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Abstract. Broadcast Encryption is a fundamental primitive supporting sending a secure message to any
chosen target set of N users. While many efficient constructions are known, understanding the efficiency
possible for an “Anonymous Broadcast Encryption” (AnoBE), i.e., one which can hide the target set itself,
is quite open. The best solutions by Barth, Boneh, and Waters (’06) and Libert, Paterson, and Quaglia
(’12) are built on public key encryption (PKE) and their ciphertext sizes are, in fact, N times that of
the underlying PKE (rate=N). Kiayias and Samary (’12), in turn, showed a lower bound showing that
such rate is the best possible if N is an independent unbounded parameter. However, when considering
certain user set size bounded by a system parameter (e.g., the security parameter), the problem remains
interesting. We consider the problem of comparing AnoBE with PKE under the same assumption. We call
such schemes Anonymous Broadcast Encryption for Bounded Universe – AnoBEB.
We first present an AnoBEB construction for up to k users from LWE assumption, where k is bounded by
the scheme security parameter. The scheme does not grow with the parameter and beat the PKE method.
Actually, our scheme is as efficient as the underlying LWE public-key encryption; namely, the rate is, in
fact, 1 and thus optimal. The scheme is achieved easily by an observation about an earlier scheme with a
different purpose.
More interestingly, we move on to employ the new AnoBEB in other multimedia broadcasting methods
and, as a second contribution, we introduce a new approach to construct an efficient “Trace and Revoke
scheme” which combines the functionalites of revocation and of tracing people (called traitors) who in a
broadcasting schemes share their keys with the adversary which, in turn, generates a pirate receiver. Note
that, as was put forth by Kiayias and Yung (EUROCRYPT ’02), combinatorial traitor tracing schemes
can be constructed by combining a system for small universe, integrated via an outer traceability codes
(collusion-secure code or identifying parent property (IPP) code). There were many efficient traitor tracing
schemes from traceability codes, but no known scheme supports revocation as well. Our new approach
integrates our AnoBEB system with a Robust IPP code, introduced by Barg and Kabatiansky (IEEE
IT ’13). This shows an interesting use for robust IPP in cryptography. The robust IPP codes were only
implicitly shown by an existence proof. In order to make our technique concrete, we propose two explicit
instantiations of robust IPP codes. Our final construction gives the most efficient trace and revoke scheme
in the bounded collusion model.

Keywords: Secure Multimedia broadcasting, Anonymous broadcast encryption, Robust
IPP Code, Trace and Revoke system.

1 Introduction

Broadcast encryption (BE) is designed to efficiently distribute an encrypted content via a public
channel to a designated set of users so that only privileged users can decrypt while the other
users learn nothing about the content. The first constructions of BE were proposed by Berkovits
[Ber91], and most notably by Fiat-Naor [FN94] who advocated that an efficient scheme should
be more efficient than just repeating a single ciphertext per user. Thereafter, many interesting
schemes were proposed, in particular Boneh, Gentry and Waters [BGW05] introduced a scheme
with a constant size ciphertext.

Privacy, and anonymity of receivers, in particular, are important in numerous real-life appli-
cations. Unfortunately, it turned out to be extremely difficult to hide the target set in broadcast
encryption and no concise anonymous broadcast encryption has been constructed, while being
considered by many, see: [BBW06], [LPQ12], [FP12], [PPS12], [LG18]. The state of the art
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constructions by Barth et al. and Libert et al. [BBW06,LPQ12] start from a public-key encryp-
tion (PKE) and result in schemes with ciphertext size which is N times the ciphertext size of
the underlying PKE scheme. Moreover, justifying the above results, Kiayias and Samari [KS12]
proved lower bounds: ciphertext size of any anonymous broadcast encryption is Ω(s ·n), where
s is the cardinality of the set of enabled users and n is security parameter, and Ω(r+n) for any
set of r revoked users. Note that it can be that s = O(N) and r = O(N). Hence, unfortunately,
sub-linear complexity in the number of users is impossible.

However, in practice, the case where N is a constant has been largely employed. In fact, all
combinatorial traitor tracing schemes start with a scheme of small bounded size (say 2-user for
collusion-secure codes in Boneh-Shaw scheme [BS95] and in Kiayias and Yung scheme [KY02]
and q-user for q-IPP codes in Chor-Fiat-Naor scheme [CFN94] and in Phan-Safavi-To scheme
[PST06]), and then combine these schemes to achieve a general one. So we ask here: What
can be done for a user set whose size is not an unbounded independent parameter? does the
ciphertext size of such an anonymous broadcast encryption scheme still grows linearly in the
number of users, comparing to the single-user encryption, namely the corresponding public-key
encryption from the same assumption? For N = 2, Phan et al. [PPS12] provided a construction
of anonymous broadcast encryption scheme in which the ciphertext length is about 1.5 times
the ciphertext size of its underlying ElGamal encryption scheme. Here, we will consider the
case where N is much larger but is bounded by another system parameter (namely the security
parameter). We call this case “anonymous broadcast encryption for bounded universe,” or for
short (AnoBEB). We will then employ the scheme to combinatorially build a traitor tracing
scheme (a broadcast scheme where rogue devices are traceable to participants who helped
building them) [CFN94] and the scheme is in fact a “trace and revoke” allowing tracing and
also revoking of bad participants [NP10] and as our main result.

Combination of AnoBEB with IPP code. From an AnoBEB, we will construct the first Trace and
Revoke system that is based on a traceability code. Previous constructions from a traceability
code only yielded traitor tracing scheme (TT) but with no revocation. We first explain, from
the classical combinatorial method, any AnoBEB for q-user can be integrated with a q−ary IPP
code to produce a traitor tracing scheme.

– As we know from [BGW05,BW06,GKW18a] (actually, a flaw and a fix were recently given
in [GKW18a]), any public-key anonymous broadcast encryption (in fact, they proved this for
a more restricted case of anonymity, called augmented broadcast encryption) also supports
tracing traitor. Therefore, any solution for AnoBEB directly implies a trace and revoke
scheme for a small universe.

– Combinatorial methods of designing a traitor tracing consist of two steps: first, construct
a small scheme, then combine these schemes to achieve a general one. This method was
proposed in the very first traitor tracing paper of Chor-Fiat-Naor [CFN94]. Kiayias and
Yung [KY02] integrated a 2-user traitor tracing scheme with a collusion-secure code [BS95]
into a TT scheme. It can be summarized as follows: First, a 2-user traitor tracing scheme
can be trivially obtained from applying a public-key encryption (PKE) twice, each for one
user. Now, a message or a session key is divided into ` sub-keys. The sender then essentially
encrypts each sub-key twice with PKE and gets sub-ciphertexts. Each recipient, provided
sub-keys associated with a codeword of a collusion-secure code, can decrypt one of the two
sub-ciphertexts for each sub-key and thus recover the whole message or session key which
will be used to encrypt data.
Table 1 shows an example of a traitor tracing with binary collusion secure code. A legitimate
user is assigned a codeword in the code. The authority will decompose a session key K into
segments Kj according to the length ` of the code. In each sub-system, the segment of
session key Kj will be encrypted twice alternately with public-keys pk0,j or pk1,j. Each user
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i provided a secret-key sk0,j or sk1,j depending on the value of its codeword at position j.
The user thus provided ` secret-keys and employs these secret-keys to recover the sub-session
keys Kj, j = 1, . . . , ` from one of two ciphertexts c0,j or c1,j. Finally, the user combines them
to obtain the original session key K. The tracing procedure consists of using the traceability

Key assignment :
Table 0 pk0,1 pk0,2 pk0,3 pk0,4 pk0,5 ... pk0,`

Table 1 pk1,1 pk1,2 pk1,3 pk1,4 pk1,5 ... pk1,`

Codeword i 1 0 0 1 0 ... 1
user i sk1,1 sk0,2 sk0,3 sk1,4 sk0,5 ... sk1,`

Encryption :
Session Key K1⊕ K2⊕ K3⊕ K4⊕ K5⊕ ... ⊕K` = K
Ciphertext c0,1 c0,2 c0,3 c0,4 c0,5 ... c0,`

c1,1 c1,2 c1,3 c1,4 c1,5 ... c1,`

Table 1: Traitor tracing with binary collusion secure code

in each 2-user scheme to extract a word associated with the pirate decoder. Thanks to the
tracing capability of the collusion-secure code, one can then trace back one of the traitors.

– The above method is then generalized for q−ary identifiable parent property (IPP) code. A
q−ary IPP code C is a code if whenever we are given a descendant (a word) that is generated
by a subset of codewords (parents) of code C, we are able to determine at least one of the
parents. A traitor tracing scheme can then be obtained by applying q times PKE (instead
of 2 times PKE when using binary collusion secure code) at each of ` positions associated
with a q−ary IPP code [PST06]. Now, if we replace q times PKE by an AnoBEB for q-user,
which is as efficient as the underlying PKE, we can save a factor q in ciphertext efficiency.
Therefore, the design of an efficient AnoBEB has a direct impact on the IPP code-based TT.

While the application of an AnoBEB in constructing a traitor tracing is directly inherent
from the classical combinatorial method, as explained above, we furthur investigate how it can
help to construct trace and revoke systems. Note that traceability and revocation are very
difficult to be combined. We refer to [BW06] for a discussion about the difficulties of combining
these two “orthogonal” functionalities.

1.1 Our Contributions

We present three main results:

1. First note that it was not known how to generalize a PKE to an anonymous BE scheme for,
say, a bounded universe of N users (AnoBEB for short) with a ciphertext rate (between the
anonymous BE scheme and the underlying PKE) strictly less than N , for any N 6= 2. We
show a purpose transformation from LWE PKE into an AnoBEB with an optimal rate. The
security of our proposed schemes for k users relies on the k-LWE problem [LPSS14].

2. We then propose a new efficient method for achieving a trace and revoke system from an
AnoBEB, a secret sharing scheme, and a robust IPP code. It is worth remarking that robust
IPP code, introduced by Barg et al. [BK13], is an interesting generalization of IPP code, but
to the best of our knowledge, till today it has not found any application in cryptography.

3. We, finally, give a concrete construction of a trace and revoke system. In [BK13], only a
proof of existence of robust IPP codes was given. We propose two explicit instantiations of
such codes, while adding a condition to deal with the revocation aspects. Our final trace
and revoke system (TR) also enjoys the more demanding “public traceability” property as
in [CPP05,PST06,BW06].
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1.2 Techniques

LWE-based anonymous broadcast encryption for bounded universe. In [LPSS14], Ling et al. in-
troduced the first lattice-based traitor tracing scheme (LPSS) based on the k−LWE assumption
(parameter k is bounded by the underlying lattice dimension). They showed a polynomial-time
reduction from k−LWE to LWE, so their scheme is as efficient as the LWE encryption. A natural
question is whether one can also rely on k-LWE to design an anonymous, revoke, or broadcast
encryption scheme. Revoking users is a very difficult task and the following question is still
open: for a constant number of revoked users, can we design a revoke scheme that is compa-
rably efficient to the underlying encryption. Based on k-LWE, it seems very hard, because for
revocation, essentially one need to find a vector that is “orthogonal” to all the secret vectors of
the non-revoked users (so that they get the same message) and this is impossible for a large uni-
verse system. Now, concerning broadcast encryption, whenever relying on k-LWE, one cannot
allow the adversary to corrupt more than k-users, where k ≤ m is bounded by the underlying
lattice dimension. Therefore, at best, one can aim at an anonymous broadcast encryption for a
small universe.

Surprisingly, our construction of an AnoBEB scheme comes from a basic “tweaking purpose”
idea: switching the tracing procedure LPSS to be functional as a broadcast encryption. We first
recall that in the LPSS traitor tracing scheme, the linear tracing technique [CFN94] was applied
to detect a traitor in a group of suspect users, they first create a ciphertext so that every user
in this group can decrypt successfully. In the subsequent steps, the tracer will disable, one by
one, users in the group, preventing them from decrypting the ciphertext. We observe that if we
switch the suspected users in LPSS scheme to be the legitimate users, and the removed users in
the suspected set to the revoked users, then, in fact, in principle we get a broadcast encryption.
Because the LPSS traitor tracing can deal with a bounded number of traitors, we actually get
a broadcast encryption for a bounded number of users, that we call broadcast encryption for
bounded universe.

The main remaining technical difficulty is to prove the anonymity property of this broad-
cast encryption. Anonymity requires that an adversary cannot distinguish between encryptions
for two targets S0,S1 of its choice. If we consider an outsider adversary, defined in [FP12],
which only corrupts users outside both S0 and S1, then the proof is direct because from the
k-LWE assumption, the encryption for S0 and for S1, both, look like random ciphertexts to
the adversary. It is more challenging to consider a general adversary which can also corrupt
the keys in the intersection of S0 and S1. Fortunately, we can exploit an intermediate theorem
in [LPSS14] which informally states that the encryptions for a set S and for a set S ∪ {i} are
indistinguishable if the adversary does not corrupt the user i, even if the adversary corrupts
users in S. Thanks to this result, our technique applies a hybrid argument which moves an
encryption for the set S0 (or S1) to an encryption for the set S0 ∪ S1 by adding one by one
users in S1 \ S0 (or in S1 \ S0, respectively).

Revocation from robust IPP code. We next explain why it is difficult to get revocation with
code-based schemes and how we can overcome the problem. We recall that the binary collusion
secure code is well suitable for traitor tracing. Its shortcoming is the incapacity to support
revocation. In a revoke system, each user will be assigned to a codeword and its decryption
key is a set of sub-keys are given respectively for each symbol in the codeword. In fact, to
revoke a group of users, the authority has to disable the ability to decrypt with sub-keys in
each position of the revoked group. In using the binary collusion secure code scenario, there
are only two possibilities for sub-key of each position. Whenever the authority executes the
revocation procedure, a large number of legitimate non-revoked users will be affected, and will
not be able to decrypt anymore. A non-trivial remedy is for the system’s designer to choose a
code with big alphabet for example q−ary IPP code instead of a binary collusion secure code
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with alphabet size two. Revocation will decrease the number of valid keys slightly. Certainly,
in this case, the possibility that legitimate users will be excluded from the system with revoked
users must also be taken into account. A secret sharing scheme, in turn, is the mechanism that
allows us to think about a solution: a legitimate user only needs to have a certain fraction (over
the threshold) of the sub-keys to be able to recover the original message. However, this reduced
requirement gives an advantage to the pirates as well: they become stronger as they do not need
to put all sub-keys in the pirate decoder; namely, they are permitted to delete sub-keys. The
introduction of robust IPP of Barg et al. [BK13] which allows the identification of parents even
if some positions are intentionally erased, allows for a tool dealing with the above problem. We
propose here a new generic method for designing a trace and revoke system from robust IPP
codes and AnoBEB. As in previous code-based methods, the ciphertext size of the trace and
revoke system is proportional to the length of the code and the ciphertext size of the AnoBEB.

Finally, because robust IPP codes were only implicitly shown in [BK13], we propose two
explicit instantiations of robust IPP codes. Our final construction results in the most efficient
trace and revoke scheme in the bounded collusion model.

1.3 Related works

As shown in the paper of Boneh and Waters (BW) at [BW06], traceability and revocation
are very difficult to be combined. There exist only a few trace-and-revoke systems with pub-
lic traceability, where the tracing procedure can be done from public tracing key. Algebraic
schemes have only been achieved by Boneh and Waters, and more recently by [PT11, ZL12]
(which embeds a collusion secure code into a broadcast system), Nishimaki, Wichs, and Zhandry
(NWZ) [NWZ16], and by Agrawal et al. [ABP+17]. The BW and NWZ schemes are quite pow-
erful in that they support malicious collusions of unbounded size, but, on the other hand, their
ciphertexts are very large (in BW, the size grows proportionally to

√
N , where N is the total

number of users and in NWZ, they use the inefficient general functional encryption schemes).
For bounded schemes where the number of traitors is small, the Agrawal et al.’s scheme

[ABP+17], relying on learning with errors, is quite efficient with ciphertext size Õ(r + t + n)
where r is the maximum number of revoked users, t the maximum number of traitors, and n
the security parameter. But they only support a weak level of tracing: black-box confirmation
with the assumption that the tracer gets a suspect set that contains all the traitors. Concerning
black-box trace and revoke in bounded collusion model, the instantiation of the NWZ scheme
also gives the most efficient construction. However, as stated in [ABP+17], the generic nature of
their construction results in loss of concrete efficiency: when based on the bounded collusion FE
of [GVW12], the resulting scheme has a ciphertext size growing at least as Õ((r+ t)5Poly(n));

by relying on learning with errors, this blowup can be improved to Õ((r + t)4Poly(n)), but
at the cost of relying on heavy machinery such as attribute based encryption [GVW13] and
fully homomorphic encryption [GKP+13]. Our trace and revoke result, in contrast, achieves

ciphertext size Õ((r + t2)(n3) logN) with black-box tracing like in [NWZ16], which is the
prevalent standard model for tracing and is by far more realistic and useful than the black-box
confirmation as in [ABP+17].

2 Definitions and Preliminaries

2.1 Secret sharing schemes

A secret sharing scheme (SSS) [Sha79] distributes a secret amongst a group of users, each of
whom keeps a share. The SSS contains two algorithms: Share and Combine, defined formally
as follows:

Definition 1 ((m,n)−Secret Sharing Scheme).
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Share(K,m, n): Takes as input a secret bit string K and positive integers m,n. It outputs n
shares s1, . . . , sn so that any m of them will allow to recover K.
Combine({(i, si)}): Takes as input m pairs {(i, si)}, it outputs the bit string K.

Correctness means that any m-subset of {(i, si)} generated by Share(K,m, n), Combine outputs
the string K generated by Share. Furthermore, when generated as part of Share then the bit
string K must be uniformly distributed.
Security means that any less than m shares yield no information about K.

2.2 Trace and Revoke Systems

We next recall the standard definition of a trace and revoke scheme. Let PT and CT denote the
plaintext and ciphertext spaces, respectively. We also let U(PT ) denote the uniform distribution
over plaintext space PT .

Adapted from the definition of the trace and revoke system in [ABP+17], we will present a
trace and revoke system for a universe U = {1, . . . , N} in the black-box model. A Trace and
Revoke (TR) system, in turn, consists of the following algorithms:

Setup(1n, t, r): Takes as input the security parameter n, a maximum malicious coalition size t
and the bound r on the number of revoked users. It outputs the global parameters param
of the system, a public key ek and a master secret key MSK.

Extract(ek,MSK, i): Takes as input the public key ek, the master secret key MSK and a user in-
dex i ∈ U , the algorithm extracts the decryption keys dki which is sent to the corresponding
user i.

Encrypt(ek,M,R): Takes as input the public key ek, a message M ∈ PT and a set of revoked
users R ⊂ U (cardinality ≤ r), outputs a ciphertext c ∈ CT .

Decrypt(ek, dki, c): Takes as input the public key ek, the decryption key dki of user i and a
ciphertext c ∈ CT . The algorithm outputs the message M ∈ PT or an invalid symbol ⊥.

Tracing(D,R, ek): is a black-box tracing algorithm which takes as input a set R of ≤ r revoked
users, public key ek and has access to a pirate decoder D. The tracing algorithm outputs
the identity of at least one user who participated in building D or an invalid symbol ⊥.

The correctness requirement is that, with overwhelming probability over the randomness used
by the algorithms, we have:

∀M ∈ PT ,∀i 6∈ R : Decrypt(ek, dki,Encrypt(ek,M,R)) = M,

for any set R of ≤ r revoked users.

Requirement on the pirate decoder

– The classical requirement is that the pirate decoder D is a device that is able to decrypt suc-
cessfully any ciphertext with overwhelming probability and the pirate device is resettable,
meaning that it should not maintain state during the tracing process. In [LPSS14], a strong
model of pirate decoder was considered where the tracing algorithm is executing in mini-
mal access black-box model and the pirate decoder is only required to have a non-negligible
probability of success. More formally, the tracer is allowed to access D via an oracle OD.
It means that the oracle OD will be fed the input which has the form (c,M) ∈ (CT ,PT ).
The tracer will get 1 from the output OD in the case that the decoder decrypts correctly
the ciphertext c, i.e. D(c) = M and will get 0 in the other case. It requires that the pirate
device D decrypts correctly with a non-negligible probability (ε) in the security parameter
n, namely:

Pr
M ←↩ U(PT )

c←↩ Encrypt(M)

[
OD(c,M) = 1

]
≥ ε =

1

|PT |
+

1

nα
,

for some constant α > 0.
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– In [GKW18b], the authors show a flaw in the transformation of an augmented broadcast
encryption into traitor tracing and proposed a fix in which a very strong notion of Pirate
Distinguisher [NWZ16, GKW18b] was put forth, in place of the classical notion of pirate
decoder. The Pirate Distinguisher is not required to output entire message (or an indicator
bit as in minimal access model) nor to decrypt with high probability every ciphertexts
which are taken from random messages. Instead, it is enough that the pirate decoder can
distinguish the encryption of two different messages M0,M1 of its choice. We call D is a
ε-useful Pirate Distinguisher if∣∣∣∣∣∣∣∣Pr

D (cb) = b :

T ← A(1n); (MSK, ek)← Setup(·);
{dki ← Extract(ek,MSK, i)}i∈T ;
(D,M0,M1)← A(ek, {dki}i∈T );
b←↩ {0, 1}; cb ←↩ Encrypt(ek,Mb,R)

− 1

2

∣∣∣∣∣∣∣∣ ≥ ε,

In this work, we will deal with this notion of pirate distinguisher which is actually the
strongest notion about the usefulness of pirate decoders.
Interestingly, in the case of bit encryption like in LPSS scheme [LPSS14] and in our scheme,
the notion of pirate distinguisher is equivalent to the pirate decoder in the minimal access
black-box model. Indeed, as there are only two messages 0 and 1, the requirement that the
oracle OD (in the definiton of pirate decoder) can correctly decrypt ciphertexts of one of
these two messages with non-negligible probability is equivalent to a pirate distinguisher
that can distinguish the encryption of the two messages 0 and 1. Therefore, the LPSS
scheme is also secure when considering the notion of pirate distinguisher. Inherently, our
tracing algorithm can also deal with pirate distinguishers.

Semantic Security. The CPA security of a trace-and-revoke scheme TR is defined based on the
following game.

• The challenger runs Setup(1n, t, r) and gives the produced public key ek to the adversary A.
• The adversary (adaptively) chooses a set R ⊂ U of ≤ r revoked users. The challenger gives
A all the dki for all i ∈ R.
• The adversary then chooses two messages M0,M1 ∈ PT of equal length and gives them to

the challenger.
• The challenger samples b←↩ {0, 1} and provides c←↩ Encrypt(ek,Mb,R) to A.
• Finally, the adversary returns its guess b′ ∈ {0, 1} for the b chosen by the challenger. The

adversary wins this game if b = b′.

We define SuccIND(A) = Pr[b′ = b], the probability that A wins the game. We say that a
TR system is semantically secure (IND) if all polynomial time adaptive adversaries A have at
most negligible advantage in the above game, where A ’s advantage is defined as AdvIND(A) =
|SuccIND(A)− 1

2
| = |Pr[b′ = b]− 1

2
|.

Traceability. The tracing game between an attacker A and a challenger B is defined as following:

1. The challenger runs Setup(1n, t, r) and gives ek to A.
2. The adversary A outputs a set T ⊂ {u1, u2, . . . , ut} ⊂ {1, . . . , N} of colluding users. We

assume that T ∩R = ∅. The adversary sends t arbitrary key queries in an adaptive way to
B.

3. The challenger B responds to A decryption keys dk1, . . . , dkt.
4. The adversary A outputs two messages M0,M1 and creates a pirate distinguishser D so

that it can distinguishable correctly the encryptions of M0,M1 with probability at least ε.
5. The challenger B executes the procedure Tracing(D,R, ek). The adversary wins the game

if B outputs ⊥ or a user index that does not belong to T .
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2.3 Anonymous Broadcast Encryption

A broadcast system is called anonymous (AnoBE for short) if it allows addressing a message to a
subset of the users, without revealing this privileged set even to users who successfully decrypt
the message. When the number of users in our system is bounded by the security parameter,
we have the notion of anonymous broadcast encryption for bounded universe – AnoBEB. We
follow the definition in [LPQ12]:

Let PT and CT denote the plaintext and ciphertext spaces, respectively. Let U = {1, . . . , N}
be the universe of users, where N ≤ k for some k bounded by a security parameter n. An anony-
mous broadcast encryption for bounded universe (AnoBEB) consists of the following algorithms:

Setup(1n, N): Takes as input the security parameter n and the maximal number of users N . It
outputs a public key ek and a master secret key MSK.

Extract(ek,MSK, i): Takes as input the public key ek, the master secret key MSK and a user in-
dex i ∈ U , the algorithm extracts the decryption keys dki which is sent to the corresponding
user i.

Encrypt(ek,M,S): Takes as input the public key ek, a message M ∈ PT and a set of target
users S ⊂ U , outputs a ciphertext c ∈ CT .

Decrypt(ek, dki, c): Takes as input the public key ek, the decryption key dki of user i and a
ciphertext c ∈ CT . The algorithm outputs the message M ∈ PT or an invalid symbol ⊥.

The correctness requirement is that, with overwhelming probability over the randomness used
by the algorithms, we have:

∀M ∈ PT ,∀i ∈ S : Decrypt(ek, dki,Encrypt(ek,M,S)) = M.

The CPA security of AnoBEB defined based on the following game between an adversary A
and a challenger B

• The challenger runs Setup(1n, N) and gives the produced public key ek to the adversary A.
• The adversary (adaptively) chooses indices i ∈ U to ask decryption keys. The challenger

gives A all the dki for all required indices.
• The adversary then chooses two messages M0,M1 ∈ PT of equal length and a set S ⊂ U

of users with restriction that no index i ∈ S required decryption key before. It then gives
M0,M1 and S to the challenger.
• The challenger samples b←↩ {0, 1} and provides c←↩ Encrypt(ek,Mb,S) to A.
• The adversary A continues asking for decryption keys for any index i outside S.
• Finally, the adversary returns its guess b′ ∈ {0, 1} for the b chosen by the challenger. The

adversary wins this game if b = b′.

We define SuccIND(A) = Pr[b′ = b], the probability that A wins the game. We say that AnoBEB
is semantically secure (IND) if all polynomial time adaptive adversariesA have at most negligible
advantage in the above game, whereA ’s advantage is defined as AdvIND(A) = |SuccIND(A)−1

2
| =

|Pr[b′ = b]− 1
2
|.

For anonymous game, the challenger B runs Setup(1n, N) to obtain a public key ek and a
master secret key MSK and sends ek to adversary A.

Phase 1. The adversary A adaptively issues decryption key extraction queries for any index
i ∈ U . The challenger runs Extract algorithm on index i and returns to A the decryption
key dki = Extract(ek,MSK, i).

Challenger. The adversary chooses a message M ∈ PT and two distinct subsets S0,S1 ⊂ U
of users. We require that A has not issued key queries for any index i ∈ S0 4 S1 =
(S0 \ S1) ∪ (S1 \ S0). The adversary A passes M and S0,S1 to the challenger B. The
challenger B randomly chooses a bit b ∈ {0, 1}, computes c = Encrypt(ek,M,Sb) and sends
c to A.
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Phase 2. A adaptively issues decryption key extraction queries on indices i 6∈ S0 4 S1 and
obtains decryption keys dki.

Guess. The adversary outputs a guess b′ ∈ {0, 1} and wins the game if b′ = b.

We denote by SuccANO(A) = Pr[b′ = b] the probability that A wins the game, and its
advantage is AdvANO(A) = |SuccANO(A) − 1

2
| = |Pr[b′ = b] − 1

2
|. We say that a scheme Π is

anonymous against chosen plaintext attacks – ANO if all polynomial-time adversaries A have
a negligible advantage in the above game.

2.4 Lattice and k-LWE problem

For two matrices A,B of compatible dimensions, let (A‖B) (or sometimes
(A
B

)
) denote vertical

concatenations of A and B. For A ∈ Zm×nq , define Im(A) = {As | s ∈ Znq } ⊆ Zmq . For X ⊆ Zmq ,
let Span(X) denote the set of all linear combinations of elements of X and define X⊥ to be
{b ∈ Zmq | ∀c ∈ X, 〈b, c〉 = 0}.

Assume that D1 and D2 are distributions over a countable set X, their statistical distance is
defined to be 1

2

∑
x∈X |D1(x)−D2(x)|. We say that two distributions D1 and D2 (two ensembles

of distributions indexed by n) are statistically close if their statistical distance is negligible in
n. We use the notation x ←↩ D to refer that the element x is sampled from the distribution
D. We also let U(X) denote the uniform distribution over X. Let B = {b1,b2, . . . ,bn} ⊂ Rn

consists of n linearly independent vectors. The n-dimensional lattice Λ generated by the basis
B is Λ = L(B) = {Bc =

∑
i∈[n] ci · bi | c ∈ Zn}. The length of a matrix B is defined as the

norm of its longest column: ‖B‖ = max1≤i≤n ‖bi‖. Here we view a matrix as simply the set of
its column vectors.

For a lattice L ⊆ Rm and an invertible matrix S ∈ Rm×m, we define the Gaussian distribu-
tion of parameters L and S by DL,S(b) = exp(−π‖S−1b‖2) for all b ∈ L.

The q-ary lattice associated with a matrix A ∈ Zm×nq is defined as Λ⊥(A) = {x ∈ Zm | xt ·
A = 0 mod q}. It has dimension m, and a basis can be computed in polynomial-time from A.
For u ∈ Zmq , we define Λ⊥u (A) as the coset {x ∈ Zm | xt · A = ut mod q} of Λ⊥(A).

Lemma 2 (Theorem 3.1, [AP11]). There is a probabilistic polynomial-time algorithm that,
on input positive integers n,m, q ≥ 2, outputs two matrices A ∈ Zm×nq and T ∈ Zm×m such that

the distribution of A is within statistical distance 2−Ω(n) from U(Zm×nq ); the rows of T form a

basis of Λ⊥(A); each row of T has norm ≤ 3mqn/m.

Lemma 3 (GPV algorithm, [GPV08]). There exists a probabilistic polynomial-time algo-
rithm that given a basis B of an n-dimensional lattice Λ = L(B), a parameter s ≥ ‖B̃‖ ·
ω
(√

log n
)

1, outputs a sample from a distribution that is statistically close to DΛ,s.

Definition 4 (k-LWE problem, [LPSS14]). Let S ∈ Rm×m be an invertible matrix and
denote Tm+1 = (R/Z)m+1. The (k, S)−LWE problem is: given A←↩ U(Zm×nq ), u←↩ U(Znq ) and
xi ←↩ DΛ⊥−u(A),S for i ≤ k ≤ m, the goal is to distinguish between the distributions (over Tm+1)

1

q
· U
(

Im
(ut

A

))
+ νm+1

α and
1

q
· U
(

Spani≤k(1‖xi)⊥
)

+ νm+1
α ,

where να denotes the one-dimensional Gaussian distribution with standard deviation α > 0.

In [LPSS14], it was shown that this problem can be reduced to LWE problem for a specific class
of diagonal matrices S. In our work, we only need any such S where (k, S)-LWE is hard, and
thus the use of S is implicit. For simplicity, we will use k-LWE and (k, S)-LWE interchangeably
in this paper.

1 B̃ is Gram-Schmidt orthogonalization of B.
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2.5 Projective Sampling

Inspired by the notion of projective hash family [CS02], Ling et al. [LPSS14] proposed a new
concept called projective sampling family. A construction of projective sampling family from
k − LWE problem was built as well. The major purpose of their construction is to switch a
secret key traitor tracing scheme into a public key one, where tracing signals are sampled from
a distribution of spanned spaces by secret keys xj. In their scheme, each secret key xj ∈ Zmq is
associated with a public matrix Hj (projective key). Given the projective keys Hj, any entity in
the system can simulate the tracing signal in a computationally indistinguishable way (under
the k-LWE assumption) in the sense that the simulated signal U(∩jIm(Hj)) is indistinguishable
from original tracing signal U

(
Spanj(x

+
j )⊥
)

even for entities who know the secret keys xj. This
implies that anyone in the system is allowed to execute the tracing procedure.

We recall the construction of Hj [LPSS14] as following:

1. Given a matrix A ∈ Zm×nq and an invertible matrix A ∈ Zm×mq , sampling signals are taken

from a spanned space U
(
Spanj≤k(x

+
j )⊥
)

+bναqem+1, where xj ←↩ DΛ⊥−u(A),S. We call vectors
xj ∈ Zmq secret keys.

2. Sample H ←↩ U
(
Zm×(m−n)
q

)
, conditioned on Im(H) ⊂ Im(A). Define the public projected

value of xj on H as hj = −H t · xj.
3. Define Hj = (htj ‖ H) ∈ Z(m+1)×(m−n)

q as the public projected key of xj.

Simulated signals are now sampled from the distribution U(∩j≤kIm(Hj))+bναqem+1. Under the
(k, S)-LWE hardness assumptions, the following two distributions:

U
(
Spanj≤k(x

+
j )⊥
)

+ bναqem+1 and U (∩j≤kIm(Hj)) + bναqem+1

are indistinguishable. This implies that given projected keys Hj, anyone can take samples from
the distribution U

(
Spanj≤k(x

+
j )⊥
)

+ bναqem+1 although he does not have the secret keys xj.
We restate an important result that is frequently used in our proofs. This result comes

directly from Theorem 25 and Theorem 27 in [LPSS14].

Lemma 5. We denote by [t] = {1, . . . , t} the set of the t first positive integers. Under the k-LWE
assumption, for k > t, given t secret keys x1,x2, . . . ,xt, for any j 6∈ [t], the distrisbutions

U
(
Spani∈[t](x

+
i )⊥
)

+ bναqem+1, U
(
Spani∈[t]∪{j}(x

+
i )⊥
)

+ bναqem+1,

are indistinguishable (from Theorem 25 in [LPSS14]), and the distributions

U
(
∩i∈[t]Im(Hi)

)
+ bναqem+1, U

(
∩i∈[t]∪{j}Im(Hi)

)
+ bναqem+1,

are indistinguishable as well (from Theorem 27 in [LPSS14]).

3 Anonymous Broadcast Encryption for Bounded Universe

We now construct an anonymous broadcast encryption for bounded universe scheme (AnoBEB)
from k-LWE problem. Let N be the maximal number of users (receivers are implicitly repre-
sented by integers in U = {1, . . . , N}). Given a security parameter n, we assert that parameters
q,m, α, S are chosen so that the (k, S)-LWE problem is hard to solve as presented in [LPSS14].
Since the adversary can corrupt any user, we require that N ≤ k (the system’s bounded universe
constraint).
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Setup(1n, N): Takes as input the security parameter n and maximal number of users N . It
uses Lemma 2 to generate 2 matrices (A, T ) ∈ Zm×nq × Zm×m and picks u uniformly in Znq .
We set a master secret key MSK = (A, T ) and a public key ek = {A+, (Hj)j≤N}, where
A+ = (ut‖A) and the projected keys Hj (corresponding to the secret keys xj, defined in
Section 2.5) are added each time a secret key xj is generated by the Extract. For a system
of N users, one can run N times Extract inside the Setup to generate N secret keys.

Extract(ek,MSK, j): Takes as input the public key ek, the master secret key MSK and a user
index j ∈ U , the algorithm calls the GPV algorithm (Lemma 3) using the basis Λ⊥(A)
consisting of the rows of T and the standard deviation matrix S. It obtains a sample xj
from DΛ⊥−u(A),S. The algorithm outputs decryption key dkj = x+

j := (1‖xj) ∈ Zm+1 for user
j.

Encrypt(ek,M,S): Takes as input the public key ek, a message M ∈ PT = {0, 1} and a set
of users S ⊆ U . To encrypt M , one chooses a vector y ∈ Zm+1

q from the distribution
U(∩i∈SIm(Hi)), e←↩ bναqem+1 and outputs c ∈ CT , which is broadcasted to every member
of S as follows:

c = y + e +
(Mbq/2c

0

)
,

whereas bxc denotes the greatest integer less than or equal to x.
Decrypt(ek, dkj, c): Takes as input the public key ek, a decryption key dkj = x+

j of user j and
a ciphertext c ∈ CT . The function Decrypt will return 0 if 〈x+

j , c〉 is closer 0 than to bq/2c
modulo q, otherwise return 1.

Correctness. We require that for a given subset S ⊆ U and all j ∈ S, if c = Encrypt(ek,m,S)
and dkj is the decryption key for user j ∈ S, we then recover M = Decrypt(ek, dkj, c) with
overwhelming probability. Indeed, since ∩i∈SIm(Hi) ⊆ Spani∈S(x+

i )⊥, for each user j ∈ S and
y←↩ U(∩i∈SIm(Hi)), we have 〈x+

j ,y〉 = 0. Therefore,

〈x+
j , c〉 = 〈x+

j ,y〉+ 〈x+
j , e〉+ 〈x+

j ,
(Mbq/2c

0

)
〉 mod q

= 〈x+
j , e〉+Mbq/2c mod q,

where e ←↩ bναqem+1. According to [LPSS14], the quantity 〈x+
j , e〉 is relatively small modulo

q with overwhelming probability. The procedure Decrypt returns the original message with
overwhelming probability. Therefore, every user in S can decrypt successfully.

We now consider the security of the scheme, essentially showing that an adversary which is
allowed to corrupt any user outside S, cannot break the semantic security of the scheme.

Theorem 6. Under the k-LWE hardness assumption, for any N ≤ k, the AnoBEB scheme Π
constructed as above is IND-secure.

Proof. We consider the sequence of the following games between a challenger B and an attacker
A.
Game G0: This is the real world game, security as defined in the security model. The interaction
between the challenger B and the adversary A takes place as follows:
Setup. The challenger generates matrix A←↩ U(Zm×nq ) and u←↩ U(Znq ). The challenger sends
public key ek = {A+, (Hj)j≤N}, where each Hj is the projected key associated with a secret
key xj and A+ = (ut‖A). The public key then sent to A.
Phase 1. A queries decryption keys for several users i ∈ {1, . . . , N}. B samples xi ←↩ DΛ⊥−u(A),S

and gives x+
i to A, where x+

i := (1‖xi) ∈ Zm+1.
Challenger phase. The adversary selects two messages M0,M1 ← PT = {0, 1}, a subset of
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users S ⊂ U so that queried indices must be outside S. A then sends M0,M1 and S to B. The
challenger picks at random a bit b←↩ U({0, 1}), outputs a challenge ciphertext (of the message
Mb) sampled from one of two following distributions:

D0 = U (∩i∈SIm(Hi)) + bναqem+1 +
(M0bq/2c

0

)
,

D1 = U (∩i∈SIm(Hi)) + bναqem+1 +
(M1bq/2c

0

)
.

Phase 2. The adversary continues querying for decryption keys with the limiting condition
that A only queries indices outside S.
Guess. A gives a guess b′ for b.

Game G1: The challenger now makes one small change to the previous game. Namely, every
steps in this game coincides with a corresponding step in the previous one, but the challenge
ciphertext sampled from one of two distributions D1

0 and D1
1.

D1
0 = U

(
∩i∈S\{j}Im(Hi)

)
+ bναqem+1 +

(M0bq/2c
0

)
,

D1
1 = U

(
∩i∈S\{j}Im(Hi)

)
+ bναqem+1 +

(M1bq/2c
0

)
,

whereas j ∈ S. Applying Lemma 5, within the view of A, there are two pairs of distributions

D0 = U (∩i∈SIm(Hi)) + bναqem+1 +
(M0bq/2c

0

)
,

D1
0 = U

(
∩i∈S\{j}Im(Hi)

)
+ bναqem+1 +

(M0bq/2c
0

)
and

D1 = U (∩i∈SIm(Hi)) + bναqem+1 +
(M1bq/2c

0

)
,

D1
1 = U

(
∩i∈S\{j}Im(Hi)

)
+ bναqem+1 +

(M1bq/2c
0

)
are indistinguishable under the assumption that k-LWE is hard to solve. Therefore, the difference
of the advantage of the adversary A in the two consecutive games is negligible.

Similarly, we consider extra `− 1 games, where ` = |S| and reach the final game.

Game G`: The challenger also makes one small change to the previous games, while every step
in this game coincides with the previous one, but for the challenge ciphertext sampled from
one of two distributions D`0 and D`1, as follows:

D`0 = U
(
Zm+1
q

)
+ bναqem+1 +

(M0bq/2c
0

)
,

D`1 = U
(
Zm+1
q

)
+ bναqem+1 +

(M1bq/2c
0

)
.

Obviously, the advantage of A in this game is equal to zero.
To summarize, we have a sequence of games where the final game Game G` has zero-

advantage and the difference of each two successive games Game Gi−1, Game Gi, for all
2 ≤ i ≤ `, is negligible, and ` is polynomial. Therefore, the scheme Π is IND−secure. �
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We next consider anonymity of the AnoBEB scheme (our main Theorem for this section):

Theorem 7. Under the k-LWE hardness, for any N ≤ k, our scheme is ANO-secure.

Proof. Intuitively, the anonymity requires that an adversary cannot distinguish between en-
cryptions for two targets S0,S1 of its choice. If we consider an outsider adversary, defined
in [FP12], which only corrupts users outside both S0,S1, then the proof is direct because from
the k-LWE assumption, the encryption for S0 and for S1, both, look like random ciphertexts to
the adversary. It is more challenging to consider a general adversary which can also corrupt the
key in the intersection of S0 and S1. Fortunately, by applying Lemma 5 which informally states
that the encryptions for a set S and for a set S ∪ {i} are indistinguishable if the adversary
does not corrupt the user i, even if the adversary corrupts users in S. We then apply a hybrid
argument which moves an encryption for the set S0 (or S1) to an encryption for the set S0 ∪S1

by adding one by one users in S1 \ S0 (or in S1 \ S0, respectively).
We will prove the above by considering a sequence of games, as following:

Game G0: This is the real world game, security defined in the security model. We repeat the
interaction between the challenger B and the adversary A as following:
Setup. The challenger generates a matrix A ←↩ U(Zm×nq ) and picks u uniformly in Znq . Then
the public key is set to ek = {A+, (Hj)j≤k}, with A+ = (ut‖A), and given to A.
Phase 1. When A asks for the decryption key for user i, B replies with x+

i = (1||xi), where
xi ←↩ DΛ⊥−u(A),S.
Challenger phase. A chooses a message M , two subsets S0,S1 with the restriction that no
asked query is in U \ (S0 4 S1) and sends it to B. The challenger picks randomly b ∈ {0, 1}
and gives A a ciphertext c taken from one of two distributions (distribution Db, over Tm+1):

D0 = U (∩i∈S0Im(Hi))+bναqem+1+
(Mbq/2c

0

)
, D1 = U (∩i∈S1Im(Hi))+bναqem+1+

(Mbq/2c
0

)
.

Phase 2. In this step, A continues querying to get decryption keys with the limitations as

mentioned before (query indices i ∈
(
U \ (S0 4 S1)

)
). B gets x+

i from DΛ⊥−u(A),S and answers

A.
Guess. A guesses b′ for b.

Game G1: In this game, the inputs and the settings of this game are identical to the ones
of Game G0. In the challenger phase, the adversary A received a ciphertext from one of

the two following distributions: D0 = U (∩i∈S0Im(Hi)) + bναqem+1 +
(Mbq/2c

0

)
, or D1

1 =

U
(
∩i∈S1∪{j1}Im(Hi)

)
+ bναqem+1 +

(Mbq/2c
0

)
, where the projected key Hj1 corresponds to the

secret key x+
j1
←↩ DΛ⊥−u(A),S, j1 ∈ S0 \ S1.

Here we notice that the adversaryA does not know the key x+
j1

becauseA can only choose the
keys with index in U\(S04S1). Since k-LWE is hard, by applying Lemma 5, the two distributions

D1 = U (∩i∈S1Im(Hi)) + bναqem+1 +
(Mbq/2c

0

)
, D1

1 = U
(
∩i∈S1∪{j1}Im(Hi)

)
+ bναqem+1 +(Mbq/2c

0

)
are indistinguishable. This means that the difference between the advantage of A

in Game G1 and Game G0 is negligible.

Game Gτ : We assume that κ = |S0 \ S1| and S0 \ S1 = {j1, j2, . . . , jκ}. For each 2 ≤ τ ≤ κ, we
consider a game in a sequence of κ− 1 games. We set T1 = S1 ∪ {j1} and Tτ = Tτ−1 ∪ {jτ}. It
implies that Tκ = S0∪S1. In each game in this sequence, the inputs and the settings are identical
to the ones of previous games. In the challenger phase, the adversary A receives a ciphertext
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from one of the two following distributions: D0 = U (∩i∈S0Im(Hi)) + bναqem+1 +
(Mbq/2c

0

)
and Dτ1 = U (∩i∈Tτ Im(Hi)) + bναqem+1 +

(Mbq/2c
0

)
.

Since adversary A does not know any key x+
jτ

in the set S0 \ S1 and the k − LWE problem

is hard, we apply Lemma 5, the two distributions: Dτ−1
1 = U

(
∩i∈Tτ−1Im(Hi)

)
+ bναqem+1 +(Mbq/2c

0

)
and Dτ1 = U (∩i∈Tτ Im(Hi)) + bναqem+1 +

(Mbq/2c
0

)
, are indistinguishable for each

τ . This means that the difference between the advantage of A in any transition in the sequence
of games Game Gτ , 1 ≤ τ ≤ κ is negligible.

Game Gκ+η: We assume that ι = |S1 \S0| and S1 \S0 = {j1, j2, . . . , jι}. For each 1 ≤ η ≤ ι, we
consider a game in a sequence of ι games. We set T ′1 = S0∪{j1} and T ′η = T ′η−1∪{jη}. It implies
that T ′ι = S0 ∪ S1. In each game in this sequence, the inputs and the settings are identical
to the ones of previous games. In challenger phase, the adversary A receives a ciphertext from

one of following two distributions: Dη0 = U
(
∩i∈T ′ηIm(Hi)

)
+ bναqem+1 +

(Mbq/2c
0

)
, and Dκ1 =

U
(
∩i∈(S0∪S1)Im(Hi)

)
+bναqem+1+

(Mbq/2c
0

)
. It means that we keep fix the distribution Dκ1 and

replace the distribution D0 by Dη0 = U
(
∩i∈T ′ηIm(Hi)

)
+ bναqem+1 +

(Mbq/2c
0

)
, where we set

Dη0 = D0 in case η = 0. By the same argument as in previous games, in the view of the adversary
A, two distributions Dη−1

0 and Dη0 are indistinguishable under the hardness of k-LWE, this means

that the two following distributions Dη−1
0 = U

(
∩i∈T ′η−1Im(Hi)

)
+ bναqem+1 +

(Mbq/2c
0

)
, and

Dη0 = U
(
∩i∈T ′ηIm(Hi)

)
+ bναqem+1 +

(Mbq/2c
0

)
are indistinguishable for each 1 ≤ η ≤ ι.

Therefore the difference between the advantage of A in the transitions of the sequence of
games Game Gη+κ, 1 ≤ η ≤ ι is negligible. We recall that in the last game (η = ι), A will

receive a challenger ciphertext taken from U
(
∩i∈(S0∪S1)Im(Hi)

)
+ bναqem+1 +

(Mbq/2c
0

)
, or

U
(
∩i∈(S0∪S1)Im(Hi)

)
+ bναqem+1 +

(Mbq/2c
0

)
. Obviously, the advantage of adversary A in this

game is equal to zero since these distributions are identical.
We conclude (as all sequences are polynomial size) that our scheme AnoBEB is ANO-secure

under the hardness of k-LWE problem. �

Concerning efficiency, our scheme AnoBEB is exactly as efficient as the Ling et al.’s traitor
tracing scheme in [LPSS14] which was shown in [LPSS14] to be as efficient as the standard
LWE encryption.

Finally, we also note that, as shown in [LPSS14], example parameters are k = m/10, σ =

Θ̃(n), q = Θ̃(n5) and m = Θ(n log n). We can therefore set our parameters to: N = k and
the efficiency of the AnoBEB scheme is approximately as efficient as the underlying LWE-PKE,
inherently from the fact the LPSS k-LWE traitor tracing has approximately the same efficiency
as the underlying LWE-PKE, as shown in [LPSS14].

4 Trace and Revoke System from AnoBEB and Robust IPP Codes

Our goal now is to construct a Trace and Revoke (TR) scheme from AnoBEB. The formal
definition of a TR scheme is provided in Section 2.2. In our approach, we combine a robust
t-IPP code with an AnoBEB scheme. We also give two explicit instantiations for robust t-IPP
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code at the end of this section. We will start this section by recalling the notion of robust IPP
code [BK13].

4.1 Robust IPP codes

Let C = {w1, . . . , wN} ⊂ Σ` be a q−ary code of size N and length `, mimimum Hamming
distance ∆ over alphabet Σ = {1, . . . , q}. We assume that wi = (wi,1, . . . , wi,`). Given a positive
integer t, a subset of codewords X = {w1, w2, . . . , wt} ⊂ C is called a coalition of size t. Let
Xi = {w1,i, . . . , wt,i} be the set of the i−th coordinates of the coalition X. If the cardinality of
Xi is equal to 1, say |Xi| = 1, the coordinate i is called undetectable, else it is called detectable.
The set of detectable coordinates for the coalition X is denoted by D(X). The set of descendants
of X, denoted desc(X), is defined by

desc(X) =
{
x = (x1, . . . , x`) ∈ Σ` | xj ∈ Xj, 1 ≤ j ≤ `

}
.

We call codewords in the coalitionX are parents of the set desc(X). Define a t−descendant of
the code C, denoted desct(C), desct(C) =

⋃
X⊂C,|X|≤t

desc(X). The desct(C) consists of all `−tuples

that could be generated by some coalition of size at most t. Codes with identifiable parent
property (IPP codes) are defined next.

Definition 8. Given a code C = (`,N, q), let t ≥ 2 be an integer. The code C is called a t-IPP
code if for all x ∈ desct(C), it holds that

⋂
x∈desc(X),X⊂C,|X|≤t

X 6= ∅.

Then, in a t-IPP code, given a descendant x ∈ desct(C), we can always identify at least one
of its parent codewords.

In [BS95], Boneh and Shaw considered a more general coalition, called wide-sense envelope
of the coalition X. The set of descendants in their fingerprinting code is{

x = (x1, . . . , x`) ∈ (Σ ∪ {∗})` | if j /∈ D(X) then xj ∈ Xj

}
,

where D(X) consists of detectable coordinates of the coalition X. This means that any symbol
of Σ or erased symbols ∗ are allowed in the detectable coordinates. Only detectable coordinates
of descendant are allowed to modify the values (marking assumption). The notion Robust IPP
code is a concept that allows a limited number of coordinates to not follow their parents. These
coordinates are allowed to deviate by breaking the marking assumption.

Let X ⊂ Σ`, |X| ≤ t be a coalition. For i = 1, . . . , `, let Xi be the set of the i−th coordinates
of the elements of a coalition X. Assume that there is a descendant x in the set desc(X),
following the marking assumption rule except εn coordinates that can deviate from this rule.
Call a coordinate i of x ∈ desc(X) a mutation if xi /∈ Xi and consider mutations of two types:
erasures, where xi is replaced by an erasure symbol ∗, and one replaced by an arbitrary symbol
yi ∈ Σ−Xi.

Denote by desc(X)ε the set of all vectors x formed from the vectors in the coalition X so
that xi ∈ Xi for `(1 − ε) coordinates i and xi is a mutation in at most ε` coordinates. Codes
with robust identifiable parent property (Robust IPP codes) are defined below:

Definition 9. Code C ⊂ Σ` is a (t, ε)-IPP code (robust t-IPP code) if for all x ∈ desc(X)ε,
where X ⊂ C and |X| ≤ t, it holds that ⋂

X⊂C,|X|≤t,x∈desc(X)ε

X 6= ∅.
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In words: the code C guarantees exact identification of at least one member of the coalition X
of size at most t for any collusion with at most ε` mutations. In the case ε = 0, a robust IPP
becomes an IPP code.

A robust IPP code is said to have the traceability property if for any x ∈ descε(X), the
codeword c ∈ C closest to x by the Hamming distance is always one of the parents of x, i.e., c ∈⋂
X⊂C,|X|≤t,x∈desc(X)ε

X. This implies that a pirate can be provably identified by finding any vector

c ∈ C such that the distance from c to x is the shortest. A robust IPP code with traceability
property is called robust TA code. We shall use robust IPP with traceability property.

4.2 Construction of a TR scheme

We first choose a (ρ`, `)-secret sharing scheme, where ρ = 1 − ε. A secret sharing scheme will
consist of 2 algorithms: Share which splits a secret into ` shares and Combine, where any user
who keeps at least ρ` shares will recover the secret by using the algorithm Combine. The formal
definition of secret sharing scheme is given in Section 2.1.

Let r be maximum number of revoked users. We require that the distance ∆ is set to verify
the condition:

∆ > `
(

1− 1− ρ
r

)
. (1)

We denote by [N ] = {1, . . . , N} the set of N users. We define a mixture S = (S1, . . . , S`) over
Σ` to be a sequence of ` subsets of Σ, i.e. Si ⊆ Σ. Given a vector ω = (ω1, . . . , ω`) ∈ Σ`, the
agreement between ω and a mixture S is defined to be the number of positions i ∈ [`] for which
ωi ∈ Si: agr(ω, S) =

∑`
i=1 1ωi∈Si , where 1ωi∈Si = 1 if ωi ∈ Si and 1ωi∈Si = 0 if otherwise.

We will construct a TR system Γ for the set [N ] as follows: we identify each user i ∈ [N ]
with the codeword wi = (wi,1, . . . , wi,`) in C, whereas wi,j is the j-th coordinate of the codeword
wi ∈ C. By assigning each user i in Γ to a set with ` sub-keys, the decryption key for the user i
has form dki = (sk1,wi,1 , . . . , skj,wi,j , . . . , sk`,wi,`), where each sub-key is generated by the Extract
algorithm of AnoBEB.

We consider an arbitrary group of decryption keys. At any coordinate component of the
group, there are at most q sub-keys. We have a one-to-one correspondence between the set
of q sub-keys and the set of decryption keys of q users in AnoBEB system. Consequently, to
broadcast a message K (will be splitted into ` shares K1, . . . , K`) to the set of N users, we
apply the Share(K, ρ`, `) of (ρ`, `)−secret sharing scheme and we encrypt each jth-share Kj

with AnoBEB. Note that the message K is then often used as a session key to encrypt the data
via a data encapsulation mechanism.

Formally, to build a TR system for N users, we concatenate ` instantiations of the scheme
AnoBEB (for q users) according to an q−ary code C. In particular, we will combine AnoBEB
with robust IPP code C. Our construction consists of 5 algorithms: Setup, Extract, Encrypt,
Decrypt and Tracing.

Setup(1n, t, r): Takes as input the security parameter n, a maximum malicious coalition size t
and the bound r on the number of revoked users. Let C be a t-IPP robust code size N over
alphabet Σ = [q]. By calling ` times the procedure AnoBEB.Setup(1n, q), where ` is the
length of the code C, we obtain public keys ekj and master secret keys MSKj, j = 1, . . . , `.
We set ek = (ek1, . . . , ek`) and MSK = (MSK1, . . . ,MSK`).

Extract(ek,MSK, i): Takes as index i ∈ [N ] for each user, we use MSK to extract ` decryption
keys for user i: dki = (sk1,wi,1 , . . . , skj,wi,j , . . . , sk`,wi,`), where wi,j is the value at position j
of codeword wi. Here,

skj,wi,j = AnoBEB.Extract(ekj,MSKj, wi,j), j ∈ [`].
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Encrypt(ek, K,R): Takes as input a set of revoked users R ⊂ C, where the cardinality of R is
at most r. The message K ∈ PT , where PT is the plaintext domain, will be broadcasted
to the target set C \R. We call the procedure Share(K, ρ`, `) of (ρ`, `)-secret sharing scheme
and obtain ` shares K1, . . . , K` in which at least ρ` of the shares are needed to recover the
message K. We consider the following mixture M = (M1, . . . ,M`) = (Σ \ R[1], . . . ,Σ \
R[`]), whereR[j] = ∪i∈Rwi,j. Set ci =

(
AnoBEB.Encrypt(eki, Ki,Mi)

)
for each i = 1, . . . , `.

The ciphertext is c = (c1, . . . , c`) ∈ CT `, where CT is the ciphertext domain of AnoBEB.
Decrypt(ek, dki, c): Takes as input ciphertext c ∈ CT ` and a decryption key dki of user i. The

user i calls the decryption function AnoBEB.Decrypt(ekj, skj,wi,j , cj) of the AnoBEB scheme
on sub-keys skj,wi,j for each j = 1, . . . , `. If i ∈ R then i cannot decrypt any ci and cannot
recover K (will be proved in the part of semantic security of Theorem 10). Otherwise,
i /∈ R, the user obtains at least ρ` values among the shared values Kj (as will be proved
in the correctness). By calling the function Combine of the secret sharing scheme over pairs
{(j,Kj)}, the user recovers the original message K.

Tracing(D,R, ek): Takes as input a set R of ≤ r revoked users, a public key ek and has access
to a pirate distinguisher D. We consider the mixture M as in Encrypt procedure. Let T
be the subset of U \R with at most t elements (traitors). The pirate distinguisher outputs
two messages K0 and K1 and then sends to the Tracer. We assume that the pirate distin-
guisher is an ε-useful in the sense that it can distinguish, with a non-negligible probability

ε, ciphertexts in the form c = (c1, . . . , c`), where ci =
(
AnoBEB.Encrypt(eki, K

b
i ,Mi)

)
for

each Kb
i is i-th component of the message Kb, b ← {0, 1}. We denote here Mj = {jι}ι∈Q,

Q ⊆ [q] or Mj = ∅ for all j = 1, . . . , `. We consider the tracing procedure as follows:
For j = 1 to `, do the following:

1. While Mj 6= ∅, do the following:
(a) Let cnt← 0.
(b) Repeat the following steps W ← 8n(q/ε)2 times:

i. cj = AnoBEB.Encrypt(ekj, K
b
j ,Mj).

ii. Call the pirate distinguisher D on input
c = (c1, . . . , cj, . . . , c`). If D(c) = b then cnt← cnt + 1.

(c) Let p̃j,jι be the fraction of times that D outputs b correctly. We have p̃j,jι =
cnt/W .

(d) Mj =Mj \ {jι}.
2. If there exists an index jι ∈Mj for which p̃j,jι − p̃j,jι′ ≥ ε/4q` for all jι′ ∈Mj then

(a) the key jι is accused and ωj = jι,
(b) cj = AnoBEB.Encrypt(ekj, K

b
j ,Mj)

else cj = random and ωj = ∗.
End for.
From the pirate word ω = (ω1, . . . , ω`) found after the Loop finished, call tracing procedure

in robust IPP code on input ω. The Tracing returns a traitor.

Concerning Tracing procedure, we note that the decryption probabilities of the pirate device
do not change significantly in every iterations step because even if the tracer detects a non-
negligible decryption probability of pirate decoder, it will reset the modified component to a
normal component. After step 2, the tracer will find out a letter of pirate word at position j.
The value of a position is either a symbol in the alphabet or an erasure symbol.

We prove that the tracing algorithm returns at least ρ` keys. Indeed, if the output of the
algorithm provides t < ρ` keys then the ciphertext in the final iteration step ` will appear as t
normal components and the pirate device will be able to still correctly decrypt the ciphertext.
This is a contradiction because in the setting of our system, by using (ρ`, `)−secret sharing
scheme, it is impossible for any decoder device to successfully decrypt the ciphertext with less
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than ρ` normal components. Therefore, our tracing algorithm will output at least ρ` pirate
keys. We thus get at the end of Step 2 a pirate word with ρ` components without ∗. Since the
scheme Γ employs robust IPP code C, the tracer uses the property of robust IPP for the pirate
word which was found from the black-box tracing to identify at least one user who contributed
to build the pirate device.

Since the tracing procedure uses the tracing procedure in robust IPP codes, which does not
require any secret information (like IPP codes), and we only use the procedure AnoBEB.Encrypt
to produce the tracing signals, the combined scheme Γ supports public traceability.

We next present the main result of this Section.

Theorem 10. Given

– C = (`,N, q), a robust t-IPP code of Hamming distance ∆ and 0 < ε < (t+ 1)−1;
– a (ρ`, `)−secret sharing scheme, where ρ = 1− ε;
– an anonymous broadcast encryption for q users AnoBEB;

satisfying the following condition

∆/` > 1−min

{
1− ρ
r

,
1− ε
t2
− ε

t

}
. (2)

Then Γ, constructed as above, is a TR scheme for N users in which we can revoke up to r
users and trace successfully at least one traitor from any coalition of up to t traitors. Moreover,
assume that the scheme AnoBEB is IND-secure, then the scheme Γ is also an IND-secure scheme.

Proof. Correctness. Given a ciphertext c, any users i ∈ [N ] \ R can decrypt it successfully.
Indeed, since C is the code having the minimum Hamming distance that satisfies inequal-
ity (2) above, it implies that (1) is true. Therefore, for any user i in [N ] \ R, we have
agr(wi,M) ≥ ` − r(` − ∆) ≥ ρ`. This implies that the user i has at least ρ` sub-keys
that agree with the mixture M and recovers at least ρ` sub-messages Ki. By calling the
function Decrypt on c, the user i will recover the underlying original message. In contrast,
any revoked user in R gets no any sub-key and thus cannot decrypt the ciphertext c.

Semantic security. We next prove semantic security of Γ. Indeed, we consider a sequence of
games starting with Game G0 as following:

Game G0: This is the real game as defined in the security model. The challenger generates
` public keys {eki}`i=1 and chooses robust IPP code C = {w1, . . . , wN} which he then gives
to the adversary AΓ. In Phase 1, AΓ queries descryption keys for user i ∈ {1, . . . , N} and
obtains dki, where

dki = (sk1,wi,1 , . . . , skj,wi,j , . . . , sk`,wi,`),

where skj,wi,j is a decryption key extracted from the scheme AnoBEB (denoted by Π) by
calling algorithm

Π.Extract(ekj,MSKj, wi,j).

In the Challenger phase, the adversary selects two messages K0, K1 ∈ PT and a subset
of revoked users R ⊂ C. The challenger picks at random a b ←↩ {0, 1}, calls the procedure
Share(Kb, ρ`, `) to get ` shares Kb

1, . . . , K
b
` for the message Kb and outputs a ciphertext

Π.Encrypt(ekj, K
b
j ,Mj)

`
j=1, where

(M1, . . . ,M`) = (Σ−R[1], . . . ,Σ−R[`]),R[j] :=
⋃

i|wi∈R

{wi,j}.

In Phase 2, AΓ received the ciphertext, sampled from one of two computationally indis-
tinguishable distributions

D0 =
(

Π.Encrypt(ek1, K
0
1 ,M1), . . . ,Π.Encrypt(ek`, K

0
` ,M`)

)
D1 =

(
Π.Encrypt(ek1, K

1
1 ,M1), . . . ,Π.Encrypt(ek`, K

1
` ,M`)

)
,
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AΓ outputs a guess b′ for b. Let AdvGame G0
AΓ

(D0,D1) be the advantage of AΓ with two given
distributions D0 and D1. The advantage is defined by:

AdvGame G0
AΓ

(D0,D1) =
∣∣∣2Pr [AΓ(Db) = b]− 1

∣∣∣
=
∣∣∣Pr [AΓ(D0) = 1]− Pr [AΓ(D1) = 1]

∣∣∣.
Game G1: The challenger now makes one small change to the Game G0. Namely, instead
of encrypting the first share K0

1 with mixture M1, we encrypt K1
1 with the mixture M1.

This means that the challenger only changes the first coordinate in D0 and does not do
anything with D1. In this game, all steps are the same as in Game G0 except as mentioned
about the above ciphertext. Thus, AΓ will receive a challenger ciphertext, sampled from
one of two computationally indistinguishable distributions D1

0 and D1, where

D1
0 =

(
Π.Encrypt(ek1, K

1
1 ,M1),Π.Encrypt(ek2, K

0
2 ,M2), . . . ,Π.Encrypt(ek`, K

0
` ,M`)

)
.

We denote the advantage of the adversary in this game by
AdvGame G1

AΓ
(D1

0,D1). We can see that∣∣∣Pr [AΓ(D0) = 1] − Pr [AΓ(D1) = 1]
∣∣∣

≤
∣∣∣Pr [AΓ(D0) = 1]− Pr

[
AΓ(D1

0) = 1
] ∣∣∣

+
∣∣∣Pr
[
AΓ(D1

0) = 1
]
− Pr [AΓ(D1) = 1]

∣∣∣.
Therefore, we have

AdvGame G0
AΓ

(D0,D1) ≤ AdvGame G1
AΓ

(D1
0,D1) + ε1,

where ε1 is a quantity, defined by

ε1 :=
∣∣∣ Pr
x←D0

[AΓ(x) = 1]− Pr
x←D1

0

[AΓ(x) = 1]
∣∣∣.

Claim 1. We assume that ε1 is bounded by an avantage of the attacker in Π scheme,
namely

ε1 ≤ AdvΠ .

Indeed, assume the contrary, that there exists a polynomial time attackerADIST which is able
to distinguish between the two distributions D0 and D1

0 with a non-negligible probability.
We then build a simulator S to break the Π scheme as follows:
The simulator takes as input a public key ekΠ and generates (`− 1) pairs of public key and
secret key {eki,MSKi}`i=2. S passes ek = (ekΠ, ek2, . . . , ek`) to ADIST. S also collects some
parameters such as: the shares {K0

1 , . . . , K
0
` }, {K1

1 , . . . , K
1
` } and the family of mixture

{M1,M2, . . . ,M`}.

By querying the challenger of the scheme Π with the shares K0
1 , K1

1 and the mixture M1,
it receives a ciphertext of the form,

Encrypt(ek1, K
b
1,M1),
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where bit b was chosen randomly by the challenger. The others ciphertexts
{Encrypt(ekj, K0

j ,Mj)}`j=2 generated by the simulator as well to establish a full ciphertext(
Encrypt(ek1, K

b
1,M1),Encrypt(ek2, K

0
2 ,M2), . . . ,Encrypt(ek`, K

0
` ,M`)

)
.

By our assumption, ADIST can distinguish efficiently the two distributions above, as soon as
ADIST outputs bit b, the simulator S will return the same value b. We see that if K0

1 = K1
1 ,

the two distributions D0 and D1
0 coincide.

To summarize, we already built an efficient simulator to break the scheme Π and it is a
contradiction because Π is IND−secure.

Game G2: This game is identical with Game G1 with the difference being that the chal-
lenger changes the second coordinate in D1

0 by

Π.Encrypt(ek2, K
1
2 ,M2)

and still does not do anything with D1. Thus, AdvAΓ will receive a challenger ciphertext,
sampled from one of two computationally indistinguishable distributions D2

0 and D1, where

D2
0 =

(
Π.Encrypt(ek1, K

1
1 ,M1),Π.Encrypt(ek2, K

1
2 ,M2), . . . ,Π.Encrypt(ek`, K

0
` ,M`)

)
.

We denote the advantage of the adversary in this game by
AdvGame G2

AΓ
(D2

0,D1). And from this, we have

AdvGame G1
AΓ

(D1
0,D1) ≤ AdvGame G2

AΓ
(D2

0,D1) + ε2,

where ε2 is a quantity, defined by

ε2 :=
∣∣∣ Pr
x←D1

0

[AΓ(x) = 1]− Pr
x←D2

0

[AΓ(x) = 1]
∣∣∣.

By an argument analogous to that of Claim 1, we get

ε2 ≤ AdvΠ .

Game G`: We substitute the `th coordinate of the distribution D`0 by
Π.Encrypt(ek`, K

1
` ,M`) and still introduce no change to the distribution D1. AdvAΓ

will
receive a challenger ciphertext, sampled from one of two computationally identical distribu-
tionsD`0 andD1. We denote the advantage of the adversary in this game by AdvGame G`

AΓ
(D`0,D1).

Then, from this, we have

Adv
Game G`−1

AΓ (D`−1
0 ,D1) ≤ AdvGame G`

AΓ (D`0,D1) + ε` = ε`,

where ε` is a quantity, defined by

ε` :=
∣∣∣ Pr
x←D`−1

0

[AΓ(x) = 1]− Pr
x←D`0

[AΓ(x) = 1]
∣∣∣ ≤ AdvΠ .

Putting the above arguments altogether and applying the triangle inequality we have:∣∣AdvGame G0
AΓ

(D0,D1)
∣∣ =
∣∣∣AdvGame G0

AΓ
(D0,D1)− AdvGame G`

AΓ
(D`0,D1)

∣∣∣
≤
∑̀
i=1

ε` ≤ `.AdvΠ .
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Security of Tracing. Concerning traceability, Since AnoBEB is ANO-secure, it also has trac-
ing property because this is followed from the fact that the anonymity implies the traceabil-
ity. Therefore, at the end of the black-box tracing procedure (after finishing the procedure
Tracing), we get a pirate word ω = (ω1, . . . , ω`).
With a given pirate word, to ensure that the identify algorithm can return efficiently at
least a traitor from any t−collusion as explained in the tracing algorithm, it remains to
ensure that the robust IPP codes have the traceability property.

Whenever the code satisfies ∆/` > 1 −
(1− ε

t2
− ε

t

)
, whereas 0 < ε < (t + 1)−1. The

traceability of the codes is proven in Proposition 3.1 in [BK13]. However, we can not directly
use thus Proposition 3.1 in [BK13] because of two reasons:
– In [BK13], a proof of existence of robust IPP codes was given, but there was no imme-

diate explicit construction given there, neither was any analysis of the length of such a
code presented.

– Robust IPP codes only deal with the number of traitor. In our scheme, we need, more-
over, to take into account of the number of the revoked users. The condition (2) captures
both the condition on the revocation and traceability, so that in total we have an ex-
tended code requirement to consider (namely, robust IPP code supporting revocations).

�

Two explicit instantiations of Robust IPP. We consider two explicit instantiations of robust IPP
codes verifying the condition

∆/` > 1−min

{
1− ρ
r

,
1− ε
t2
− ε

t

}
.

Example 1. The relative distance of the code C is defined by δ := ∆/`. We will consider a code

with δ satisfying the Gilbert-Varshamov bound. Let us pick 1−min

{
1− ρ
r

,
1− ε
t2
− ε

t

}
<

δ ≤ 1 − 1
q
. According to the Gilbert-Varshamov theorem (Theorem 4.10, [Rot06]), there

exists a q−ary code C with rate R(C) = 1
`

logqN satisfying R(C) ≥ 1−Hq(δ)− o(1), where
Hq(δ) is the q-ary entropy function Hq : [0, 1]→ R defined by

Hq(δ) = δ logq
q − 1

δ
+ (1− δ) logq

1

1− δ
.

We choose d = max

{
r

1− ρ
,

t2

(1− ε)− εt

}
. Therefore 1− 1/d < δ ≤ 1− 1

q
. To ensure the

obtained code is not a random code, we apply the derandomization procedure of Porat-
Rothschild [PR08]. This means that we give an explicit construction for the code C. It
progresses as following:
We choose δ = 1− 1

d+1
. Obviously, we do not want large δ because that can only increase

the size of the code. To satisfy δ ≤ 1 − 1
q

we need q ≥ d + 1. Since q ≥ d + 1, we choose

q = Θ(d). Next, we need to estimate the value of 1 − Hq(δ). Below, we will use the fact
that log(1 + x) ≈ x for small x extensively.

1−Hq(δ) = 1− δ logq(q − 1) + δ logq δ + (1− δ) logq(1− δ)
= 1− logq(q − 1) + (1− δ) logq[(q − 1)(1− δ)] + δ logq δ

=
log
(

q
q−1

)
log q

+
log[(q − 1)/(d+ 1)]

(d+ 1) log q
− d

d+ 1

log(1 + 1/d)

log q

= Θ

(
1

d log q

)
.
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Since R(C) ≥ 1−Hq(δ)−o(1), we omit small terms and obtain R(C) = 1−Hq(δ). Moreover,
R(C) = 1

`
logqN , it implies the length of the code is

` =
logqN

R(C)
=

logqN

1−Hq(δ)
= O

(
d log q logqN

)
= O(d logN).

In short, we obtain q = Θ(d) and ` = O(d logN).
Example 2. The above construction 1 is interesting in the theoretical point of view as the

code length is optimal. However, due to the derandomization that makes the construction
explicite, the decoding algorithm is in exponential time in the dimension of the code, as it
relies on the decoding of Porat-Rothschild code. In this second construction, we rely on the
Reed-Solomon code, and thus obtain a polynomial-time decoding. The efficiency is not as
optimal as the construction 1 but the cost is only logN .

We also pick d = max

{
r

1− ρ
,

t2

(1− ε)− εt

}
. The Reed-Solomon code has δ = `−k+1

`
=

1 − k
`

+ 1
`
, whereas k is the dimension of code C. In this case, if we choose ` = kd then

δ > 1−1/d. Hence, to use Reed-Solomon code we need to pick q ≥ ` = kd such that qk ≥ N
or, equivalently, ` log q ≥ d logN .
For example, we can pick q = ` ≈ 2d logN

log(d logN)
and k ≈ logN

log q
. In this case, the length of the

code is ` = O
(

2d logN
log(d logN)

)
.

Ciphertext size of the TR System. We now consider the ciphertext size of scheme Γ, which
is the size of an AnoBEB ciphertext times the length of the Robust IPP code. By relying on
the Construction 2 of the IPP robust code in Appendix 4.2, our trace and revoke achieves the
ciphertext size complexity of Õ((r + t2)(n2) logN) which is the code length multiplied by the
LWE ciphertext size. This is an LWE-based scheme and thus a bit-encryption, as in [LPSS14].

From bit encryption to multi-bit encryption. As we want to encrypt an n-bit size session key,
we need to repeat our scheme n times and therefore, the ciphertext size becomes Õ((r +
t2)(n3) logN), which is still the most efficient trace and revoke scheme for standard black-box
tracing in the bounded collusion model.

Efficiency Comparison with other TR Systems in Bounded Collusion Model. For bounded
schemes where the number of traitors is small, the Agrawal et al.’s scheme [ABP+17], rely-

ing on learning with errors, is very efficient with ciphertext size Õ(r + t + n) where r is the
maximum number of revoked users, t the maximum number of traitors, and n the security
parameter. But they only support a weak level of tracing: black-box confirmation with the
assumption that the tracer gets a suspect set that contains all the traitors. Converting black-
box confirmation into black-box tracing requires an exponential time complexityin the number
of traitors. Concerning black-box trace and revoke in bounded collusion model, up to now,
the instantiation of the NWZ scheme gives the most efficient construction. However, as stated
in [ABP+17], the generic nature of their construction results in loss of concrete efficiency: when
based on the bounded collusion FE of [GVW12], the resulting scheme has a ciphertext size

growing at least as Õ((r + t)5Poly(n)); by relying on learning with errors, this blowup can be

improved to Õ((r+t)4Poly(n)), but at the cost of relying on heavy machinery such as attribute
based encryption [GVW13] and fully homomorphic encryption [GKP+13]. Our trace and re-

voke result, in contrast, achieves ciphertext size Õ((r + t2)(n3) logN) with black-box tracing
like in [NWZ16], which is the prevalent standard model for tracing and is by far more realistic
than the black-box confirmation as in [ABP+17]. The following Table 2 resumes the comparison
between Trace and Revoke schemes in bounded collusion model.
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Trace & Revoke
Schemes

Ciphertext
Size

Type of
Tracing Algorithm

Type of Pirate

ABPSY [ABP+17] Õ(r + t + n) Black-box confirmation Decoder

NWZ [NWZ16] Õ
(
(r + t)4Poly(N)

)
Black-box tracing Distinguisher

Ours Õ
(
(r + t2)n3logN

)
Black-box tracing Distinguisher

Table 2: Comparison between Trace and Revoke schemes in bounded collusion model. n is the security parameter, N is
the total number of recipients and r, t are respectively the bounds on the number of revoked users and traitors

5 Discussion and Conclusion

Let us discuss a few points of interest. We first compare our scheme with IPP and collusion
secure code-based schemes:

- We note that all known code-based schemes, e.g, [BS95,KY02,SW02,Sir06,PST06,FNP07,
BP08,BN08,CT09,PPS12,GMS12,FGLO15,CPP05], relying on collusion-secure code or on
IPP code, only support traitor tracing while we target the more challenging case of trace
and revoke construction.

- The length of our proposed robust IPP codes is approximately O((r + t2) logN). It is
essentially the length of the best collusion secure code, namely the Tardos code [Tar03]
which is O(t2(log N

θ
)), where θ is the error probability in identifying traitors (we note that

an interesting property in IPP and robust IPP codes is that one achieves zero error in
identifying traitors and that collusion secure code does not support revocation). As far as
one can construct an AnoBEB which is as efficient as the underlying PKE (which is the
case for LWE encryption as we achieve in this work), then one gets a robust IPP code
based trace and revoke scheme from our method which has the same ciphertext size as the
collusion secure code based traitor tracing schemes. Concerning IPP code schemes, by using
our LWE-based AnoBEB, we save a factor q in ciphertext efficiency in comparing to the IPP
code traitor tracing in [PST06] when instantiating the PKE with LWE encrypt

- Boneh-Naor [BN08] and Billet-Phan [BP08] provided solutions to tracing traitors from
imperfect pirate device, with short ciphertext size. Their schemes were built from robust
collusion secure codes and PKE. The main idea is to randomly choose a position in the code
and then encrypt the session key twice with the two keys at the chosen position. We can
completely follow these methods to obtain a traitor tracing scheme from a robust IPP code
and an AnoBEB with short ciphertext. In particular, when instantiating PKE with LWE,
their schemes of double size of the standard LWE encryption while we can get a scheme
with the same size of the standard LWE encryption, thus saving a factor 2 in efficiency.
Note also that, unlike our case, collusion secure code based scheme do not support public
tracing as all known methods for tracing in collusion secure code require the knowledge of
the secret information.

A few open questions remain:

– In trace and revoke systems, there are two main approaches to tackle the problem:
• restrict to bounded collusion model (motivated by the fact that this is a practical

scenario) and give efficient solutions;
• consider the full collusion setting (all users can become traitors) and improve theoretical

results as there are actually no efficient scheme, say, of ciphertext size which depends on
polylog(N), from the standard assumptions without relying on general iO or multi-linear
maps [BZ14] or positional witness encryption [GVW19] (for which there are currently
no algebraic implementations that are widely accepted as secure).

Recently, at STOC ’18, Goyal, Koppula and Waters [GKW18a], relying on Mixed Func-
tional Encryption with Attribute-Based Encryption, gave a traitor tracing scheme for full



24

collusion from the LWE assumption with polylog(N) ciphertext size. This avoids the use
of iO or multi-linear maps in Boneh-Zhandry scheme from CRYPTO ’14 [BZ14]. However,
this scheme support traitor tracing only. It is an interesting open question to construct a
polylog size trace and revoke scheme for full collusion from a standard assumption, since
combining tracing and revoking functionalities is always a difficult problem.

– In this paper we provided an LWE-based construction of AnoBEB which is as efficient as the
underlying LWE PKE. We raise an open question of constructing AnoBEB schemes from other
standard and well established encryptions, namely ElGamal, RSA, Paillier encryptions,
without a significant loss in efficiency. This seems to us to suggest an interesting and a
challenging problem, even for the simplest case of a system of N = 2 users. The solution
will directly give the most efficient trace and revoke systems for bounded collusion model
(by instantiating our trace and revoke scheme of Section 4) from DDH, RSA and DCR
assumptions, respectively.
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