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Abstract. The nonlinearity of Boolean function is an important crypto-
graphic criteria in the Best Affine Attack approach. In this paper, based
on the definition of nonlinearity, we propose a new design index of nonlin-
ear feedback shift registers. Using the index and the correlative necessary
conditions of de Bruijn sequence feedback function, we prove that when
n ≥ 9, the maximum nonlinearity Nl(f)max of arbitrary n−order de
Bruijn sequence feedback function f satisfies

3 · 2n−3 − (Zn + 1) < Nl(f)max ≤ 2n−1 − 2
n−1
2

and the nonlinearity of de Bruijn sequence feedback function, based on
the spanning tree of adjacency graph of affine shift registers, has a fixed
value. At the same time, this paper gives the correlation analysis and
practical application of the index.

Keywords: Nonlinear feedback shift register · Nonlinearity · De Bruijn
sequence · Feedback function · Adjacency graph.

1 Introduction

The nonsingular feedback shift register is a kind of register which is widely used
in communication and cryptographic algorithm structure. The cycle structure is
a commonly expression for describing the state graph of nonsingular feedback
shift registers, that is, how many cycles can the nonsingular feedback shift reg-
ister generate and what is the length of each cycle? The de Bruijn sequence is
a kind of nonsingular feedback shift register sequences with the maximal cy-
cle length, that is, its cycle structure has one cycle and its cycle length is 2n.
Because of its good pseudo-random property and high linear complexity, it is
widely used in communication coding [4]. At present, the main methods of con-
structing de Bruijn sequences are ”cycle joining” method and recursion method.
But up to now, there is no good algorithm to generate a large number of de
Bruijn sequences with good cryptography properties quickly [1, 2].

The feedback function of a n−order nonsingular feedback shift register has
the following form

f : f(x1, x2, · · · , xn) = x1 ⊕ f0(x2, · · · , xn)
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Its generating state graph has no bunches, namely, the state graph is composed
of cycles without common vertices [3]. Each state has the unique precursor and
successor. When the feedback function of the nonsingular feedback shift register
generates the de Bruijn sequence, it is called the de Bruijn sequence feedback
function, whose weight wt(f0) (namely, the number of 1 in the truth table of
f0 or when f0 is represented by the minor term, the number of minor terms)
is expressed as the weight of the de Bruijn sequence. In 1944, K. Posthumus
conjectured that the number of non-shift-equivalent de Bruijn sequences was
22

n−1−n. This conjecture was proved by de Bruijn in 1946 with the recursion
method based on graph theory, and named from this [5]. It should be noted that
the method is not constructive, and the sufficient conditions of generating de
Bruijn sequence feedback function are not clear.

Turan M S. comprehensively expounds the nonlinearity of de Bruijn sequence
feedback function for the first time in [6]. His paper focuses on the upper bound
of its nonlinearity, the number and construction of de Bruijn sequence feedback
function with nonlinearity 2, and points out that the nonlinearity can be im-
proved by using the cross-joining technology. Wang M gives the exact number
of de Bruijn sequence feedback function with nonlinearity 2 in [7], and improves
the upper bound of the number distribution of de Bruijn sequence feedback
function with nonlinearity Nl(f) < 2n−2 given in [7]. It should be pointed out
that the upper bound of the nonlinearity given in [6] is not compact, and the
significance and the maximum value of the nonlinearity of de Bruijn sequence
feedback function have not been solved yet. The purpose of this paper is to make
further research on this aspect.

The work of this paper is as follows. In Section 2, we briefly introduce the
related theorems of the cycle structure of nonsingular feedback shift register,
the necessary conditions of de Bruijn sequence feedback function, and the basic
knowledge of cycle cross-joining and adjacency graph. In Section 3, according
to the definition of nonlinearity and the analysis method of NLFSR (nonlinear
feedback shift register), a new design index of NLFSR is proposed, and the distri-
bution of the index value is preliminarily analyzed. In Section 4, in combination
with the design index of nonsingular feedback shift register proposed in Section
3, it is proved that the de Bruijn sequence feedback function constructed by the
spanning tree of adjacency graph of affine shift registers, has a fixed nonlinear-
ity. At the same time, the main conclusion of this paper is pointed out, that is,
when n ≥ 9, the maximum nonlinearity of arbitrary n−order de Bruijn sequence

feedback function is included in (3 · 2n−3 − (Zn + 1), 2n−1 − 2
n−1
2 ]. Compared

with the upper bound of the nonlinearity of general Boolean functions, the upper
bound is twice smaller. Therefore, this paper also shows that the feedback func-
tion of de Bruijn sequence does not have high nonlinearity in a certain order. In
the end, we use the upper bound of the number distribution of the nonlinearity
Nl(f) < 2n−2 of de Bruijn sequence feedback function given in [7], to explain
the upper bound of the theoretical number of de Bruijn sequence constructed
by the adjacency graph of affine shift registers.
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2 Preliminaries

2.1 The related basic theorems of the cycle structure of nonsingular
feedback shift register

The related theorems of cycle structure in this section are all from the Chapter
IV of reference [9], where Theorem 2.3 and 2.4 can be generalized by Theorem
2.2.
Theorem 2.1 [8] Let Nf denote the number of cycles in the state graph Gf
of a n−order nonsingular feedback shift register with f(x1, x2, · · · , xn) as the
feedback function, then there must be

1 ≤ Nf ≤ Zn = 1
n

∑
d|n

ϕ(d)2
n
d

where ϕ is Euler function, and Zn is the number of cycles in the cycle structure
of pure circulating shift register.
Theorem 2.2 [9] The feedback function f of any nonsingular feedback shift
register satisfies

Nf ≡ wt(f0)(mod2)
Theorem 2.3 [9] For any nonsingular linear feedback shift register, the number
of cycles in the state graph must be even.
Theorem 2.4 [9] Nf is an odd number, if and only if the highest order term
x2 · · ·xn appears in the polynomial representation of f(x1, x2, · · · , xn).

2.2 The necessary conditions of de Bruijn sequence feedback
function

When we study the necessary conditions of de Bruijn sequence feedback function
f : f(x1, x2, · · · , xn) = x1 ⊕ f0(x2, · · · , xn)

we mainly describe the necessary relations that f0 satisfies in the polynomial
and minor term representation. The following necessary conditions of de Bruijn
sequence feedback function are given from the polynomial and minor term rep-
resentation of f0 respectively.
Theorem 2.5 [10] Let f(x1, x2, · · · , xn) = x1 ⊕ f0(x2, · · · , xn) denote the de
Bruijn sequence feedback function, then the polynomial of f0 has the following
properties:

1. The number k of the monomials must be odd, and 3 ≤ k ≤ 2n−1 − 1;
2. There must be the highest order term x2 · · ·xn and 1, but one order terms
x2, · · · , xn cannot all appear;

3. Let Ki be the number of monomials that depend on xi(i = 2, · · · , n) in f0,
then there exists at least one even Ki.

Theorem 2.6 [11] In the minor term representation of f0 of de Bruijn sequence
feedback function, let the form of its minor term be xα2

2 xα3
3 · · ·xαn

n , and its set
be Sf0 , then it has the following properties:

1. |Sf0 | = wt(f0) ≡ 1(mod2);
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2. Zn − 1 ≤ |Sf0 | ≤ 2n−1 − Z∗n + 1, where Z∗n is the number of cycles in the
cycle structure of complementing cycling register, and

Z∗n = 1
2Zn −

1
2n

∑
2d|n

ϕ(2d)2
n
2d ;

3. Let gk be the number of minor terms whose superscript weight wt(α2, α3, · · · , αn)
is equal to k in f0, then for any k : 0 ≤ k ≤ n − 1, there exits gk 6= 0. In
particular, gk=0 = gk=n−1 = 1.

Based on the necessary conditions of de Bruijn sequence feedback function,
it is easy to give four commonly used cryptanalysis indexes on Boolean function,
that is, for de Bruijn sequence feedback function f ,

(1) it satisfies the balance;
(2) algebraic degree is n− 1;

(3) [6] nonlinearity


Nl(f) ≡ 2(mod4)

Nl(f) < 2n−1 − 2
n−1
2

Nl(f) ≤ 2n − 2Zn + 2

;

(4) [12] The Siegenthaler bound gives the relationship between the algebraic
degree and correlation-immunity, that is, the algebraic degree of t(0 ≤ t ≤
n − 1)−order resilient function is no more than n − t − 1. Combining with
(1) and (2), we can see that the de Bruijn sequence feedback function is the
0−order resilient function, that is, the correlation-immunity is 0, or called
un-correlation-immunity.

Expect for the case that the upper bound of nonlinearity is not compact, other
indexes are all determined values. In the third and fourth sections of this paper,
we will study the nonlinearity from the perspective of cycle cross-joining and
adjacency graph, so the corresponding basic knowledge is listed in the following.

2.3 The basic knowledge of cycle cross-joining and adjacency graph

2.3.1 The cycle cross-joining

Theorem 2.7 [13] let f(x1, x2, · · · , xn) be the feedback function of arbitrary
n−order nonsingular feedback shift register. And let α = (α1, α2, · · · , αn) be an
arbitrary state in the corresponding cycle structure and α∗ = (1⊕α1, α2, · · · , αn)
is its conjugate state. Therefore,

f1(x1, x2, · · · , xn) = f(x1, x2, · · · , xn)⊕ xα2
2 xα3

3 · · ·xαn
n

is also nonsingular and there is two cases in the following.

(1) if α and α∗ belong to two cycles respectively, whose lengths are l1 and l2
in the state graph Gf of nonsingular feedback shift register with f as the
feedback function, that is, the two cycles can be expressed as

(α = s0, s1, · · · , sl1−1), (α∗ = t0, t1, · · · , tl2−1).
Then the two cycles can be joined into one cycle whose length is equal to
l1 + l2, that is, the cycle can be expressed as

(α = s0, t1, · · · , tl2−1, α∗ = t0, s1, · · · , sl1−1).
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At this time the remaining cycles keep intact, then the state graph Gf of
nonsingular feedback shift register with f1 as the feedback function is ob-
tained;

(2) if α and α∗ belong to the same cycle whose length is equal to l in the
state graph Gf of nonsingular feedback shift register with f as the feedback
function, and

α = s0, α∗ = sk(0 < k < l).
Then the cycle can be crossed into two cycles whose lengths are equal to
l − k and k respectively, that is, the two cycles can be expressed as

(α = s0, sk+1, sk+2, · · · , sl−1), (α∗ = sk, s1, · · · , sk−1).
At this time the remaining cycles keep intact, then the state graph Gf1
of nonsingular feedback shift register with f1 as the feedback function is
obtained.

As the name suggests, the cycle cross-joining is to join once, and then cross
once (or cross once, and then join once). According to Theorem 2.7, it has three
types shown in Fig.1 [14].

Fig. 1. Three types of the cycle cross-joining

From Theorem 2.7, let xα2
2 xα3

3 · · ·xαn
n be the corresponding minor term for a

conjugate state pair (α, α∗). In [15], it is proved that any one de Bruijn sequence
feedback function can be generated from another one by repeated application of
the cycle cross-joining operation, that is, through the third type. In [16], it is
said that in one state cycle, a pair of intersecting chords between two conjugate
state pairs, namely, corresponding two minor terms, is called a cross-join pair.
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The reference [17] shows that the maximum cycle cross-joining operation for one
de Bruijn sequence feedback function translating into another one is 2n−2 − 1.
In the following, we will study the adjacency graph from generated de Bruijn
sequence feedback functions, and explain the weight wt(f0) range of de Bruijn
sequence feedback function and the reason why the cycle cross-joining method
can generate all de Bruijn sequence feedback functions.

2.3.2 The adjacency graph

Definition 2.1 [13] Let f(x1, x2, · · · , xn) be the feedback function of arbitrary
n−order nonsingular feedback shift register, whose state graph Gf has Nf cycles.
Let Γf be the adjacency graph of Gf , then Gf has the cycle σi while Γf has the
vertex gi(1 ≤ i ≤ Nf ). Let α and α∗ be an arbitrary conjugate state pair in Gf .
If α is in the cycle σi and α∗ is in the cycle σj respectively (i can be j), we use
one line to connect the vertex gi and gj , and let this line denote (α2, · · · , αn).

From Definition 2.1, we can see immediately that the number of vertices in
the adjacency graph Γf of Gf is equal to Nf , and the number of lines in the
adjacency graph Γf is equal to 2n−1. At the same time, the line (α2, · · · , αn)
exactly corresponds to the minor term xα2

2 xα3
3 · · ·xαn

n , thus the method of con-
structing de Bruijn sequence feedback function based on the spanning tree of
adjacency graph is obtained immediately, namely, Lemma 2.1.

Lemma 2.1 [13] If Γf satisfies the following two conditions:

(1) There is a spanning tree in Γf ;

(2) The spanning tree of Γf is composed of Nf − 1 in Γf , then

f ′(x1, x2, · · · , xn) = f(x1, x2, · · · , xn)⊕
Nf−1∑
i=1

x
α

(i)
2

2 x
α

(i)
3

3 · · ·xα
(i)
n
n

is a de Bruijn sequence feedback function.

In this paper, Γ f
′

f is used to represent the spanning tree of Γf corresponding

to the de Bruijn sequence feedback function f ′, then the number of lines in Γ f
′

f

is equal to Nf − 1 = wt(f ⊕ f ′). Theorem 2.8 shows that there is a one-to-one
relationship between the de Bruijn sequence feedback function with the extremal
weight and the spanning tree of adjacency graph of two special feedback shift
registers.

Theorem 2.8 [13] The de Bruijn sequence feedback function with the minimum
weight Zn−1 has a one-to-one correspondence with the spanning tree in Γx1

, so
its number is equal to the number of the spanning trees in Γx1

; The de Bruijn
sequence feedback function with the maximum weight 2n−1 −Z∗n + 1 has a one-
to-one correspondence with the spanning tree in Γx1⊕1, so its number is equal
to the number of the spanning trees in Γx1⊕1.

The relationship between the de Bruijn sequence feedback functions with the
remaining weight can be described by the following Theorem 2.9.

Theorem 2.9 [13] Let f(x1, x2, · · · , xn) = x1⊕g(x2, x2, · · · , xn)⊕h(x2, x2, · · · , xn)
denote a n−order de Bruijn sequence feedback function, where f0(x1, x2, · · · , xn) =
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x1⊕g(x2, x2, · · · , xn) is also a de Bruijn sequence feedback function. If g(x2, x2, · · · , xn)
and h(x2, x2, · · · , xn) are expressed as the minor term representation, then

(1) The two minor terms ma,mb can be found in h(x2, x2, · · · , xn) so that
x1 ⊕ g(x2, x2, · · · , xn)⊕ma ⊕mb

is still a de Bruijn sequence feedback function;
(2) If there is no same minor term between g(x2, x2, · · · , xn) and h(x2, x2, · · · , xn),

then
wt(f) = wt(g) + wt(h) = wt(f0) + wt(h)

where wt(h) is an even number, and it can divide all minor terms in h(x2, x2, · · · , xn)
into wt(h)/2 pairs:

ma1 ,mb1 ;ma2 ,mb2 ; · · · ;mawt(h)/2
,mbwt(h)/2

so that fK(x1, x2, · · · , xn) = f0(x1, x2, · · · , xn) ⊕
K∑
i=1

(mai ⊕mbi) are all de

Bruijn sequence feedback functions, and wt(fR) = wt(f0)+2K,R = 1, 2, · · · , wt(h)/2.

If there are the same minor terms between g(x2, x2, · · · , xn) and h(x2, x2, · · · , xn)
according to Theorem 2.9.(2), the above theorem also holds, except that the
weight wt(fR) should be subtracted by twice the number of the same minor
terms. In fact, Theorem 2.9 states that all de Bruijn sequence feedback functions
can be generated by adding cross-join pairs to all de Bruijn sequence feedback
functions with a certain weight. If there is no same minor terms in every cy-
cle cross-joining operation, all de Bruijn sequence feedback functions with all
odd number weight in the weight range can be traversed to generate, and its
generated dual function is necessary to reach the maximum cycle cross-joining
operation. At present, for the number distribution on the weight of de Bruijn
sequence feedback function, there are only conjectures [18], and there is no sub-
stantive progress.

3 A new design index of NLFSR

In this section, aiming at the definition of the nonlinearity of Boolean function
and based on the analysis method of NLFSR, a new design index of NLFSR
is proposed, which is also the first time to put forward a new point of view
on the research significance of the nonlinearity of feedback function from the
perspective of the cycle structure of NLFSR, and then the analysis of related
index value is carried out.

3.1 The new research significance of nonlinearity of NLFSR
feedback function

In general, the nonlinearity of Boolean function can be described by the following
Definition 3.1.
Definition 3.1 [19] Let f(x) be a n− elemental Boolean function, and `n be
the set of all n−elemental affine functions. The nonlinearity of f(x) is defined as
Nl(f) = min

l∈`n
d(f, l), where d(f, l) is the distance between f(x) and l(x), namely,



8 Zhou C. et al.

d(f, l) = |{x ∈ Fn2 |f(x) 6= l(x)}|.
In fact, over F2, d(f, l) = wt(f ⊕ l).

Of course, the nonlinearity can also be defined from the Walsh spectrum
analysis of Boolean functions. Therefore, in a cryptosystem with the NLFSR
component, the common way of cryptographic function analysis is to convert
the feedback polynomial of NLFSR into the corresponding Boolean function
(Substitution and Direct method). By discussing the properties of Boolean
function, such as the Walsh spectrum distribution of Boolean function, NLFSR
can be analyzed. The conclusion is as follows:

(1) Substitution: Because of the limitation of resources, the analyzed order
is usually replaced by the number of undetermined elements. Therefore,
when a NLFSR feedback function is converted into a Boolean function, the
key points of its Walsh spectrum value that affect the balance, correlation-
immunity and maximum Walsh spectrum value, also affect the security of
the cryptosystem;

(2) Direct method: Through the NLFSR feedback function which is directly
used to analyze the state graph of the driving sequences, it can filter the
possible maximum linear sequences (linear complexity of the sequences) or
weak keys (short cycle length). Finally, this method may need to determine
the cycle structure of NLFSR.

At present, the design index directly for NLFSR does not appear. Usually
when the part of (1) and (2) is just satisfied (mainly for analysis methods), the
design way is to adjust the taps of NLFSR and the nonlinear part of feedback
function.

In view of the second kind on direct analysis and determination of the cycle
structure of NLFSR, because the cycle structure of NLFSR with large orders
cannot be determined, and the cycle structure of affine shift register with large
orders is solvable to a certain extent, we claim that the distance from a given
NLFSR to any affine shift register is an important characterization index of
the NLFSR, which can be described by the difference of each cycle in the cycle
structure of NLFSR, namely. Definition 3.2.
Definition 3.2 The distance index value k(k ≥ 1) from a given NLFSR to
any affine shift register, refers to that the cycle structure of any affine shift
register can be obtained from the given cycle structure of NLFSR through at
least k−time cycle joining or crossing.

In order to explain the rationality of the definition of distance index, it is
necessary to illustrate that any NLFSR has a unique distance index value k. We
note that the feedback function of all nonsingular feedback shift registers can be
expressed as follows

f : f(x1, x2, · · · , xn) = x1 ⊕ f0(x2, · · · , xn)
where f0(x2, · · · , xn) can be represented by minor terms such as xα2

2 xα3
3 · · ·xαn

n .
In fact, the superscript sign α2α3 · · ·αn of minor term is equal to the (n −
1)−elemental vector with the value 1 in the truth table of f0. Therefore the
feedback function of any nonsingular feedback shift register can be expressed
as a combination of different minor terms with XOR addition. Let two different



On the Maximum Nonlinearity of De Bruijn Sequence Feedback Function 9

feedback functions of nonsingular feedback shift register be f, g, whose difference
sum of minor terms f0 ⊕ g0 is uniquely determined. According to Theorem 2.7,
a cycle structure can realize its operation of cycle joining or crossing by adding
minor terms, thus another cycle structure can be obtained from it. That is to say,
for two cycle structures of the two different nonsingular feedback shift registers,
when one cycle structure is converted into another though the least number of
times on cycle joining or crossing, this number value is fixed, namely, it is equal
to the weight wt(f0⊕ g0) of their difference sum of minor terms. Then there is a
fixed minimum number of times from a given cycle structure of NLFSR to each
cycle structure of affine shift register, and the distance index of NLFSR refers to
the least number of times among all the fixed times, so any NLFSR has a unique
distance index value k. Thus the index has the uniqueness in setting. The smaller
the value k is, the higher the similarity between the cycle structure of the given
NLFSR and affine shift register is. This distance index is usually related to the
function distance (such as nonlinearity). It is a characterization of the distance
from a single state to a single state cycle based on the cycle structure of non-
singular feedback shift register, which is the reflection of the periodic property
of shift register. The following Theorem 3.1 gives the relationship between the
nonlinearity of Boolean function and the distance index.
Theorem 3.1 For the feedback function of any n−order NLFSR, the distance
index value from its NLFSR to any affine shift register satisfies

k = Nl(f)/2.

Proof. In fact, for the feedback function of any n−order NLFSR, inspired by the
nonlinearity of Boolean function, its x1 is independent, and if the affine function
l does not contain x1 , then wt(f⊕ l) = 2n−1, so the affine function must contain
x1. Therefore, it can be assumed that l = x1 ⊕ l0, then we have

Nl(f) = min
l∈`n

wt(f ⊕ l) = 2 min
l∈`n

∑
x∈Fn−1

2

(f ⊕ l)(x) = 2 min
l0∈`n−1

wt(f0 ⊕ l0).

By the minor term representation, it can imply

f0 ⊕ l0 =
Nl(f)/2∑
i=1

x
αi

2
2 x

αi
3

3 · · ·x
αi

n
n .

Thus we can obtain

f = l ⊕
Nl(f)/2∑
i=1

x
αi

2
2 x

αi
3

3 · · ·x
αi

n
n .

If there is a distance index value k less than half of the nonlinearity Nl(f)/2 ,
the following inequality can be constructed according to Definition 3.2, namely,

2wt(f0 ⊕ l0) = 2k < Nl(f).
This is contrary to the minimization property of Nl(f); On the contrary, if
there is a distance index value k larger than half of the nonlinearity Nl(f)/2,
it is contrary to the definition of distance index value. Therefore k can only be
equal to Nl(f)/2. So the theorem is proved.

As mentioned above, the nonlinearity refers to the difference between states,
while the distance index refers to the difference between state cycles. In the
analysis of cryptosystems with NLFSR components, if each state cycle in the
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cycle structure of one certain NLFSR is very similar to state cycles of some affine
(linear) shift registers, there will be maximum linear sequences (linear complexity
of the sequences) or weak keys (short cycle length). Therefore, NLFSRs can be
equated with LFSRs in cryptanalysis, and the cryptosystem with NLFSRs can
be analyzed by the fast correlation attack and algebraic attack. For example, a de
Bruijn sequence is generated by adding the value 0 to one m−sequence, and the
distance index value of its corresponding NLFSR is 1, which makes the generated
sequence have a large linear sequence. Therefore, the distance index from a given
NLFSR to any affine shift register proposed in this section is an important factor
to describe its security, so any cryptosystem with NLFSR components needs to
carefully consider the nonlinearity of feedback function of NLFSR.

3.2 The analysis and application of distance index

In this section, we first analyze the property and number of feedback function
of NLFSR with distance index value 1, then give the upper bound of the dis-
tance index according to the existing general bound and balanced bound of the
nonlinearity of Boolean function, and point out that the first method on the
substitution of feedback function of NLFSR has defects.
Theorem 3.2 The number of cycles in the cycle structure of n(n ≥ 3)−order
NLFSR with distance index value 1, is odd, and its feedback function by the
polynomial representation must contain x2 · · ·xn.

Proof. According to Theorem 2.3, the number of cycles in the state graph of non-
degenerate n−order linear feedback shift register must be even, so the number
of cycles in the cycle structure of n−order NLFSR with distance index value 1,
is odd, no matter whether the cycles are joined or crossed. Therefore, according
to Theorem 2.4, its feedback function by the polynomial representation must
contain x2 · · ·xn, so the theorem is proved.

Theorem 3.3 The number of n(n ≥ 3)−order NLFSR with distance index value
1, is 2n · (2n−1 − n).

Proof. When n ≥ 3 , the feedback function of any affine shift register can gener-
ate the feedback function with nonlinearity 2 of NLFSR by adding the 2n−1−type
minor term xα2

2 xα3
3 · · ·xαn

n . If wt(α2, α3, · · · , αn) or wt(α2, α3, · · · , αn) = 1, then
when the added minor term xα2

2 xα3
3 · · ·xαn

n is expanded into the polynomial
representation, the linear term will inevitably appear, resulting in repetition.
Therefore, the number of NLFSR with distance index value 1 without repeti-
tion, is equal to the product of the type of all the feedback functions of affine
shift register and the type of superscript weight wt(a2, a3, · · · , an) > 1 on the
added minor term, that is,

2n · (2n−1 −
(
n− 1
n− 2

)
−
(
n− 1
n− 1

)
) = 2n · (2n−1 − n)

so the theorem is proved.

For all n−elemental Boolean functions f(x), its Nl(f) has a maximum value,
which can be written as Nl(f)max. Because the distance index is closely related
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to the nonlinearity of Boolean function, the general bound and balance bound
of the nonlinearity of Boolean function are given first.

Theorem 3.4 [20] (General bound) Let f(x) be a n−elemental Boolean func-
tion, then

(1) when n = 3, 5, 7, Nl(f)max = 2n−1 − 2
n−1
2 ;

(2) when n ≥ 9 and n is odd, 2n−1 − 2
n−1
2 ≤ Nl(f)max ≤ 2n−1 − 2b

n
2 c−1.

It is still an open problem about the nonlinearity bound of balanced function
and correlation-immunity function. At present, using the fact that the nonlin-
earity of n−elemental Boolean function is equivalent to the covering radius of
the first order reed-Muller code, the nonlinearity of balanced function is studied
and some results are obtained, that is, Theorem 3.5.

Theorem 3.5 [21] (Balanced bound) Let f(x) be a n(n ≥ 3)− elemental bal-
anced Boolean function, then the nonlinearity of f(x) satisfies

Nl(f)max ≤

{
2n−1 − 2

n−2
2 − 2 n = 2t(t ≥ 2)⌊⌊

2n−1 − 2
n−2
2

⌋⌋
n = 2t+ 1(t ≥ 1)

where
⌊⌊

2n−1 − 2
n−2
2

⌋⌋
is the maximum even number less than or equal to

2n−1 − 2
n−2
2 .

However, it is an open problem whether the upper bound is compact for a
certain n, so we give an less compact upper bound of the distance index value,
that is, Theorem 3.6.

Theorem 3.6 The maximum value kmax of distance index of any n(n ≥ 3)−order
NLFSR satisfies

kmax ≤


2n−2 − 2

n−3
2 n = 2t+ 1(t ≥ 1)

2n−2 − 2
n−2
2 n = 4, 6, 8[

2n−2 − 2
n−2
2 , 2n−2 − 2b

n−1
2 c−1

]
n = 2t(t ≥ 5)

Proof. It is easy to prove by the balanced bound of (n− 1)−elemental Boolean
function.

We can give an example to show that when n = 3, the distance index value
can only be 1, because only one nonlinear term x2x3 can be added. At the
same time, the reference [22] points out that when n ≥ 15, we can construct odd

number elemental balanced Boolean functions such that Nl(f) ≥ 2n−1−2
n−1
2 . In

fact, it can be seen from Theorem 3.6 that when n ≥ 3, we can construct an odd

number elemental balanced Boolean function such that Nl(f) = 2n−1 − 2
n−1
2 .

As described in the previous section, in practical application, some people di-
rectly analyze the nonlinearity of feedback function of NLFSR with small orders
after the analyzed order is replaced by the number of undetermined elements. In
fact, it is likely to lead to the increase or decrease of the nonlinearity, and then
lead to the increase or decrease of the distance index value of NLFSR, resulting
in the leakage of hidden information. Here is a simple example.
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For example 3.1 A 10−elemental NLFSR feedback function f = x1⊕x21 · · ·x91(x110⊕
x010), whose distance index value is 2, by the replacement of undetermined el-
ements, becomes a 9−elemental NLFSR feedback function f = y1 + y2

1 · · · y91,
whose distance index value is 1.

4 The upper bound of the nonlinearity of de Bruijn
sequence feedback function

It can be seen from Theorem 3.6 that the upper bound of the nonlinearity
of de Bruijn sequence feedback function, given in the reference [6], is exactly

corresponding to the maximum value Nl(f) = 2n−1 − 2
n−1
2 of distance index.

However, for some special structure of de Bruijn sequence feedback function, its
nonlinearity may be not more than Zn. First, the estimate of Zn can be measured
by the following inequality, namely, Lemma 4.1.
Lemma 4.1 When n ≥ 9, 2n−3 > Zn.

Proof. Because of the expansion of Zn and Euler’s theorem
n =

∑
d|n

ϕ(d)

it can be seen that this lemma needs to prove the following inequality∑
d|n

ϕ(d) · 2n−3 >
∑
d|n

ϕ(d) · 2n
d

(1)
Suppose that the factorization of n is 1 = d1 < d2 < · · · < dk = n, then when
ϕ(n) ≥ 8 and n ≥ 9, we have

(ϕ(1) + ϕ(n)) · 2n−3 ≥ 2n + 2n−3 > 2n + 2n > 2n + ϕ(n) · 2 = ϕ(1) · 2n + ϕ(n) · 2.

And when n ≥ 9, for any i : 1 < i < k, there is always 2n−3 > 2
n
di . Therefore, it

can be seen from Euler’s theorem that when ϕ(n) ≥ 8 and n ≥ 9, the inequality
(1) is established. The following proof is the fact that when n ≥ 30, ϕ(n) ≥ 8.

Let the prime factorization of n be ps11 p
s2
2 · · · p

st
t . The following is discussed

in details:

(1) For n = p1
t1(t1 ≥ 1), because ϕ(n) ≥ 8, namely, n · (1 − 1/p1) ≥ 8, then it

can be seen that n ≥ 16;
(2) For n = p1

t1p2
t2(t1 ≥ 1, t2 ≥ 1), because ϕ(n) = n·(1−1/p1)·(1−1/p2) ≥ 8,

it can be seen that n ≥ 24;
(3) When n = p1

t1p2
t2p3

t3(t1 ≥ 1, t2 ≥ 1, t3 ≥ 1), n ≥ p1p2p3. Because of the
fact that Euler function is a multiplicative function, it can be seen that

ϕ(n) ≥ ϕ(p1p2p3) = ϕ(p1) · ϕ(p2) · ϕ(p3).
At this time, Substitute the smallest prime group (p1, p2, p3) = (2, 3, 5) into
the above inequality to know that when n ≥ 30, ϕ(n) ≥ 8.

And so on, when the number of prime factors of n is more than 3, it can be seen
that ϕ(n) > 8. Therefore, when n ≥ 30, ϕ(n) ≥ 8.

To sum up, it can be seen from the query of Euler function table that when
n ≥ 9, only ϕ(9) = 6, ϕ(10) = 4, ϕ(14) = 6, ϕ(18) = 6, and the rest ϕ(n) ≥ 8.
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By Substituting n = 9, 10, 14, 18 into the inequality (1), we can see that the
inequality (1) holds, so lemma is proved.

In combination with Lemma 4.1 , Theorem 4.1 gives the fixed value of the
nonlinearity of de Bruijn sequence feedback function, which is constructed by
the spanning tree of adjacency graph of affine shift registers.
Theorem 4.1 When n ≥ 9, for all n−order de Bruijn sequence feedback func-
tions f constructed by the spanning tree Γ fl of adjacency graph of affine shift
registers l, their nonlinearity is the fixed value, namely, Nl(f) = 2(Nl − 1).

Proof. According to Lemma 2.1, let the n−order de Bruijn sequence feedback
function constructed by Γ fl be

f = x1 ⊕ l0 ⊕
Nl−1∑
i=1

x
α

(i)
2

2 x
α

(i)
3

3 · · ·xα
(i)
n
n .

And we can assume that the distance index of corresponding NLFSR is k(k <
Nl − 1), then we can get

f = x1 ⊕ l′0 ⊕
k∑
i=1

x
β
(i)
2

2 x
β
(i)
3

3 · · ·xβ
(i)
n
n .

Therefore, we can obtain the equality

l ⊕ l′ =
Nl−1∑
i=1

x
a
(i)
2

2 x
a
(i)
3

3 · · ·xa
(i)
n
n ⊕

k∑
i=1

x
β
(i)
2

2 x
β
(i)
3

3 · · ·xβ
(i)
n
n

(2)
Because wt(l0⊕ l′0) = 2n−2, and when n ≥ 9, it can be obtained that 2(Zn−1) <
2n−2 from Lemma 4.1, then according to Theorem 2.1, we can obtain that

Nl − 1 + k < 2(Nl − 1) ≤ 2(Zn − 1) < 2n−2.
Therefore, the equality (2) is not true, then the hypothesis is not true. So k =
Nl − 1, and it is proved by Theorem 3.1.

Then in combination with Theorem 2.8, we can immediately get the following
Corollary 4.1.
Corollary 4.1 When n ≥ 9, the nonlinearity of de Bruijn sequence feedback
function with the minimum weight Zn − 1 is 2(Zn − 1), and the nonlinearity of
de Bruijn sequence feedback function with the maximum weight 2n−1 − Z∗n + 1
is 2(Z∗n − 1).

In this section, we will combine with the necessary conditions of de Bruijn
sequence feedback function and the distance index of NLFSR, then give the
upper bound range of the nonlinearity of de Bruijn sequence feedback function,
that is, Theorem 4.2.
Theorem 4.2 When n ≥ 9, for the arbitrary n−order de Bruijn sequence feed-
back function f , its maximum nonlinearity Nl(f)max satisfies

3 · 2n−3 − (Zn + 1) < Nl(f)max ≤ 2n−1 − 2
n−1
2 .

Proof. When n ≥ 9, let l = x1 + l0 be the feedback function of n−order nonsin-
gular affine shift register, then according to Theorem 2.1 and 2.3, its state graph
Gl has Nl(2 ≤ Nl ≤ Zn, Nl = 2s(s ≥ 1)) cycles and Γl is the adjacency graph of
Gl. At the same time, according to Lemma 2.1 and Theorem 4.1, the n−order
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de Bruijn sequence feedback function is generated by directly the Nl − 1−time
cycle joining in the cycle structure of affine shift register, and its nonlinearity is
Nl(f) = 2(Nl − 1). If l 6= x1, x1 ⊕ 1, because of the weight wt(l0) = 2n−2 of the
feedback function l0 of affine shift register, then the de Bruijn sequence feedback
function f constructed by all the spanning tree Γ fl of adjacency graph of affine
shift registers has a weight range, whose weight value is odd number in

[
2n−2 −Nl + 1, 2n−2 +Nl − 1

]
(2 ≤ Nl < Zn, Nl = 2s(s ≥ 1))

(3)

Next, we investigate the difference between the nonlinearity of all de Bruijn
sequence feedback functions with the weight range (3). Let any two de Bruijn
sequence feedback functions f1, f2(f1 6= f2) constructed by the two spanning

trees Γ f1l1 , Γ
f2
l2

respectively be equal in their weight, namely, we can assume that

f1 = l1 ⊕
Nl1
−1∑

i1=1

x
α

(i1)

2
2 x

α
(i1)

3
3 · · ·xα

(i1)
n
n , f2 = l2 ⊕

Nl2
−1∑

i2=1

x
α

(i2)

2
2 x

α
(i2)

3
3 · · ·xα

(i2)
n
n

then wt(f1⊕x1) = wt(f2⊕x1) = m,m ∈ (3). It can be reasonably assumed that
there is a maximum valueNl(f)max on all de Bruijn sequences feedback functions
with the weight m, and at this time it is assumed that Nl(f)max corresponds to
fmax, which is generated by added µ1 minor terms to f1, or µ2 minor terms to
f2, namely,

fmax = l1 ⊕
Nl1
−1∑

i1=1

x
α

(i1)

2
2 x

α
(i1)

3
3 · · ·xα

(i1)
n
n ⊕

µ1∑
j=1

x
α

(j)
2

2 x
α

(j)
3

3 · · ·xα
(j)
n
n

= l2 ⊕
Nl2
−1∑

i2=1

x
α

(i2)

2
2 x

α
(i2)

3
3 · · ·xα

(i2)
n
n ⊕

µ2∑
t=1

x
α

(t)
2

2 x
α

(t)
3

3 · · ·xα
(t)
n
n

.

Therefore, we can obtain that

l1 ⊕ l2=
Nl1
−1∑

i1=1

x
α

(i1)

2
2 x

α
(i1)

3
3 · · ·xα

(i1)
n
n ⊕

u1∑
j=1

x
α

(j)
2

2 x
α

(j)
3

3 · · ·xα
(j)
n
n ⊕

Nl2
−1∑

i2=1

x
α

(i2)

2
2 x

α
(i2)

3
3 · · ·xα

(i2)
n
n ⊕

u2∑
t=1

x
α

(t)
2

2 x
α

(t)
3

3 · · ·xα
(t)
n
n

.

For l1⊕ l2 with the minor term representation of l0, because its weight is wt(l1⊕
l2) = 2n−2, then from the fact that the number of minor terms on both sides of
the above equality is equal, it can be obtained that

Nl1 − 1 + x1 +Nl2 − 1 + x2 ≥ 2n−2.

According to Theorem 3.1, we can get
Nl(f)max=Nl(f1) + 2x1 = 2(Nl1 − 1 + x1) = Nl(f2) + 2x2 = 2(Nl2 − 1 + x2).

Then we can imply that Nl(f)max ≥ 2n−2.

Since the weight range of n−order de Bruijn sequence feedback function is[
Zn − 1, 2n−1 − Z∗n + 1

]
combining with Corollary 4.1, next, we investigate the nonlinearity of the feed-
back function of de Bruijn sequence, whose weight value is odd number in[

Zn + 1, 2n−2 −Nl − 1
]

(2 ≤ Nl < Zn, Nl = 2s(s ≥ 1))
(4)
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and [
2n−2 +Nl + 1, 2n−1 − Z∗n − 1

]
(2 ≤ Nl < Zn, Nl = 2s(s ≥ 1))

(5)
According to Theorem 2.9, the de Bruijn sequence feedback function with the
weight range (4) can always be generated by adding minor terms to the de Bruijn
sequence feedback function with the minimum weight Zn−1 or the weight range
(3); The de Bruijn sequence feedback function with the weight range (5) can
always be generated by adding minor terms to the de Bruijn sequence feedback
function with the maximum weight 2n−1 − Z∗n + 1 or the weight range (3).

Therefore, it can be reasonably assumed that there is a maximum value
Nl(g)max on all de Bruijn sequences feedback functions g with the weight range
(4), and at this time it is assumed that g can be generated by added y1 minor
terms to the de Bruijn sequence feedback function with the minimum weight
Zn − 1, or y2 minor terms to the de Bruijn sequence feedback function with
the weight range (3). Then according to Corollary 4.1 and the above analysis of
maximum nonlinearity Nl(f)max in the weight range (3), we can get

Nl(g)max = 2(Zn − 1) + 2y1 = Nl(f)max + 2y2.
And the sum y1 + y2 of the number of added minor terms is equal to the length

2n−2 −Nl − 1− (Zn − 1)
of the weight range (4). Therefore, we can obtain that

Nl(g)max = Nl(f)max/2 + (2n−2 −Nl − 1) ≥ 3 · 2n−3 − (Nl + 1).
Because Nl < Zn, we can imply that

Nl(g)max > 3 · 2n−3 − (Zn + 1).
Similarly, from the analysis of the maximum value Nl(g)max on the nonlin-

earity of de Bruijn sequence feedback function with the weight range (5), it can
be implied that

Nl(g)max > 3 · 2n−3 − (Zn + 1).
To sum up, in combination with Theorem 3.6, the theorem is proved.

The references [7, 23] indicate that when Nl(f) < 2n−2, the l in its satisfied
Nl(f) = min

l∈`n
wt(f + l)

is unique. At the same time, The reference [7] points out that if Nl(f) < 2n−2,
the number t of f with the nonlinearity Nl(f) is

t <

(
2n−1

Nl(f)/2

)
· 2n.

Thus when n ≥ 9, according to Theorem 4.1, the upper bound of the theo-
retical number of all de Bruijn sequence feedback functions constructed by the
spanning tree of adjacency graph of affine shift registers, should be

2n ·
Zn/2∑
i=1

(
2n−1

2i− 1

)
At present, the methods of constructed de Bruijn sequence feedback function

based on the spanning tree of adjacency graph of affine shift registers are detailed
in [24–26]. In fact, the number of de Bruijn sequence feedback functions with the
fixed value of nonlinearity is considerable according to the upper bound of the
theoretical number. However, when its order is large, the difference between the



16 Zhou C. et al.

fixed value and the maximum value of nonlinearity is so far. From the significance
of distance index of NLFSR, it can be seen that the de Bruijn sequence feedback
function constructed based on the spanning tree of adjacency graph of affine shift
registers does not have good cryptographic properties. Therefore, it is necessary
to study the construction of de Bruijn sequence feedback function with maximum
nonlinearity satisfying the upper bound range.

5 Conclusion

In this paper, the problem on de Bruijn sequence feedback function with max-
imum nonlinearity is studied, and the upper bound range of its nonlinearity is
improved again. At the same time, the relationship between the distance in-
dex of NLFSR and the nonlinearity of Boolean function is pointed out, as well
as its analysis and application in cryptosystem. The next research direction of
this paper is to construct the de Bruijn sequence feedback function with the
nonlinearity satisfying the upper bound range and study its number distribu-
tion. Meanwhile, the number distribution of distance index of NLFSR is also a
problem and worthy of study.

6 Appendix

The supplement of Theorem 4.2 proof
In the process of proving Theorem 4.2, we directly give when l 6= x1, x1 ⊕ 1, its
state graph Gl has Nl(2 < Nl ≤ Zn, Nl = 2s(s ≥ 1)) cycles. In fact, because
of the weight wt(l0) = 2n−2 of the feedback function l0 of affine shift register,
according to Theorem 2.2, we can conclude that Nl = 2s(s ≥ 1). The following
proof is the fact that l 6= x1, Nl < Zn.

According to the reference [3], the feedback function of all nonsingular n−order
linear feedback shift registers corresponds to a n−degree polynomial over F2 such
that f(0) = 1, by the isomorphic mapping of cyclic left shift. Firstly, the state
graph Gx1 of pure circulating shift register is given by∑

d|n
M(d)[d]

where • [∗] means that the number of cycles is •, whose cycle length is ∗, and

M(d) = 1
d

∑
d′|d

µ(d′)2
d
d′

where µ is Möbius function. Using the Möbius transform theorem, we can get
Nx1 =

∑
d|n

M(d) = Zn.

Therefore, the above proposition is converted to prove that the number of cycles
in the state graph of all n−order linear feedback shift registers is less than Zn.
According to the classification of f , it can be divided into the following situations.

(1) When f is an irreducible polynomial with degree n, its cycle structure is
expressed as

Gf→l = 1[1] + 2n−1
p(f) [p(f)] [27]
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where the period of f is expressed as p(f). Because p(f) > n, except for
the cycle formed by the all zero state, the cycle lengths of the remaining
cycles are all greater than n, while the cycle lengths of pure circulating shift
register are not more than n. Thus 2n−1

p(f) < Zn − 1.

(2) When f = ge, e > 1 such that g is an irreducible polynomial with degree
less than n. If p(g) ≥ n, as shown in (1), the number of cycles is less than
Zn; Then p(g) < n. We can assume that the degree of g is ng, such that
2ng − 1 < n, ng · e = n, and based on the reference [28], its correspongding
cycle structure is expressed as

Gf→l = 1[1] + 2ng−1
p(g) [p(g)] +

m−1∑
i=1

2ng·2i−2ng·2i−1

2i·p(g) [2i · p(g)] + 2ng·e−2ng·2m−1

2m·p(g) [2m · p(g)]

where m = min{i
∣∣i ∈ N, 2i ≥ e}. Because p(g) ≤ 2ng − 1, by substituting

it into the above formula, we can conclude that its number of cycles is less
than Zn.

(3) When f = g · h, let the degrees of g, h are ng, nh respectively, such that
ng + nh = n. Based on the reference [29], its correspongding cycle structure
is expressed as

Gf→l = 1[1] + 2ng−1
p(g) [p(g)] + 2nh−1

p(h) [p(h)] + (2ng−1)·(2nh−1)
[p(g),p(h)] [[p(g), p(h)]]

where [p(g), p(h)] is expressed as the least common multiple of p(g), p(h).
From the above, we can see that there must be a smaller than n between
p(g) and p(h). If suppose that p(g) < n, in combination with 2ng − 1 < n,
we can conclude that its number of cycles is less than Zn.

(4) In connection with (2) and (3), through an iterative approach, we can see
that when f 6= xn + 1, the number of cycles in the corresponding cycle
structure is less than Zn.

When the feedback function of any linear feedback shift register adds the con-
stant 1 to become an affine function, its correspongding sequence can be gen-
erated from Gf ·(1+x)→l/Gf→l [30]. Therefore, we know that it does not change
the number of non-shift-equivalent sequences, then the number of cycles does
not change. To sum up, it is the right fact that l 6= x1, Nl < Zn.
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