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Abstract

In this short trivial note we argue that, assuming Generalized Continuum Hypothesis to
be true, it is impractical to use encryption with Key ∈ {0, 1}K and Message ∈ {0, 1}M such
that ℵ0 6 cardK < cardM , because “complexity” of the known-plaintext bruteforce attack
equals “complexity” of a single En/Decrypt(Key,Message) “computation” then.
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Preliminaries

For the sake of completeness and to lessen ambiguity, we (re)establish some basic denotations
and recall some basic properties. See e.g. [12, 1, 3, 5], [8, 2.1, 2.6], [13, 1.2].

As usual, set theory is ZFC, with Zermelo-Fraenkel axioms (ZF) and Axiom of Choice (AC).
cardA denotes the cardinality, or cardinal number, of the set A. cardA = cardB iff A ↔ B.

cardA < cardB iff A ↔ B′ ⊂ B and A 6↔ B. If A is finite, cardA is identified with the number
of elements in A. ℵ0 = cardN. cardA × cardB is card(A × B) = card{(a; b) | a ∈ A, b ∈ B}. If
non-empty sets A and/or B are infinite, cardA× cardB = max{cardA, cardB}.

Trichotomy: ∀a(= cardA),∀b(= cardB) we have a < b or a = b or a > b.
2A is the power set of A, that is, the set of all subsets of A. card 2A is denoted by 2cardA. By

Cantor’s theorem, 2a > a.
Generalized Continuum Hypothesis, GCH: “2ℵα = ℵα+1 for any ordinal α” ⇔ “If b > a > ℵ0,

then b > 2a” ⇔ “No cardinalities exist between cardA and 2cardA if A is infinite”. Gödel [9]
and Cohen [4] showed that GCH is independent of ZFC: it cannot be proved or refuted in ZFC
(Sierṕınski [22] showed that ZF+GCH implies AC). See also [5], [12, 14], [16].

(Bit)data over A is a mapping A : A→ {0, 1}, the set of all such bitdatas is {0, 1}A. a-th bit of
A is A(a). Size of A is cardA. We say that A over A is smaller than B over B if cardA < cardB.

Key K is a bitdata over K, cardK = k. Message M is a bitdata over M , cardM = m. The
set of all keys is K, the set of all messages is M. There are trivial bijections K↔ 2K , M↔ 2M .

Encryption and decryption are the mappings E : K×M→M and D : K×M→M respectively.
The message to encrypt is plaintext, the message to decrypt is ciphertext.

E and D must have certain properties, D(K,E(K,P)) = P being perhaps the simplest of them.
Here we state few other essential properties informally:
♣ It is “easy” (takes a short time) to determine C = E(K,P) if K and P are known; it is “easy”

to determine P = D(K, C) if K and C are known.
♣ It is “hard” (takes a long time or impossible) to determine P such that E(K,P) = C if only

C is known; this is ciphertext-only attack.
♣ It is “hard” to determine K such that E(K,P) = C if C and P are known; this is known-

plaintext attack. Particularly, here bruteforce attack is to try all K′ ∈ K until one or all K′ such
that E(K′,P) = C (or D(K′, C) = P) are found.
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More notions defined and assumptions motivated vaguely, although, we suppose, naturally:

♠ To determine — compute — E and D for a given pair of their arguments, a party (Alice,
Bob, etc.) has to perform the set of “elementary computations” in a finite time. We consider the
cardinality of this set as the complexity of encryption and decryption, and we assume it is not
greater than k×m. For short, we say “complexity of cryption is k×m”.1

♠ The complexity of the bruteforce attack as described above is 2k × k × m — one cryption-
and-comparison per each key from K.

♠ In R-time worlds we consider, we say “party is (a, b, T )-able” if this party is able to store a
bitdata of size a and to perform a computation of complexity b, in a time not longer than T ∈ R+.
If a party is (a, b, T )-able, it is (a′, b′, T ′)-able for any a′ 6 a, b′ 6 b, T ′ > T .

Cf. [10], [14, 2], [2, 2] with increasing “abilities” of hypercomputers (provided with infinite
time though), also [17, 2], [20, 2], [23, 3, 4]... and [6].

♠ k < m. We are going to speculate on circumstances this limitation may occur under; the
reader may skip these speculations. At that, we distinguish between “storage” and “communica-
tion” contexts, or, in terms of [13, 1.2], between “time” and “space” separations.

The usual assumption of the storage context (cf. [13, Fig. 1.2]) is that the key K is known
only to one party, Alice, who stores some data {Pi}i∈I in encrypted form Ci = E(K,Pi) in public
storage. So, Alice stores K too, only in her private long-term storage (PriLTS). All ciphertexts Ci
and at least one plaintext P0 are known to the adversarial party, Bob. As soon as Bob gets K,
he decrypts all Ci and obtains entire original data. When k > m, it is probably easier for Alice to
store Pi in PriLTS right away and do not deal with public storage, K, E, D at all.2

We suppose PriLTS is too small to contain bitdata of size m. Then Alice stores privately only
K of size k < m.

In the communication context (cf. [13, Fig. 1.1]), K is shared in secrecy at some point of time
between involved parties, Alice and Bob, who store it in their PriLTSes, so that only they know
K. We call the way this sharing is done “private short-term channel” (PriSTC). Afterwards they
are able to communicate only over public channel, with the adversary, Cynthia, eavesdropping all
bitdata they exchange. Therefore they exchange Ci = E(K,Pi). Similarly, Cynthia knows at least
one P0, and as soon as she gets K, the Alice�Bob communication is compromized entirely.

We suppose either a) PriSTC does not have enough “bandwidth” to share bitdata of size m,
or b) PriLTSes are too small to contain bitdata of size m.3 So Alice and Bob use K of size k < m.

Sometimes these contexts combine.4 Either way, smaller secrets are presumed easier to keep.5

Now we separate finite and transfinite cryptology.
Alice is the party who knows K, P, C = E(K,P), and wants to keep K secret; Bob is the

adversarial party who does not know K, knows C, P, and wants to reveal K or any K′ such that
C = E(K′,P). If Alice is (a, b, T )-able, then Bob is (a, b, T )-able too.

1When “every bit of key and every bit of plaintext affect every bit of ciphertext”. For one-time-pad-like ciphers,
complexity is m. However, due to k 6 m, in transfinite case these complexities are equal.

2To be more precise, when k > card I × m. We assume card I 6 m in transfinite case.
3If Alice and Bob retain PriSTC and it has enough bandwidth to exchange bitdata of size m, the public channel

becomes redundant as well as K, E, D. If PriSTC is available only once, at sharing K (when all plaintexts to be
encrypted are unknown yet), and has enough bandwidth, then k = m is quite appropriate, even k > m is possible.
E.g. transfinite one-time pads are considered in [1], [3], [17, 3], [18].

4“Communication for storage transfer”, where Alice provides Bob with data access, or “storage as communication
over time”, where Bob is Alice in future. In both examples, storage reasonings fit better.

5Cf. the common “cryptography reduces large secrets to smaller ones” idea [21, 10.4, afterword].
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1 Finite case

The “real world” one. cardK = k ∈ N, cardM = m ∈ N, k < m.
Complexity of cryption is km, complexity of bruteforce is 2k · km.
Alice can crypt, thus she is (m, km, T )-able, and so is Bob; we can even assume that Bob is

(cm, ckm, T ′)-able for some c. He will have found the key in a finite time, the principal obstacle
is its amount : T ′ ∼ 2k · km increases exponentially in k, and very soon (k in few hundreds
nowadays) we get classical results based on laws of physics, kind of “even if all matter in the
observable universe is involved, the search will not finish before that matter ceases to exist”.

Up to now, as long as underlying cipher isn’t broken, protocols are implemented correctly etc.
etc., such encryption provides a secrecy.6

2 Transfinite case

“Real” as well... to those who live there, presumably. Be that as it may, the concept of
transfinite cryptology has been studied for a long time: [15], [1], [3], [24], [19], [18], [17], [7].

cardK = k, cardM = m, ℵ0 6 k < m. Due to GCH, 2k 6 m.
Complexity of cryption is k×m = m.
Complexity of bruteforce is 2k × k×m = 2k ×m = m.
Since Alice can crypt, she is (m,m, T )-able. Then Bob is (m,m, T )-able too, and he completes

the entire bruteforce in the same time as a single crypt by Alice.
Such encryption provides no secrecy.

Remarks

• Preliminaries took up most of it... Again, this “result” is trivial. Also, cf. [20] and [24,
p. 149, par. 2]. Perhaps it is an exercise in books such as [23]?
• What conclusion the parties with transfinite abilities who inhabit worlds under GCH can

draw from this note? — In storage context, store privately the data right away; in communication
context, do not use keys smaller than messages.

But this note is finite, and even (ℵ0,ℵ0, T )-able parties can consider and verify all such notes in
a finite time (they should not come of age without doing so), thus they probably know it already.
• Under ¬GCH, complexity of bruteforce 2k × m greater than complexity of cryption m for

k < m is possible, if, unsurprisingly, 2k > m. Then such transfinite encryption may provide a
secrecy, at least against bruteforce.
• What if some parties live in worlds under GCH and some under ¬GCH (see [11])? Can

they exchange bitdata to communicate, perform passive and active attacks? Perhaps, at least, the
bitdatas of “common” sizes pass the GCH/¬GCH barrier? The simplest answer is: any “leakage”
between worlds is impossible as it leads to contradictions; otherwise, some basic concepts have to
be reconsidered even before cryption enters.7

6This very file, while having been transferred to the reader through the network, was probably encrypted with
keys much smaller than itself. Of course, there were also authentications, integrity checks etc.

7(2ℵ0 , 2ℵ0 , 1)-able Alice lives under ¬CH (⇒ ¬GCH), (22
ℵ0 , 22

ℵ0 , 1)-able Bob lives under GCH. Alice sends to
Bob A = χ= (the “description”, or “bit mask”, of =) over R↔ 2N such that for = = A−1(1): ℵ0 < card= < 2ℵ0 .
Bob makes the masks N = {Nι} describing all countable subsets of R (there are 2ℵ0 of them) and R = {Rι}
describing all subsets of R equinumerous to R (there are 22

ℵ0 of them). Then he performs 22
ℵ0 computations,

bit-for-bit comparisons, to verify that A is included neither in N nor in R. Now Bob has the set =, which violates
CH (thus GCH), impossible in his world, — a “paradox”. Where these reasonings relying on familiar meanings
became inconsistent (babble) is left as an exercise to the reader; see [5, IV.10], [12, 15, 26].
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