
Proxy Re-Encryption for Accelerator Confidentiality
in FPGA-Accelerated Cloud

Furkan Turan, and Ingrid Verbauwhede
imec-COSIC - KU Leuven, Belgium

firstname.lastname@esat.kuleuven.be

Abstract—FPGAs offer many-fold acceleration to various appli-
cation domains, and have become a part of cloud-based computa-
tion. However, their cloud-use introduce Cloud Service Providers
(CSPs) as trusted parties, who can access the hardware designs
in plaintext. Therefore, the intellectual property of hardware
designers is not protected against a dishonest cloud. In this paper,
we propose a scheme for the confidentiality of accelerators on
cloud, without limiting CSP to maintain their resources freely.
Our proposed scheme is based on Proxy Re-Encryption (PRE)
which allows the developers to upload their accelerators to the
CSPs under encryption. The CSPs cannot decrypt them; however,
alter the encryption that allows the target FPGAs they pick
to decrypt. In addition, our scheme allows metering the use of
accelerators.

I. INTRODUCTION

The appearance of FPGAs on cloud became popular starting
2016, which is the year Amazon introduced EC2 F1 instances,
and Intel announced Xeon+FPGA platforms. In the following
years, various other companies also introduced their FPGA
acceleration to user applications, including Microsoft, OVH
Cloud, Alibaba, Huawei, Baidu. Some of them cooperate with
Xilinx, while others prefer Intel FPGAs. Their use of FPGAs
also differ. Amazon offers the FPGAs as user-programmable
resources. The users can either develop their own accelerators,
or use one from the accelerator marketplace. The marketplace
is open to developers to upload their accelerators, and earn
money if their accelerators are purchased. In contrast, Microsoft
Azure offers pre-designed accelerators to users for various
applications, such as machine learning.

The FPGAs have long been offered with an encrypted
bitstream feature, which guarantees the confidentiality of the
hardware design. In addition, it prevents the designs from piracy,
allowing only the picked target FPGA to decrypt and program
the design. However, this feature is not suitable for cloud-use
because of two major reasons. First, the encryption key should
be provisioned on the FPGA by the hardware developer who
wishes to protect his design. It even requires physical access to
the FPGAs. Secondly, the developer needs to know the target
FPGA, so that he can encrypt the accelerators using the key
of that specific FPGA. However, the FPGAs are owned by
the CSPs in the case of FPGA-accelerated cloud. In addition,
a different FPGA could be given to users at each run in the
cloud. Therefore, provisioning the keys and picking the FPGAs
are the responsibilities of the CSPs.

Programming a remote-FPGA has been a concern even
before the FPGA-accelerated cloud. For example, it could allow

developers to sell only their designs, without delivering them
with an FPGA. More complicated demands involve creating
a marketplace for IP cores, which are re-useable hardware
blocks, constituting parts of a design. There has been related
work, as will be given in detail in Section II. Unfortunately,
the two limitations have forced these work to make unrealistic
assumptions, such as the creation of a Trusted Third Party
(TTP) who will receive the FPGAs from vendors, and program
secret keys into them. Alternatively, some introduced the TTP
as an absolutely trusted entity. In such work, they receive the
accelerators in plaintext, and grant access to users by encrypting
them to the users’ FPGAs.

In this paper, we propose a scheme that solves the imprac-
ticability of previous work, and improves their trust models.
Our scheme enables the developers to upload their accelerators
to CSPs under encryption. The CSP is an untrusted entity,
so it cannot decrypt. However, it can alter the encryption,
enabling its FPGAs to decrypt. In this respect, the CSP cannot
individually handle the alteration, but consults to a TTP. This
interaction also allows the TTP to meter use of the accelerators.
The responsibilities of the TTP are kept low. Neither it shares
a secret with the FPGAs or with another entity, nor it gains
plaintext access to the accelerators.

The outline of this paper is as follows. Section II gives a
summary of related works for the secure remote FPGA pro-
gramming problem, and their limitations. Section III introduces
the basics of PRE, as our proposed scheme relies on it. Section
IV describes the proposed scheme and underlying trust model in
detail. Section V provides a discussion on the implementation
requirements, and potential future work.

II. RELATED WORK

Various researchers proposed schemes that enable developers
to deliver their design under encryption to FPGAs at a remote
field, or FPGAs on the cloud. Some of them considered meter-
ing their use for licensing purposes. Significant examples are
cited below, together with an explanation of their shortcomings
for the FPGA accelerated cloud.

Eguro et al. aims at trusted computing on cloud with FPGAs
[1]. It proposes a Public Key Infrastructure (PKI) implemented
on the FPGAs, so that developers can establish a key to the
FPGA, and deliver their bitstream encrypted. The PKI relies
on unique keys provided to each FPGA by a TTP before
the FPGAs are deployed on the cloud. There are various
deficiencies of this scheme. It requires the presence of FPGAs



at the field of the TTP for key provisioning. Also, it requests
the active participation of developers for programming the
FPGA with their accelerator. However, a goal in the FPGA-
accelerated cloud is to offer users accelerators developed by
third-party developers. Another disadvantage is that, the scheme
ties encrypted bitstreams to a specific FPGA, disallowing the
CSP to program them on other FPGAs, if the bitstreams are
not encrypted for the other FPGAs as well. In summary, this
scheme does not scale.

Fasten [2] also mistrusts the CSPs when using their FPGAs,
and offers bitstreams encryption relying on unique FPGA keys.
Specifically, it is based on Physically Unclonable Function
(PUF) based key generation feature of Microsemi FPGAs [3].
It proposes that a trusted FPGA vendor maintains a public
database for the FPGAs’ public keys, associated with their
unique identifier. When a user is given access to an FPGA
on the cloud, he uses the FPGA identifier for learning the
corresponding public key from the vendor’s database. Similar
to the above described scheme, Fasten encrypts the bitstreams to
a specific FPGA, with the active participation of their developer.

There are various other works [4], [5], [6] in literature, which
rely on similar PKI with variances on how the keys are assigned
to FPGAs, or how the developers establish a secure channel to
them. In summary, they require encrypting the accelerators for
a specific FPGA, omit that the accelerator developers might
differ from the accelerator users on the cloud, and restrict the
CSPs’ abilities to manage their own resources.

The above described schemes could be extended by making
the developers encrypt their accelerators for all the FPGAs of
the CSP, and hand over all the ciphertext at once. That would
allow the CSP to program the accelerator to any FPGA, when
a user wishes to instantiate it. However, if the CSP wishes
to put more FPGAs into service, it first needs to contact the
accelerator developers, so that their accelerators could be used
on the new FPGAs. That is obviously not a practical solution.
Alternatively, all the FPGAs of the CSP could share the same
public-private key pair. In that case, an available ciphertext
could be used in all FPGAs easily. Making multiple devices
share the same private key, of course, is not a well-received
practice. For example, at the cost of exploiting one FPGA, the
CSP can decrypt any ciphertext.

III. PROXY RE-ENCRYPTION

Proxy Re-Encryption (PRE) is an augmented public key en-
cryption scheme, which enables modifications on the encrypted
message [X]. It is proposed often for data re-encryption or
forwarding of encrypted emails. We prefer to explain its use
with the email forwarding example, as follows. Let Alice
and Bob receive encrypted emails. Anyone can send them
an encrypted email using their public key, but only they can
decrypt the emails with the corresponding private key. Suppose,
Alice prefers forwarding her emails to Bob, when she is on
vacation. However, Bob cannot decrypt them without Alice’s
private key, which she must not share with anyone. PRE offers
a solution to this problem. It gives the email server a function
to re-encrypt Alice’s emails to Bob. Alice enables this function

by providing the server a so called re-encryption key, derived
from the keys of her own and Bob’s. After the re-encryption,
Bob receives Alice’s emails encrypted with his own public key,
so he uses his private key to decrypt them. Neither Bob, nor
the server learns Alice’s private key. Furthermore, the server
cannot get access to Alice’s emails in plaintext.

Our proposed confidential FPGA bitstream solution relies on
AFGH PRE [7]. The following paragraphs describe its basics
in an easy-to-understand fashion. For mathematical details, the
original paper should be investigated.

System Parameters. The scheme relies on two groups G1

and G2, and there is a bilinear map between them such as
e : G1 × G1 → G2. That means, there is a map function
e, receiving two elements from G1, and maps them to an
element in G2. The elements in G1 are based on a random
generator g, such as g1, g2 . . . gx. Note that, the arithmetic
operations in the group are field arithmetic. The map function
e receives two elements in G1 and maps them to G2, such
as e(g, g) = Z. For example, gx and gy ∈ G1 are mapped
to e(gx, gy) = Zxy ∈ G2. In addition, a scalar multiplication
of the G1 elements is equivalent to an exponentiation of the
corresponding G2 element. For example, e(agx, bgy) = Zaxby .
The groups G1, G2, the random generator g, and the map
function e are the public parameters of the scheme, known by
all the participants.

Security. These parameters are defined for security relying
on the following mathematical problems. First, it is hard to
find the exponent e from the given group elements g and
ge. Secondly, for the bilinear mapping function e(ag, bg) =
e(g, g)ab = Zab, it is infeasible to find the scalars a and b,
knowing g and Zab.

The achieved security level relies also on the cryptographic
primitives used to implement the scheme. Essentially, a pairing-
friendly elliptic curve construction is needed for the underlying
bilinear group mapping. For example, BLS12-381 curve [8]
could achieve 128-bit security level with a 381-bit modulus.

Keys. The scheme assigns everyone with public and private
key pair. The key pairs of Alice and Bob are:

skA = (a1, a2) , pkA = (Za1 , ga2)

skB = (b1, b2) , pkB = (Zb1 , gb2)

The private key consists of two arbitrary scalars, and the
corresponding public keys are created from the private key. A
re-encryption key from Alice to Bob is:

rkA→B = ga1b2

Alice derives this key with her private key skA and Bob’s
public key pkB .

Encryption and Decryption Functions. The scheme sup-
ports two encryption functions, namely level-2 and level-1, and
a re-encryption function is able to transform the output from
level-2 to level-1. Since there are two levels, re-encryption
can only be applied once. Messages to Alice uses the level-2



encryption function. First a random number k is picked, then
the plaintext message pt is encrypted into ciphertext as:

ctA2 = E2(pt) = (gk, ptZa1k)

The level-1 encryption could also be used, if Alice does
not want the re-encryption of ciphertext. The corresponding
encryption function is:

ctA1 = E1(pt) = (Za1k, ptZk)

The proxy uses the re-encryption function for transforming
Alice’s level-2 ciphertext ctA2 into Bob’s Level-1 ciphertext
ctB1. It uses the map function e and re-encryption key rkA→B.

It calculates:

ctB1 = RE(ctA2) = (e(gk, ga1b2), ptZ
a1k)

= (Za1b2k, ptZa1k)

= (Zb2k
′
, ptZk′)

Note that, the calculated ciphertext is the level-1 encryption
of the plaintext, encrypted with Bob’s public key pkB . Now,
Bob can decrypt ctB1 using his secret key skB . He calculates:

pt = D1(ctB1) =
ptZk′

(Zb2k′)−b2

Similarly, if Alice wishes to decrypt her ctA2, she calculates:

pt = D2(ctA2) =
ptZa1k

(e(g, gk))a1
=

ptZa1k

(Zk)a1

Developer TTP CSP CSP’s FPGAs

SKDEV = (d1, d2)

PKDEV = (Z
d1 , g

d2 )

SKTTP = (t1, t2)

PKDEV = (Z
d1 , g

d2 )

SKFPGA

PKFPGA

IDFPGA

• Designs an accelerator.
• Encrypts it:

E2DEV(acc) = (gk, acc · Zd1k)

E2DEV(acc)

• Applies its private key:
acc · Zd1t1k = (acc · Zd1k)t1

E2D/T(acc) = (gk, acc · Zd1t1k)
• Assigns an IDA to accelerator.
• Records gk associated with IDA.

IDA , E2D−C(acc)

• Removes its key:
acc · Zt1k = (acc · Zd1t1k)1/d1

E2TTP(acc) = (gk, acc · Zt1k)

IDA , acc · Zt1k

• Generates ephemeral key pair:
SKE = (f1, f2)

PKE = (Zf1 , gf2 )
• Signs the public key:
SignFPGA(PKE)

IDA , IDFPGA , PKE , SignFPGA(PKE)

• Verifies FPGA’s signature.
• Generates FPGA Re-Enc Key:
RKTTP→FPGA = (gf2 )t1

• Re-Encrypts:
Zf2t1k = e(gk, gf2t1 )

Zf2t1k

• Brings together two pieces:
E1FPGA(acc) = (Zf2t1k, acc · Zt1k)

= (Zf2k′ , acc · Zk′ )

E1F (acc)

• Decrypts:

acc = acc·Zk′

(Zf2k′ )1/f2
• Programs Accelerator.

E
nc

ry
pt

in
g

an
ac

ce
le

ra
to

r
Pr

og
ra

m
s

an
ac

ce
le

ra
to

r

0 1 2

3

4

5

6

7

8

9

Fig. 1. The details of our proposed bitstream encryption scheme is shown with the cryptographic keys, encryption/decryption operations, and the messages
transferred between the entities.



IV. PROPOSED SCHEME

We propose an FPGA bitstream encryption scheme that is
based on the AFGH PRE. The scheme enables a developer to
send the bitstream of its accelerator to CSPs under encryption.
The CSPs are the proxies, who cannot decrypt the bitstream,
but re-encrypt them for the target FPGA. Picking the target
FPGA is the consideration of the CSP, so that they can freely
manage their own resources. As a result, the developer cannot
create the corresponding re-encryption key, as s/he does not
know the target in advance. To solve this problem, a TTP is
introduced, which participates in both the re-encryption key
generation, and proxy re-encryption. Besides, that allows the
TTP to be aware of each accelerator instantiation, allowing
to the establishment of a metering service. Our scheme is
introduced in Figure 1, which shows in a message sequence
chart the knowledge and calculations of each entity, and the
interactions between them. In addition, comments are provided
on the figure for detailed explanations.

The first three boxes on Figure 1 shows the pre-knowledge
of the involved entities. The developers, TTP and FPGAs have
a key pair. The TTP knows the public key of developers, but
their own public key is not used, so ignored in the figure.
The TTP does not share any secret with another entity. The
FPGA’s public key is verifiable by making FPGA sign a
given input message. For that purpose, a basic Public Key
Infrastructure (PKI) could be applied, an example of which is
already available on the Microsemi FPGAs [3].

In the steps 3-5, the developer and TTP interact to encrypt
the bitstream. At step 3, the developer encrypts the bitstream.
At step 4, the TTP extends the ciphertext with its secret key, and
creates E2D/T(acc), which is the bitstream encrypted with the
keys of both the developer and TTP. Hence, neither can decrypt
it alone. At step 5, the developer removes its secret key from
the ciphertext, and obtains the bitstream encrypted with TTP’s
key. As it is performed at the locality of the developer, the TTP
cannot get plaintext access to the bitstream. The corresponding
ciphertext (gk, acc × Zt1k) consists of two pieces. The first
piece is the generator gk, which is already known to the TTP
at step 4. The TTP assigns to it a unique accelerator identifier,
IDA. The second piece is acc × Zt1k, and it is given to the
CSP together with the IDA, at step 5. For the decryption, the
CSP has to know the generator gk, the private key of TTP,
and the FPGA’s public key. He does not know the first two,
so he cannot perform the decryption.

In the steps 6-9, the CSP programs an accelerator to one
of its FPGAs. These steps are repeated for each accelerator
programming request. The process is initiated in the step 6.
The FPGA randomly generates a new ephemeral key pair for
each programming request, and signs it with its permanent
key. The CSP forwards the public key received from FPGA to
TTP, together with the IDA of the requested accelerator and
the IDFPGA of the corresponding FPGA. These IDs enable
the TTP to keep track of the accelerators’ usage statistics. In
step 7, the TTP generates corresponding re-encryption key
RKTTP→FPGA, and applies the re-encryption to the generator

gk of the corresponding accelerator. In step 8, the CSP receives
the re-encrypted generator, and forwards it to the FPGA. In
step 9, the FPGA decrypts and programs the bitstream.

In our scheme the CSP is untrusted. As a result, it is not
given any keys or responsibility of performing cryptographic
operations. Besides, the messages it observes are not enough
to calculate another entity’s key, or access the bitstream in
plaintext. However, the CSP can ask from the TTP to re-
encrypt for a counterfeit FPGA. For that purpose, it can create
an arbitrary ephemeral key pair (SKE,PKE), and send the
corresponding PKE to the TTP as if it belongs to an FPGA.
If the TTP is fooled to re-encrypt the design for that key,
the CSP can use the SKE to decrypt the ciphertext, and steal
the corresponding bitstream. To prevent such an attack, TTP’s
verification of FPGA’s signature in step 7 is essential in the
proposed scheme.

V. DISCUSSION AND CONCLUSION

The proposed scheme makes the use of encrypted bitstream
possible on cloud, without limiting the abilities of CSPs to
manage their own resources. In addition, it gives the developers
an ability to track the use of their accelerators, through the
TTP. Although a TTP is preferred on the scheme, it is given
a role without unrealistic assumptions or responsibilities.

An extension could focus on encrypted netlists, instead of
bitstreams. That offers advantages to CSPs for post-processing
the design, e.g. with placement constraints, or Design Rule
Checking (DRC). Such an extension, requires the development
software to receive the netlist encrypted, decrypt it on CSP’s
computer, and process it without giving the CSPs access to it.
In fact, that is possible with IEEE P1735 [9], which is already
supported by most development tools. Our proposed scheme
could be integrated with it such that, the development tool is
made a part of the TTP, executing the step 4 on Figure 1 on
CSP’s computer for the post-processing with the CSP given
constraints and DRC rules.

The implementation of this scheme requires FPGA manufac-
turers to consider the security future of FPGAs on cloud,
and first implement the PKI scheme for the FPGAs. For
instance, a variation of Intel’s device identification scheme
EPID [10] could be used also for FPGAs. In addition, to
support our PRE based proposal a random key pair generation
and the corresponding decryption hardware should be available
as an extension or replacement of the security hardware
on the FPGAs. Unfortunately, it is not implementable with
the user programmable parts of the FPGA. Therefore, we
created a software implementation of the proposed scheme for
verification purposes. It is based on the RELIC toolkit [11],
and will be shared open-source.

ACKNOWLEDGMENT

This work was supported in part by the KU Leuven Research
Council through C16/15/058, the ERC Advanced Grant 695305
Cathedral, and the German Research Foundation (DFG) as part
of the Transregional Collaborative Research Centre ‘Invasive
Computing’ (SFB/TR 89).



REFERENCES

[1] K. Eguro and R. Venkatesan, “Fpgas for trusted cloud computing,” in 22nd
International Conference on Field Programmable Logic and Applications
(FPL), Oslo, Norway, August 29-31, 2012, 2012, pp. 63–70.

[2] B. Hong, H. Kim, M. Kim, T. Suh, L. Xu, and W. Shi, “FASTEN: an
fpga-based secure system for big data processing,” IEEE Design & Test,
vol. 35, no. 1, pp. 30–38, 2018.

[3] “Using sram puf system service in smartfusion2,” Microsemi, 3 2016,
AC434.

[4] R. Maes, D. Schellekens, and I. Verbauwhede, “A pay-per-use licensing
scheme for hardware IP cores in recent sram-based fpgas,” IEEE Trans.
Information Forensics and Security, vol. 7, no. 1, pp. 98–108, 2012.

[5] L. Zhang and C. Chang, “A pragmatic per-device licensing scheme
for hardware IP cores on sram-based fpgas,” IEEE Trans. Information
Forensics and Security, vol. 9, no. 11, pp. 1893–1905, 2014.

[6] K. Kepa, F. Morgan, K. Kosciuszkiewicz, and T. Surmacz, “Serecon: A
secure dynamic partial reconfiguration controller,” in IEEE Computer
Society Annual Symposium on VLSI, ISVLSI 2008, 7-9 April 2008,
Montpellier, France, 2008, pp. 292–297.

[7] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved proxy
re-encryption schemes with applications to secure distributed storage,”
ACM Transactions on Information and System Security (TISSEC), vol. 9,
no. 1, pp. 1–30, 2006.

[8] P. S. L. M. Barreto, B. Lynn, and M. Scott, “Constructing elliptic curves
with prescribed embedding degrees,” in Security in Communication
Networks, S. Cimato, G. Persiano, and C. Galdi, Eds., 2003, pp. 257–
267.

[9] “Ieee recommended practice for encryption and management of electronic
design intellectual property (ip),” IEEE Std 1735-2014 (Incorporates
IEEE Std 1735-2014/Cor 1-2015), Sep. 2015.

[10] E. Brickell and J. Li, “Enhanced privacy id: a direct anonymous attestation
scheme with enhanced revocation capabilities,” in Proceedings of the
2007 ACM Workshop on Privacy in the Electronic Society, WPES 2007,
Alexandria, VA, USA, October 29, 2007, 2007, pp. 21–30.

[11] D. F. Aranha and C. P. L. Gouvêa, “RELIC is an Efficient LIbrary for
Cryptography,” https://github.com/relic-toolkit/relic.

https://github.com/relic-toolkit/relic

	Introduction
	Related Work
	Proxy Re-Encryption
	Proposed Scheme
	Discussion and Conclusion
	References

