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Abstract: As the fault based analysis techniques are becoming more and more powerful, there is a need to streamline the existing
tools for better accuracy and ease of use. In this regard, we propose a machine learning assisted tool that can be used in the
context of a differential fault analysis. In particular, finding the exact fault location by analysing the XORed output of a stream cipher/
stream cipher based design is somewhat non-trivial. Traditionally, Pearson’s correlation coefficient is used for this purpose. We show
that a machine learning method is more powerful than the existing correlation coefficient, aside from being simpler to implement. As
a proof of concept, we take two variants of Grain-128a (namely a stream cipher, and a stream cipher with authentication), and
demonstrate that machine learning can outperform correlation with the same training/testing data. Our analysis shows that the
machine learning can be considered as a replacement for the correlation in the future research works.

1 Introduction

Fault attacks or fault analysis are a common type of techniques used
in the cryptanalysis of primitives. This technique works by injecting
a disturbance on a device while it is performing a cryptographic
operation. This disturbance can be induced by means of a power
glitch, LASER shot etc [1]. It has been shown in the literature that
such disturbance can be injected by inexpensive equipment with high
precision [2, 3]. As with rise of the Internet-of-Things, small scale
devices performing cryptographic operations are almost ubiquitous;
the fault attacks are of an increasing concern for the community.

Among all the fault analysis techniques, the differential fault attack
or differential fault analysis (DFA) is one of the most (if not the
most) common in the academic community (see Section 2.1 for more
information) introduced by [4]. In this case, a disturbance is able
to flip one bit (0→ 1 or 1→ 0) or more bits of an operation being
carried out (known as a fault). Then, by comparing the non-faulty
and one/few faulty outputs, the attacker (Eve) can learn information
about the secret key of the system. Since its first appearance, DFA is
being used extensively to cryptanalyze a variety of ciphers which are
considered secure against the classical attacks.

In the most commonly used DFA model, which we refer to as the
random fault model; it is assumed that Eve is able to choose the round
of cipher in question (possibly by means of timing analysis), but not
the precise location of the fault. In other words, which bit(s) of the
state of the cipher is not known/controllable to the attacker; although
Eve is able to precisely choose the target round for fault injection.

When it comes to stream ciphers and stream cipher based designs,
the usual analysis method of DFA simulation can be conceptually
thought of comprised of two distinct phases. In the first phase, the
exact location of the fault injection is determined by analyzing the
effect of the fault propagation (termed as the signature). When the
location is determined, a SAT solver is used to determine the state of
the cipher at the particular round when the fault is injected. For several
ciphers, the state is reversible; meaning the state can be reversed to
the initialization routine, from where could be possible to recover
the secret key. Also, in the related works involving DFA on stream
ciphers, it is assumed that at most one bit of the state will be flipped.
In this work, we focus on finding the exact location of the fault (i.e.,
which state bit is flipped as a result of fault injection) where the faulty
round is known.

As a side note, it can be mentioned that machine learning has been
recently used in context of classical cryptanalysis [5, 6].

Our Contribution

One fundamental problem in analyzing stream cipher based designs
with respect to DFA is identifying the precise bit which is flipped
as a result of the fault injection. The current standard is to use the
correlation coefficient (more discussion can be found in Section 3.1).

In a nutshell, this technique creates the so-called signature during
the offline phase, which is a matrix with elements from [0, 1]. Then
the XOR of faulty and non-faulty key-stream is corresponding to
each location is computed. The location at which the correlation is
maximum is taken as the correct location of fault.

We choose two variants of the well-studied GRAIN-128A cipher,
one without authentication functionality and the other with authen-
tication [7]. For both the ciphers, we show that a machine learning
approach can outperform a the current standard which uses cor-
relation. Essentially, our work directly improves from [8], which
reports the best performance for the correlation based method (refer
to Section 4 for more information).

2 Background

2.1 Prior Works on Differential Fault Attack

Fault attacks have surely gained considerable attention of the cryp-
tographic research community in recent times. New types of fault
attack models, their countermeasures as well as the practical vali-
dation by means of a real life set-up are among the most focused
topics. Thanks to the wide applicability and practicality, many device
implementations of high profile ciphers in both the public key and
private key domains like RSA, DES, AES, etc. are analyzed by this
technique. All the stream ciphers in eStream∗ hardware portfolio;
namely GRAIN-v1 [9], MICKEY-2.0 [10] and TRIVIUM [11] are
cryptanalyzed by DFA. Other stream ciphers or similar designs like
PLANTLET [12], SPROUT [13], ACORN (which is an AEAD based

∗https://www.ecrypt.eu.org/stream/

IET Research Journals, pp. 1–5
© The Institution of Engineering and Technology 2020 1

https://www.ecrypt.eu.org/stream/


on stream cipher design paradigm) and LIZARD [14] are shown to
be vulnerable against DFA too.

In the above mentioned works, generally it is assumed that the
attacker, Eve, is not able to choose/decide the exact location for fault
(i.e., which particular bit/bits will be flipped). The following points
summarize the model, which is also adopted here:

•The adversary can inject a 1-bit fault, thereby flipping that particular
bit of the state. Typically, such precision of fault location is achieved
by LASER shot, as in [3].
•Each bit of the state is equally likely be flipped as a result of fault.
•The location bit where the fault is injected is not known to the

adversary.
•The attacker has precise control over which round she injects the

fault.

Therefore, the attacker attempts to find out the exact location of
fault by analyzing the key-stream bits [8].

We keep discussion DFA countermeasures out of scope for this
work. In case DFA countermeasures is solicited; one may refer to, for
example, [15] or [1, Section 7].

2.2 Concise Description of GRAIN-128A

We take GRAIN-128A (as a stream cipher, i.e., without authenti-
cation) and GRAIN-128A (stream cipher with authentication) [7]
as our target ciphers. The GRAIN-128A cipher consists of a 128-
bit non-linear feedback shift register (NFSR) and a 128-bit linear
feedback shift register (LFSR), denoted by X and Y respectively.
A schematic view of the construction for both the ciphers is given
in Figure 1. The exact description of the variables and functions are
given in Table 1, where the ith location of register Z is denoted by
zi for Z = X,Y with the index starting from 0. At each clock, both
LFSR and NFSR are updated by the update functions f(Y ) (which
is linear) and g(X) (which is non-linear) receptively. Note that the
NFSR X is also updated from the LFSR Y . Also, f(Y ) misses sev-
eral locations of Y and similarly g(X) misses several locations of X .
The output key-stream z is produced by passing several locations of
X and Y through a non-linear function h(X,Y ), and then XORing
its output with some locations of X and Y .

At first, the cipher is loaded with the key and initialization vector
(IV) during the key loading algorithm (KLA). After this, the cipher
state is updated for 256 clocks with the update rules described already;
but the output z is XORed back to the update functions of X and
Y . After this, the Pseudo-Random Generation Algorithm (PRGA)
produces the key-stream bits.

As for the Key Loading Algorithm (KLA), the ciphers use a 128-
bit key K, and a 96-bit IV. The key is loaded in the NFSR and
the IV is loaded in from the 0th to the 95th bits of the LFSR. The
remaining 95th to 127th bits of the LFSR are loaded with some fixed
pad P ∈ {0, 1}32.

g(X) f(Y )

NFSR (X) ⊕ LFSR (Y )

h(X, Y )

⊕

z

Fig. 1: Schematic view of GRAIN-128A

MAC Generation Algorithm in GRAIN-128A The cipher
GRAIN-128A [7] optionally supports message authentication code
(MAC) generation. For this purpose, two registers, called accumulator
and shift register of size 32 bits each, are used. The shift register is
updated by z while the accumulator is updated by both z and the
message m. The tag is obtained from the accumulator.

3 Context of Machine Learning

3.1 Correlation Based Method for Identifying Fault Location

Correlation based method to find fault location is the practical stan-
dard for finding location of the fault, as can be seen from several
research works [8, 12–14]. To explain how it works, we adopt the
following notations:
•the fault-free key-stream sequence of length ` which the adversary

has access to: z0, z1, . . . , z`−1;
•the fault location, f ;
•the `-length key-stream obtained after injecting a fault (faulty key-

stream): z(f)0 , z
(f)
1 , . . . , z

(f)
`−1.

The fault identification procedure can be roughly classified into
two phases, namely offline and online. Overall, the attacker Eve at
first computes the off-line phase, where she has full access to the
target device and can perform the fault injection. Being equipped
with the information from this phase, the attacker moves to the actual
online phase of the attack.

Offline Phase The attacker pre-computes the signature vectorQ(f)

for each fault location f of the cipher. The signatures are prepared
by observing the probability of fault-free key-stream bits being not
equal to faulty key-stream bits over several randomly generated keys
and nonces:Q(f) = {q(f)0 , q

(f)
1 , . . . , q

(f)
`−1}where, q(f)i = Pr(zi 6=

z
(f)
i ).

Online Phase The attacker injects a fault in an unknown location g,
and calculates the trail Γ(g) of the fault location as follows: Γ(g) =
{γ(g)0 , γ

(g)
1 , . . . , γ

(g)
`−1} where, γ(g)i = Pr(zi 6= z

(g)
i ).

Hence, the fault signature is a matrix of values from [0, 1]. The
number of columns of the matrix is same as the number of key-stream
bits and that of rows is same as the number of fault locations (typically
the entire state).

The final goal for the attacker is to identify g. The value of f
for whichQ(f) best matches the trail Γ(g) obtained corresponds to
the correct fault location. For checking this, correlation coefficient
is shown to work with good accuracy [8]. The attacker calculates
the correlation between the signature Q(f) and trail Γ(g) for all
possible values of f . This algorithm provides the value of g with a
reasonably high accuracy. The same algorithm is repeated to identify
fault location for all faulty key-stream sequences. The equations are
then gathered and solved using an automated tool, typically a SAT
solver (e.g., [11]).

However, often the correct location does not have maximum corre-
lation. The rank metric measures the number of locations where the
correlation coefficients of those locations are greater than or equal
to the correlation coefficient of the correct location. Hence, if the
correlation coefficient of the correct location is maximum, it has rank
1. Hence, if the rank is small (close to 1), then the performance of the
method can be considered well. We also extend this notion of rank to
machine learning based fault location finding to have a comparison
of performances.

3.2 Fundamentals of Artificial Neural Network

Here a very brief overview of machine learning is given here for the
sake of completeness. For more details, an interested reader may refer
to textbooks, e.g., [16].

Machine learning can be loosely defined by a collection of various
types of algorithms, of which Artificial Neural Networks (ANNs) are
of particular interest. ANNs are algorithms employed for fitting a
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Table 1 Overview of GRAIN-128A (with and without authentication)
LFSR (Y ), NFSR (X) Size 128
Key Size 128
IV Size 96
Pad (used during KLA) FFFFFFFE
LFSR Update (f(Y )) y96 ⊕ y81 ⊕ y70 ⊕ y38 ⊕ y7 ⊕ y0

NFSR Update (g(X))
yt ⊕ xt ⊕ xt+26 ⊕ xt+56 ⊕ xt+91 ⊕ xt+96 ⊕ xt+3xt+67 ⊕ xt+11xt+13
⊕xt+17xt+18 ⊕ xt+27xt+59 ⊕ xt+40xt+48 ⊕ xt+61xt+65 ⊕ xt+68xt+84
⊕xt+88xt+92xt+93xt+95 ⊕ xt+22xt+24xt+25 ⊕ xt+70xt+78xt+82

h(X,Y ) xt+12xt+95yt+94 ⊕ xt+12yt+8 ⊕ yt+13yt+20 ⊕ xt+95yt+42 ⊕ yt+60yt+79

z xt+2 ⊕ xt+15 ⊕ xt+36 ⊕ xt+45 ⊕ xt+64 ⊕ xt+73 ⊕ xt+89 ⊕ yt+93 ⊕ h(X,Y )

Input Layer

Hidden Layer

Hidden Layer

Output Layer

Fig. 2: Structure of an artificial neural network

model to a given data that can perform efficiently tasks like classi-
fication or regression, which are generally considered difficult for a
computer. ANNs are capable of finding inherent characteristics of a
user provided data (called the training data) by iterating through it
repeatedly and gradually adjusting its parameters, until these parame-
ters are finally stabilized. Once training is completed, the model is
validated against the testing data.

The basic processing unit of an ANN is termed as a neuron, which
is inspired from the biological neuron found in brain cells. The neu-
rons arranged in a series of layers. More depth of layers generally
makes the ANN capable of handling more complex data.

Here we use the basic forward-propagation ANN. A basic structure
of the generic construction of can be found in Figure 2.

4 Our Results

For experimentation purpose, we only take 120 bits of the key-stream
from starting of PRGA. We begin our analysis by finding the fault
signatures both the ciphers. As signatures for a cipher is indeed a
matrix, it can be pictorially represented. Figure 3 shows such a rep-
resentation (Figure 3(a) for GRAIN-128A stream cipher and Figure
3(b) for GRAIN-128A stream cipher with authentication).

With the same data used in correlation based method, we next
mount an artificial neural network approach. For this purpose, we
use a 5 layer neural network with TensorFlow∗ as the back-end and
Keras† API with the following properties (refer to Section 3.2 for
more information on these):

•Layer 1 The first layer is a dense layer with a dropout rate of 0.2
and activation function as rectifier (ReLU). It consists of 120 neurons
(same as the number of key-stream bits used).
•Layers 2, 3, 4 The second, third and fourth layers are dense layers
with rectifier as activation functions. The number of neurons are
respectively 252, 202 and 160.

∗https://www.tensorflow.org/
†https://keras.io/

•Layer 5 The final layer is a dense layer with 160 neurons for
GRAIN-v1 and 256 neurons for GRAIN-128A (same as the size
of the state) with softmax activation (one-hot encoding). Depending
on the firing rate of neurons at this layer, the prediction on the fault
location is made.

The summary of the model is given in Table 2. As for the choice of
epochs, we choose 8. We compile the model with the adam optimizer,
sparse categorical cross-entropy as the loss function and accuracy as
the metric. The parameters are chosen somewhat arbitrarily. We use
the Adam algorithm [17] as optimizer.

Table 2 Model summary for the artificial neural network used
Layer (Type) Output Shape Parameter #
dense (Dense) (None, 120) 14520
dropout (Dropout) (None, 120) 0
dense_1 (Dense) (None, 252) 30492
dense_2 (Dense) (None, 202) 51106
dense_3 (Dense) (None, 160) 32480
dense_4 (Dense) (None, 256) 41216
Total params: 169814
Trainable params: 169814
Non-trainable params: 0

Relative performance of the machine learning and correlation
based approaches are presented in Figure 4 for GRAIN-128A
(without authentication) and in Figure 5 for GRAIN-128A (with
authentication), and also in Table 3. It is to be noted, machine learn-
ing outperforms correlation for both the ciphers (the difference is
more prominent in GRAIN-128A with authentication) with the same
training and testing data.

Table 3 shows that the accuracy is higher in machine learning,
so the number of wrong identification is less in machine learning.
Overall, the outcome from the machine learning models have lower
rank (see Section 3.1 for description of rank), as both the average and
the maximum ranks reported by machine learning is smaller than its
correlation counterpart. For example, the maximum rank for machine
learning is 12, but the same for correlation is 19 for GRAIN-128A
with authentication. More details on rank can be seen from Figure 4
(Figure 4(a) for machine learning and Figure 4(b) for correlation on
GRAIN-128A without authentication) and Figure 5 (Figure 4(a) for
machine learning and Figure 4(b) for correlation on GRAIN-128A
with authentication). Here, we plot the average and maximum rank
for each location of the 256-bit state.

5 Conclusion

In this work, we apply a machine learning method to the problem
of finding the location of fault in stream ciphers. The conventional
methods for finding the same involves creating a so-called signature
method, then to see which location shows maximum correlation
coefficient. We show for two variants of GRAIN-128A (one as a
stream cipher, while the other as a stream cipher with authentication)
that machine learning can be used instead of correlation with greater
efficiency, even though both are trained and tested with the same data.
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Fig. 3: Visualization of signatures

Table 3 Summary of experiments for fault location identification

Cipher Size Machine Learning (Ours) Correlation [8]

Accuracy Rank∗ # Wrong
Identification Accuracy Rank∗ # Wrong

IdentificationTraining Testing Average Maximum Average Maximum
GRAIN-128A

(w/o Authentication) 218 214.551 0.9988 1.0013 3 27 0.9970 1.0032 3 72

GRAIN-128A
(w/ Authentication) 218 214.551 0.9799 1.0240 12 482 0.9448 1.1024 19 1324

∗ : Lower is better, 1 is ideal

Thus, our work follows-up that of [8] and shows improvement on it.
On top, machine learning tools are standardized and easier to use.

We believe this work can inspire multiple future research works.
For example, this method can be tested against other ciphers. Multi-bit
fault model (where more than one bit is injected with fault) can be con-
sidered too. In case where the attacker can only access a suppressed
key-stream (e.g., first 20 key-stream bits are not available), one may
be interested in finding the performance of a machine learning model.
Finally, the selection of hyper-parameters and its sensitivity can be
thoroughly studied.
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Fig. 4: Performances for machine learning and correlation based methods on GRAIN-128A (without authentication)
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Fig. 5: Performances for machine learning and correlation based methods on GRAIN-128A (with authentication)
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