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We introduce an interpolation attack using the Moebius Transform. This can
reduce the time complexity to get a linear system of equations for specified
intermediate state bits, which is general to cryptanalysis of some ciphers with
update function of low algebraic degree. Along this line, we perform an
interpolation attack against Elephant-Delirium, a round 2 submission of the
ongoing NIST lightweight cryptography project. This is the first third-party
cryptanalysis on this cipher. Moreover, we promote the interpolation attack by
applying it to the Farfalle pseudo-random constructions Kravatte and Xoofff. Our
attacks turn out to be the most efficient method for these ciphers thus far.
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INTRODUCTION

Authenticated encryption (AE) can provide confiden-
tiality, integrity and authenticity for messages simulta-
neously. Recently, NIST [1] has initiated a process to so-
licit, evaluate, and standardize lightweight authenticat-
ed encryption algorithms with associated data (AEAD)
and hashing algorithms, that are suitable for use in con-
strained environments where the performance of cur-
rent NIST cryptographic standards is not acceptable.
Until September 10, 2019, there are 32 out of 56 candi-
dates selected to Round 2.

ELEPHANT [2] is a family of lightweight authenticated
encryption schemes which has reached the 2nd round
of NIST lightweight cryptography project. The mode
of ELEPHANT is a nonce-based encrypt-then-MAC
construction, where encryption is performed using
counter mode and internally uses a cryptographic
permutation masked using LFSRs. The mode is
permutation-based and only evaluates the permutation
in the forward direction. As such, there is
no need to implement multiple primitives or the
inverse of the primitive.  This allows it to rely
and build on the sponge-based lightweight hashing.
Moreover, ELEPHANT is parallelizable by design, easy
to implement due to the use of LFSRs for masking
(no need for finite field multiplication). Because of

the parallelism property, there is no need to instantiate
Elephant with a large permutation. Thus, the original
three instantiations all use a state of no more than 200
bits.

KRAVATTE [3] and XOOFFF [4] are both based on
the Farfalle construction. Farfalle [3] is an efficiently
parallelizable permutation based construction of a
pseudorandom function (PRF), which is first introduced
in ToSC 2018. It takes as input a key and a (sequence
of) string(s), and produces an arbitrary-length output.
Moreover, when instantiated with a secret key, those
output bits look like independent uniformly-drawn
random bits. It is efficient because its permutation
calls can be performed in parallel as soon as the
input masks have been generated. Such a PRF is a
powerful primitive that can readily be used as a message
authentication code (MAC), a stream cipher or a key
derivation function.

Our Contribution. In this paper, we utilize the opti-
mized interpolation attack which was first introduced
by Dinur et al. [10], and give a method called improved
interpolation attack to analyze the Farfalle construc-
tions. For ELEPHANT-DELIRIUM encryption algorith-
m, we give a 8 out of 18 rounds attack and this is the
first third party attack. For KRAVATTE updated version
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KRAVATTE ACHOUFFE, our attacks have less time com-
plexities when compared to the attacks of Chaigneau et
al. [5] on its simple version KRAVATTE 6644. Simi-
larly, we apply this method to XOOFFF, which is an-
other Farfalle construction cipher. The results of our
attacks are summarized in Table 1. Moreover, our im-
proved method is not only used for cryptanalysis of the
above three ciphers, but also with a broad applicabili-
ty in some other ciphers whose intermediate state bit’s
ANF can be expressed as a function F(C) with low
degrees.

In the next sections, we discuss our attacks in more
details. Section 2 gives the notations and the brief
description of the ciphers. Section 3 describes methods
and tools used in our attack. Section 4 presents the
method of our attack and we apply it in Section 5. We
conclude in Section 6.

2. PRELIMINARIES
2.1. Notation

Some notational conventions of state are shown in the

following.
(i,7,k)  index of a bit,
(*,7,k)  index of a row,
(i,#,k)  index of a column,
(i,7,%)  index of a lane,
(%,7,%) index of a plane,
Ak the bit indexed by (4, j, k) of state A,
A the lane indexed by (4, j, *) of state A,
A, the plane indexed by (x, 7, %) of state A,
Si a plaintext subspace,
Cs, a ciphertext subspace obtained by
encrypting the plaintexts of Sj,
Pg the plaintext super structure,
Cs the ciphertext space obtained by

encrypting the plaintexts of Pg.

2.2. The Keccak-p permutation

The permutation KECCAK-p is derived from KECCAK-
f [6] with a variable number of rounds, which
is mainly defined by two parameters: the width
b = 25 x 2! and the number of rounds n,, where
b € {25,50, 100,200,400, 800,1600}. The permutation
KECCAK-p is denoted as KECCAK-p[b,n,-]. The round
function of KECCAK-p consists of five operations,
denoted as toxyomopod, and the details are as follows:

01 Agy = Avy + 350 (Aam1j + (Agsr; K 1)),
piAyy=Ay, K plz,yl

T Ay72a:+3y = Aw,y-

XAy = Azy + (Azt1y) A Asyay.

L A070 = Ao,o + RC

Here, we use A to represent the state of the
permutation KECCAK-p with the size of b bits, which
is also expressed by 5 x 5 %—bit lanes, as shown in Fig.

y 2z
) hi state

0,0]1,0(20]301]4,0

0,1 L1 [2,1]31]41

0,2]1,2(2,2]3,2]4,2

0,3]11,3([23]3,3]4,3

FIGURE 1. (a) The KEccak State [6], (b) State A In
2-dimension

1. The lane is denoted by A;; with ¢ for the column
index and j for the row index, where ¢ and j are in the
set {0,1,2,3,4} and they are working modulo 5 without
other specification.

2.3. The Xoodoo permutation

Daemen et al. [4] introduced a 384-bit permutation
X0o0oD00 at ToSC 2019, which is similar to KECCAK-
p. We use the three-dimensional matrix A[4][3][32] as
the state. The round function of X00ODOO includes five
operations, denoted as R = peqst © X O L O Pyest © 0, which
are listed in the following.

g : A:rr-,y,z = A:r,y,z+
2
> j—0 (Ae—1j25 + Az—1,j,2-14).
Pwest  * Aw,l,z = A;c—l,l,z: Aw,Q,z = Aw,Q,z—ll-

L A070 = Ao,o + RCZ
X Ar,y,z = Ar,y,z + ((Az,y+1,z + ]-) A Ax,y+2,z)'
Peast - A:L’,l,z = Az,l,zfla Az,Q,z = A172,2,278~

X00DO0O could be applied as an AE scheme in KETJE
style, which is shown in [7].

2.4. Elephant

ELEPHANT is a family of lightweight AE schemes,
which has been submitted to the NIST lightweight
cryptography project [1], and it has reached the second
round. As a lightweight cryptographic algorithm, it
has many advantages in practical applications. The
underlying mode is permutation-based and inverse-free
with a small state size, and allows for a high degree of
parallelism. The authors provide three instantiations
DumBO, JuMBO and DELIRIUM, which use different
round functions. But in this paper, we only discuss the
ELEPHANT-DELIRIUM encryption scheme which uses a
18-round KECCAK- f[200] permutation.
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TABLE 1. Summary of Key-recovery Attacks

Target Rounds T(op.) M(bit) | D(block) Source
ELEPHANT-DELIRIUM 8/18 2983 270 270 5.1
Target ng Ne T(op.) M(bit) | D(block) Source
KRAVATTE 66447 4/4 | 4/4 21122 2623 27T 5]
KRAVATTE ACHOUFFE | 4/6 4/6 21062 272 2783 5.2
XOOFFE 4/6 4/6 2901 259 2752 5.3.2
6/6 2/6 2904 268 2742 5.3.3

T. KRAVATTE 6644 uses linear rolling function.

Nl Nl
mask” mask‘y —1:0
Afl ]\'IEM
2 m
Gy C[I\/I

FIGURE 2. Encryption of ELEPHANT [2]

The generic ELEPHANT encryption mode is presented
in Fig. 2. For ELEPHANT-DELIRIUM, the state size n
is 200 bits, the size of the master key is 128 bits and
the size of the nonce N is 96 bits. And the masky is
generated by the function mask. Moreover, the mask i
is independent of nonce value, and hence does not effect
the dimension of the input space.

2.5. Kravatte and Xoofff

KRAVATTE and XOOFFF are both Farfalle pseudo-
random constructions. We give an introduction about
Farfalle in the following.

First of all, Farfalle is permutation-based with
variable input and output length. Although the input
and output lengths are tunable, inside the construction,
strings of bits are processed in chunks of b bits, where
b is the size of the underlying permutation. The
Farfalle construction can be used to build a pseudo-
random function from parallel applications of fixed
permutations, and returns a string of arbitrary blocks
of output.

The Farfalle construction is divided into three parts:
mask derivation, compression layer and expansion
layer. More specifically, it includes four cryptographic
permutations (possibly identical or related), and each
of them operates on a b-bit block and they are used as

follows:
pp  derive the initial mask from the master key,

pe. used in the compression layer,

pa used between the compression and expansion layer,

pe used in the expansion layer.

Besides these four permutation functions, its

instantiation requires the definition of two so-called
rolling functions, represented by O in Fig. 3, operating
on a b-bit block. They are denoted by roll., roll, and
applied as follows:

roll, for generating masks added to the input
blocks in the compression layer,
roll, to update the internal state during the

expansion layer.

roll*(k) represents the result after applying the rolling
function i times. In particular, roll?(k) means you do
not apply the rolling function on it.

The Farfalle construction takes a master key K and
a message M as input. The details are listed as below:

Mask derivation  This layer takes the padded
master key K as input and generates k'™ by p,, k' =
pu(K || 10*). Then roll, updates k™ I; — 1 times to
get the masks k" ;. Specially, ki* = k™. Besides,
k" = rolllit1 (k™).

Compression layer This layer takes the padded
message as input. Firstly, M || 10* is padded into I;
blocks m;. Then the permutation p. takes m; + k"
as input. Finally, XOR all the results after p. together
and get the a b-bit block accumulator value: Acc(M) =

1Li—1 .
> pe(mi + k).
i=0

Expansion layer This layer takes the result
of compression layer as input. Firstly, apply the
permutation p; on the accumulator result to get y =
pa(Acc(M)). Secondly, apply roll., p. on y and XOR
a key mask to the result to get the output: 2/ =
pe(rolli(y)) +k° for j =0,...,1, — 1.
2.5.1. KRAVATTE
In this part, we introduce the Farfalle original
instantiation KRAVATTE ACHOUFFE which is based on

the permutation KECCAK-p[1600, 6]. The Farfalle and
KRAVATTE are both designed by Bertoni et al. [3].

DEFINITION 2.1. (KRAVATTE ACHOUFFE [3]/) KRaA-
VATTE ACHOUFFE is Farfalle[py,pc, pa, pe, roll., roll.]
with the following parameters:

® Dy, =Pe = Ppa = pe = KECCAK-p[1600, n, = 6],
e roll. as specified below,
e roll. as specified below.

The rolling function roll. applies a linear transfor-
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FIGURE 3. The Farfalle construction [3]

mation to the five lanes of the plane y = 4 of the KEc-
CAK-p state and leaves the other 20 lanes unchanged.

For KECCAK-p[1600], with arithmetic on z taken
modulo 64, roll. can be expressed as follows:

Aza — Agiia Vr # 4,
Asaz < Aoae—1+ Ara+ Arazys Vz < 60,
Aga. <+ Aoaz7+A1a; Vz > 60.

The rolling function roll. has been changed by the
authors in the updated version. It applies a non-linear
transformation to the ten lanes of the planes y = 4 and
y = 3 of the KECCAK-p state and leaves the other 15
lanes unchanged.

Similarly, roll. can be expressed as follows:

Aps — App13 Vo # 4,
Ay Aoy,
Aw,4 — Ax+1,4 Vr 7é 47

Asa, <+ Aoz.7+A13. 18+ A3, A13.41
Vz < 62,
Asa, — Aoz -7+ Ai3:-18 z = 63.

2.5.2. XOOFFF

XOOFFF [4] is obtained by wusing the 6-round
X00DOO as the cryptographic permutations in Farfalle
construction.

[4]). XOOFFF s
follow-

DEFINITION  2.2. (XOOFFF
Farfalle[py, pc, pd, pe, rolle,roll,] with  the
g parameters:

® Py = Pe = pd = P = XOODOO/[6],
e roll. = rollx, and
e roll, =rollx,.

As for the two rolling functions: rollx, for rolling the
input masks and rollx, for rolling the state, we specify
them with operations on the lanes of the state.

The input mask rolling function rolly, updates a
state A in the following way:

Bso < Apo+ (Ao < 13) + (Ap1 K 3),

B%O — A$+170 YV 75 3,
AQ — Al,
Al — AQ,
AQ «— Bg.

Note that By is an auxiliary variable that has the shape
of a plane, and B, is the lane indexed by (x,0,*) of
plane By.

The state rolling function rollx, updates a state A in
the following way:

Bsgo < Ap1-Aoz+ (Ao < b) + (Ao « 13)

+ 0200000007,
Byo <+ Agy10 VT #3,
AO «— Al,
Al — AQ,
A2 +— By

3. RELATED WORK
3.1. Interpolation Attacks

The interpolation attack was first introduced by
Jakobsen and Knudsen on block ciphers with low
algebraic degree in 1997 [8], which is related to high-
order differential cryptanalysis proposed by Lai [9].

The interpolation attack considers the intermediate
target bit a, whose ANF can be represented by the
ciphertext C and the secret key K, i.e. a = Fg(C),
as shown in Equation (1).

a M,

(1)

Fi(C) = Fg(c1, ey cn) = >

u=(u1,...,un ) EGF(2™)

where a,, € {0,1} is the coefficient of monomial M, =

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777




INTERPOLATION ATTACKS ON ROUND-REDUCED ELEPHANT, KRAVATTE AND XOOFFF 5

n
Il ¢i*. Denote the number of non-zero «, as N,,.
i=1

Then, we want to recover the coefficients c,, which
only depend on the secret key bits. Suppose the
algebraic degree of F(C) is less than d. To deduce the
coefficients of Fi(C), we regard the coefficients as the
variables, and recover them by solving a linear system
of equations. We use the chosen plaintext interpolation
attack over GF'(2). Since deg(Fk(C)) < d, the sum of
a over a (d+1)-dimension plaintext subspace \S; is zero.
That is to say, the sum of the values of the polynomial
Fk (C) over ciphertexts Cs, = {C1, ..., Cat+1 } (obtained
by encrypting the plaintext subspace S;) is zero. As
the secret key is an unknown constant, we express this
result as Equation (2).

gd+1

> Fr(Ch) = > ay

u=(U1,...,un ) EGF(2™)

E M,| =0
CECSi
(2)

This is a linear equation with the coefficients «,,, and
a, are functions of secret key bits. The subspace
S; provides one linear equation. We can construct
more such subspaces to get N,, linear independent
equations to recover the secret keys. That needs about
N,, X Ng, x 2%+1 XOR operations.

Moreover, we know from the high-order difference

cryptanalysis that we can get the value of > M, in
CeCs,

Equation (2) without any loss if we had the expression
of M, as a function of the plaintext, F(P).

3.2. Moebius Transform

Firstly, we give a brief definition of MOEBIUS
TRANSFORM. For more details, please refer to [11].

DEFINITION 3.1. The MOEBIUS TRANSFORM 1S a

classic algorithm that transforms the truth table of
function F to its ANF efficiently.

We give a simple example to show the MOEBIUS
TRANSFORM. The input variables of the function
F: GF(2%) — GF(2) are x1,72,73. The truth table
of F' is shown in the Table 2.

An Example of MOEBIUS TRANSFORM

Output
1

mon.

1

Z1

T2
X1To
€3
ToX3
r1x3
L1T2X3

S
=
3
N
8
w

[l Bl Bl K==l K=l Bl Raw)
= OO = OO
[l Bl Bl Bl K== K ==] N o) Ran)
el K==l el Kenl B Nen) Nanl

TABLE 2. Truth Table

'g
g
Q
e
-
e
»
a
o
~

DA

—— -)—1*(%
T
)

o)

I

T
P

T

FIGURE 4. The Process of MOEBIUS TRANSFORM

The MoOEBIUS TRANSFORM works as Fig. 4. The
values in Col 4 are coefficients of the monomials X,,,
which are listed in the first column of Table 2. The
1st value of the Col 4 is the constant when 1, x2, x3
are all set to 0. The 4th value is the coefficient of the
monomial X, = xyx9, which is got by XOR-ing all the
four output values when z3 is set to 0. The last value
is the coefficient of the monomial X, = x1zox3.

Finally, the MOEBIUS TRANSFORM transforms the
truth table Table 2 to its ANF as below

F(:L’l,l’g,x;g) =1 + 21+ X9 +$3 +£B1{E3

It is obvious that the time complexity of the MOEBIUS
TRANSFORM is 5logan XOR operations, where n is the
length of the column Output.

Moreover, we use the MOEBIUS TRANSFORM to get
M,,’s plaintext expression: F(P).

n
For an arbitrary M, = ][] ¢, each ¢; can be

i=1
expressed in plaintext bits p. If we get each ¢;’s ANF
and calculate the result, we can get the F(P) of M,,
ie. M, = F(P)= > By X, where (3, €
v=(v1,...,0, ) EGF(27)
{0,1} is the coefficient of the monomial X,, = [] p;".
i=1

However, ciphers’ iteration are usually too Compl;cated
to calculate the expression. But it is easy to get the
n
values of the truth table of M, because M, = [] ¢;*
i=1
and the values of ¢; are known. Thus, the MOEBIUS
TRANSFORM can be used to get the F'(P) of M,,.

3.3. Optimized Interpolation Attack

In this part, we introduce the idea of the optimized
interpolation attack which was first introduced by Dinur
et al. [10]. It can reduce the time complexity using the
MOEBIUS TRANSFORM.

The Equation (2) shows that one (d 4 1)-dimension
subspace gives one equation on «,. Summing over
N,, such subspaces will get N, linear independent
equations and recover the secret keys. This can be
done efficiently using the MOEBIUS TRANSFORM. As
shown in [10], we can view the input as evaluating
a (d + 1 + e)-variable polynomial over GF(2), and
the summation over a (d + 1)-dimension subspace is
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equal to the coefficient of its corresponding (d + 1)-
degree monomial which is called maxterm. Thus,
the optimized interpolation attack uses the MOEBIUS
TRANSFORM to build the equation system and the
complexity of this process is about (d + 1 + e) - 2¢+¢
XOR operations.

3.4. Construction of Affine Spaces in the
Accumulator

In this paper, we mainly focus on the algorithms with
the Farfalle construction, which has [; input blocks
and [, output blocks. In order to apply the MOEBIUS
TRANSFORM to such structures, we need to construct
an affine space of dimension n in the accumulator
block. We use a property of Farfalle, which is already
identified in [3].

PROPERTY 1. Given an n-block padded message

M = (mg,..mnp—1), let the associated accumulator
value be Acc(M) = Y pe(mi + k™).  Let
MY = (m8,...,m0_;) and M' = (m},...,mL_,)

denote an arbitrary pair of padded messages such
that mQ # m} for all i. These messages can build
the structure of 2" mn-block input messages S =
{(mg, ...y m;" ), (€0, -y €n—1) € {0,1}"}. Denote the
one-block difference by §; = p.(m? +ki") +p.(m}+ki").
If n < b (b is the state size), the §; are linearly
independent with overwhelming probability. = Then
Acc(S) is the n-dimensional affine subspace Acc(My)+

(50, v Ot ).

Based on Property 1, we can easily build structures
of 2™ n-block messages that are transformed by the
compression layer into an affine space of one-block
accumulator values of dimension n. Moreover, there
are only two possible values m{ or m} for each input
block. Thus, we give a new definition.

DEFINITION 3.2. For 2™ n-block input messages S =
{(mg, ..cymy ), (€0, vy €n—1) € {0,1}"}, we use a bit
0 (resp. 1) to represent the value of the block m? (resp.
m}). So we define the vector Ps = (€g,...,€n—1) €
{0,1}"™ to represent the input structure S.

It is obvious that Property 1 does not depend on the
number of rounds in p.. Hence, we can regard the
compression layer as a affine transformation and the
dimension of the affine space Acc(Ps) is equal to Pg.
It helps us to apply the MOEBIUS TRANSFORM on the
Farfalle constructions.

3.5. Properties of Keccak-p

In [5], Chaigneau et al. introduce a property of Keccak-
p~! to reduce the variables of its output. It suits for
that each input variable of Keccak-p~' is A @ k", Tt
should be pointed out that the structure of Keccak-p~?
is public, so we don’t need a decryption oracle. Suppose
the state size is b and the notations are as shown in

Fig. 5.
1’1(”/[
E D C _ B
—t ot = (zop) 7t A

FIGURE 5. Some Notations of KECCAK-p~*

The inverse Sbox in x ' layer has algebraic degree
three, and the input of the y~' is B = A + k°**, where
'+’ stands for '@’ in the following. The output bit of
the inverse Sbox can be expressed as below

Cx = Bm+1B1+3Bm+4 + Bm+1B1+2 + Br
= (ko + Apir + 1)(KY5 + Apys + 1)(KSY + Auta
+ (KO + Appr + 1)(KOY, + Appo) + (K2 + Ay)

By introducing the new variables w, =
out y,out y,out out y,out out o
km+1kz+3kx+4 + k:c+1k:v+2 + kr ) Uy -
out y,.out out outy,out
kiskoty + koi, and v, = ki UkiY,, Cp can be
rewritten as w, + P,(A4), where P,(A) is an affine
combination of uy, vyi1, Vera, KoT1, koW, kO, with
coeflicients determined by A.

PROPERTY 2. (Property of x~* in KECCAK-p~!)

For each Sbox in x~ 1 with input (ky,... keys) &
(Ag, ..., Apta), there are 15 new variables in key bits
for the output expressions: 10 variables u, v of algebraic
degree two and 5 variables w of algebraic degree three.

The Sbox in x~! generates new variables and the
inverse affine layer spreads them to almost every bit.
First of all, we use o(z,y,2) to denote the state bit
moved to (z,y,z) by the permutation (7 o p)~!, i.e.
Dy .. = Cy(z,y,-)- Moreover, the high diffusion layer
6~! has the following property.

For each column D, . of the state, there is a set of
bit positions S, . such that each bit after 6~ is given
in the following.

Ew7y,z = Da:,y7z + Z

(2',y",2")ESx,»
=Cotayy + D
(z',y",2")ESs,~
= Wo(ay.2) T Lo(ay.2)(4)
Y (W) T Py (4))
('y",2")ESq,-
= wlw,y,z + Pa(w,y,z) (A) + Qa:,z(A)
where w;j, , . is a new variable defined as the linear
combination of all the w variables involved in the
expression of E, , ., Qs .(A) is the sum of the P over
position set S; .. Because there are 6 variables for

Py (2,y,2)(A), we deduce that the output of 6! can be
expressed as

EI’Z/,Z = P:;,y,z(A) + QI,Z(A)7

Dw’7y’7z’

Co(ary' 2
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and P, , .(A) contains 7 potentially nonzero variables

at most, where P, , (A) = w} , . + Py(ay,2)(A).
In a conclusion, we get the following property:

PROPERTY 3. (Property of KEcCAK-p~!)

Let the input of KECCAK-p~! be A + k°**, then the
output can be expressed as By, . = Py, (A)+Qz - (A).
Moreover P, , . has 7 potentially nonzero variables at
most; Q. . is considered as a linear function of all the

3b variables (u, v, and k")
3.6. Properties of Xoodoo

For X0ooD0o0™!, we give some properties which are
suitable for the situations when the input is B =
A+ Kk°“. The notations are shown in Fig. 6.

km/{

e R T I

FIGURE 6. Some Notations of Xoopoo ™!

Similarly, we investigate the Sbox in y ! layer. The
algebraic degree of the Sbox is two, and the input of
x~'is B, = A, + k%", The output bit of the Sbox can
be expressed as below:

Cy :Bz+1Bz+2 + B:
=(k4 + Avrr + DK, + Appz) + (k3" + Ag).

Here we introduce the new variables w, = k244 k2%, +
k%" so that C, can be written as C, = w, +
kgvjrtlAzJﬂ + kgljrtz(Am+1 + 1) + ((Am+1 + 1)Az+2 + Aw)'

: : : : out out
It is a linear equation in w,, k; 7 and k',

PROPERTY 4. (Property of x~! in Xoopoo™1!)

For each Sbox in x~! with input (ky, kei1,keio) ®
(Az, Apt1, Axt2), there are 3 new variables in key bits
in the corresponding output expression.

The state size of X00ODOO is 384, and there are
potentially 384 w and 384 k°“ variables after y~'. The
analysis of the affine layer is similar to that of KECCAK-
p~!, so we get the following property.

PROPERTY 5. (Property of Xoopoo~1)

Let the input of X0oD0O ! be A + k°“*, then the
output of 0=1 can be expressed as E, , = wgyyﬁz +
Qu,2(A4), where w, is considered as a new variable

y,%
containing all the w involved in Ey, , and Q .(A)
is linear in all the 384 k" bits. Obviously, Wy, . 08

independent on the state A. In total, E,, . contains
385 nonzero variables.

Notice that there is a rotation layer p_.L, after =1,
ie. F=p_L.(E). It changes the properties of the §~1
but does not generate new variables.

4. THE INTERPOLATION ATTACK

In this part, we introduce how to extend the optimized
interpolation attack to the Farfalle constructions.

At first, we give a method to reduce the size of the
equation system. We reconstruct Fi(C) as Fj(C)
basing on Chaigneau et al.’s work [5] to reduce the
variables of Fi(C).

Neg
a=F(C) =) ked, 3)
t=1

where k; € GF(2) is the equivalent key, ¢; € GF(2) is
the sum of some M, which are multiplied by k}, and
Neq is the quantity of kj. ¢} is no longer a monomial,
and we call it sum-monomial in the following. Fi(C)
and F7(C) are essentially the same polynomial, and
Equation (2) still holds for Fj (C').

We give an example to explain it. For the equation
Fr(C) = (ko + kiko)co + (ko + kika)cocr + (ko +
k1ka)cocica, we rebuild it as Fj (C) = k{ * ¢, where
kly = ko +k1ke and ¢ = co + coc1 + coercz. It is obvious
that Neqg < N,, . Hence it needs fewer equations to get
the unknown key bits.

We have rebuilt the expression as Equation (3).
However, the Farfalle construction has several input
blocks, so the interpolation attack cannot be applied on
this structure. Chaigneau et al. have given a method
which can construct an affine space in the compression
layer like shown in Sect. 3.4, so that we can take one
input block as one variable. By Definition 3.2, we
use Ps = (€g,...,en—1) € {0,1}" to denote the 2™ n-
block input structure S. If the dimension of the input
structure Ps is n, we will get a n-dimension space after
Acc.

We mainly utilize some ideas of Chaigneau et al. in [5]
above. Then we combine them with the ideas in the
optimised interpolation attack to improve the results.

In order to recover the secret key bit kj, we need
Neq linear independent equations. So we choose Ng4
different (d + 1)-dimension input subspaces {S;} from
a (d + 1 + e)-dimension input super structure. By
Definition 3.2, Pg represents the (d 4+ 1 + e)-dimension
input super structure and Cg denotes the corresponding
ciphertext space. Each ciphertext subspace Cg, gives
one equation as follows

Neg
> Fkl@) =3 K
t=1

CeCs,

Z Cg =0, (4)

CeCs,

so the e has to satisfy (dzflre) > Neg.
Thus, the steps of setting up equation system are
similar with the optimized interpolation attack as

follows.

1. For a (d + 1 + e)-dimension plaintext super
structure Pg, query the encryption oracle to get
the corresponding ciphertexts Cyg. Initialize a
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Neq X Neg matrix, in which each row represents
a linear equation.

2. Update the matrix column by column. For each ¢}
of the equation (3):

e Evaluate ¢, for all the 2971*¢ ciphertexts and
get a bit vector.

e Apply the MOEBIUS TRANSFORM on this
bit vector to get the F(P) of ¢,. Extract
the coefficients of maxterms of the input
subspaces {S;} from F(P) and copy them to
a column of the matrix.

3. The matrix obtained above represents the coeffi-
cients of k; in the N., linear independent equa-
tions. Solve the system of linear equations to get
all the k; and derive the key bits.

We need 2¢9+1%¢ input messages and encryptions in
Step 1. Step 2 needs Ng, x 297¢ x (d + 1 + ¢) XOR
operations and 29t17¢ bits memory to store the bit
vector. It also needs qu bits memory to store the
matrix, but it is usually smaller. The time complexity
of Step 3 is about N7, /logNeq XOR operations [13].

In Sect. 3.1, the traditional interpolation attack needs
N,, % Ny, x 2471 XOR operations, but for our method,
it needs about N, x 29+¢ x (d+1+¢) XOR operations.
If we set Ny, = Neg, 2° X (d+ 1 + €) is smaller than
N,, X2 in our attack, where e is usually a small number.

5. APPLICATIONS AGAINST ELEPHANT,
KRAVATTE AND XOOFFF

5.1. Interpolation Attack against Elephant

In this section, based on the optimized interpolation
attack [10], we give an attack against the ELEPHANT-
DELIRIUM in nonce-respecting setting.

The ELEPHANT-DELIRIUM uses the KECCAK sponge
permutation. The state size is 200-bit and the algebraic
degree of one round is 2. Moreover, the nonce occupies
96 of 200 bits and the degree after 6 rounds is not more
than 64.

To analyze 8-round ELEPHANT-DELIRIUM by inter-
polation attack, the main work is to linearize the last
two rounds and get the ANF of the intermediate target
bit a which is also the output of the 6 rounds KECCA-
K-p. Furthermore, we have to minimize the number of
variables in the ANF of a. Obviously, fewer variables
require fewer linear equations and lead to lower com-
plexity.

5.1.1.  Linearize the KECCAK-p~2.
We use A to denote M & C' in the ELEPHANT-DELIRIUM

seen in Fig. 2, and there are 40 Sboxes in the y 1.

Prop. 3 shows that the output of KECCAK-p~! can
be expressed as E,, . = P, .(A) + Qs .(A), where
Qz.2(A) potentially contains 3 x 200 = 600 variables

(u, v and k°**) in this place.

As for the second x~! layer, we denote its output
as F = x ' (E). The F,,. omitting index z can be
expressed as:

Fo = (P, +Q1)(P§, +Qs3) (P, +Qa)

It is easy to see that the item Q;Q3Q4 generates most
of the variables. And Fpy o + Fp,1 will cancel it out as
well as the items Q1Q2 and @Qq. Specially, if we cancel
out the Q1(Q3Q4, there will not be cubic items.

Fo,o+ Fon
=(P{ o+ P[1)Q3Qs+ (P35 + P3,)Q1Qu4
+(Pio+ Py1)Q1Qs + (P P+ P 1 P31)Qa
+(ﬁ,opi,o +ﬁ,1pzi,1)Q3 + (Pl/,O + Pll,l)QQ
+(Po+ PioPio+ Py + Py Pry)Q
+Py 0+ Pl oPag+ Pl oP3oPro
+Py,+ P P;,+ P P, P .

All the @ polynomials are affine combinations of the
same set of the 600 variables, and each P’ polynomial
is an affine combination of 7 variables. Taking into
account the constant coefficients of these polynomials,
the number of variables required to linearize the
expression of Fy o+ Fp 1 is:

601
3><2><8><< ) )—|—(3><2><82+2><2><8)><601+2><(8+82+83).

That gives approximately 223! variables (i.e. kjc}).

Moreover, we have run experiments to support
the conclusion Ny < Ng,, in Sect. 4. For this
application, the traditional method gives approximately
226-1 yariables which is bigger than 2231, The test code
is given in:
https://github.com/alicebobb/testcode.

5.1.2.  The Complezity of the Attack

Since we have got all the variables of the expression, we
set up the linear equation system and solve it to get the
key.

Firstly, construct the input messages structure. The
expression has 223! variables. Thus setting up 223
linear independent equations can recover the kj. One
65-dimension subspace gives one linear independent
equation, and (6%;5) > 221 50 we choose a T70-
dimension input structure Pg. Query the encryption
oracle to get the corresponding ciphertext space.

Secondly, construct the linear equation system and
solve it. We have shown the process in Sect. 4, and in
this attack, the number of linear equation is N, = 2231
and the dimension of input structure is 70. So we can
get that the data complexity is 27° blocks, the memory
complexity, which is mainly used to store the MOEBIUS
TRANSFORM bit vector, is 270 and the time complexity
is about 2983 XOR operations
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5.2. Interpolation Attack against Kravatte
Achouffe

In this section, we show how to perform the
interpolation attack on a Farfalle cipher KRAVATTE
ACHOUFFE like shown in Sect. 4.

The properties of Farfalle in Sect. 3.4 show that
no matter how many rounds p. may have, we can get
the n-dimension affine space after Acc by appropriately
choosing messages. Thus, the influence of compression
layer can be omitted in the attack, i.e. KRAVATTE-
{nd,n.} represents KRAVATTE-{n., ng, n.}.

Firstly, we analyze the functions after the Acc, i.e.
pg, roll, and p.. Among them, p; and p. are both
KECCAK-p permutations. roll. is a non-linear rolling
function, but we only use the first limb (i.e. zp in Fig. 3)
as output, which is not rolled and the affect of roll. can
be omitted. The function after the Acc can be seen as
an KECCAK-p permutation.

Secondly, the function before the Acc is the
compression layer. Using the method in Sect. 4, we
can construct a n-dimension space after Acc.

5.2.1. Analysis of the Attack against KRAVATTE-
{6.4.4}

For KRAVATTE-{6,4,4}, we build a n-dimension space

after Acc, and the items in this space are regarded as

inputs of 8 rounds KECCAK-p permutation. Then, we

analyze it as Sect. 4.

The first step is to linearize and minimize the number
of variables for the KEccAk-p~2(k°*'+c). Chaigneau
et al. have given the algebraic expression of KECCAK-
p~2(k°“*+c) of KRAVATTE in their paper [5], and there
are 229 variables in the expression Foo+ Fo1.

The second step is to build the super structure Ps.
As the expression has 22° variables, we need 229 linear
independent equations to solve the equations system.
In [5], they used different output limbs to get more
than one equation from one subspace. However, in the
KRAVATTE ACHOUFFE, they have updated the rolling
function rollx,, which is a non-linear function now.
Thus, the algebraic degree of output limbs are different
from each other. We can only use the first limb to set
up the equation because it is not rolled by roll.. As
we have introduced before, each subspace of dimension
65 gives one equation on key bits. The super structure
must include 229 different subspaces of dimension 65.
That is to say, (6%;“6) > 229 and e is at least 7, thus the
data complexity is 272(72 4 1) = 2783 blocks.

By Definition 3.2, we construct the input messages
super structure Ps = (€g,..., €, ... e71) € {0,1}72
Then query the encryption oracle with all of the 272
plaintexts of Pg to get the ciphertexts C's and choose
229 subspaces {S;} of dimension 65 from Ps. The
process is just like the method shown in Sect. 4.

Initialize a 22 x 22 matrix. For each of the 229 kjc]
in FO,O + Fo,li

e Evaluate the ¢} for each ciphertext of the first limb

to get a bit vector.
(M — 2’727 T = 229 .972 )

e Apply the MOEBIUS TRANSFORM to this bit
vector.  After that, extract the 229 bits that
correspond to the coefficients of mazterms of
subspaces {S;} and copy them to a column of the
matrix.

(M — 229’ T = 229 . 271[092272)

Solve the equations system and derive the key bits. In
total, the process of the attack needs 2783 blocks data,
272 bits memory and 21962 XOR. operations.

5.3. Interpolation Attack against Xoofff

In this section, we consider another Farfalle construc-
tion algorithm XOOFFF. The XOOFFF is a deck func-
tion obtained by applying the Farfalle construction on
6-round X00DO0OO. The process of analyzing XOOFFF
is similar to the attack against KRAVATTE ACHOUFFE
above.

5.8.1. Linearize the X0ODOO 2

The first step is still linearizing the polynomial
expression to get the equation (3). We have shown in
Sect. 3.6, that the E, , ., of X00D0O ™! potentially has
385 nonzero variables. The p_.L, destroys the property
of #=1, but it dose not generate new variables. There
are still 385 nonzero variables for each bit expression of
the state F'.

We use G to denote the state of output of the second
x~ !, ie. G = x"YF). The expression of G, , . is as
follows:

Gz,y,z = Fw,erLze,ynL?,z + FCD,%Z

Eo@yt1,2)Bpay+2,2) T Epa,y.2)
= Wp(e,y+1,2) Wola,y+2.2) T Wo(z,y+1,2)Qp(a,y+2.2) (A)
+ Wo(a,y+2,2) Qp(a,y+1,2) (A) T Wp(a,y,2)

+ Qp(e,y+2,2) (A)Qp(a,y+1,2) (A) + Qpa,y.2) (A)

In the expression, p(z,y,2) denotes the state bit
moved to (z,%, z) by the permutation p_,,. As shown
in Property 5, all @ polynomials are considered to
involve all the 384 k°* and each w is considered as one
variable. Thus, taking into account the constants, the
number of potential variables in the expression G, .
is

143854 385 + <3§5> + 1+ 385,

which is approximately 262,

5.8.2. The Analysis of the Attack against XOOFFF-
{6.4.4}

For X0OFFF-{6,4,4}, we use the first limb as output.

The affect of the non-linear rotation layer can be

omitted. We only focus on the 8 rounds X0ODOO

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777




10 H. Zuou, R. Zong, K. Jia, X. DonGg, W. MEIER

after the Acc. We linearize the last two rounds to
get the expression of G, . and its algebraic degree is
not more than 64. Since there are 2'62 variables in
Gy.,y,» and one 65-dimension input messages subspace
gives one linear equation about key bits, we need 262
such subspaces in the super structure. That is to say,
(%F¢) > 2162 and e is at least 4, thus we construct a 69-
dimension input super structure. The data complexity
is 209(69 + 1) = 2752 blocks.

By Definition 3.2, we denote the plaintext super
structure as Ps = (€g,..., €, ..., €68) € {0,1}%9 and
choose 2162 subspaces {S;} of dimension 65 from it.
Then we query the encryption oracle with all of the 269
plaintexts to get the ciphertexts Cyg.

The next step is using the MOEBIUS TRANSFORM to
set up the equations system.

Initialize a 2162 x 2162 matrix. For each of the

¢, in Gy y -, we do the following steps.

216.2

269 ciphertexts and

e Evaluate the ¢} for each of the
get a bit vector.

(M — 2697 T = 216.2 | 269)

e Apply the MOEBIUS TRANSFORM to this bit
vector. Extract the 2'62 bits that correspond to
the coefficients of the maxterms of subspaces {5;}
and fill in the matrix as a column.

(M — 216.2><27 T = 216.2 . 268[092269)

As we have got all the coefficients of the unknowns &}
(i.e. the 216-2x 216-2 matrix), we can solve the system to
recover k, and derive key bits. (T = (216-2)3 /log,216-2)

Thus, in total, the process of the attack needs 27°-2
blocks data, 2% bits memory and 2°°* XOR operations.

5.3.8.  Analysis of the Attack against XOOFFF-{6,6,2}
Observing the structure of XOOFFF, We notice that
the non-linear rotation layer increases only a few bits’
algebraic degree. After that, the X0ODOO permutation
has a good diffusion and amplifies the impact. However,
if we perform the attack to the XOOFFF-{6,6,2}, we can
linearize the last two rounds of X0ooDooO till rollx. to
avoid the diffusion. Then perform the attack on a bit
which does not increase the degree by the rollx.. In
this way, we carry out the attack on a bit from any
limb as long as its degree is not changed.

Although the output has different limbs, the
expressions of the same bit position of all the limbs are
the same for X0opoo 2 and the expression has 216-2
variables. We can choose two output limbs to construct
equations because 2 x (gg > 2162 That is to say,
the input message is 68 blocks and the output message
is 2 blocks, and using this structure, we can get more
than 2'6-2 independent linear equations. The total data
complexity is 268(68 + 2) = 2742 blocks.

The attack process is similar to the attack on
XOOFFF-{6,4,4} version.

Firstly, construct the input messages super structure
Ps = (€0, €ir-n€er) € {0,1}%% and query the

encryption oracle to get the ciphertext space Cs. Then
choose 2152 subspaces {S;} of dimension 65 from Ps.

Initialize a 2162 x 216-2 matrix. For each of the 216-2
kic, in Gy, ., update one column by using two limbs.
Do the following steps for each of the two limbs.

e Evaluate ¢, for each of the 268

limb to get a 258 bit vector.
(M — 2687 T =92 x 2162, 268)

e Apply the MOEBIUS TRANSFORM to this bit vector.
Extract the 2!%2 bits that correspond to the
coefficients of the mazterm of subspaces {S;} and
fill in the matrix as half of the column.

(M — 2687 T =92 x 216.2, 267log2268)

ciphertexts of this

Finally, solve the system to recover the unknowns and
derive key bits. In total, the process of the attack
needs 2742 blocks data, 258 bits memory and 2°°4 XOR
operations.

6. CONCLUSION

In this paper, we extend the optimized interpolation
attack and apply it to the cryptanalysis of the 2 ciphers
KRAVATTE ACHOUFFE and XOOFFF with Farfalle
construction and to ELEPHANT-DELIRIUM, which is a
round 2 submission of the ongoing NIST lightweight
cryptography project. All the results turn out to be
the most efficient method for these ciphers thus far.

More importantly, compared with the optimized
method [10], the improved interpolation attack does not
need particularly stringent conditions on the algorithm
structure, and it is taken as a general method to analyse
some other ciphers.
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