adversary can instruct the trusted party to not send the output to the

15



honest parties, however, in this case the adversary must publish the identity of a corrupted party.
In addition, since there is no guarantee that in the real-world the semi-honest parties won’t learn
the output, we always let the semi-honest parties to receive their output in the ideal execution.

Let A be a malicious adversary in the ideal-world, which is given an auxiliary input zA and
corrupts the subset I of the parties. Further let AH be a semi-honest adversary, which is controlling
a set of parties denoted H and is given an auxiliary input zH. Just like in the full-security ideal-
world, the standard formulation of security-with-identifiable-abort assumes H = ∅.

The FaF ideal model – security-with-identifiable-abort.

Inputs: Each party Pi holds 1n and xi ∈ X ni . The adversaries A and AH are given each an
auxiliary input zA, zH ∈ {0, 1}∗ respectively, and xi for every Pi controlled by them. The
trusted party T holds 1n.

Parties send inputs: Each uncorrupted party Pj ∈ P\I sends xj as its input to T. The malicious
adversary sends a value x′i ∈ X ni as the input for party Pi ∈ I. Write (x′1, . . . , x′m) for the
tuple of inputs received by the trusted party.

The trusted party performs computation: The trusted party T selects a random string r and
computes y = (y1, . . . , ym) = f (x′1 . . . , x′m; r) and sends yI to A and yH to AH.

The malicious adversary sends its (ideal-world) view: A sends to AH its randomness, in-
puts, auxiliary input, and the output received from T.

Malicious adversary instructs trusted party to continue or halt: the adversary A sends
either continue or (abort,Pi) for some Pi ∈ I to T. If it sent continue, then for every
honest party Pj the trusted party sends yj . Otherwise, if A sent (abort,Pi), then T sends
(abort,Pi) to the each honest party Pj .

Outputs: Each uncorrupted party outputs whatever output it received from T (the parties in H
output (abort,Pi) if they received it in the last step), the parties in I output nothing. The
adversaries output some function of their respective view.

4 Characterizing Computational FaF-Security

In this section we prove our main theorem regarding FaF-security. We give a complete charac-
terization the types of adversaries, for which we can compute any multiparty functionality with
computational FaF full-security. We prove the following result.

Theorem 4.1. Let t, h∗,m ∈ N. Then under the assumption that OT and OWP exist, any m-party
functionality f can be computed with (weak) computational (t, h∗)-FaF full-security, if and only if
2t+ h∗ < m. Moreover, the negative direction holds even assuming the availability of simultaneous
broadcast.

In Section 4.1 we show the positive direction, while in Section 4.2 we prove the negative direction.

16



4.1 Feasibility of FaF-Security

In this section, we prove the positive direction of Theorem 4.1. In fact, we show how to reduce
FaF full-security to FaF security-with-identifiable-abort whenever 2t + h∗ < m. In addition, we
explore the feasibility of both FaF full-security and FaF security-with-identifiable-abort, and provide
interesting consequences of these results. We first show that the GMW protocol [29] admits FaF
security-with-identifiable-abort, for all possible threshold values of t and h∗, and admits FaF full-
security assuming t+ h∗ < m/2. In Section 4.1.2 we show that, assuming an uncorrupted majority
(i.e., t < m/2), residual FaF full-security is (perfectly) reducible to FaF-security-with-identifiable-
abort. The notion of residual security [33], intuitively allows an adversary to learn the output of the
function on many choices of inputs for corrupted parties. A formal definition and some motivation
for using residual security variant appear in Section 4.1.2.

4.1.1 Feasibility of FaF Security-With-Identifiable-Abort

We next show that the GMW protocol admits FaF security-with-identifiable-abort, and admits
FaF full-security in the presence of an honest majority (i.e., t+ h∗ < m/2).

Theorem 4.2. Let m, t, h∗ ∈ N be such that t + h∗ ≤ m and Let f be an m-party functionality.
Then, assuming OT exists, there exists a protocol for computing f with (weak) computational
(t, h∗)-FaF security-with-identifiable-abort. Moreover, if t + h∗ < m/2 then the protocol admits
computational (t, h∗)-FaF full-security.

Proof Sketch. We will show that a slight variation on the GMW protocol [29], setting the secret
sharing (for sharing the inputs) to a (t+ h∗ + 1)-out-of-m scheme, admits FaF-security.

Fix an adversary A corrupting I of size at most t, and let H ⊆ P \ I be of size at most h∗.
The semi-honest simulator SA,H will work very similarly to the malicious simulator SA. The only
difference is that the messages it sends to the adversary on behalf of the parties in H, are the
real message that the protocol instruct them to send (e.g., in the input commitment phase it will
commit to the real input unlike SA, which commits to 0). Additionally, if the adversary did not
abort, for every output wire held by a party in I ∪ H, set the message received from the honest
parties (i.e., from P \ (I ∪ H)) as the XOR of the output of that wire and the shares of the wire
held by the corrupted and semi-honest parties.

Security follows from the fact that the messages SA,H sends to A are consistent with the inputs
of the malicious and the semi-honest parties.

�

4.1.2 Reducing Residual FaF Full-Security to FaF Security-With-Identifiable-Abort

In this section, we present a reduction from residual FaF full-security to FaF security-with-
identifiable-abort, in the uncorrupted majority setting. This reduction further has the property
that if 2t + h∗ < m then FaF full-security is obtained (i.e., not residual). We first formally define
the residual function. Intuitively, the residual of an m-ary function with respect to a subset S of
the indexes, fixes the inputs on the indexes [m] \ S. More formally, it is defined as follows.
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Definition 4.3 (Residual Function [33, 32]). Let f : X 7→ Y be an m-ary functionality, let x =
(x1, . . . , xm) be an input to f , and let S = {i1, ..., im′} ⊆ [m] be a subset of size m′. The residual
function of f for S and x is an m′-ary function fS,x : Xi1 × . . . × Xim′ 7→ Yi1 × . . . × Yim′ ,
obtained from f by restricting the input variables indexed by [m] \ S to their values in x. That is,
fS,x (x′1, . . . , x′m′) = f (x1, . . . , xm), where for k /∈ S we have x′k = xk, while for k = ij ∈ S we have
x′k = xj.

Residual FaF full-security is defined similarly to FaF full-security, with the only exception being
in the ideal-world, the two adversaries receive the residual function fI,x instead of a single output
(all the uncorrupted parties still receive an output from T, which they output).

Before stating the result, we first define the functionalities to which we reduce the computation.
For an m-party functionality f , and for m′ ∈ {m− t, . . . ,m}, we define the m′-party functionality
f ′m′(x) in the security-with-identifiable-abort model as follows. Let y = (y1, . . . , ym) be the output
of f(x). Share each yi in an (m − t)-out-of-m′ Shamir’s secret sharing with respect to party Pi
(See Construction 2.5). The output of party Pj is its respective shares of each yi, i.e., Pj receives
(yi[j])mi=1. We next present the statement. The proof is given in Section 4.1.3.

Lemma 4.4. Let m, t, h∗ ∈ N be such that t+h∗ ≤ m(n) and that t < m/2, and let f be an m-party
functionality. Then there exists a protocol Π that computes f with strong perfect (t, h∗)-residual
FaF full-security in the

(
f ′m−t, . . . , f

′
m

)
-hybrid model. Moreover, the protocol satisfies the following.

1. Standard malicious security achieved is standard security (i.e., not residual)

2. If 2t+ h∗ < m then Π admits (t, h∗)-FaF full-security in the
(
f ′m−t, . . . , f

′
m

)
-hybrid model.

Remark 4.5. Note that in general, classical generic protocols, such as the GMW protocol, will
not achieve FaF full-security, even if we increase the threshold for the secret sharing scheme to
t+h∗+1. As an example, consider the 3-party functionality (a,⊥, c) 7→ a⊕ b⊕ c, where b← {0, 1},
and let t, h∗ = 1. Using a 2-out-of-3 secret sharing scheme, would allow a corrupted P1 to help
P2 to learn c. Using a 3-out-of-3 secret sharing scheme, would allow the adversary to withhold
information on the output.

We stress that even standard techniques, such as having the parties compute a functionality
whose output is a secret sharing of the original output, fail to achieve security. This is due to the
fact that an adversary can abort the execution forcing the parties in H to (possibly) learn an output.
Then, after executing the same protocol with one party labeled inactive, the parties in H will learn
an additional output, which cannot be simulated. In Section 4.1.3 we show that such protocol can
achieve residual security, namely the parties in H will not learn more than the function on many
choices of inputs for corrupted parties.

Assuming that OT exists, we can apply the composition theorem to combine Lemma 4.4 with
Theorem 4.2 and get as a corollary that whenever an uncorrupted majority is present (i.e., t < m/2),
any functionality can be computed with (weak) computational residual FaF full-security.

Corollary 4.6. Let m, t, h∗ ∈ N be such that t+h∗ ≤ m and that t < m/2, and let f be an m-party
functionality. Then, assuming OT exists, there exists a protocol Π that computes f with (weak)
computational (t, h∗)-residual FaF full-security.

1. Standard malicious security achieved is standard security (i.e., not residual)
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2. If 2t+ h∗ < m then Π admits (t, h∗)-FaF full-security.

Item 2 of the above corollary concludes the positive direction of Theorem 4.1. The proof of
Lemma 4.4 is given in Section 4.1.3. Before providing a proof, we first discuss some interesting
consequences. One interesting family of functionalities to consider in the corollary, is the family
of no-input functionalities (e.g., coin-tossing). Since there are no inputs, it follows that such
functionalities can be computed with FaF full-security (i.e., not residual).

Corollary 4.7. Let m, t, h∗ ∈ N be such that t+h∗ ≤ m and that t < m/2, and let f be an m-party
no-input functionality. Then, assuming OT exists, there exists a protocol Π that computes f with
(weak) computational (t, h∗)-FaF full-security.

As a result, in the computational setting, we claim that we have separation between (weak)
FaF-security and mixed-security. Recall that a mixed adversary is one that controls a subset
of the parties maliciously and another subset semi-honestly. Consider the 3-party functionality
f(⊥,⊥,⊥) = (b,⊥, b), where b ← {0, 1}. As we proved in Corollary 4.7, this functionality can
be computed with computational (1, 1)-FaF full-security. However, we claim that f cannot be
computed with computational (1, 1)-mixed security.

Theorem 4.8. No protocol computes f with (1, 1)-mixed full-security.

The proof follows from a simple observation on a result by Ishai et al. [36]. They showed
that for any protocol computing the functionality g(a,⊥, c) = (a ⊕ c,⊥, a ⊕ c), where a and c are
chosen uniformly at random, there exists a mixed adversary successfully attacking the protocol.
Consequently, the same attack would work on any protocol computing f . As a result, we conclude
that for no-input functionalities, the definition of security against mixed adversaries is strictly
stronger than FaF security.

Even for various functionalities with inputs, Lemma 4.4 implies FaF full-security for interesting
choices of parameters. For example, consider the 3-party XOR functionality. Then it can be
computed with (1, 1)-FaF full-security since the input of the honest party can be computed by the
semi-honest party’s simulator.

4.1.3 Proof of Lemma 4.4

We next provide the proof of Lemma 4.4. Recall that for an m-party functionality f and for
m′ ∈ {m− t, . . . ,m}, we define the m′-party functionality f ′m′(x) in the security-with-identifiable-
abort model as follows. Let y = (y1, . . . , ym) be the output of f(x). Share each yi in an (m − t)-
out-of-m′ Shamir’s secret sharing with respect to party Pi (See Construction 2.5). The output of
party Pj is its respective shares of each yi, i.e., Pj receives (yi[j])mi=1.

Proof of Lemma 4.4. The protocol Π in the real world is described as follows:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protocol 4.9.
Input: Party Pi holds an input xi ∈ Xi.
Common input: Security parameter 1n.

1. The parties call the functionality f ′m′, where m′ is the number of active parties, and the inputs
of the inactive parties is set to a default value.
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2. If the computation followed through, then the parties broadcast their shares, reconstruct the
output, and halt.6

3. Otherwise, they have the identity of a corrupted party. The parties then go back to Step 1
without said party (updating m′ in the process and setting its input to a default value).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Intuitively, the protocol works since there is an honest majority, so the parties can always
reconstruct the output in case the computation in Step 1 followed through. Moreover, the only
information the parties receive in case of an abort during Step 1, is an output of f that is consistent
with their inputs. In particular the adversary cannot add additional information to any subset of
the honest parties. We next present the formal argument.

Fix an adversary A corrupting a set of parties I ⊂ P of size at most t, and let H ⊂ P \ I
be a subset of the uncorrupted parties of size at most h∗. We first construct the simulator SA
for the adversary. To prove Item 1 of the “moreover” part, we will construct the simulator SA
assuming that receives a single output from the trusted party. This is indeed a stronger result,
since a simulator with the residual function can always simulate the simulator that received a single
output. With an auxiliary input zA, the simulator SA does the following:

1. Let m′ be the number of active parties. Share some garbage value m times independently as
follows. Denote y′j = (ŷi[j])mi=1 the shares held by Pj , where ŷi is a garbage value, shared in
a (m− t)-out-of-m′ Shamir’s secret sharing scheme with respect to party Pi.

2. Send y′I to A to receive the message it sends to f ′m′ .

3. If A replied with (abort,Pi), then go back to Step 1 with Pi labeled inactive.

4. Otherwise, A sent some vector of inputs x̂I . Pass x̂I to the trusted party to receive an output
yI . Complete the t shares held by A to a sharing of the real output yI (recall that t < m/2
so this is possible by the properties of the secret sharing scheme).

5. Output all of the y′I ’s generated and the completed shares, and halt.

We next describe the simulator SA,H for the adversary AH controlling the parties in H interact-
ing with A. The idea is to have the simulator use the shares generated by SA to ensure consistencies
between their views. Additionally, for the last iteration, where the shares should be reconstructed
to the output, we modify the shares not held by A so the output will also be consistent with gen-
erated view. In addition, for every abort occurred, the simulator will use the residual function to
hand over to H the output of that iteration. Formally, given an auxiliary input zH, SA,H operates
as follows.

1. Receive the residual function fI,x from the trusted party, and receive (xI , r, zA) – SA’s input,
randomness, and the auxiliary input, respectively.

6For this step to work, we need to assume that the adversary does not change its shares. We can force it to send
the correct shares using standard techniques. One way to do so is to sign each output of each f ′m′ using a MAC and
give the other parties the key for verification. For the sake of clarity of presentation, however, we decide to skip this
and assume that the corrupted parties are using correct shares.
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2. Apply SA to receive its view, which consists of y′I – shares of some values, held by the
adversary.

3. Query A on each y′I to receive the messages it sends to H, and in case of an abort, get the
identity of a corrupted party.

4. Complete each y′I to shares of an output ŷ computed using the residual function fI,x (fixing
the input of the inactive parties to be a default value, and input of the active corrupted
parties according to the choice of A), so that the last y′I is completed to shares of the real
output. Note that by the properties of the secret sharing scheme, this can be done efficiently.

5. Output all of the completed shares and the messages sent by A, and halt.

In every iteration, the view generated by SA,H is consistent with the view generated by the
malicious simulator SA. Moreover, they send to A the exactly the same messages, hence they will
receive the same identities of the aborting parties, and inputs given to the functionalities f ′m′ . Since
this is generated with the same distribution as in the real-world, we conclude that joint view of the
two adversaries with the output of the honest parties, is identically distributed in both worlds.

Finally, in order to see why Item 2 of the “moreover” part is true, observe that if 2t+ h∗ < m
then t+h∗ < m− t, implying that the number of shares that can be held by the A and H is smaller
than the secret sharing threshold. Thus, SA,H can use random shares for each iteration (except the
last iteration), without using the output. �

4.2 Impossibility Result

In this section, we prove the negative direction of Theorem 4.1. Specifically, we prove the following
lemma.

Lemma 4.10. Let m, t, h∗ ∈ N be such that 2t+h∗ = m. Then there exists an m-party functionality
that no protocol computes it with (weak) computational (t, h∗)-FaF full-security. Moreover, the
claim holds even assuming the availability of simultaneous broadcast.

For the proof, we first show that it holds for the 3-party case where t, h∗ = 1. Then, using a
player-partitioning argument, we generalize the result to more than three parties. The following
lemma states the result for the 3-party case. Throughout the remainder of the section, we denote
the parties by A, B, and C.

Lemma 4.11. Assume that one-way permutation exists. Then there exists a 3-party functionality
that no protocol computes it with (weak) computational (1, 1)-FaF full-security. Moreover, the
following hold

1. The malicious adversary we construct corrupts either A or C, while the remaining third party
B will be in H.

2. The claim holds even assuming the availability of simultaneous broadcast.

The proof of Lemma 4.10 is deferred to Appendix A. We next give an overview of the proof
of Lemma 4.11. We assume that each round is composed of 3 broadcast messages, the first sent
by A, the second sent by B, and the third by C (this is without loss of generality, as we allow the
adversary to be rushing). Intuitively, the proof is done as follows. By an averaging argument
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there must exists a round where two parties, say A and B, together can reconstruct the output with
significantly higher probability than C and B. We then have A act honestly (using the original input
it held) and abort at that round. As a result, with high probability the output of C will change.
Finally, A will send its entire view to B, allowing it to recover the correct entry with significantly
higher probability than C. We show that for an appropriate functionality, the advantage of the
pair (A,B) over (C,B) cannot be simulated.

Proof of Lemma 4.11. Let f = {fn : {0, 1}n 7→ {0, 1}n}n∈N be a one-way permutation. Define the
symmetric 3-party functionality Swap =

{
Swapn : {0, 1}n × {0, 1}2n × {0, 1}n 7→ {0, 1}2n

}
n∈N as

follows. Parties A and C each hold a string a, c ∈ {0, 1}n respectively. Party B holds two strings
yA, yC ∈ {0, 1}n. The output is then defined to be

Swapn (a, (yA, yC) , c) =
{

(a, c) if fn(a) = yA and fn(c) = yC

⊥ otherwise

Assume for the sake of contradiction that there exists a 3-party protocol Π that computes Swap
with computational (1, 1)-FaF full-security. We fix a security parameter n, we let r denote the
number of rounds in Π, and consider an evaluation of Swap with the output being (a, c). Formally,
we consider the following distribution over the inputs.

• a, c are each selected from {0, 1}n uniformly at random and independently.

• yA = fn(a) and yC = fn(c).

For i ∈ {0, . . . , r} let ai be the final output of A assuming that C aborted after sending i messages.
Similarly, for i ∈ {0, . . . , r} we define ci to be the final output of C assuming that A aborted after
sending i messages. Observe that ar and cr are the outputs of A and C respectively. We first claim
that there exists a round where either A and B gain an advantage in computing the correct output,
or C and B gain this advantage.

Claim 4.12. Either there exists i ∈ {0, . . . , r} such that

Pr [ai = (a, c)]− Pr [ci = (a, c)] ≥ 1− neg(n)
2r + 1 ,

or there exists i ∈ [r] such that

Pr [ci = (a, c)]− Pr [ai−1 = (a, c)] ≥ 1− neg(n)
2r + 1 .

The probabilities above are taken over the choice of inputs and of random coins for the parties.

The proof is done using a simple averaging argument, and is proven below. We first use this
fact to show an attack.

Assume without loss of generality that there exists an i ∈ [r] such that the former equality
holds (the other case is done analogously). Define a malicious adversary A as follows. For the
security parameter n, it receives as auxiliary input the round i. Now, A corrupts A and have it
act honestly (using the party’s original input a) up to and including round i. After receiving the
i-th message, the adversary instructs A to abort. Finally, the adversary sends its entire view to
B. We next show that no pair of simulators SA and SA,B can produce views for A and B so that
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Equations (1) and (2) would hold. For that, we assume towards contradiction that such simulators
do exist. Let a∗ ∈ {0, 1}n be the input that SA sent to the trusted party. Additionally, denote
q = Pr [ci = (a, c)].

We next separate into two cases. For the first case, let us assume that Pr [a∗ = a] ≥ q+ 1/p(n)
for some polynomial p(·) for infinitely many n’s. Let OUTIDEAL

C be the output of C in the ideal
world. Since fn is a permutation we have that

Pr
[

OUTIDEAL
C = (a, c)

]
= Pr [a∗ = a] ≥ q + 1/p(n).

Thus, by comparing the output of C to (a, c) it is possible to distinguish the real from the ideal
with advantage at least 1/p(n).

For the second case, we assume that Pr [a∗ = a] ≤ q+ neg(n). Here we show how to distinguish
between the view of B in the real world from its ideal world counterpart. Recall that in the real
world A sent its view to B. Let M be the algorithm specified by the protocol, that A and B use
to compute their output assuming C has aborted. Namely, M outputs ai in the real world. By
Claim 4.12 it holds that Pr [ai = (a, c)] ≥ q+ 1−neg(n)

2r+1 . We next consider the ideal world. Let V be
the view generated by SA,B. We claim that

Pr [M(V ) = (a, c) ∧ a∗ 6= a] ≤ neg(n).

Indeed, since fn is a permutation and B does not change the input it sends to T, the output
computed by T will be ⊥. Moreover, as fn is one-way it follows that if M(V ) did output (a, c), then
it can be used to break the security of fn. This can be done by sampling a ← {0, 1}n, computing
f(a), and finally, compute a view V using the simulators and apply M to it (if a∗ computed by SA
equals to a then abort). We conclude that

Pr [M (V ) = (a, c)] = Pr [M (V ) = (a, c) ∧ a∗ = a] + Pr [M (V ) = (a, c) ∧ a∗ 6= a]
≤ Pr [a∗ = a] + neg(n)
≤ q + neg(n).

Therefore, by applying M to the view it is possible to distinguish with advantage at least 1−neg(n)
2r+1 −

neg(n). To conclude the proof we next prove Claim 4.12.

Proof of Claim 4.12. The proof follows by the following averaging argument. By correctness and
the fact that fn is one-way, it follows that

1− neg(n) ≤ Pr [ar = (a, c)]− Pr [c0 = (a, c)]

=
r∑
i=0

(Pr [ai = (a, c)]− Pr [ci = (a, c)]) +
r∑
i=1

(Pr [ci = (a, c)]− Pr [ai−1 = (a, c)])

Since there are 2r+ 1 summands, there must exists an i for which one of the differences is at least
1−neg(n)

2r+1 . �

Finally, in order to see why Item 2 is true, observe that the attack is not based on the view of
A, hence the same attack works assuming simultaneous broadcast.

�
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Remark 4.13. Intuitively, we showed that in the real world the parties A and B hold more in-
formation on the output, than what B and C hold. To make this statement formal, observe that
the proof in fact shows that Swap cannot be computed with fairness. Roughly, for fairness to hold
we require that either all parties receive an output, or none of them do. To see this, observe that
for the functionality at hand, aborting in the ideal world is the same as sending a different in-
put a. Therefore the attack cannot be simulated. We present the formal definition of fairness in
Appendix B.1.

5 Comparison Between FaF-Security and Other Definitions

In this section, we compare the notion of FaF-security to other existing notions. In Section 5.1, we
investigate how FaF-security relates to classical full-security. In Section 5.2, we review the differ-
ences between our notion and the notion of mixed adversaries. In the mixed-adversary scenario, a
single adversary controls a set I of parties, however, within I different limitations are imposed on
the behavior (deviation) of different parties. In Section 5.3, we show that strong FaF-security is a
strictly stronger notion than (weak) FaF-security.

5.1 The Relation Between FaF-Security and Standard Full-Security

We start with comparing FaF-security to the standard definition. It is easy to see that standard
t-security does not imply in general (t, h∗)-FaF full-security, even for functionalities with no inputs.
Consider the following example. Let f be a 3-party no-input functionality defined as (⊥,⊥,⊥) 7→
(⊥,⊥, r) where r ← {0, 1}n, and let t, h∗ = 1. Consider the following protocol: P1 and P2 sample
r1, r2 ← {0, 1}n, respectively and send the random strings to P3. The output of P3 is then r1 ⊕ r2.

It is easy to see that the protocol computes f with perfect full-security tolerating a single
corruption. However, a malicious P1 can send r1 to P2 as well, thereby allowing P2 to learn
P3’s output. Indeed, this protocol is insecure according to Definition 3.3. Obviously, (t, h∗)-FaF-
security readily implies the classical t-security counterpart. Conversely, one might expect that
classical (t+h∗)-security must imply (t, h∗)-FaF-security. We next show that this is not the case in
general. We present an example of a protocol that admits traditional malicious security against t
corruptions, however, it does not admit (t−1, 1)-FaF-security. Intuitively, this somewhat surprising
state of affairs is made possible by the fact that in (t− 1, 1)-FaF-security both the attacker and the
two simulators are weaker.

The following example is a simple extension of the known example (cf., [10]), showing that for
standard security, there exists a maliciously secure protocol (for computing the two-party, one-sided
OR function), but none semi-honest secure.

Example 5.1. Let A, B, and C be three parties with inputs a, b, c ∈ {0, 1} respectively. Consider
the 3-party functionality 3OR : {0, 1}3 7→ {0, 1}3 defined as 3OR (a, b, c) = (⊥,⊥, (a⊕ b) ∨ c), with
the following protocol for computing it. In the first round, parties A and B both select shares for
their respective inputs with each other. That is, A selects a1 ← {0, 1} and sends a2 = a⊕ a1 to B,
and B selects b2 ← {0, 1} and sends b1 = b ⊕ b2 to A. In the second round, A sends a1 ⊕ b1 to C
and B sends a2 ⊕ b2 to C. Party C outputs (a1 ⊕ b1 ⊕ a2 ⊕ b2) ∨ c.

We first claim that the protocol computes 3OR with perfect full-security tolerating coalitions of
size at most 2. Indeed, an adversary that maliciously corrupts A, B, or both, learns nothing and
can be simulated by selecting the inputs defined by the shared values. An adversary that maliciously
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corrupts C can be simulated by sending c = 0 to the trusted party, and as a result, learning the
same information as in the protocol. For example, corrupting A and C and sending a, 0 (resp.) to
the trusted party, the adversary learns b.

We argue that although the protocol is 2-secure in the standard definition, it does not compute
3OR with (1, 1)-FaF full-security. Specifically, a semi-honest C cannot be simulated. Take for
example, an adversary A that corrupts A maliciously and let H = {C}. In the real-world, A can
reveal b to C. However, in the ideal-world, this cannot be simulated (when c = 1).

Remark 5.2. Example 5.1 shows that “moving” a party from being malicious to being semi-honest
(i.e., taking a party from I and moving it to H) could potentially break the security of the protocol.
Similarly to [10], it is arguably natural to consider a definition that requires the protocol to be
(t, h∗)-FaF-security if and only if it is (t− 1, h∗ + 1)-FaF-security. Our definition does not impose
this extra requirement, however, all of our protocols satisfy it. In Section 7 we FaF-security under
this restriction in the information-theoretic setting.

In contrast to the above example, we claim that adaptive (t + h∗)-security does imply strong
(t, h∗)-FaF full-security. Intuitively, this follows from the fact that an adaptive adversary is allowed
to corrupt some of the parties after the execution of the protocol terminated. We formulate the
theorem for the full-security setting, however, we stress that it also holds in the security with
(identifiable) abort setting. The definition of adaptive security is given in Appendix B.2.

Theorem 5.3. Let type ∈ {computational, statistical, perfect} and let Π be an m-party protocol
computing some m-party functionality f with type adaptive (t+ h∗)-security. Then Π computes f
with type (t, h∗)-FaF full-security.

Proof Sketch.[Proofsketch of Theorem 5.3] Let A be a non-adaptive malicious adversary corrupting
a set I ⊆ P of the parties, and let H ⊆ P \ I be a subset of the remaining parties. Define the
following adaptive adversary A′. A′ runs A during the execution of the protocol. After the protocol
had terminated, A′ interacts with the environment Z that always request to corrupt the parties in
H. Here, A′ answers with their view, which Z then outputs. By the security assumption, there
exists an adaptive simulator SA′,Z for A′ that interacts with Z. Observe that as the identities of
the corrupted parties (i.e., those in I) appear in the global output, SA′,Z must eventually corrupt
exactly the parties in I.

We next construct the two simulators SA and SA,H in order to prove FaF-security. The malicious
simulator SA will run SA′,Z , and when SA′ corrupts a new party P, SA provides it with the input
of P. Finally, SA outputs whatever SA′,Z outputs. The semi-honest simulator SA,H, will interact
with SA′,Z in the post-protocol corruption phase, acting as the environment Z, while using the
randomness of SA to ensure consistency. Since SA,H has the inputs and randomness of SA, the
joint output of the two simulators will be distributed the same as the joint output of SA′,Z and Z.

�
By applying recent results on adaptive security, we get that there exist constant-round protocol

that are FaF secure-with-abort [16, 13, 25].
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5.2 The Relation Between FaF-Security and Mixed-Security

The notion of “mixed adversaries” [24, 48] considers a single entity that corrupts a subset I ma-
liciously, and another subset H semi-honestly.7 A simulator for a mixed adversary, is a single
simulator controlling the parties in I ∪ H. This simulator is restricted so to only be allowed to
change inputs for the parties in I (i.e., the simulator is not allowed to change the inputs for the
parties in H). We say that a protocol has computational (t, h∗)-mixed full-security, if Equation (2)
is written with respect to a mixed adversary and its simulator.

In comparison, FaF-security can be viewed as if there are two distinct adversaries – one malicious
and one semi-honest, making it a natural question to compare the two definitions. One might expect
that (t, h∗)-mixed full-security would imply (t, h∗)-FaF full-security. However, similarly to the case
with standard security, we show the that this is not generally the case in the computational setting
(note that the protocol from Example 5.1 is not (1, 1)-mixed secure).

Example 5.4. Consider the 5-party functionality f : ({0, 1}n)3 × ∅2 7→ ({0, 1}n)2 × ∅3 whose
output on input (x1, x2, x3,⊥,⊥), is defined as follows. If x1 = x2, then P1 and P2 will each receive
a share of a 2-out-of-2 secret sharing of x3, i.e., P1 will receive x3[1] and P2 will receive x3[2].
If x1 6= x2 then P1 and P2 will each receive a string of length n chosen uniformly at random and
independently. In both cases, all other 3 parties will receive no output. We next show a protocol that
is secure against any adversary corrupting at most 2 parties (including mixed adversaries), yet it
does not admits (1, 1)-FaF full-security. In the following we let (Gen,Enc,Dec) be a non-malleable
and semantically secure public-key encryption scheme [22].
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protocol 5.5.

1. The parties will compute a functionality whose output to Pi for i ∈ {1, 2, 3} is pk, and for
party Pi, for i ∈ {4, 5} is (pk, sk[i]), where the sk[i]s are shares of sk in a 2-out-of-2 secret
sharing, and where (pk, sk)← Gen(1n). This can be done using, say the GMW protocol [29].

2. P2 sends c2 ← Encpk(x2, 2) to P1.

3. The parties compute the following 5-party functionality g. The input of P1 is c1 ←
Encpk (x1, 1), the input of P2 is c2, and the input of P3 is x3. The input of Pi, for i ∈ {4, 5},
is the pair (pk, sk[i]).
The output is defined as follows. P3, P4, and P5 receive no output.

• If Decsk (ci) = (xi, i), for every i ∈ {1, 2, 3} and x1 = x2, then P1 will receive x3[1] and
P2 will receive x3[2].
• Else, if Decsk (c1) = (x1, 2), Decsk (c2) = (x2, 2), and x1 = x2, then P1 will receive a

random string r ∈ {0, 1}n and P2 will receive (x3[1], x3[2]).
• Otherwise, both P1 and P2 will receive random strings r1, r2 ∈ {0, 1}n respectively, chosen

independently and uniformly.

As in Step 1, this can be done using the GMW protocol [29].
7There are various types of mixed adversaries one can consider. For example, [34] also gave the adversary the

ability to fail-corrupt parties, based on its adversarial structure. Here, we only consider the notion considered by [24].
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4. P1 output what it received from g. If P2 received one random string r2 from g then output r2,
and if P2 received two random strings from g, then output the second one.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Claim 5.6. Protocol 5.5 computes f with computational 2-security and with computational (1, 1)-
mixed security, yet it does not compute f with computational (1, 1)-FaF full-security.

Proof. We first prove the security properties of the protocol. For all of the adversaries, the corre-
sponding simulator we construct will not change the inputs they send to T, unless the adversary
changes its input. As a result, the 2-security of the protocol implies that it is also (1, 1)-mixed fully
secure.

Any adversary corrupting 2 parties from {P3,P4,P5}, or corrupting P2 and one party from
{P3,P4,P5}, can be simulated using the composition theorem of Canetti [14] for both Steps 1 and
3. That fact that there is an honest majority implies the existence of the simulator.

Let A be an adversary corrupting P1 and P2. The simulator SA works as follows. Compute
a pair of keys (pk, sk) ← Gen (1n) and send pk to A. Let c1 and c2 be the inputs of P1 and P2
respectively, that A chose for the computation of g. If c1 = Encpk (x1, 1), c2 = Encpk (x2, 2), and
x1 = x2, then send (x1, x2) to the trusted party T to receive two shares of x3, hand them over to A,
output the view and halt. Else, if c1 = c2 = Encpk (x2, 2), then send (x2, x2) to the trusted party T
to receive two shares of x3. Sample a random string r, hand and the two shares to A, output the
view and halt. Otherwise, give to A two random and independent strings r1, r2 ∈ {0, 1}n, output
the view and halt.

Next, consider an adversary A′ corrupting P1 and a party from {P3,P4,P5}. We construct its
simulator SA′ as follows. Compute a pair of keys (pk, sk) ← Gen (1n), and use [14] to simulate
Step 1. Compute an encryption c ← Encpk (0n, 2) and send both pk and c to A′. Let c′ be the
ciphertext chosen by A as the input for P1 in Step 3. Decrypt c′ to recover an input x′1, which
the simulator then sends to T. Finally, simulate Step 3 using [14] with input c′ for P1. Since
the encryption scheme is semantically secure and A does not hold sk, it follows that the value of
c′ in the real-world is computationally indistinguishable from its ideal-world value. Moreover, as
the encryption scheme is non-malleable, if x1 6= x2 then c′ = Encpk (x2, 1) holds with negligible
probability. Therefore, in this case the output of P1 and P2 will be random strings., as given by
T. In the other case, where x1 = x2, the output given by T to P1 and P2 are sharing of x3. In
addition, the output of g will be a sharing of x3 as well. Security follows.

We next show that Protocol 5.5 is not (1, 1)-FaF fully-secure. This follows from the observation
that a corrupt P1 can use c2 as its input for the computation of g. Thus, party P2 receives two
shares of x3 in a 2-out-of-2 secret sharing, thereby learning x3. In the ideal-world, any simulator for
P2 will receive from T a share of x3 only if x1 = x2. Since for the case where x1 6= x2 this happens
only with negligible probability (with the probability being over the choices of the simulator SA for
the adversary’s input), we conclude that no such simulator exists. �

In Section 7 we further compare the two definitions in the information theoretic setting, with
respect to non-threshold adversarial structures.

5.3 Comparison Between (Weak) FaF-Security and Strong FaF-Security

In this section, we separate the notion of (weak) FaF-security from strong FaF-security in the
computational setting. Specifically, we show a protocol that admits (weak) FaF-security, yet it does
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not admit strong FaF-security. We assume we have available a commitment scheme. Consider the
3-party functionality f mapping (⊥, b,⊥) 7→ (⊥,⊥, b), where b ∈ {0, 1}, and let t, h∗ = 1. Consider
the following protocol: P2 broadcasts a commitment to b, and then sends the decommitment only
to P3.

Claim 5.7. The above protocol computes f with (weak) computational (1, 1)-FaF full-security, yet
does not provide strong computational (1, 1)-FaF full-security.

Proof. We first show that the protocol computes f with weak computational (1, 1)-FaF full-security.
We go over all 6 possible (malicious and semi-honest) corruptions and construct two simulators for
each case.

First, suppose A corrupts P1. Its simulator SA will output a commitment to 0 and halt. By the
hiding property of the commitment scheme, the simulator’s output will be indistinguishable from
the adversary’s real-world view. The semi-honest simulator SA,P2 will query the adversary on the
commitment of its input b to receive the messages it sends to P2, output them and halt. The other
semi-honest simulator SA,P3 will receive b from the trusted party T, and do the same as SA,P2 .

Next, suppose A corrupts P2. Its simulator SA will ask A for a commitment and a decommit-
ment, supposedly sent to P3, and recover the committed value b̂ (if the decommitment is invalid
or the adversary did not send a message, then choose b̂ to be a default value). It then sends b̂ to
T and halt. By the binding property of the commitment scheme, the adversary cannot decommit
to a different value, hence the output distribution of P3 in both worlds are indistinguishable. The
semi-honest simulators SA,P1 and SA,P3 , which hold SA’s input, randomness, and auxiliary input,
query A to receive the messages it sends to P1 and P3, respectively, output them, and halt.

Finally, suppose A corrupts P3. Its simulator SA will output a commitment and the correspond-
ing decommitment to the output b received from T and halt. The semi-honest simulator SA,P2 ,
which holds b as well, will query A and output the messages received from it. The other simulator
SA,P1 will do the same with the addition of outputting a commitment to b.

We now show that the protocol is not strong (1, 1)-FaF fully-secure. Consider an adversary
A, which corrupts P1 and does nothing, and let H = {P3}. Assume towards contradiction that
the pair of simulators SA and SA,H exists so that

{
IDEAL

SA,SA,H
b

}
b∈{0,1}

and
{

REALA,AHb

}
b∈{0,1}

are indistinguishable. We show how to construct a sender that breaks the binding property of the
commitment scheme. The sender sends to the receiver the commitment c′ generated by SA. The
decommitment will be the commitment c and its decommitment d, generated by SA,H on input
b = 0 (and SA’s randomness). By assumed strong security of the protocol, the view (c′, (c, d)) of
the receiver is indistinguishable from (c, (c, d)), and therefore it will output 0. However, the same
holds when applying SA,H on input b = 1 in the decommitment phase. Thus, the sender can force
the output of the receiver in the decommitment phase to be any value it chooses with probability
1− µ(n), for some negligible function µ(·). �

One consequence of the above claim, is that protocols where the parties commit to their inputs,
e.g., the GMW protocol, will not satisfy strong FaF-security in general.

6 Low Round Complexity

In this section, we study the round complexity of general functionalities with computational FaF
full-security. The combination of the two theorems we give below yields that the optimal round
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complexity of a protocol admitting (1, 1)-FaF full-security is three rounds (assuming at least 9
parties are present). Roughly, this is done by showing that in a two-round protocol, an adversary
can “help” an honest party to gain information about another honest party’s input, where in 3-
rounds we can overcome that.

Impossibility of two-round FaF-secure computation. The following theorem states that it is
impossible to construct a generic 2-rounds protocol, that is (1, 1)-FaF secure – one malicious and one
semi-honest that are not colluding. This result is a simple observation regarding the impossibility
of computing the AND functionality in two rounds against 2 corrupted parties, proved by Gennaro
et al. [27]. For the sake of completeness, we provide the proof. Just as in [27], the adversary we
construct is not rushing, hence the theorem holds even in the fully synchronous model, where all
messages are received simultaneously. One can arguably view this theorem as an evident for the
necessity of leakage from honest parties private inputs in the two-round protocol of Ishai et al. [35].

Theorem 6.1. Let m ≥ 3 and let AND(x1, x2,⊥, . . . ,⊥) = x1 ∧ x2 with x1, x2 ∈ {0, 1} be an m-
party functionality. There is no 2-round protocol that computes AND with computational (1, 1)-FaF
full-security, for an arbitrarily large number of players m ≥ 3, even in the fully synchronous model.

The proof of Theorem 6.1 is given in Section 6.1. We next present the complementary possibility
result for three-round computation. In fact, we show that we can achieve strong FaF-security.

Theorem 6.2. Let m, t, h∗ ∈ N be three constants satisfying 5t+ 3h∗ < m. Let f be a polynomial
time computable m-party functionality. Then, under the assumption that pseudorandom generators
exist, there exists a 3-round protocol that computes f with strong computational (t, h∗)-FaF full-
security. Moreover, the construction is fully black-box.

The protocol, alongside its proof of security, is given in Section 6.2.

6.1 Proof of Theorem 6.1

We next give the proof of Theorem 6.1. For the sake of presentation, in the following we omit
the security parameter from the notation. Throughout the section, we fix m ≥ 3 and the m-party
functionality AND (x1, x2,⊥, . . . ,⊥) = x1∧x2. For the proof we require the following simple lemma
proved in [27].

Lemma 6.3 ([27, Lemma 2]). Fix a 2-round protocol for computing the AND functionality with
computational 1-security. For b ∈ {0, 1} let Bb be the distribution of the messages broadcast by an
honest P2, on input x2 = b in round 1. Further, let M b

1 be the distribution over the private messages
an honest P2 sends to P1 only, on input x2 = b in round 1. Then, (B0,M0

1 ) and (B1,M1
1 ) are

computationally indistinguishable.

Proof of Theorem 6.1. Assume for the sake of contradiction that there exists a 2-rounds protocol
that computes AND with (1, 1)-FaF full-security in the computational setting. For b ∈ {0, 1}, let
Bb be the distribution of the broadcast messages sent by an honest P2 on input x2 = b in round
1, and let M b be the distribution of the private messages, sent by an honest P2 on input x2 = b
in round 1. We further denote by M b

i the distribution of the messages private messages sent by an
honest P2 to Pi only, on input x2 = b in round 1. In the following, we consider a scenario where
P1 chooses its input x1 uniformly at random from {0, 1}.
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We next show that in the ideal world, the best prediction each party has for x1 is the output
Out that it receives from the trusted party. In the real world, however, an adversary (that corrupts
P2) can help some honest party to have a better prediction for x1, in the sense that the honest
party’s view will have a better correlation with x1 then the correlation of Out and x1. Formally,
for a distribution (B,M) we let

Cor (B,M) =
∣∣∣Pr [Out = 1 | x1 = 1, (Bx2 ,Mx2) = (B,M)]

− Pr [Out = 1 | x1 = 0, (Bx2 ,Mx2) = (B,M)]
∣∣∣.

That is, Cor (B,M) denotes the correlation of the output Out and x1, conditioned on the distri-
bution of the messages sent by P2 are chosen according to the distribution (B,M). The idea is to
have a corrupt P2 send messages so as to lower the correlation. Then, by sending its view to some
honest party P, P can compute a different output that have a higher correlation with x1. We next
formalize this intuition. Consider the following four quantities:

q1 = Cor
(
B0,M0

1 ,M
0
2 , . . . ,M

0
m

)
,

q2 = Cor
(
B0,M0

1 , 0, . . . , 0
)
,

q3 = Cor
(
B1,M1

1 , 0, . . . , 0
)
,

q4 = Cor
(
B1,M1

1 ,M
1
2 , . . . ,M

1
m

)
.

Namely, q1 and q4 denote the correlation in an honest execution of P2 on input 0 and 1 respectively,
while q2 and q3 denote the correlation when P2’s private messages to P3, . . . ,Pm are all 0. By the
correctness of the protocol, it follows that there exists a negligible function µ(·) such that q1 = µ
and q4 = 1 − µ. Additionally, by Lemma 6.3 it follows that the difference between q2 and q3 is
µ. Therefore, either the difference between q1 and q2 is at least 1/2− µ, or the difference between
q3 and q4 is at least 1/2 − µ. Assume without loss of generality that the former holds. By a
hybrid-argument, there exists 2 ≤ i ≤ m− 1, for which

Cor
(
B0,M0

1 , . . . ,M
0
i , 0, . . . , 0

)
− Cor

(
B0,M0

1 , . . . ,M
0
i+1, 0, . . . , 0

)
≥ 1/2− µ

m− 2 .

We are now ready to define the adversary A: Corrupt P2 and instruct the party to send his
messages in the first round according to (B0,M0

1 , . . . ,M
0
i+1, 0, . . . , 0). In the second round, P2 will

send the honest party Pi+1 its view. Intuitively, since Pi+1 is honest, in the second round it will act
as if it received M0

i+1. This guarantees a lower correlation between the output Out of the honest
parties other than Pi+1 and x1. However, as Pi+1 received the view of P2 privately, it allows it
to compute a (possibly) new output Out′ when P2 plays according to

(
B0,M0

1 , . . . ,M
0
i , 0, . . . , 0

)
,

which is better correlated with x1, giving him an advantage in guessing x1.
Formally, we prove this as follows. Observe that for any distribution (B,M), if

Pr [Out = 1 | x1 = 1, (Bx2 ,Mx2) = (B,M)] > Pr [Out = 1 | x1 = 0, (Bx2 ,Mx2) = (B,M)]

then

Pr [Out = x1 | (Bx2 ,Mx2) = (B,M)] = 1
2 Pr [Out = 1 | x1 = 1, (Bx2 ,Mx2) = (B,M)]

+ 1
2 Pr [Out = 0 | x1 = 0, (Bx2 ,Mx2) = (B,M)]

= 1
2 Cor (B,M) + 1

2 ,
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and otherwise it holds that

Pr [Out = x1 | (Bx2 ,Mx2) = (B,M)] = −1
2 Cor (B,M) + 1

2 .

The former case implies that the event Out′ = x1 occurs with a significantly higher probability
then Out = x1, while the latter implies that 1 − Out′ = x1 occurs with a significantly higher
probability. As Pi+1 has view according to (B,M) = (B0,M0

1 , . . . ,M
0
i , 0, . . . , 0), its probability of

guessing x1 is significantly higher then the other parties, who have views according to (B,M) =
(B0,M0

1 , . . . ,M
0
i+1, 0, . . . , 0).

We next show that in the ideal world, the best a simulator for Pi+1 can do in guessing x1, is
to output Out. Consider all the 4 potential views (x2,Out) that it may see. The view (0, 1) is
impossible; for both views (1, 0) and (1, 1) we have x1 = Out, and if the view is (0, 0) then the
adversary has no information about x1, so guessing the value x1 = Out is correct with probability
1/2 and is as good as any other way of guessing. Therefore, in the ideal world, Out predicts x1
with the highest probability.

To conclude the proof, observe that the security guarantee of the simulator for A implies that
in the ideal-world, the probability that Out = x1 equals to ±1

2 Cor
(
B0,M0

1 , . . . ,M
0
i+1, 0, . . . , 0

)
+ 1

2
(up to some negligible difference). In particular, the best guess for x1 of the simulator for Pi+1
will be correct with this probability. However, as we showed in the real-world Pi+1 can compute a
value Out′ that will be equal to x1 with significantly higher probability, contradicting security. �

6.2 A Three-Round Protocol

In this section, we show that the 3-round protocol of Damg̊ard and Ishai [20] admits FaF full-
security, under the assumption that a PRG exists. We next present an overview of the construction
of [20]. The protocol is a generalization of Yao’s 2-party protocol [47] to the multiparty case. It is
similar to the generalization proposed by Beaver, Micali, and Rogaway [8]. The novelty of [20] is in
the usage of a “distributive encryption scheme” and the use of error-correction codes. The former
allows the parties to somehow locally garble the circuit, while the latter replaces zero-knowledge
proofs, resulting in a black-box use of a PRG. Next, we introduce several notations.

Notations. In the following, fix an m-ary function f . For simplicity, assume that the function
is deterministic and symmetric. This assumption is without loss of generality as computing gen-
eral functionalities can be reduced to deterministic and symmetric functionalities using standard
techniques.

Let n be the security parameter, let t be a bound on the number of maliciously corrupted
parties, and let h∗ be a bound on the number of semi-honest parties. In addition, let C be a
Boolean circuit that computes f , let W denote the number of wires in C, and denote its size by |C|
(number of gates). It is without loss of generality to assume that C consists of only NAND gates
with fan-in degree 2. Let the wires of C be indexed from 0 to W − 1. For simplicity, assume that
the circuit has just a single output bit, corresponding to the last wire, indexed W − 1. Each input
wire w, denote by bw the input bit assigned to it. Each party Pi will assign to each wire w two
keys si2w, si2w+1. For a gate g and one of its input wires α, let prev (α) be the index of the output
wire of the previous gate, that goes into g as α.

Recall that a symmetric encryption is used to encrypt a key for the output wire of a gate g given
two keys for the input wires of g. The protocol makes use of the distributive encryption scheme
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proposed by [20], defined as follows. Let G : {0, 1}n 7→
(
{0, 1}k

)`
be a pseudo-random generator,

where ` is the maximum fan-out in C, and k = k(n) is a polynomial in the security parameter,
with high enough degree (to be determined by the analysis). For j ∈ [`], denote by G(s)|j the j-th
block of G(s). Suppose M is some message that is shared among the m parties, using a Shamir
secret sharing scheme, i.e., using a random degree d ≥ t polynomial. Denote by M [i] the i-th share
of M , held by Pi. There are two keys S1 = (s1

1, . . . , s
m
1 ) and S2 = (s1

2, . . . , s
m
2 ), used to encrypt M ,

where initially the subkeys si1, si2 ∈ {0, 1}n are known only to party Pi. For j1, j2 ∈ [`] define the
encryption scheme by

Encj1,j2S1,S2(M) =
(
G
(
si1

)
|j1 ⊕ G

(
si2

)
|j2 ⊕M [i]

)m
i=1

.

Here, j1 and j2 represent an index of an output wire from a previous gate. Having received the
parts of the ciphertext Encj1,j2S1,S2(M) and the keys S1 and S2, one can easily decrypt each share and
reconstruct M . Observe that if d+2t < m then decryption is possible, regardless of the adversary’s
actions. This follows from the fact that Shamir secret sharing scheme is also error correcting.

Finally, in order to reduce the number of rounds, we will be using the share conversion tech-
niques from [19]. They showed how, in two rounds, the parties can generate and distribute among
themselves shares in a Shamir secret sharing scheme for different correlated random values (the
actual functionalities according to which these values are selected – are listed below). Roughly, this
is done as follows. First, the parties compute a CNF secret sharing scheme of a random secret. This
phase can be implemented efficiently in two rounds using the multicast protocol of [26]. Below we
give an overview of the protocol, and explain why it is FaF-secure.The parties then locally convert
the CNF shares into Shamir shares with various properties, using the share conversion techniques
from [19]. Furthermore, using a common PRF, the parties can produce polynomially many such
Shamir shares that are pseudorandom. Let t′ = t+ h∗. We will use the following functionalities.

• SSS0(t′): Each party Pi obtains a (t′ + 1)-out-of-m Shamir share of a the secret s = 0, over
the field GF(2n)

• SSSbin(t′): Each party Pi obtains a (t′ + 1)-out-of-m Shamir share of a random secret s ∈
{0, 1}, over the field GF(2n) (i.e., each share is in GF(2n), however, the secret is uniform over
{0, 1}).

• SSSP(t′): Each party Pi obtains a (t′ + 1)-out-of-m Shamir share of a random secret s, over
the field GF(2n). In addition, party P receives the polynomial underlying the sharing.8

• SSSP
bin(t′): Same as SSSbin(t′), except that party P additionally receives the polynomial un-

derlying the sharing.

In the protocol, the parties are required to compute a VSS for each of their input wires. For
b ∈ {0, 1} we let VSSP

bin(t′, b) be the following subroutine. The parties compute SSSP
bin(t′), so that

P also receive the polynomial p from the sharing. Party P then broadcasts r = b− p(0), and each
party Pi outputs r + p(i). Observe that the computation insures that the parties hold t-private
Shamir shares of b. Furthermore, when implementing SSSP

bin(t′) with the multicast protocol from
8Implementing this functionality using the multicast protocol can be done by having P be in every subset of parties

receiving a CNF share (even if P does not belong to that set). This will ensure that P will hold all shares of the
random secret.
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[26], the broadcast can be implemented in parallel to computation of SSSP
bin(t′). Additionally, by

the robustness property of Shamir secret sharing, if t′ + 2t < m then the computation is secure
(according to the standard definition of VSS). Therefore, the procedure admits (t, h∗)-FaF full-
security whenever 3t+ h∗ < m.

The Multicast Protocol. We now present an overview of the two-rounds multicast protocol of
[26]. In the following, the set M ⊆ P is the set of parties that should receive the message of the
dealer D. The protocol makes use of a modification of the 2-round VSS protocol of [26].
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protocol 6.4.
Private Input: The dealer D holds a message M ∈ GF(2n), and all other parties hold no input.

First round:

• The dealer samples a random bivariate polynomial F (x, y) of degree at most t+h∗, over
the field GF(2n), such that F (0, 0) = M .
• For every i ∈ [m], the dealer hands the (univariate) polynomials fi(x) = F (x, i) and
gi(y) = F (i, y) to party Pi.
• For every i, j ∈ [m], party Pi samples a random pad ri,j ∈ GF(2n) and send it to Pj.

Second Round:

• Each party Pi broadcasts ai,j = fi(j) + ri,j and bi,j = gi (j) + rj,i (ri,j was sampled by Pi
and rj,i was sample by Pj)
• Every party Pi sends privately fi(0) to every party in M.

Reconstruction: Each party in M have enough information to locally compute the VSS recon-
struction algorithm, and output its result. This is done as follows.

1. Define a consistency graph G, on m vertices, where vertex i corresponds to party Pi, and
{i, j} is an edge if and only if ai,j = bj,i (i.e., Pi and Pj broadcast consistent messages).

2. Find a maximal matching in the complement graph Ḡ.
3. Let C be the set of vertices not in the matching (note that C is a clique in G).
4. Let C′ be the set of vertices not in C that have at least 2t+ h∗ + 1 neighbors in C.
5. If |C|+ |C′| ≤ 3t+ h∗, disqualify the dealer and output a default value.
6. Otherwise, use error-correction on the values {fi(0)}i∈C∪C′ to reconstruct the polynomial

g0(y), and output g0(0).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We show that the above protocol admits FaF-security.

Theorem 6.5. For every m, t, and h∗ satisfying 4t+h∗ < m, Protocol 6.4 computes the multicast
functionality with strong perfect (t, h∗)-FaF full-security.

In the proof of Theorem 6.5 we make use of the following known fact.
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Fact 6.6. Let S denote a set of parties of size at least d + 1, where each party Pi is holding two
polynomials f∗i (x), g∗i (y) each of degree d. Assume that for every pair of parties Pi,Pj ∈ S their
corresponding polynomials agree, that is, it holds that f∗i (j) = g∗j (i) and that g∗i (j) = f∗j (i). Then
there exists a unique bivariate polynomial F ∗(x, y) of degree d which is consistent with the values
held by the parties in S, i.e., f∗i (x) = F (x, i) and g∗i (y) = F (i, y).

In the proof of Theorem 6.5 we make use of the following two claims.

Claim 6.7. If D /∈ I is uncorrupted, the uncorrupted parties output M .

Claim 6.8. If D ∈ I is corrupted, all uncorrupted parties output the same value.

We first prove Theorem 6.5 using the above two claims. The proofs of the claims are given
below.

Proof of Theorem 6.5. In the following, we denote d = t+ h∗. Let A be an adversary corrupting a
subset I of size at most t, and let H ⊂ P \ I be of size at most h∗. We separate into two cases.
For the first case, let us assume that D /∈ I. With an auxiliary input zA, the malicious simulator
SA does the following.

1. If A corrupted a party in M, receive the output M from the trusted party.

2. Sample uniformly at random a bivariate polynomial F (x, y) of degree at most d, over the field
GF(2n). If A corrupted a party in M, then the sample of F is conditioned on F (0, 0) = M .

3. For every Pi ∈ I, hand over to A the univariate polynomials fi(x) = F (x, i) and gi(y) =
F (i, y), and random pads rj,i ∈ GF(2n) for every Pj /∈ I, sent on behalf of Pj .

4. The adversary sends back its choice for ri,j ∈ GF(2n) for every Pi ∈ I and Pj /∈ I.

5. For every Pi /∈ I and Pj ∈ P, compute ai,j = fi(j) + ri,j and bi,j = gi (j) + rj,i (note that rj,i
may have been chosen by A).

6. Output the univariate polynomials fi(x) and gi(y) held by A, and the pads rj,i ∈ GF(2n)
given to it, output the values ai,j and bi,j computed in the previous step, and if A corrupted
a party in M output in addition {fi(0)}Pi /∈I .

We next construct the semi-honest simulator SA,H, with an auxiliary input zH.

1. Apply SA with its randomness and zA to compute the following values.

• If I ∩M 6= ∅ compute the bivariate polynomial F (x, y) generated by SA.
• Otherwise, compute only the univariate polynomials {fi(x), gi(y)}Pi∈I given to A, and

complete them to a random bivariate polynomial F (x, y), so that if H ∩M 6= ∅ then
F (0, 0) = M (note that this can be done since the bivariate polynomial is of degree
d ≥ t).

2. Compute the random pads rj,i for every Pi ∈ I and Pj ∈ H generated by SA.

3. Compute the univariate polynomials fi(x) = F (x, i) and gi(y) = F (i, y) for every Pi ∈ H.
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4. Send to A the univariate polynomials fi(x) and gi(y) for every Pi ∈ I, and the random pads
rj,i sampled in Step 1.

5. The adversary sends back its choice for ri,j ∈ GF(2n) for every Pi ∈ I and Pj ∈ H, and some
addition non-prescribed messages.

6. For every Pi /∈ I ∪H and Pj ∈ P compute ai,j = fi(j) + ri,j and bi,j = gi (j) + rj,i.

7. For every Pi /∈ I and Pj ∈ P, give the adversary ai,j = fi(j) + ri,j and bi,j = gi (j) + rj,i. In
addition, if A corrupted a party in M, give it {fi(0)}Pi /∈I .

8. The adversary sends back values a∗i,j and b∗i,j for every Pi ∈ I and every Pj ∈ P, and its
choice for {h∗i (0)}Pi∈I if H ∩ M 6= ∅. In addition it sends back non-prescribed messages
(which might include the h∗i (0)’s regardless of whether or not H ∩M 6= ∅).

9. Output the univariate polynomials fi(x) and gi(y) held by the parties in H, the adversary’s
choice for the ri,j ’s sent to the parties in H, the computed values ai,j and bi,j for every Pi /∈
I ∪ H and Pj ∈ P, the adversary’s choice for the values a∗i,j and b∗i,j , and the non-prescribed
messages sent by A. In addition, if H ∩M 6= ∅ output {fi(0)}Pi /∈I∪H and {h∗i (0)}Pi∈I .

Observe that the messages sent to A by the simulators are exactly the same, hence the answers
they receive are the same as well. Furthermore, the univariate polynomials sampled and the random
pads are distributed exactly the same in both the real-world and the ideal-world. Therefore, we
may condition on them being the same. Since F is of degree d = t+h∗, if I ∩M = ∅ in both worlds
the adversary’s view is independent of F (0, 0) = M , and if (I ∪ H) ∩M = ∅ the same holds with
respect to H. By Claim 6.7 the output of the uncorrupted parties in the real-world is M . Thus,
we conclude that

IDEAL
SA,SA,H
1n,M,zA,zH

≡ REALA,AH1n,M,zA,zH
.

For the second case, we assume that D ∈ I. With an auxiliary input zA, the malicious simulator
SA will do the following.

1. For every Pi ∈ I, hand over to A random pads rj,i ∈ GF(2n) for every Pj /∈ I.

2. The adversary sends back its choice for ri,j ∈ GF(2n) for every Pi ∈ I and Pj /∈ I, and in
addition its choice for the univariate polynomials f∗i (x) and g∗i (y) for every Pi /∈ I.

3. For every Pi /∈ I and Pj ∈ P, compute ai,j = f∗i (j) + ri,j and bi,j = g∗i (j) + rj,i (note that
rj,i could have been chosen by A).

4. Send these values to the adversary and receive its choose for the a∗i,j ’s and b∗i,j ’s for every
Pi ∈ I and Pj ∈ P.

5. Apply the reconstruction algorithm to receive a value M ′ ∈ GF(2n), and send it to the trusted
party on behalf of the dealer.

6. Output the pads rj,i ∈ GF(2n) given to A and the values ai,j and bi,j computed in Step 3.

We next construct the semi-honest simulator SA,H, with an auxiliary input zH.
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1. Apply SA with its randomness and zA to compute the random pads rj,i for every Pi ∈ I and
Pj ∈ H generated by SA, and send them to A.

2. The adversary sends back its choice for ri,j ∈ GF(2n) for every Pi ∈ I and Pj ∈ H, its
choice for the univariate polynomials f∗i (x) and g∗i (y) for every Pi /∈ I, and some additional
non-prescribed messages.

3. For every Pi /∈ I ∪ H and Pj ∈ P compute ai,j = f∗i (j) + ri,j and bi,j = g∗i (j) + rj,i (i.e., the
values that Pj broadcast).

4. For every Pi /∈ I and Pj ∈ P, give the adversary ai,j = f∗i (j) + ri,j and bi,j = g∗i (j) + rj,i.

5. The adversary sends back values a∗i,j and b∗i,j for every Pi ∈ I and every Pj ∈ P, and its
choice for {h∗i (0)}Pi∈I if H ∩ M 6= ∅. In addition it sends back non-prescribed messages
(which might include the h∗i (0)’s regardless of whether or not H ∩M 6= ∅).

6. Output the univariate polynomials f∗i (x) and g∗i (y) held the parties in H, the adversary’s
choice for the ri,j ’s for every Pi ∈ I and Pj ∈ H, the computed values ai,j and bi,j for every
Pi /∈ I ∪ H and Pj ∈ P, the adversary’s choice for the values a∗i,j and b∗i,j for every Pi ∈ I
and every Pj ∈ P, and the non-prescribed messages sent by A. In addition, if H ∩M 6= ∅
output {f∗i (0)}Pi /∈I∪H and {h∗i (0)}Pi∈I .

Similarly to the case where D /∈ I, the view of A and H are identically distributed in both
worlds. Furthermore, the malicious simulator SA computed the value M ′ it sends to the trusted
party using the reconstruction algorithm used by the uncorrupted parties in the real-world, implying
that the output of the uncorrupted parties is distributed exactly the same. Therefore, to conclude
that

IDEAL
SA,SA,H
1n,M,zA,zH

≡ REALA,AH1n,M,zA,zH

we only need to show that the parties in the real-world output the same value. This follows from
Claim 6.8. �

Proof of Claim 6.7. Assume the dealer D is uncorrupted. Then, all edges in the graph G have
an endpoint that corresponds to a malicious party. Thus, any maximal matching, in particular
the one found, is of size t̂ ≤ t. Therefore, |C| = m − 2t̂. Next, as any edge in the matching has
an endpoint that corresponds to an uncorrupted party, it follows that |C′| ≥ t̂. Thus, we have
|C ∪ C′| ≥ m − t̂ > 4t + h∗ − t̂ = 3t + h∗. Therefore, the dealer is not disqualified. Since the
uncorrupted parties report fi(0) that are consistent with F (0, i), and up to t parties report an
inconsistent value, error-correctness succeeds. �

Proof of Claim 6.8. Here we prove that even if D is dishonest, the parties inM agree on the same
value. There are two cases:

1. |C|+ |C′| ≤ 3t+ h∗: In this case, all parties agree on this fact, as this is derived only from the
publicly known graph G, so all parties in M output a default value.

2. |C|+ |C′| > 3t+ h∗: Here, the dealer is not disqualified and error-correction is to be applied by
the uncorrupted parties. By the definition of C′, this implies that |C| ≥ 2t+ h∗+ 1. Consider
the subset Good ⊆ C of parties who are uncorrupted (i.e., in P \ (I ∪ H)). Observe that
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|Good| ≥ |C| − t ≥ 2t+ h∗ + 1− t = d+ 1, where d = t+ h∗. By Fact 6.6, the values in Good
determine a unique bivariate F ∗(x, y) polynomial of degree d. Now, as |C|+ |C′| > 3t+ h∗,
at least 2t + h∗ + 1 = d + t + 1 of the parties in C ∪ C′ are uncorrupted. Every such party
agrees with at least d+ t+ 1 of the parties in C, and thus with at least d+ 1 of the parties in
Good. That is, for every uncorrupted party Pi ∈ C′, the polynomial f∗i (x) given to Pi agrees
with F ∗(x, y) on at least |Good| ≥ d+ 1 points. In particular, f∗i (0) = F ∗(0, i). Finally, upon
reconstruction, all uncorrupted parties apply error-correction on the values {fi(0)}i∈C∪C′ . As
at least |C ∪ C′| − t parties in C ∪ C′ are uncorrupted, the polynomial g∗0(y) (before error
correction) disagrees with F ∗(0, y) on at most t points. As the Reed-Solomon code formed
by the degree-d polynomials specified on ` = |C ∪ C′| points has distance `− d ≥ 2t+ 1, the t
errors are successfully corrected.

�

When constructing the simulators, we note that the resulting simulations are straight-line,
black-box and achieve perfect security. Therefore, by [40] Protocol 6.4 remain secure under parallel
composition.9 Thus, we have the following claim.

Claim 6.9. Protocol 6.4 computes the m-party multicast functionality with strong perfect (t, h∗)-
FaF full-security for every t and h∗ satisfying 4t + h∗ < m. Furthermore, security is preserved
under parallel composition.

The Three-Round Protocol. We next describe the protocol of Damg̊ard and Ishai [20]. By
Claim 6.9, we may assume that the parties have access to idealizations of the secret sharing func-
tionalities described above. In this hybrid model, the protocol consists of two rounds.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protocol 6.10 (ΠDI).
Private Input: Each party Pi holds an input xi ∈ Xi.
Common Input: The parties hold the security parameter 1n.

1. In the first round, the parties call the following functionalities.

• For each wire w ∈ {0, . . . ,W − 1}, the parties call SSSbin(t+h∗) to create shares of the
internal values λw ∈ {0, 1}.
• For each i ∈ [m] and each wire w ∈ {0, . . . ,W − 1}, the parties call SSSPi(t + h∗) to

create shares of the subkeys si2w and si2w+1, such that both subkeys are known only to Pi.
• For each input bit bw held by party P, the parties apply the procedure VSSP

bin(t+h∗, bw).
• The parties prepare shares of 0 as follows.

– Call SSS0 (2(t+ h∗)) for each input wire, and four times for each gate.
– Call SSS0 (3(t+ h∗)) four times for each gate.

2. Each party Pi locally computes the following values.

• For each input wire w and each j ∈ [m], Pi computes a random share of sj2w+(bw⊕λw).
Note that since we work over a field of characteristic 2, this value can be written as a
degree 2 polynomial (1 + bw + λw) · sj2w + (bw + λw) · sj2w+1. Therefore, the computation
can be carried out using Fact 2.4.

9[40] proved the theorem for standard security, however, their result apply to FaF-security as well.
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• For each input wire w, compute shares of the value bw ⊕ λw.
• For each gate g in the circuit do the following. Let α and β be the two input wires of
g, and let γ be one of its output wires. For each j ∈ [m] compute random shares of the
following values

δ00
g,γ = (λα NAND λβ)⊕ λγ ; a00,j

g,γ = sj2γ+δ00
g,γ

δ01
g,γ = (λα NAND λ̄β)⊕ λγ ; a01,j

g,γ = sj2γ+δ01
g,γ

δ10
g,γ = (λ̄α NAND λβ)⊕ λγ ; a10,j

g,γ = sj2γ+δ10
g,γ

δ11
g,γ = (λ̄α NAND λ̄β)⊕ λγ ; a11,j

g,γ = sj2γ+δ11
g,γ

Note that these values can be written as polynomials of degree 2 and 3 in the already
shared values. For instance, a00,j

g,γ = (λαλβ +λγ)sj2γ + (1 +λαλβ +λγ)sj2γ+1. Thus, these
values can be computed using Fact 2.4 as well.
• For each c, d ∈ {0, 1} and each gate g and an output wire γ, denote Acdg,γ =((

acd,jg,γ

)m
j=1

, δcdg,γ

)
. Party Pi then computes the i-th component of Encprev(α),prev(β)

S2α+c,S2β+d
(Acdg,γ)

(recall that prev (α) and prev (β) are the indexes of the output wire of the previous gate,
that goes into g as α and β, respectively).

3. Each party Pi then broadcast the shares of sj2w+(bw⊕λw), of bw⊕λw, of λW−1, and the encryp-
tions.

4. Each party can now locally evaluate the output.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Theorem 6.2 clearly follows from the following theorem asserting that ΠDI admits FaF full-
security.

Theorem 6.11. Let m, t, h∗ ∈ N be three constants satisfying 5t+ 3h∗ < m. Let f be a polynomial
time computable m-party functionality. Then, under the assumption that pseudorandom generators
exist, ΠDI is a 3-round protocol that computes f with strong computational (t, h∗)-FaF full-security.
Moreover, the construction is fully black-box.

Proof. Fix an adversary A corrupting a set I ⊂ P of size at most t, and fix an adversary AH
controlling a subset H ⊂ P \I of size at most h∗. Observe that the maximum degree of taking over
the polynomials used in the Shamir’s secret sharings, is 3(t+h∗). Thus, by the robustness property
of the sharing scheme, reconstruction of the secrets would be possible if 3(t+ h∗) + 2t < m, which
holds by assumption.

Although [20] provided a simulator SA for A, we will fully describe it, as its description will help
us to construct the second simulator SA,H. The idea in constructing both simulators is to have them
execute the protocol to construct the shares and a “fake” garbled circuit. When constructing the
“fake” garbled circuit, we have to make sure that the output is the same as the output received from
T. To force this, the simulators will put the bit λW−1 ⊕ y as the plaintext inside the encryptions
of the last gate, where y is the output received from T. This is done as follows. The degree 3t
polynomial that defines this bit is of the form Qcd(·) + Zcd(·), where Zcd(0) = 0 and Qcd(0) =
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((c⊕ λW−2) NAND (d⊕ λW−3)) ⊕ λW−1. Therefore, SA and SA,H will change Zcd with another
degree 3t polynomial Ẑcd, whose value on 0 will be consistent with the output. These values are
defined as Ẑcd(0) = ((c⊕ λW−2) NAND (d⊕ λW−3)) ⊕ y. Additionally, the adversary’s simulator
SA will have to make sure it sends to T correct inputs. This can be easily implemented as the
VSS’s of the first round fixes the corrupted parties’ inputs. We next formally describe SA on input
xI and an auxiliary input zA.

1. Generate the shares of the first round as follows.

• For every wire w ∈ {0, . . . ,W − 1} choose λw ∈ {0, 1} uniformly at random, and share
it in a (t+ h∗ + 1)-out-of-m Shamir’s secret sharing scheme.
• For every Pi and every wire w ∈ {0, . . . ,W − 1} choose si2w, si2w+1 ∈ {0, 1}n uniformly

at random and share them in a (t+ h∗ + 1)-out-of-m Shamir’s secret sharing scheme.
• Generate shares for 0 as follows.

– Share 0 in a (2(t+ h∗) + 1)-out-of-m Shamir’s secret sharing scheme, for each input
wire and four times for every gate but the last one.

– Share 0 in a (3(t+ h∗) + 1)-out-of-m Shamir’s secret sharing scheme, four times for
every gate.

• For every c, d ∈ {0, 1}, generate shares of some value vcd ∈ GF (2n) in a (2(t+ h∗) + 1)-
out-of-m Shamir’s secret sharing scheme.
• For each input wire w held by an uncorrupted party P /∈ I, simulate the execution of

VSSP
bin (t+ h∗, 0) by giving A a random element from GF(2n).

2. Send to A its respective shares, and receive VSS’s for each input wire held by the adversary.

3. Apply the VSS reconstruction function to reconstruct an adversary’s input. Send the input
to the trusted party to receive an output y.

4. Complete the shares of each vcd to shares of ((c⊕ λW−2) NAND (d⊕ λW−3)) ⊕ y, for every
c, d ∈ {0, 1}.

5. For every uncorrupted party, compute its faked garbled circuit using the shares generated in
the previous steps.

6. Output the adversary’s shares generated in Step 1 and the fake garbled circuits, and halt.

In order to show strong FaF-security, we have to make sure the messages that the simulators send
to the adversary are exactly the same. Since the semi-honest simulator SA,H holds the randomness
of SA, it can generate the same random shares, and complete the shares of the input bits held by the
parties in H, so that the secret is the real input. This forces the shares sent by the two simulators
to A to be the same. Since the shares are (t+ h∗)-private, the semi-honest simulator SA,H can do
so using the same shares SA sampled for it. This implies that the faked garbled circuits sent by
the simulators are also the same. We now describe SA,H on input xH and an auxiliary input zH.

1. Receive the output y from the trusted party, and receive r, xI , and zA – SA’s randomness,
input, and auxiliary input, respectively.
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2. Execute SA (xI , zA; r) to receive the shares generated for the first round of the protocol.

3. For every input wire w associated with a party P ∈ H, complete the shares of 0 generated
for the adversary by SA so that the secret is bw. Note that by the properties of the secret
sharing scheme it is possible to do so by changing the shares not held by the parties in I ∪H.

4. Send to A its respective shares, and receive VSS’s for each input wire held by the adversary,
and the messages it sends to the parties in H.

5. Use SA to complete the shares of each vcd to shares of ((c⊕ λW−2) NAND (d⊕ λW−3))⊕ y,
for every c, d ∈ {0, 1}.

6. For every uncorrupted party compute its faked garbled circuit using the shares generated in
the previous steps. Send the fake garbled circuits to A to receive the messages it sends to the
parties in H.

7. Output the shares of the parties in H, the fake garbled circuits sent to them, and the messages
sent by A, and halt.

To conclude the proof, we next show that{
IDEAL

SA,SA,H
1n,x,zA,zH

}
x∈X ,zA,zH∈{0,1}∗,n∈N

c≡
{

REALA,AH1n,x,zA,zH

}
x∈X ,zA,zH∈{0,1}∗,n∈N

.

Observe that both simulators sends to A exactly the same messages. As a result, they will
receive the same shares. Next, sort the gates in C in a topological order. Consider a series of
hybrids Hi(x), in which each one gate at a time is replaced in the real garbled circuit. The hybrid
H0(x) contains the real garbled circuit. In contrast, H|C|(x) contains the fake garbled circuit
constructed by the simulator. As both simulators generated exactly the same fake garbled circuits,
it is enough to show that

{H0(x)} c≡
{
H|C| (x)

}
.

By a simple hybrid argument, if a distinguisher exists, then one can distinguish Hi(x) from Hi−1(x)
for some i ∈ [|C|]. However, as everything but the values of the encryptions are identically dis-
tributed, this contradicts the semantic security of the encryption scheme. �
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7 General Statistically FaF-Secure MPC

In previous section we discussed the feasibility of FaF-security in the computational setting. In this
section we study FaF-security under the notions of statistical and perfect security. Additionally,
we further compare the notion of FaF-security with the notion of mixed-security – where a single
adversary corrupts a subset of the parties actively and another subset passively. Recall that our
comparisons to mixed-security in Sections 4.1.2 and 5.2 only hold in the computational setting. It
is unclear if those results hold in the information-theoretic setting. Here, we give some evidence
for the contrary.

The main result of this section, is characterizing the types of adversaries, for which we can
compute any multiparty functionality with statistical/perfect FaF full-security (with and without
broadcast). Here we generalize our model to consider adversaries that corrupt parties according
to more general adversarial structures, beyond threshold structures as discussed so far. We define
our adversarial structures following Fitzi et al. [24] who studied the notion of mixed adversarial
structures. As defined in Section 5.2, we refer to this type of security as mixed-security. They
considered a type of adversarial structures called monotone adversarial structure. Roughly, this
means that turning a malicious party into being semi-honest does not compromise the security
of the protocol. As discussed in Section 5.1, this is not generally the case (even for threshold
adversaries).

Fitzi et al. [24] characterized the conditions for when general secure computation against mixed
adversaries is possible. Somewhat surprisingly, we show that their conditions characterize FaF full-
security as well. Furthermore, in the positive direction, we show that same conditions provided by
[24] imply strong FaF full-security, while in the other direction, we show that if the conditions do
not hold, then even weak FaF full-security is impossible. An interesting corollary, is that (weak) FaF
full-security, strong FaF full-security, and mixed-full-security, are all equivalent as far as general
MPC goes. We next provide formal definitions.

A pair (I,H) ⊆ P2 is called valid if I ∩H = ∅. A mixed adversarial structure over a set P is a
set R ⊆

{
(I,H) ⊆ P2 : I ∩ H = ∅

}
of valid pairs. We omit P when clear from the context. For two

valid pairs (I,H), (I ′,H′), we say that (I ′,H′) ≤ (I,H) if I ′ ∪ H′ ⊆ I ∪ H and I ′ ⊆ I. A mixed
adversarial structure R is called monotone, if for every (I,H) ∈ R, it holds that if (I ′,H′) ≤ (I,H)
then (I ′,H′) ∈ R.

We next extend Definition 3.3 for general mixed adversarial structures. We only define security
for the statistical and perfect cases.

Definition 7.1 (FaF-security for general mixed adversarial structure). Let Π be a protocol for
computing f and let R be a mixed adversarial structure. We say that Π computes f with statistical
R-FaF full-security, if the following holds for any (I,H) ∈ R. For every adversary A, controlling
the set I in the real-world, there exists a adversary SA, controlling I in the ideal model; and for every
semi-honest adversary AH controlling the subset H, there exists an adversary SA,H, controlling H
in the ideal-world, such that{

IDEALSA,SH
1n,x (SA)

}
x∈X ,n∈N

S≡
{

REALA,AH1n,x (A)
}

x∈X ,n∈N
, (4)

and {
IDEALSA,SH

1n,x (SH)
}

x∈X ,n∈N

S≡
{

REALA,AH1n,x (AH)
}

x∈X ,n∈N
. (5)
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The protocol Π further computes f with perfect R-FaF full-security if the distributions are equiva-
lent. Finally, we say that R allows for general m-party statistical (resp., perfect) FaF fully-secure
MPC if for every m-party function f there exists a protocol Π that computes f with statistical (resp.,
perfect) R-FaF full-security.

Definition 7.2 (strong statistical FaF-security). Let Π be a protocol for computing f and let R
be a mixed adversarial structure. We say that Π computes f with strong statistical R-FaF full-
security, if the following holds for any (I,H) ∈ R. For every adversary A, controlling a set I in
the real-world, there exists a adversary SA, controlling I in the ideal model; and for every semi-
honest adversary AH controlling the subset H, there exists a adversary SA,H, controlling H in the
ideal-world, such that {

IDEAL
SA,SA,H
1n,x

}
x∈X ,n∈N

S≡
{

REALA,AH1n,x

}
x∈X ,n∈N

. (6)

The security is perfect if the distributions above are identical. Finally, we say that R allows for gen-
eral m-party strong statistical (resp., perfect) FaF fully-secure MPC if for every m-party function f
there exists a protocol Π that computes f with strong statistical (resp., perfect) R-FaF full-security.

7.1 Statistical FaF Full-Security For Monotone Adversarial Structures

In this section, we present the main result for characterizing general FaF fully-secure MPC. We
start with defining a family of predicates, called Q (a, b) for 0 ≤ b ≤ a, over the set of monotone
adversarial structures. These predicates form a generalization of the condition at + bh∗ < m for
threshold adversaries.

Definition 7.3. Let R be a monotone mixed adversarial structure, and let 0 ≤ b ≤ a. We say that
R is Q (a, b), if for all (I1,H1), . . . , (Ia,Ha) ∈ R, it holds that⋃

1≤`≤a
I` ∪

⋃
1≤`≤b

H` 6= P

For example, R is Q (3, 2) if for every (I1,H1) , (I2,H2) , (I3,H3) ∈ R it holds that

I1 ∪ I2 ∪ I3 ∪H1 ∪H2 6= P.

Similarly to [24], we are only going to consider Q (3, 2), Q (2, 2), and Q (3, 0).
The following theorem states the main result of this section, providing a characterization of FaF

fully-secure MPC secure against monotone mixed adversarial structures.

Theorem 7.4. Let R be a monotone mixed adversarial structure over a set P = {P1, . . . ,Pm} for
some m ≥ 3. Then:

1. R allows for general m-party strong statistical FaF fully-secure MPC, assuming an available
broadcast channel, if and only if R is Q (2, 2).

2. R allows for general m-party strong statistical FaF fully-secure MPC (without broadcast) if
and only if R is both Q (2, 2) and Q (3, 0).

3. R allows for general m-party strong perfect FaF fully-secure MPC if and only if R is Q (3, 2).
Moreover, the negative direction holds even when assuming the availability of a broadcast
channel, while the positive direction holds without a broadcast channel.
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In all cases, both the communication complexity and computation complexity of the resulting proto-
cols is poly(|B|), where B is the set of all maximal elements in R. Furthermore, in each of the three
cases above, if the corresponding condition is not satisfied, then there exists an access structure for
which even weak FaF full-security is not achievable.

Before proving Theorem 7.4, we discuss an interesting corollary. Fitzi et al. [24] showed that the
same conditions as those asserted in Theorem 7.4 hold with respect to mixed-security. Somewhat
surprisingly, we conclude that the conditions on R also allow for general (information theoretic)
MPC with FaF-security. In particular, no further gains can be made by further restricting the
security requirement as in our model as far as general MPC goes (although the simulators are also
weaker). This does not rule out specific functionalities f and adversarial structures R for which
mixed-security is possible, while FaF-security is not and vice versa. See Example 5.4 of a protocol
that satisfies computational mixed-security but is not FaF-secure for the same R. In the other
direction, in Section 4.1.2 we gave an example for a 3-party functionality that cannot be computed
with (1, 1)-mixed-security, yet is computable with computational (1, 1)-FaF full-security.

Corollary 7.5. Let R denote a monotone mixed adversarial structure over P = {P1, . . . ,Pm},
where m ≥ 3. Then R allows for general m-party statistical (resp., perfect) FaF fully-secure MPC
with (resp., without) broadcast if and only if R allows for general m-party statistical (resp., perfect)
mixed fully-secure MPC with (resp., without) broadcast.

7.2 Proofs of the Negative Results

In this section, we prove the impossibility results stated in Theorem 7.4. The following lemma
formulate the negative direction of Case 1.

Lemma 7.6. Let R denote a monotone mixed adversarial structure over P = {P1, . . . ,Pm}, where
m ≥ 3. Assume that R is not Q (2, 2). Then, there exists an m-party functionality f which cannot
be computed with statistical R-FaF full-security. Moreover, this holds even when assuming an
available broadcast channel.

The proof is done using a player-partitioning argument, similarly to [24]. For the sake of
completeness we provide the proof.

Proof. Since R is not Q (2, 2), there exist (I1,H1), (I2,H2) ∈ R such that

I1 ∪ I2 ∪H1 ∪H2 = P.

Then at least one of the sets I1∪H1 and I2∪H2 is not empty. Furthermore, we can assume without
loss of generality that both are not empty. Indeed, if one of them is empty, then by monotonicity we
could partition the non-empty one into more sets, since m ≥ 3. Additionally, we may assume that
I1 ∪H1 and I2 ∪H2 are disjoint. This follows from the observation that by monotonicity, we could
replace I2 with I2 \ (I1 ∪H1) and replace H2 with H2 \ (I1 ∪H1). Furthermore, the monotonicity
of R, implies that (∅, I1 ∪H1), (∅, I2 ∪H2) ∈ R.

Now, assume towards contradiction, that for any m-party functionality g there exists a protocol
Πg that computes it with statistical R-FaF full-security (possibly using broadcast). Consider the
2-party symmetric functionality f(x1, x2) = x1 ∨ x2, which cannot be computed against a semi-
honest adversary corrupting any single party [12]. Fix i1 ∈ I1 ∪H1 and i2 ∈ I2 ∪H2, and consider
the m-party symmetric functionality g(x1, . . . , xm) = f(xi1 , xi2).
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Next, consider the following 2-party protocol Πf for computing f . The parties emulate the
execution of Πg, where for each i ∈ {1, 2}, party Pi emulates the parties in Ii ∪ Hi. In the
emulation, the inputs x1, x2 are given to Pi1 and Pi2 respectively, while other parties start with
arbitrary inputs. The parties then output whatever output was computed in Πg.

The main observation is that any semi-honest adversary Af corrupting one of the parties in
Πf , corresponds to the case where only the semi-honest adversary Ag corrupting some set H ⊆ P,
is present in the emulated protocol Πg. Indeed, a single semi-honest adversary Af corrupting
(∅, {Pi}), for i ∈ {1, 2}, corresponds to a semi-honest adversary Ag corrupting (∅, Ii ∪ Hi) ∈ R.
Furthermore, the simulators for Ag directly translate to simulators for A contradicting the fact
that f cannot be securely computed with statistical security against semi-honest adversaries. �

The following two lemmata state the negative direction for Cases 2 and 3 respectively.

Lemma 7.7. Let R denote a monotone mixed adversarial structure over P = {P1, . . . ,Pm}, where
m ≥ 3. Assume that R is not Q (2, 2) or it is not Q (3, 0). Then, there exists an m-party function-
ality f which cannot be computed with statistical R-FaF full-security, assuming the parties do not
have an available broadcast channel.

Lemma 7.8. Let R denote a monotone mixed adversarial structure over P = {P1, . . . ,Pm}, where
m ≥ 3. Assume that R is not Q (3, 2). Then, there exists an m-party functionality f which cannot
be computed with perfect R-FaF full-security. Moreover, this holds even when assuming an available
broadcast channel.

The proofs of Lemmas 7.7 and 7.8 are done similarly to the proof of Lemma 7.6. For the former
we reduce it from the computation of the three-party broadcast functionality, which was shown by
[41] to be impossible to compute against a malicious adversary corrupting a single party. The latter
is reduced to the computation of the function f(x1, x2,⊥) = (x1∧x2, x1∧x2,⊥), which was shown by
[24] to be impossible to compute against the adversarial structure {(∅, {P1}), (∅, {P2}), ({P3}, ∅)}.
We provide the proofs in Appendix A for completeness.

7.3 Proofs of Positive Results

In this section, we prove the positive direction of Theorem 7.4. We prove it by showing that
the protocols provided by [24] are strong FaF fully-secure. Note that although real-world mixed-
adversaries corrupting (I,H) ∈ R are strictly stronger than their FaF counterpart, it is not straight
forward that mixed-security of a protocol Π implies FaF-security. This is due to the fact that an
ideal-world mixed-adversary is also strictly strogner than its ideal-world FaF counterpart. Indeed,
an ideal-world mixed-adversary corrupting (I,H) might send to the trusted party inputs on behalf
of the parties in I based on the inputs of the parties in H. In fact, Example 5.4 demonstrates that
computational mixed-security does not imply computational FaF-security. Finding a counterex-
ample for statistical security remains open. We next state the positive direction of the three cases
in Theorem 7.4.

Lemma 7.9. Let R be a monotone mixed adversarial structure over a set P = {P1, . . . ,Pm} for
some m ≥ 3. Then:

1. If R is Q (2, 2), then R allows for general m-party strong statistical FaF fully-secure MPC,
assuming an available broadcast channel.
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2. If R is both Q (2, 2) and Q (3, 0), then R allows for general m-party strong statistical FaF
fully-secure MPC (without broadcast).

3. If R is Q (3, 2), then R allows for general m-party strong perfect FaF fully-secure MPC
(without broadcast).

In all three cases of Lemma 7.9, the resulting protocol is described in a recursive manner, where
the main difference is in the basis of the recursion. We next present an informal description of the
idea, followed by a formalized proof. We start with some notations.

Notations. An element (I,H) ∈ R is called maximal if for all (I ′,H′) ∈ R, if (I,H) ≤ (I ′,H′)
then (I,H) = (I ′,H′). A basis of R is the set of all maximal elements in R. In addition, we let
the monotone closure of R be the set

mCl (R) =
{

(I,H) ⊆ P2 : I ∩ H = ∅, ∃(I ′,H′) ∈ R such that (I,H) ≤ (I ′,H′)
}
,

of valid pairs that are smaller than some element in R. It is not hard to see that R is monotone if
and only if R = mCl (R).

7.3.1 The Recursive Protocol

We next describe the recursive protocol and prove its security. We start with giving an informal
overview of the construction. Fix a monotone mixed adversarial structure R, and let B be the
basis of R. For the recursive protocol we assume that |B| ≥ 4. The parties are going to emulate
the 4-party BGW protocol secure against a single malicious party. Let Q1,Q2,Q3, and Q4 be the
virtual parties running the BGW protocol. The virtual parties compute the following functionality.
The input of Qj is defined as follows. Share each xi in a 2-out-of-4 secret sharing scheme, where
xi is held by Pi. The input of Qj is its respective shares of each input, i.e., Qj holds (xi[j])mi=1.
The output is defined as follows. Let y be the output of f(x). Share each yi in a 2-out-of-4 secret
sharing scheme. The output of Qj is its respective shares of each yi, i.e., it receives (yi[j])mi=1.

The idea in emulating the computation of the 4-party BGW protocol, is to have each value held
by a virtual party, shared by the real parties. The secret sharing scheme functionality is denoted
by ShB. It is a reactive functionality, where the sharing phase shares the secret so that the parties
in I ∪H, where (I,H) ∈ B, has no information on the secret. We further denote the reconstruction
function of ShB as RecB. The functionality is formally described in Figure 1. We first formulate
the interaction assuming the parties have access to an idealized functionality that can perform the
local computations supposedly done by each virtual party. The functionality takes shares of the
ShB scheme, and output shares of the same scheme.

The real parties first share their inputs using two layers of secret sharing schemes. In the first
layer, they use a 2-out-of-4 Shamir’s secret sharing scheme (and associate the i-th share as the
input of the virtual party Qj′). Then, they share each secret in an additional layer of sharing
using a ShB secret sharing scheme. Next, the real parties sample together randomness for each of
the virtual parties. This will be done using the idealized functionality that sample randomness.
Then, during the execution of the protocol, each message that is supposedly sent by one of the four
virtual parties, is also going to be computed using the idealized functionality. Finally, to recover
the output, the parties will call one last time to the functionality to recover each virtual party’s
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Sharing phase:

• Input. One party, designated as the dealer, provides some input s and no other parties
provides any input.
• Output. The functionality will share s using [37] secret sharing scheme for general access

structures, where the minterms are I ∪ H ∪ {P}, where (I,H) ∈ B and P /∈ I ∪ H.
Additionally, the functionality records the value s.

Reconstruction phase:

• Input. Every party holds the shares of s received as the output of the previous phase.
• Output. If the shares of are consistent with s, then each party receives s from the

functionality. Otherwise, each party receives the default value 0.

Figure 1: The ShB secret sharing functionality

output. They can simply apply the reconstruction of the ShB secret sharing to receive a Shamir
share of the output, which they can reconstruct as well.

In order to implement the idealized functionalities, the parties are going to use the exact same
protocol, i.e., emulating 4-party BGW protocol. This can continue recursively, until the basis
protocol, which will differ based on the assumption on the adversarial structure. Each BGW
emulation will admit security against “smaller” adversarial structures. Specifically, we partition the
basis B into four subsets B1,B2,B3,B4, each of size at least b|B|/4c, and denote Bj = B \ Bj . Then
the implementation of each local computation done by virtual party Qj , will be an emulation of 4-
party BGW protocol, that is mCl

(
Bj
)
-FaF fully-secure, that is, it tolerates adversaries corrupting

according to the adversarial structure induced by the basis Bj . Recall that we assume |B| ≥ 4.
Therefore, each Bj is a basis for mCl

(
Bj
)

that is strictly smaller than B. Therefore, it can be
inductively replaced with a secure protocol. Moreover, observe that the corrupted set (I,H) can
belong to at most one Bj . In this case, only the messages computed for Qj are not guaranteed
to be correct, or that Qj could “learn” some information. This can be viewed as if it is the only
corrupted party (either malicious or semi-honest) in the 4-party BGW protocol.

We next formalize the above protocol. The idealized functionalities we will use, modeling the
inner computation of each virtual party, are denoted F jg,B′ . It is parametrized by the index of the
virtual party Qj , some function g : Vj 7→ Vj whose domain and range are the set of all possible
views of Qj , and a strict subset B′ ⊂ B, representing a basis under which the functionality would
be implemented using a secure protocol. The functionality F jg,B′ is defined in Figure 2.

In the following, for j ∈ [4] we let Nextj,` be the next-message function of round ` for Qj as
specified by the BGW protocol. We view Nextj,` as a deterministic function, where the randomness
of Qj is given as an input. Additionally, we let Nextj,0 be the function which samples randomness
for Qj , and we let Nextj,r+1 be the function that computes the output of Qj , where r is the number
of rounds in the BGW protocol. The following lemma, states that it is possible to compute any
functionality against any monotone mixed adversarial structure whose basis is of size at least 4,
given the appropriate hybrid model.
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Input: Suppose that v`,j = (v1,j , . . . , v`,j) ∈ Vj is some possible partial view of Qj . The input for
party Pi is (vk,j [i])`k=1, where each vk,j [i] is the i-th share of vk,j in a ShB secret sharing scheme.
Output: Let (I,H) ∈ R be the set of corrupted parties.

1. Assume that (I,H) ∈ mCl (B′) (i.e., FaF-security holds). In this case, the functionality
recovers v`,j using RecB and compute v`+1,j = g(v`,j). The functionality then share v`+1,j
using ShB and send each party its respective share.

2. Assume that (I,H) /∈ mCl (B′) and that (I, ∅) ∈ mCl (B′) (i.e., standard security against
the malicious adversary holds, yet FaF-security is not guaranteed to hold). Similarly to the
previous case, the functionality recovers v`,j using RecB and compute v`+1,j = g(v`). The
functionality then share v`+1,j using ShB and send each party its respective share. In addition,
the functionality gives v`,j to the parties in H.

3. Assume that (I, ∅) /∈ mCl (B′) (i.e., standard security is not guaranteed to hold). In this case,
send the inputs of all parties to the adversary the to receive purported sharing of some value
v∗`+1,j . Send each party its respective share of v∗`+1,j .

Figure 2: Ideal functionality F jg,B′

Lemma 7.10. Let R denote a monotone mixed adversarial structure over P = {P1, . . . ,Pm},
whose basis B is of size at least 4, and where m ≥ 3. Partition B into four sets B1, . . . ,B4, each of
size at least b|B|/4c, and let Bj = B \ Bj for all j ∈ [4]. Then R allows for general m-party strong

perfect FaF fully-secure MPC in the
(

ShB,
(
F jNextj,`,Bj

)
i,j∈[4],`∈{0,...,r+1}

)
-hybrid model.

Proof. Fix some m functionality f . We next present the protocol Πrec
f for computing f with strong

perfect R-FaF full-security. For brevity, we will write F j` for the idealized functionality, instead of
F jNextj,`,Bj

.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protocol 7.11 (Πrec

f ).
Inputs: The input for party Pi is xi ∈ Xi.

Sharing the inputs: Each party Pi share its input xi using two layers of secret sharing schemes.

1. The outer layer is a 2-out-of-4 Shamir’s secret sharing scheme.
2. The inner layer is a ShB secret sharing scheme.

Denote by xi[j] the j-share of the inner layer scheme. Party Pi then sends each other party
its respective share, that is, party Pj receives xi[j].

Generating randomness: For each j ∈ [4], the parties call F j0 with no inputs, to receive shares
of randomness for the virtual party Qj.

Emulating the BGW protocol: For ` = 1 to r do the following: Suppose that the next message
of the BGW protocol is sent from Qj to Qj′. The parties call F j` with their current view as
the input. The parties receive an output v`+1,j (in shared form) which they keep as being part
of Qj′’s view.
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Recovering the output: After the interaction of the emulated BGW protocol has ended, the par-
ties call F jr+1 for every j ∈ [4]. Next, the parties recover the output by calling RecB for each of
the four outputs of the virtual parties, and then locally apply Shamir’s sharing reconstruction
(with error-correcting).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We next show that Πrec
f admits strong perfect R-FaF full-security. Fix a malicious adversary A

and a semi-honest adversary AH, corrupting the subset I ⊆ P and H ⊆ P respectively, such that
(I,H) ∈ R. We first intuitively explain why simulation is possible. Assume that (I,H) ∈ mCl (Bj)
for some j ∈ [4]. Observe that since the Bj ’s form a partition of B, in all hybrids

(
F j
′

`

)r+1

`=0
, for

every j′ 6= j, the correct value will be computed, without revealing anything to any of the two
adversaries (i.e., Case 1 holds). Therefore, the only set of hybrids for which the (at least) one of
the adversaries receive additional information, are

(
F j`
)r+1

`=0
. Intuitively, this can be viewed as if

at most one of the virtual parties, namely Qj , is corrupted (either maliciously or semi-honestly).
Moreover, by the monotonicity of mCl (Bj), it follows that (I, ∅) ∈ mCl (Bj).

We separate into three cases. For the case we will assume that there exists a unique j ∈ [4] for
which (I, ∅) ∈ mCl (Bj). Note that by monotonicity, this also implies that (I,H) /∈ mCl

(
Bj′
)

for
any other j′. Intuitively, when the parties call F j` for some `, since (I, ∅) /∈ mCl

(
Bj
)

the hybrid
will give the malicious adversary full control over the input and the output. When the parties call
F j
′

` for any other j′, it holds that (I,H) ∈ mCl
(
Bj′
)
. Therefore, both the malicious adversary

and the semi-honest adversary will gain no information. As a result, this case corresponds to the
case where the virtual party Qj is maliciously corrupted in the 4-party BGW protocol, and no
additional semi-honest virtual party is present. For the second case, in addition for (I, ∅) being in
more than one mCl (Bj), we will assume that (I,H) does belong to a single mCl (Bj). Analogously
to the previous case, on the intuitive level, this corresponds to the case where the virtual party Qj

is semi-honest, and no additional malicious virtual party is present. For the third and final case,
we will assume that (I,H) belongs to a more than one mCl (Bj). In the following we let SjBGW
be the malicious simulator for the single corrupted party Qj in the 4-party BGW protocol. The
corrupted party Qj may be malicious or semi-honest. We rely on the fact that SjBGW is black-box
and straight-line.

First Case. Suppose there exists a unique j ∈ [4] such that (I, ∅) ∈ mCl (Bj). Roughly, the ma-
licious simulator will generate the shares for each message based on which virtual party supposedly
sent the message, by either using the adversary, the (malicious) BGW simulator, or it will produce
shares of some arbitrary message. The semi-honest simulator will complete the shares whenever the
parties in H hold the secret (e.g., the inputs). We next formally describe the malicious simulator
SA on input xI and auxiliary input zA.

Sharing the inputs: The simulator generate shares of 0 for each uncorrupted party, in two layers,
and give the adversary A its respective shares. The adversary then answers with an input
x∗I to be sent to the functionality ShB. The simulator then sends it to the trusted party, to
receive an output yI .

Generating randomness: For all j′ ∈ [4], where j′ 6= j, compute Nextj′,0, share the output in a
ShB secret sharing scheme, and give the adversary A its respective shares. In addition, query
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the adversary to receive purported shares of the randomness it chose for Qj .

Emulating the BGW protocol: For ` = 1 to r do the following.

• If the next message of the BGW protocol is sent from (malicious) Qj to Qj′ , where
j′ 6= j, query the adversary to receive purported shares of the message it chose to send.
• If the next message of the BGW protocol is sent from Qj′ to (malicious) Qj , where
j′ 6= j, then have the BGW simulator SjBGW compute the `-th message, share it in a ShB
secret sharing scheme, and give the adversary A its respective shares.
• If the next message of the BGW protocol is sent from Qj′ to Qj′′ , where j′, j′′ 6= j, share

some arbitrary message in a ShB secret sharing scheme, and give the adversary A its
respective shares.

If at any point in the simulation, the BGW simulator SjBGW sends its input to the trusted
party, give it an output described as follows. Let y∗ = (y∗1, . . . , y∗m) be defined as y∗i = yi for
every Pi ∈ I, and y∗i = 0 otherwise. The output is then a sharing of y∗, where the sharing
being used is a 2-out-of-4 Shamir’s secret sharing scheme for each entry in y∗. Denote by
y∗[j′] the j′-th vector of shares of y∗.

Recovering the output: Query the adversary to receive purported shares of the output it chose
for Qj . For all j′ ∈ [4], where j′ 6= j, the output of Qj′ will be y∗[j′]. Share each y∗[j′] using
a ShB secret sharing scheme, and give A its respective shares. The adversary answers with
shares to be sent to RecB for each virtual party Qj′ , for j′ 6= j. Finally, answer A with y∗[j′],
for every j′ 6= j and halt.

We now formally describe the semi-honest simulator SA,H on input xH and auxiliary input zH.

Receive output and ideal-world view of SA: Receive the output yH from the trusted party,
and receive r, xI , zA, yI – SA’s randomness, input, auxiliary input, and output respectively.

Sharing the inputs: For each party Pi ∈ H, the simulator completes the shares generated by the
adversary to shares of xi. For each party Pi /∈ I ∪H, use the shares of 0 generated by SA.

Generating randomness: For all j′ ∈ [4], where j′ 6= j, use the shares generated by SA, and give
H their respective shares. In addition, use the same purported shares of the randomness for
Qj that A gave to SA. Send A the shares it expect to see, to receive the messages it sends to
the parties in H.

Emulating the BGW protocol: For ` = 1 to r use the shares generated by SA for each of the
messages. In addition, query A to receive the messages it sends to the parties in H.
Recall that y∗ = (y∗1, . . . , y∗m) defined as y∗i = yi for every Pi ∈ I, and y∗i = 0 otherwise, was
shared and given to SjBGW as an output. The sharing used was a 2-out-of-4 Shamir’s secret
sharing scheme for each entry in y∗. The semi-honest simulator SA,H will complete the shares
of each y∗i , where Pi ∈ H is semi-honest, so that the secret is yi. Let y be the new shared
vector.
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Recovering the output: Query the adversary to receive purported shares of the output it chose
for Qj . For all j′ ∈ [4], where j′ 6= j, the output of Qj′ will be y[j′]. Share each y[j′] using
a ShB secret sharing scheme, and give A and H their respective shares. In addition, give H
the outputs y[j′] for each j′ 6= j. Finally, send the adversary its respective shares to receive
the messages it sends to the parties in H.

We now show that
IDEAL

SA,SA,H
1n,x,zA,zH ≡ REALA,AH1n,x,zA,zH .

Observe that in the real world, the view of A and H consist of the view of the malicious virtual
party Qj , and additional shares, shared according to ShB. Each round where Qj received messages,
is being simulated by SjBGW, hence the message that A receives is distributed the same in both
the real and ideal models, conditioned on previous messages. In other rounds, A and H get shares
that, by the secret sharing properties, are distributed the same in both worlds, conditioned on
previous messages. As a result, it follows that the messages that A chooses that Qj will send are
also distributed the same. Therefore, each round the joint view is distributed exactly the same
both the real and the ideal model, conditioned on the previous rounds. Finally, the output of the
uncorrupted parties, is determined in the ideal world by the BGW simulator, which is assumed to
have the same distribution as the real world output.

Second Case. Suppose that (I, ∅) belongs to at least two of the mCl (Bj)’s, yet there exists a
unique j ∈ [4] such that (I,H) ∈ mCl (Bj). We next formally describe the malicious simulator SA
on input xI and auxiliary input zA. Unlike in the previous case, the malicious adversary has no
control over a virtual party, however, the semi-honest parties control a virtual party passively.

Sharing the inputs: The simulator generate shares of 0 for each uncorrupted party, in two layers,
and give the adversary A its respective shares. The adversary then answers with an input
x∗I to be sent to the functionality ShB. The simulator then sends it to the trusted party, to
receive an output yI .

Generating randomness: For all j′ ∈ [4], where j′ 6= j, compute Nextj′,0, share the output in a
ShB secret sharing scheme, and give the adversary A its respective shares. In addition, query
the adversary to receive purported shares of the randomness it chose for Qj .

Emulating the BGW protocol: For ` = 1 to r, share some arbitrary message in a ShB secret
sharing scheme, and give the adversary A its respective shares.

Recovering the output: For all j′ ∈ [4], the output of Qj′ will be some arbitrary output, shared
using a ShB secret sharing scheme. Give A its respective shares.

We now formally describe the semi-honest simulator SA,H on input xH and auxiliary input zH.

Receive output and ideal-world view of SA: Receive the output yH from the trusted party,
and receive r, xI , zA, yI – SA’s randomness, input, auxiliary input, and output respectively.

Sharing the inputs: For each party Pi ∈ H, the simulator completes the shares generated by the
adversary to shares of xi. For each party Pi /∈ I ∪H, use the shares of 0 generated by SA.
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Generating randomness: For all j′ ∈ [4], where j′ 6= j, use the shares generated by SA, and give
H their respective shares. In addition, complete the shares of Qj ’s randomness, generated by
SA, to shares of a sample from Nextj,0, and give H their respective shares.

Initializing SjBGW: In order to execute the semi-honest BGW simulator, SA,H must compute an
output for it. This is done as follows. Let y∗ = (y∗1, . . . , y∗m) be defined as y∗i = yi for every
Pi ∈ I∪H, and y∗i = 0 otherwise. Give SjBGW shares of each y∗i , where the sharing being used
is a 2-out-of-4 Shamir’s secret sharing scheme. Denote by y∗[j′] the j′-th vector of shares of
y∗.

Emulating the BGW protocol: For ` = 1 to r do the following.

• If the next message of the BGW protocol is sent from (semi-honest) Qj to Qj′ , where
j′ 6= j, complete the shares generated by SA to shares of an output computed by Nextj,`,
and give the output to the parties in H.
• If the next message of the BGW protocol is sent from Qj′ to (semi-honest) Qj , where
j′ 6= j, complete the shares generated by SA to shares of the `-th message computed
by the BGW simulator SjBGW compute the, and give the parties in H their respective
shares.
• If the next message of the BGW protocol is sent from Qj′ to Qj′′ , where j′, j′′ 6= j, the

use the shares generated by SA.

Recovering the output: The output of Qj is y∗[j], which is given to the parties in H. For all
j′ ∈ [4], where j′ 6= j, the output of Qj′ will be y[j′]. Share each y[j′] using a ShB secret
sharing scheme, and give the parties in H their respective shares. Send the adversary its
respective shares to receive the messages it sends to the parties in H.

The proof of security for this case is analogue to the first case, and is thus omitted.

Third Case. Suppose that (I,H) belongs to at least two of the mCl (Bj)’s. In this case, SA
is the same simulator from the second case. The semi-honest simulator SA,H will simply use the
shares generated by SA. The shares for the inputs and outputs will be completed accordingly. The
security of this case easily follows from the properties of the secret sharing scheme. �

7.3.2 Protocols For The Basis Cases

In this section, we provide the basis protocol to be used in order to construct the statisti-
cally/perfectly (strong) FaF fully-secure protocols. We start with the basis for the perfect case,
then with the basis for the statistical case with broadcast, and finally, we present the case for the
statistical security without broadcast.

Recall that for the perfect case, we assume that the adversarial structure R is Q (3, 2). For the
basis case, we assume that its basis B is of size |B| ≤ 3. The protocol is defined as follows.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protocol 7.12 (Πper

f ).
Inputs: The input of party Pi is xi ∈ Xi.
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Assume that |B| ≤ 2: In this case, B = {(I1,H1), (I2,H2)} (not necessarily distinct). Since R
is Q (3, 2), it holds that I1 ∪ H1 ∪ I2 ∪ H2 6= P. Therefore, there is a party P that does not
belong to any (I,H) ∈ R, and hence is not corrupted by any adversary (both malicious and
semi-honest). The parties can therefore send their inputs to P who can compute the outputs
for all other parties (note that we do not need to simulate the view of P).

Assume that |B| = 3: In this case, B = {(I1,H1), (I2,H2), (I3,H3)}. Since R is Q (3, 2), it holds
that I1 ∪ H1 ∪ I2 ∪ H2 ∪ I3 6= P. Therefore, there exists a party Q3 that is either in H3 or
it cannot be corrupted. Similarly, there are parties Q1 and Q2 that are either in H1 and H2,
respectively, or they cannot be corrupted.

1. Each party Pi share its input xi in a 3-out-of-3 secret sharing scheme, and sends xi[j]
to Qj.

2. The three parties Q1, Q2, and Q3 compute the following functionality. Let y be the
output of f(x). Share each yi in a 3-out-of-3 secret sharing scheme. The output of Qj is
its respective shares of each yi, i.e., it receives (yi[j])mi=1. The computation can be done
using any 3-party protocol that is secure against a single semi-honest party.

3. Each Qj sends yi[j] to Pi, who then reconstructs the output.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We claim that Πper
f admits perfect strong FaF full-security.

Claim 7.13. Let R denote a monotone mixed adversarial structure over P = {P1, . . . ,Pm}, whose
basis B is of size at most 3, and where m ≥ 3. If R is Q (3, 2), then for every m-party functionality
f , Πper

f computes it with strong perfect R-FaF full-security.

Proof Sketch. For the simple case where |B| ≤ 2, the security follows from the fact that the
party P used in the protocol is never corrupted, and thus it can be viewed as a trusted party.
Assume that B = {(I1,H1), (I2,H2), (I3,H3)} is of size 3, and fix the parties Q1, Q2, and Q3
satisfying Qj ∈ Hj or it cannot be corrupted, for all j ∈ {1, 2, 3}, as done in the protocol. Next,
fix a malicious adversary A and a semi-honest adversary AH, corrupting the subset I ⊆ P and
H ⊆ P respectively, such that (I,H) ∈ R. The malicious simulator SA will simply query A for
the shares it sends to the Qj ’s, recover the secret, and send it to the trusted party. The simulator
then secret share each output yi, for i ∈ I, in a 3-out-of-3 secret sharing scheme, output the shares
and halt. We next describe the semi-honest simulator SA,H. If none of the Qj ’s are in H, then
SA,H operates analogously to SA. If Qj ∈ H for some j ∈ {1, 2, 3}, then SA,H will generate shares
for each uncorrupted party, and use the shares given by A for each corrupted party. It will then
execute the semi-honest simulator guaranteed to exist for Step 2. Finally, it will output the shares
it generated, and the messages A sent to the parties in H.

�
We next state the existence of a protocol in the statistical case with broadcast.

Claim 7.14. Let R denote a monotone mixed adversarial structure over P = {P1, . . . ,Pm}, whose
basis B is of size at most 3, and where m ≥ 3. If R is Q (2, 2), then for every m-party functionality
f , there exists a protocol that computes it with strong perfect R-FaF full-security.
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Proof Sketch. The protocol for this case will be similar to Πper
f . If |B| ≤ 2 then it is exactly the same

protocol, as the Q (2, 2) property guarantees the existence of a party that is never corrupted by any
of the adversaries. If |B| = 3, then the only difference is that the Q (2, 2) property guarantees the
existence of three parties Q1, Q2, and Q3, so that at most one of them will be corrupted. Unlike
in the perfect, here the corrupted party may be malicious. Therefore, under the assumption of an
available broadcast channel, the BGW protocol can still be executed among the three designated
parties.

�
Finally, we state the claim for the statistical case without broadcast.

Claim 7.15. Let R denote a monotone mixed adversarial structure over P = {P1, . . . ,Pm}, whose
basis B is of size at most 3, and where m ≥ 3. If R is Q (2, 2) and Q (3, 0), then for every m-party
functionality f , there exists a protocol that computes it with strong perfect R-FaF full-security.

Proof Sketch. The protocol for this case will be similar to the statistically secure protocol from the
previous case. If |B| ≤ 2 then it is exactly the same protocol. If |B| = 3, then the two properties
Q (2, 2) and Q (3, 0) guarantee the existence of three parties Q1, Q2, and Q3, so that at most one
of them will be semi-honest. Therefore, they can execute the BGW protocol without broadcast,
similarly to the perfect case (here, however, only statistical security is achieved since the parties
need to compute the broadcast functionality).

�

7.3.3 Protocols For The Secret Sharing Functionality

In this section, we show how to implement the secret sharing functionality ShB. Recall that if the
adversarial structure R is Q (3, 2) then the implementation should have perfect security, and if it
is Q (2, 2) then the implementation can have statistical security (without assuming the availability
of broadcast). We first provide the implementation and proof of security for the perfect setting.

The perfect case. The sharing phase is implemented in a straightforward way, by having the
dealer generate shares as done by [37]. For the reconstruction phase, the parties would search for
the lexicographically first (I,H) ∈ R such that the shares of the parties in I are consistent with
some value s∗. The parties then recover s∗ and output it. To show that the reconstruction works,
we will show that for any such (I,H), the shares will be consistent with the same s∗, regardless of
what the adversary does. In particular, since this will hold for the parties that are corrupted by
the adversary, if the dealer is honest, then the value s∗ will be the value s chosen by the dealer.

Claim 7.16. Assume that R is Q (3, 1). Then there exists a unique s∗ such that for any (I,H) ∈ R,
the shares of the parties in I are consistent with s∗.

Proof. We show that by the Q (3, 1) property, for every (I1,H1), (I2,H2) ∈ R, the set J := I1∩I2
is qualified with respect to ShB. Assume that J is unqualified. Then I ′ ∪ H′ ∪ {P} 6⊂ J for any
(I ′,H′) ∈ B and P /∈ I ′ ∪ H′. Hence, by monotonicity of R there exists (I ′,H′) ∈ R such that
J = I ′ ∪H′. By the Q (3, 1) property, it follows that

J ∪ J = I ′ ∪H′ ∪
(
I1 ∩ I2

)
= I ′ ∪H′ ∪ I1 ∪ I2 6= P
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yielding a contradiction. Therefore J is qualified and thus the shares of the parties from this set
are consistent with some value s∗. In particular, the shares of the parties from I1, and the shares
of the parties from I2 are consistent with s∗. �

The statistical case. Unlike in the perfect case, here we may only assume that R is Q (2, 2) (we
do not assume broadcast in the sharing protocol). The difficulty in this case, lies in the fact that
the adversary may change its shares, hence there might exist two (I,H) ∈ R such that the shares
of the parties in I are consistent with different secrets. Therefore, we let the dealer compute an
authenticated sharing, thereby forcing the adversary to use the real shares it got from the dealer at
the reconstruction phase. This can be done using standard techniques. For example, the dealer can
sign each share using an information theoretic One-Time MAC, and give the other parties the key
for verification. For the sake of clarity of presentation, we will assume that the malicious parties
are using the correct shares. We next formally describe the reconstruction phase.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protocol 7.17.

1. Each Pi checks if its input is of the form
(
s[i], tagi,

(
keyj

)m
j=1

)
, where s[i] is the purported

i-th share of s, tagi is the tag of s[i], and keyj is the verification key for the j-th tag.

2. If so, Pi sends (s[i], tagi) to every other party (a malicious Pi may send different values to
different parties). Otherwise, it sends an accusation of the dealer.

3. If there exists (I,H) ∈ B such that the parties in I accused the dealer, then disqualify the
dealer and output the default value 0.

4. Otherwise, for every pair (s[j], tagj) received, party Pi verify that Verkeyj

(
s[j], tagj

)
= 1. If

it is not 1, then send an accusation of Pj.

5. Party Pj is then disqualified, if there exists (Ij ,Hj) ∈ B such that the parties in Ij accused
Pj.

6. If there exists a set of parties I, where (I,H) ∈ B, that were all disqualified, then disqualify
the dealer and output the default value 0.

7. Otherwise, find the lexicographically first (I,H) ∈ B such that the parties in I were not
disqualified and did not accuse the dealer, and output the secret that is consistent with their
shares.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The following claim asserts that any I is qualified with respect to the sharing scheme.

Claim 7.18. Assume that R is Q (2, 1). Then for every (I,H) ∈ R, the set J := I is qualified
with respect to ShB.

Proof. Assume for the sake of contradiction, that J is unqualified. Then I ′ ∪ H′ ∪ {P} 6⊂ J for
any (I ′,H′) ∈ B and P /∈ I ′ ∪H′. Hence, by monotonicity of R there exists (I ′,H′) ∈ R such that
J = I ′ ∪H′. By the Q (2, 1) property, it follows that

J ∪ J = I ′ ∪H′ ∪ I 6= P

yielding a contradiction. Therefore, J must a qualified set of parties. �
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In the following claims, we let (I,H) ∈ R be the pair of sets of corrupted parties. The next
claim states that an uncorrupted dealer will not get disqualified.

Claim 7.19. Assume that R is Q (2, 1). If the dealer is uncorrupted, then it will not get disqualified.

Proof. We separate into two cases. For the first case, let us assume that a set I ′, for (I ′,H′) ∈ B,
accused the dealer. Since the dealer is honest, the only accusations can come from the parties in
I, hence I ′ ⊆ I. However, by Claim 7.18 the set I ′ is qualified, and therefore I is qualified as well,
yielding a contradiction.

We now the consider the second case in which the dealer is disqualified. Assume that a set of
parties I ′, for (I ′,H′) ∈ B, were disqualified. Since the dealer is honest, the only set of parties that
can accuse them is I. Therefore, for every Pj ∈ I ′, there exists (Ij ,Hj) ∈ B such that Ij ⊆ I.
Similarly to the previous case, this contradicts Claim 7.18 since I is unqualified. �

The following claim asserts that the sharing protocol is in fact a VSS protocol.

Claim 7.20. Assume that R is Q (2, 1). If the dealer was not disqualified, then all the uncorrupted
parties will output some secret s∗. Moreover, if the dealer is honest, then s∗ will be the secret s
originally shared by the dealer.

Proof. Since the dealer was not disqualified, for any (I ′,H′) ∈ B, there exists a party in I ′ that
was not disqualified. By Claim 7.18 any I ′ is qualified, and thus, the parties in I ′ have shares
that consistent with some secret s∗. Since this holds for any such I ′, the same holds for the
lexicographically first (I ′,H′), hence the parties will reconstruct s∗. Moreover, if the dealer is
honest, then by Claim 7.19 it will not get disqualified, hence the secret s∗ will be the original secret
s that the dealer shared. �

7.3.4 Putting it Together

We next combine the above claims to prove Lemma 7.9.

Proof of Lemma 7.9. The proof of all items follow the same inductive argument. Therefore, we
only present the proof of Item 1. Fix a mixed adversarial structure R that is Q (2, 2), and let B
be the basis of R. We next show that R allows for general MPC assuming an available broadcast
channel. We prove this by induction on |B|. The basis case, where |B| ≤ 3, follows from Claim 7.14.
Assume that the claim holds for all structures with a basis of size strictly less than |B| ≥ 4. By
Lemma 7.10, for every m-party functionality f there exists a protocol computing f in some hybrid
model. Recall that in Lemma 7.10, we let B1, . . . ,B4 be a partition of B, where each Bi is of size
at least b|B|/4c. Since |B| ≥ 4, each Bi is not empty, and is of size that is strictly smaller than |B|.
Thus, by the inductive hypothesis, for each i ∈ [4], every m-party functionality can be computed
by some protocol that is mCl (Bi)-FaF fully-secure. By applying the composition theorem (see
Theorem 9.1),10 we get the existence of a protocol that computes f with mCl (Bi)-FaF full-security.
Since this holds for every i, it also holds for the union of the structures, that is, the protocol is
mCl (B)-FaF fully-secure. �

10The composition theorem is stated and proved only against threshold adversaries, however, we note that the
same proof work for general mixed adversarial structures.
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8 Other (Failed) Attempts to Capture FaF-Security

In trying to come up with a definition for a new notion of security, one may expect to come across
several attempts that seem to capture the essence of the notion, but in fact fall short in doing so.
We think it is instructive to describe some of this failed approaches and exemplify where they come
short.

First flawed definition: Recall that in the FaF full-security ideal-model, there are two distinct
simulators, one for the malicious adversary and the other for the semi-honest parties. Indeed, the
second simulator may use the view (in the ideal-world) of the malicious simulator. Suppose that
instead, we require a single simulator controlling the parties in I ∪ H. Further suppose that this
simulator is restricted so to only be allowed to change inputs for the parties in I (i.e., the simulator
is not allowed to change the inputs for the parties in H).

Security would then be defined to hold if such a simulator is able to simulate the view of any
adversary A, and every H ⊂ P \ I in the above ideal-world. Since this is required for every H, in
particular it should hold for H = ∅. A different way to view this approach is that it adopts the
ideal-model of the mixed-adversaries definition, while considering FaF real-world adversaries, i.e.,
adversaries controlling only parties in I (still, being allowed to send non-prescribed messages to
parties in H).

While, this proposed definition seems to have the nice property of being easy to work with,
we argue that it does not fully capture the desired properties that we are aiming for. Intuitively,
this definition is too lenient, as it allows the simulator to depend on the inputs of parties in H
(which the real-world adversary should not be able to do). Indeed, we argue that Protocol 5.5 from
Example 5.4 constitutes an example for this shortcoming, namely, it is secure according to this
definition, yet it should arguably not be deemed secure for the desired notion.

Second flawed definition: Suppose that instead of a single ideal-world experiment, where both
the malicious simulator and the semi-honest simulator operate together, we have two ideal-world
experiments, one for capturing standard security, and the other for trying to capture FaF-security.
Specifically, for the first ideal-world experiment there is the standard malicious simulator SA that
simulates the adversary’s view. In the second experiment, in addition to the semi-honest simulator
SA,H controlling the parties in H, there is another malicious simulator S′A who is given the task of
sending inputs to the trusted party on behalf of the corrupted parties in I.

Security would then be defined to hold if SA is able to simulate the adversary’s view, and if
SA,H is able to simulate the view of the parties in H, while interacting in the same ideal-world as
S′A. Definition 3.3 can be viewed as the same definition, while further requiring that SA and S′A
are the same simulator.

At first glance, there seem to be no reason to require that the two simulators are the same.
However, similarly to the first flawed definition, we claim that this notion is to lenient. Intuitively,
this is due to the fact that S′A could send a different input than SA to “help” SA,H in its simulation.
We next show a concrete example where security according to this definition is possible, yet deeming
it secure is undesirable.

Example 8.1. Consider the following 4-party functionality f : {0, 1} × ∅ × ({0, 1}n)2 7→
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({0, 1}n ∪ {⊥})2 × ∅2 defined as follows

f(b,⊥, x3, x4) =
{

(x3,⊥,⊥,⊥) if b = 0
(⊥, x4,⊥,⊥) if b = 1

We next show a protocol where computing f according to the above definition will be secure against
a specific malicious P1 and H = {P2}, yet simulation is impossible when considering FaF-security.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protocol 8.2.

1. P3 sends x3 to P1

2. P4 sends x4 to P2

3. P1 sends b to P2

4. If b = 0 then P1 outputs x3 and P2 outputs ⊥. Otherwise P1 outputs ⊥ and P2 outputs x4.
In both cases P3 and P4 output ⊥.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Clearly, the above protocol is not (1, 1)-FaF-secure since in the ideal-world either P1 holds x3
or P2 holds x4, but both cannot occur in the same experiment.

We claim that the protocol is secure according to the definition proposed above, against a ma-
licious P1 that always sends b = 0 to P2. This is highly undesirable since in the real-world P1
learns x3 and P2 learns x4, however, in a single execution of the ideal-world this cannot happen.
To simulate P1, the malicious simulator SA will send b = 0 to T to receive x3, and output it. On
the other hand, the other malicious simulator S′A will send b = 1, forcing T to send x4 to SA,P2,
which it will then output. Since in the real-world P2 always outputs ⊥, it follows that the simulators
achieve perfect simulation.

9 Composition Theorem

In this section, we state and prove a variant of the sequential composition theorem of Canetti [14] for
the FaF setting (both weak and strong). We formulate and prove the theorem for the computational
setting. Similar composition theorems can be analogously stated and proven statistical and perfect
settings, and for the security-with-identifiable-abort model.

Theorem 9.1. Let t, h∗,m ∈ N be such that t+ h∗ < m and let f1, . . . , fk, g be m-party function-
alities. Let Πf1,...,fk denote an m-party protocol in the (f1, . . . , fk)-hybrid model, computing g with
weak (resp., strong) computational (t, h∗)-FaF full-security. Let πf1 , . . . , πfk be m-party protocols
computing f1, . . . , fk respectively with weak (resp., strong) computational (t, h∗)-FaF full-security.
Then, the protocol Π = Ππf1 ,...,πfk

, where each call to each fi is replaced with an execution of πfi
computes g with weak (resp., strong) computational (t, h∗)-FaF full-security.

Proof Sketch. For simplicity, we assume there is a single idealized functionality f that is being
called exactly once at a known round `. The proof for the general case of any number of sub-
functionalities follows by a a hybrid argument. We focus on the weak FaF-security setting, as the
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proof for the strong FaF-security follows similarly (see Remark 9.2 for more detail). Let π = πf
be a protocol that (t, h∗)-FaF-securely computes f . Let A be a malicious adversary for protocol Π
corrupting a set I ⊂ P of size at most t, and let AH be a semi-honest adversary corrupting a set
H ⊂ (P \ I) of size at most h∗. Similarly to [14] we construct the corresponding adversaries Af
and AfH that work in the hybrid model (engaging in protocol Πf ) and show how they can simulate
A and AH’s views in Πf . The proof would then follow from the weak (resp., strong) FaF-security
of Πf in the hybrid-world.

We next present the construction for Af and AfH. Towards constructing the hybrid model
adversaries, we first construct the stand-alone model adversaries for the protocol π (again, similarly
to [14]). Specifically, we construct a malicious adversary Aπ controlling I and a semi-honest
adversary Aπ,H controlling H, both interacting in π. In the following, when we say global-view, we
refer to the joint view of the adversaries A and AH, and the remaining parties in P \ (I ∪ H).

Construction of Aπ: The adversary Aπ controls the parties in I. It is given an auxiliary input
zA,π and does the following. First, it verifies that zA,π is a consistent view for the real-world
adversary A until round ` (just before the execution of the inner protocol π). That is, this view
is consistent with the behavior of A, given the messages it sees from other parties (which are also
part of the given view). If this verification fails, then Aπ halts and outputs ⊥.

Otherwise, if the verification goes through, the stand-alone protocol adversary Aπ internally
runs the real-world adversary A with auxiliary information zA,π and with messages it receives from
parties in the stand-alone execution. It then reacts to these messages in the same way the real-world
A reacts to them. Once the execution of the stand-alone terminates, Aπ outputs the simulated
view of A so far (i.e., zA,π concatenated with the simulated view for the execution in π) and halts.

Construction of Aπ,H: The adversary Aπ,H controls the parties in H, and is given an auxiliary
input zH,π. It is a semi-honest adversary, and thus, it must follow the instructions of the protocol
π. Similarly, to Aπ, once the execution of the stand-alone terminates, Aπ,H outputs the simulated
view of the real-world semi-honest adversary AH so far (including zH,π) and halts.

By the assumed security of π, there exist two simulators SAπ and SAπ ,H that simulate Aπ and
Aπ,H’s view respectively. Moreover, SAπ ,H simulates successfully for every auxiliary information
zH,π held by the parties in H. In particular, this holds for zH,π describing the view of the AH that
is consistent with zA,π.

Construction of Af : The adversary Af controls the parties in I. It (internally) invokes the
real-world adversary A and behaves exactly the same until round ` (just before the execution of
the inner protocol π). At this point A expects to interact in π. To provide A with messages from
the uncorrupted parties, Af will invoke SAπ , with an auxiliary input zA,π that equals to the current
view of A (formally, it also sets the inputs of the parties to 0). When SAπ sends inputs to its trusted
party, the adversary Af forwards the same inputs to the functionality f , and sends back to SAπ
the output it got from f .

Recall that the output of SAπ is a view v for the real-world adversary A that agrees with its
view until round ` (specifically, the randomness of A according to v is the same as its randomness
used for running A internally). Thus, Af can complete the interaction by (internally) invoking A
on the view v and behaving exactly the same.
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Construction of AfH: The adversaryAfH will be constructed similarly toAf . The main difference
is the inputs it gives to the simulator SAπ ,H of the stand-alone semi-honest adversary. Since this is
a semi-honest adversary, it cannot change its inputs. Note, however, that the inputs are determined
by its view, and hence can be computed deterministically.

To conclude the proof of Theorem 9.1, we next show that the hybrid-world adversaries Af and
AfH simulate the real-world adversaries A and AH respectively, namely, we show that

REALΠ,A,AH
1n,x,zA,zH (A) c≡ REAL

Πf ,Af ,AfH
1n,x,zA,zH

(
Af
)
, (7)

and that

REALΠ,A,AH
1n,x,zA,zH (AH) c≡ REAL

Πf ,Af ,AfH
1n,x,zA,zH

(
AfH

)
. (8)

As [14] proved Equation (7) we are left with the task of proving Equation (8). Assume towards con-
tradiction that Equation (8) does not hold, that is, assume that there exists a non-uniform PPTM D
distinguishing the left-hand side from the right-hand side with noticeable probability. We show that
this imply that π is not (t, h∗)-FaF-secure, specifically, against the adversaries Aπ and Aπ,H con-
structed above. We next construct a distinguisher Dπ that distinguishes REAL

π,Aπ ,Aπ,H
1n,x,zA,π ,zH,π (Aπ,H)

from IDEAL
f,SAπ ,SAπ,H
1n,x,zA,π ,zH,π (SAπ ,H). Here, zA,π and zH,π are consistent view of A and AH, respectively,

at the start of round ` in the execution of Π. The auxiliary information z of Dπ, will be the inputs
and random inputs for the parties interacting in Π, that are consistent with zA,π and zH,π. Dπ will
run Π using z, and will generate the global view v of all parties. It will then hand v over to D and
output the same.

Observe that until round `, the malicious adversaries A and Af behave the same, implying
that the global view in Π and Πf are distributed the same. Since z is consistent with zA,π and
zH,π, it follows that v is determined solely by the input of Dπ. Specifically, if the input of Dπ is
distributed according to the stand-alone real-world distribution REAL

π,Aπ ,Aπ,H
1n,x,zA,π ,zH,π (Aπ,H), then v is

a global view of the real-world REALΠ,A,AH
1n,x,zA,zH (AH), and if the input of Dπ is distributed according

to the stand-alone ideal-world distribution IDEAL
f,SAπ ,SAπ,H
1n,x,zA,π ,zH,π (SAπ ,H), then v is a global view of the

ideal-world REAL
Πf ,Af ,AfH
1n,x,zA,zH

(
AfH

)
. Thus, Dπ and D distinguish with the same probability.

�

Remark 9.2 (Proving the composition theorem for strong FaF-security). The proof above can
be easily adapted to the setting of strong FaF-security, by simply replacing the task of proving
Equations (7) and (8) with the task of proving

REALΠ,A,AH
1n,x,zA,zH

c≡ REAL
Πf ,Af ,AfH
1n,x,zA,zH .

The reduction to the security of π remains the same and is therefore omitted.
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A Missing Proofs

Proof of Lemma 4.10. Assume towards contradiction, that for anym-party functionality g there ex-
ists a protocol Πg that computes it with computational (t, h∗)-FaF full-security. Let f(x1, x2, x3) =
(fi (x1, x2, x3))3

i=1 be the 3-party functionality guaranteed to exist by Lemma 4.11. Recall that
the “moreover” part of Lemma 4.11 states that for any protocol computing f , there is an at-
tacker corrupting one of two parties, while the remaining third party is semi-honest. Parti-
tion the set of parties as follows. Let A = {P1, . . . ,Pt}, let B = {Pt+1, . . . ,Pt+h∗}, and let
C = {Pt+h∗+1, . . . ,Pm}. Observe that |A | = |C | = t and |B | = h∗. Consider the m-party
functionality g(x1, . . . , xm) that outputs f1 (x1, xt+1, xt+h∗+1) to P1, outputs f2 (x1, xt+1, xt+h∗+1)
to Pt+1, outputs f3 (x1, xt+1, xt+h∗+1) to Pt+h∗+1, and outputs ⊥ to all other parties.

Next, consider the following 3-party protocol Πf for computing f . The parties emulate the
execution of Πg, where P1 emulates the parties in A, P2 emulates the parties in B, and P3 emulates
the parties in C. The parties then output whatever output was computed in Πg.

The main observation is that any adversary Af corrupting either P1 or P3 in Πf , corresponds
to an adversary Ag corrupting either the set A or C respectively in Πg. That is, the view and
actions of Af can be simulated in Πg. Similarly, any set Hf of a single semi-honest party in Πf

has the same view as the set Hg emulated by that party in Πg. Furthermore, the simulators for
Ag and Hg directly translate to simulators for Af and Hf . This contradicts the fact that f cannot
be computed with computational (1, 1)-FaF full-security, against malicious adversaries corrupting
either P1 or P3. �

Proof of Claim 5.6. We first prove the security properties of the protocol. For all of the adversaries,
the corresponding simulator we construct will not change the inputs they send to T, unless the
adversary changes its input. As a result, the 2-security of the protocol implies that it is also
(1, 1)-mixed fully secure.

Any adversary corrupting 2 parties from {P3,P4,P5}, or corrupting P2 and one party from
{P3,P4,P5}, can be simulated using the composition theorem of Canetti [14] for both Steps 1 and
3. That fact that there is an honest majority implies the existence of the simulator.

Let A be an adversary corrupting P1 and P2. The simulator SA works as follows. Compute
a pair of keys (pk, sk) ← Gen (1n) and send pk to A. Let c1 and c2 be the inputs of P1 and P2
respectively, that A chose for the computation of g. If c1 = Encpk (x1, 1), c2 = Encpk (x2, 2), and
x1 = x2, then send (x1, x2) to the trusted party T to receive two shares of x3, hand them over to A,
output the view and halt. Else, if c1 = c2 = Encpk (x2, 2), then send (x2, x2) to the trusted party T
to receive two shares of x3. Sample a random string r, hand and the two shares to A, output the
view and halt. Otherwise, give to A two random and independent strings r1, r2 ∈ {0, 1}n, output
the view and halt.

Next, consider an adversary A′ corrupting P1 and a party from {P3,P4,P5}. We construct its
simulator SA′ as follows. Compute a pair of keys (pk, sk) ← Gen (1n), and use [14] to simulate
Step 1. Compute an encryption c ← Encpk (0n, 2) and send both pk and c to A′. Let c′ be the
ciphertext chosen by A as the input for P1 in Step 3. Decrypt c′ to recover an input x′1, which
the simulator then sends to T. Finally, simulate Step 3 using [14] with input c′ for P1. Since
the encryption scheme is semantically secure and A does not hold sk, it follows that the value of
c′ in the real-world is computationally indistinguishable from its ideal-world value. Moreover, as
the encryption scheme is non-malleable, if x1 6= x2 then c′ = Encpk (x2, 1) holds with negligible
probability. Therefore, in this case the output of P1 and P2 will be random strings., as given by
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T. In the other case, where x1 = x2, the output given by T to P1 and P2 are sharing of x3. In
addition, the output of g will be a sharing of x3 as well. Security follows.

We next show that Protocol 5.5 is not (1, 1)-FaF fully-secure. This follows from the observation
that a corrupt P1 can use c2 as its input for the computation of g. Thus, party P2 receives two
shares of x3 in a 2-out-of-2 secret sharing, thereby learning x3. In the ideal-world, any simulator for
P2 will receive from T a share of x3 only if x1 = x2. Since for the case where x1 6= x2 this happens
only with negligible probability (with the probability being over the choices of the simulator SA for
the adversary’s input), we conclude that no such simulator exists. �

Proof of Claim 5.7. We first show that the protocol computes f with weak computational (1, 1)-
FaF full-security. We go over all 6 possible (malicious and semi-honest) corruptions and construct
two simulators for each case.

First, suppose A corrupts P1. Its simulator SA will output a commitment to 0 and halt. By the
hiding property of the commitment scheme, the simulator’s output will be indistinguishable from
the adversary’s real-world view. The semi-honest simulator SA,P2 will query the adversary on the
commitment of its input b to receive the messages it sends to P2, output them and halt. The other
semi-honest simulator SA,P3 will receive b from the trusted party T, and do the same as SA,P2 .

Next, suppose A corrupts P2. Its simulator SA will ask A for a commitment and a decommit-
ment, supposedly sent to P3, and recover the committed value b̂ (if the decommitment is invalid
or the adversary did not send a message, then choose b̂ to be a default value). It then sends b̂ to
T and halt. By the binding property of the commitment scheme, the adversary cannot decommit
to a different value, hence the output distribution of P3 in both worlds are indistinguishable. The
semi-honest simulators SA,P1 and SA,P3 , which hold SA’s input, randomness, and auxiliary input,
query A to receive the messages it sends to P1 and P3, respectively, output them, and halt.

Finally, suppose A corrupts P3. Its simulator SA will output a commitment and the correspond-
ing decommitment to the output b received from T and halt. The semi-honest simulator SA,P2 ,
which holds b as well, will query A and output the messages received from it. The other simulator
SA,P1 will do the same with the addition of outputting a commitment to b.

We now show that the protocol is not strong (1, 1)-FaF fully-secure. Consider an adversary
A, which corrupts P1 and does nothing, and let H = {P3}. Assume towards contradiction that
the pair of simulators SA and SA,H exists so that

{
IDEAL

SA,SA,H
b

}
b∈{0,1}

and
{

REALA,AHb

}
b∈{0,1}

are indistinguishable. We show how to construct a sender that breaks the binding property of the
commitment scheme. The sender sends to the receiver the commitment c′ generated by SA. The
decommitment will be the commitment c and its decommitment d, generated by SA,H on input
b = 0 (and SA’s randomness). By assumed strong security of the protocol, the view (c′, (c, d)) of
the receiver is indistinguishable from (c, (c, d)), and therefore it will output 0. However, the same
holds when applying SA,H on input b = 1 in the decommitment phase. Thus, the sender can force
the output of the receiver in the decommitment phase to be any value it chooses with probability
1− µ(n), for some negligible function µ(·). �

Proof of Lemma 7.8. Since R is not Q (3, 2), there exist (I1,H1), (I2,H2), (I3,H3) ∈ R such that

I1 ∪ I2 ∪ I3 ∪H1 ∪H2 = P.

Similarly to the proof of Lemma 7.6, we may assume without loss of generality that all of the sets
I1 ∪H1, I2 ∪H2, and I3 ∪H3 are not empty, and furthermore, they are pairwise disjoint.

65



Now, assume towards contradiction, that for any m-party functionality g there exists a protocol
Πg that computes it with perfect R-FaF full-security (possibly using broadcast). Consider the 3-
party functionality f(x1, x2,⊥) = (x1∧x2, x1∧x2,⊥), which was shown by [24] to be impossible to
compute against the adversarial structure R3 = {(∅, {P1}), (∅, {P2}), ({P3}, ∅)}. Fix i1 ∈ I1 ∪H1
and i2 ∈ I2 ∪ H2, and consider the m-party symmetric functionality g(x1, . . . , xm) that outputs
xi1 ∧ xi2 to Pi1 and Pi2 , and outputs ⊥ the all other parties.

Next, consider the following 3-party protocol Π for computing f . The parties emulate the
execution of Πg, where for each i ∈ {1, 2}, party Pi emulates the parties in Ii∪Hi, and P3 emulates
the parties in I3. In the emulation, the inputs x1, x2 are given to Pi1 and Pi2 respectively, while
other parties start with arbitrary inputs. The parties then output whatever output was computed
in Πg.

The main observation is that any (I,H) ∈ R3, where I is corrupted by an adversary A,
corresponds to the case where (I,H) ∈ R and where I is corrupted by some adversary A′ in the
emulated protocol Πg. Indeed, a single semi-honest adversary A corrupting (∅, {Pi}), for i ∈ {1, 2},
corresponds to a semi-honest adversary A′ corrupting (∅, Ii ∪ Hi) ∈ R. Additionally, a single
malicious adversary A corrupting ({P3} , ∅), corresponds to a malicious adversary A′ corrupting
(I3, ∅) ∈ R. Furthermore, the simulators for A′ directly translate to simulators for A contradicting
the fact that f cannot be securely computed with perfect R3-security. �

Proof of Lemma 7.7. By Lemma 7.6 we may assume that R is Q (2, 2). Since R is not Q (3, 0),
there exist (I1,H1), (I2,H2), (I3,H3) ∈ R such that

I1 ∪ I2 ∪ I3 = P.

Similarly to the proof of Lemma 7.6, we may assume without loss of generality that all of the sets
I1, I2, and I3 are not empty, and furthermore, they are pairwise disjoint.

Now, assume towards contradiction, that for any m-party functionality g there exists a protocol
Πg that computes it with statistical R-FaF full-security, without using broadcast. Consider the
3-party broadcast functionality f(x1,⊥,⊥) = x1, which cannot be computed against a single ma-
licious adversary corrupting any single party [41]. Fix i1 ∈ I1 and consider the m-party broadcast
functionality g(x1, . . . , xm) = xi1 .

Next, consider the following 3-party protocol Πf for computing f . The parties emulate the
execution of Πg, where for each i ∈ {1, 2, 3}, party Pi emulates the parties in Ii. In the emulation,
the input xi1 is given to Pi1 while the other parties have arbitrary input. The parties then output
whatever output was computed in Πg.

The main observation is that any malicious adversary Af corrupting Pi in Πf , corresponds to
a malicious adversary Ag corrupting Ii in the emulated protocol Πg. Furthermore, the simulators
for Ag directly translate to simulators for Af contradicting the fact that f cannot be securely
computed with statistical 1-security without broadcast. �

B Additional Ideal Model Definitions

B.1 Definition of FaF Ideal Model with Fairness

The FaF ideal model – fairness.
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Inputs: Each party Pi holds 1n and xi ∈ X ni . The adversaries A and AH are given each an
auxiliary input zA, zH ∈ {0, 1}∗ respectively, and xi for every Pi controlled by them. The
trusted party T holds 1n.

Parties send inputs: Each uncorrupted party Pj ∈ P\I sends xj as its input to T. The malicious
adversary sends a value x′i ∈ X ni as the input for party Pi ∈ I. Write (x′1, . . . , x′m) for the
tuple of inputs received by the trusted party.

The trusted party performs computation: The trusted party T selects a random string r and
computes y = (y1, . . . , ym) = f (x′1 . . . , x′m; r).

Malicious adversary instructs trusted party to continue or halt: the adversary A sends
either continue or ⊥ to T. If it sent continue, then it sends yI to A, and for every honest
party Pj the trusted party sends it yj . Otherwise, if A sent ⊥, then T sends ⊥ to all parties
and A.

The malicious adversary sends its (ideal-world) view: A sends to AH its randomness, in-
puts, auxiliary input, and the output received from T.

Outputs: Each uncorrupted party outputs whatever output it received from T, the parties in I
output nothing. The adversaries output some function of their respective view.

B.2 Definition of (Standard) Adaptive Security

The Adaptive Real Model

The real-world t-adaptive adversary is a non-uniform adversary A that starts with some random-
ness. During each round of the protocol, it may choose to corrupt parties, based on its current
view, so long as the total number of corrupted parties is at most t. Once a party is corrupted, the
party’s view (including messages received during the protocol) becomes known to A. Additionally,
after the protocol’s execution has terminated, the adversary interacts with an environment Z. The
environment Z is a non-uniform probabilistic machine, which has the global view of the protocol
as an input. Z and A interact in rounds, where in each round, Z request to corrupt some honest
party, and A answers with some arbitrary information. The interaction continues until Z halts, or
t parties have been corrupted. The environment Z then output some arbitrary value.

We next define the real-world global view for security parameter n ∈ N, an input sequence x =
(x1, . . . , xm), and auxiliary inputs zA, zZ ∈ {0, 1}∗ with respect to adversary A and environment Z,
respectively. Let OUTREAL

A,Π (1n,x) denote the outputs of the honest parties in a random execution
of Π, while interacting with A. Further let VIEWREAL

A,Π (1n,x) be the adversary’s view during an
execution of Π, which contains its auxiliary input, its random coins, and the view of the parties it
corrupted during the execution of the protocol. In addition, we let VIEWREAL

A,Z,Π (1n,x) be the view of
Z after the interaction with A ended (this view consists of the view of all the parties it requested
to corrupt).

We denote the global view in the adaptive real model by

REALΠ,A,Z
1n,x,zA,zZ =

(
VIEWREAL

A,Π (1n,x) , VIEWREAL
A,Z,Π (1n,x) , OUTREAL

A,Π (1n,x)
)
.
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The Adaptive Ideal Model

We next describe the interaction in the adaptive ideal model, which specifies the requirements for
fully secure computation of the function f with security parameter n, against adaptive adversaries.
Let A be an adversary in the ideal-world, which is given an auxiliary input z and some randomness.

The adaptive ideal model – full-security.

Inputs: Each party Pi holds 1n and xi ∈ X ni . The adversary A is given an auxiliary input
zA ∈ {0, 1}∗ and some randomness. The trusted party T holds 1n.

First corruption phase: A chooses adaptively to corrupt a set I1 ⊆ P of parties. The corruption
is done in several iterations. Once a party is corrupted, its input becomes known to A.

Parties send inputs: Each honest party Pj ∈ P \ I1 sends xj as its input to T. The adversary
A sends a value x′i ∈ X ni as the input for party Pi ∈ I1. Write (x′1, . . . , x′m) for the tuple of
inputs received by the trusted party.

The trusted party performs computation: The trusted party T selects a random string r and
computes y = (y1, . . . , ym) = f (x′1 . . . , x′m; r) and sends yi to each party Pi.

Second corruption phase: A chooses adaptively to corrupt another set I2 ⊆ P \ I1 of parties.
Similarly to the first corruption phase, this is done in several iterations.

Outputs: Each honest party outputs whatever output it received from T, the parties in I output
nothing. A output some function of their respective view.

Post-protocol corruption: The (non-uniform) environment Z and the adversary A interacts in
rounds, where in each round, Z request to corrupt some honest party, and A answers with
some arbitrary response. The interaction continues until Z halts with an arbitrary output.

We next define the ideal-world global view for security parameter n ∈ N, an input sequence x =
(x1, . . . , xm), and auxiliary inputs zA, zZ ∈ {0, 1}∗ with respect to adversary A and environment Z,
respectively. Let OUTIDEAL

A,f (1n,x) denote the outputs of the honest parties in a random execution
of the above ideal-world process, while interacting with A. Further let VIEWIDEAL

A,f (1n,x) be the
(simulated, real-world) view description being the output of A in such a process. In addition, we
let VIEWIDEAL

A,Z,f (1n,x) be the view of Z after the interaction with A ended. We denote the global
view in the adaptive ideal model by

IDEALf,A,Z1n,x,zA,zZ =
(

VIEWIDEAL
A,f (1n,x) , VIEWIDEAL

A,Z,f (1n,x) , OUTIDEAL
A,f (1n,x)

)
.

We next give the definition for computational adaptive security.
Definition B.1 (adaptive security). Let Π be a protocol for computing f . We say that Π computes
f with computational adaptive t-security, if the following holds. For every t-adaptive non-uniform
PPTM adversary A in the real-world and for every non-uniform PPTM environment Z, there exists
an adaptive non-uniform PPTM adversary SA in the ideal-world such that{

IDEALSA,Z
1n,x,zA,zZ

}
x∈X ,zA,zZ∈{0,1}∗,n∈N

c≡
{

REALA,Z1n,x,zA,zZ

}
x∈X ,zA,zZ∈{0,1}∗,n∈N

. (9)

The statistical/perfect variants are obtained naturally from the above definition by replacing
computational indistinguishability with statistical distance.
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