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Abstract: Recent years have seen a major involvement of deep learning architecture in the crypt-
analysis of various lightweight ciphers. The present study is inspired by the work of Gohr and Baksi
et al. in the field to develop a deep neural network-based differential distinguisher for round reduced
PRESENT lightweight block cipher. We present a multi-layer perceptron network which can distinguish
between 3-6 rounds of PRESENT cipher data and a randomly generated data with a significantly
high probability. We also discuss the possible improvements in the original approach of the differential
distinguisher presented by Baksi et al.
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1. INTRODUCTION
Differential Cryptanalysis is a general cryptanalysis technique primarily used on block ciphers
[1], with some applications in stream ciphers [2] and hash functions [3]. It is the study of how
input differences affect the differences in the output. In the case of block ciphers, the technique
follows the transformations of the input through the cipher network, detecting areas of non-random
behavior. Such properties are exploited to recover the secret cryptographic key of the cipher. Work
in differential cryptanalysis started in the late 1980s when Eli et. al. presented a novel cryptanalysis
method that could be applied to various DES-like substitution and permutation cryptosystems [4].
Later in 1994, Don Coppersmith, a member of the original IBM-DES team discussed the efforts
made by IBM to make DES immune to differential attacks [1] since its inception in 1974. This
technique was kept a secret by IBM and the NSA until later discussed in [4]. While DES was
immune to them, differential attacks proved to be useful against other contemporary block ciphers
at the time, such as FEAL-4 [5].

The classical differential attack follows the exhaustive approach of creating a difference dis-
tribution table. In the recent work by Aron Gohr, a novel neural network-based distinguisher
was proposed [6], wherein a low-data, chosen-plaintext attack on round reduced Speck 32/64
gave better results than any past work done on Speck [7]. Their proposed attack is an all-in-
one approach with Markov assumption which considers all output differences for a given input
difference. He also presents a key recovery attack against 11 rounds of Speck32/64, to recover
the last two subkeys after 214.5 chosen-plaintext queries with a computational complexity of 238

encryptions of Speck, compared to past work that achieved the complexity of 246 for 11 rounds [7].
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In the line of Gohr’s work on the deep learning (DL) based cryptanalysis of round reduced Speck,
Baksi et al. discuss a deep learning-based approach for differential attacks on non-Markov 8-round
Gimli-Hash and Gimli-Cipher [8]. They used multiple models including multilayer perceptron (MLP),
Convolutional Neural Networks (CNN), and Long Short Term Memory (LSTM) with varied width
and number of neurons. We discuss their method in-depth in a later section.

This paper mounts a similar attack on the PRESENT. Developed in 2007 by Bogdanov et al.
[9] at Orange Labs, France, PRESENT is a block cipher that has become the criteria to measure
the security of modern lightweight ciphers. PRESENT used the S/P network and key scheduling
for the 31 round encryption process. The S-box of PRESENT is a 4-bit to 4-bit mapping designed
with hardware optimization in mind. Wang [10] in 2008, presented his differential cryptanalysis of
16-round reduced PRESENT. His proposed differential characteristics for 14-round encryption had
a probability of 2−62 and that for 15-round encryption was 2−66. Wang also searched for iterative
characteristics from 2nd to 7th round which he claims to be more effective than 2-round iterative
characteristics. In our research, we have used the same differentials proposed by Wang for the
round reduced PRESENT for high probability differences in Baksi’s differential attack algorithm
on 3-6 rounds of PRESENT encryption. This gives significantly better results compared to when
random input differences are selected. We also propose a multi-layer perceptron with a lesser
number of hidden layers, which gives better results with lower training time.

We will discuss the lightweight cipher PRESENT, giving an overview of its encryption algorithm in
Section 2 of this paper. This is followed by the discussion of the differential distinguisher algorithm
including the addition of Wang’s differentials in Section 3. We will then explain our deep learning
model followed by the results obtained during experimentation in Section 4 and 5 respectively.
Finally, We will conclude the study, giving direction for future work based on our research in
Section 6.

2. PRESENT LIGHTWEIGHT BLOCK CIPHER
PRESENT uses the S/P network and key scheduling algorithm for the 31 round encryption process
[9]. Fig-1 illustrates the general working of the PRESENT cipher. It uses a 64-bit block as plain
text input and 80-bit or 128-bit work as a key input. For the current study, we are only considering
the 80-bit key variant.

The non-linearity in PRESENT is introduced via 4×4 S-box, which is applied 16 times in parallel.
This non-linear Substitution layer is followed by a Permutation layer and the addition of round key
i.e. addRoundKey to complete one iteration of PRESENT round function.

The round keys to be used in addRoundKey step is generated using the key scheduling
algorithm of PRESENT which takes 80-bit key denoted as K = k79k78k77...k0 and stores it in
the register. Then this register is updated for each round using the following equations.

[k79k78...k1k0] = [k18k17...k20k19]

[k79k78k77k76] = S[k79k78k77k76]

[k19k18k17k16k15] = [k19k18k17k16k15]
⊕

roundCounter

3. DIFFERENTIAL DISTINGUISHER
Following the work done by Baksi et. al.[8] on Machine Learning (ML) based distinguishers, we
developed our own DL model based on their differential distinguisher algorithm. This section
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TABLE I: Differences taken from Wang’s study

Input differential class Input differentials

1 0x7000000000007000
2 0x0700000000000700
3 0x0070000000000070
4 0x0007000000000007

discusses the in-depth approach of their algorithm followed by the changes we made in the Deep
Neural Network (DNN).

The algorithm for the deep learning based differential distinguisher is shown in Algorithm-I.
In this differential method, the attacker chooses (t ≥ 2) input differentials. The differences are
selected from Wang’s study [10] to avoid using ones that have low probability and may give
worse results. They are provided in Table-I. This is followed by two phases, offline and online.
The offline or the training phase is for making the output-input differential pairs of the train set,
followed by training the DL model to learn the relationship between input and output differentials,
whereas the online or testing phase involves the creation of the test and then deciphering whether
the given ORACLE is the CIPHER or RANDOM. For t input differentials, if the training accuracy
during the offline phase comes out to be ≥ 1

t , we proceed to the online phase. A testing accuracy
≥ 1

t in the online phase implies the ORACLE is the CIPHER, and otherwise, RANDOM.

4. DEEP LEARNING MODEL
We have implemented 4 differential distinguisher models which will, from here onwards, be de-
noted by Mi (1 ≤ i ≤ 4). Model 1 (M1) and Model 2 (M2) are Baksi’s recommended deep
learning architecture for differential distinguisher [8] with the only difference in the selection of input
differentials. Baksi et al. recommended an MLP network with 3 hidden layers of sizes 128, 1024,
and 1024 neurons respectively. Neurons in the output layer depend on the number of differential
classes. Model 3 (M3) and Model 4 (M4) are our improvements over Baksi’s DL architecture. We
have observed in our study that taking only 2 hidden layers in the MLP network produced the

Fig. 1: Abstract View of PRESENT Cipher
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TABLE II: List of Hyper-parameters used in training of differential distinguisher models

Hyper-Parameters Values

Batch Size 200
Epochs 25
Encryption Rounds 3-6
Sample size 10000
Optimizer Adam
Loss function MSE Loss
Validation Split 0.3
Learning rate 0.001

results in less time and better chances of avoiding data over-fitting. We have also observed that
our model gives slightly better validation accuracies than the Baksi’s recommended model. In M3

we are selecting the input differentials randomly and in M4, we are using the input differentials
suggested by Wang [10] in his work on differential cryptanalysis of PRESENT.

Dataset Collection: For 10,000 different key-plaintext pairs, we have selected 4 input different
classes. These input differentials were either selected randomly (for M1 and M3) or were taken
from Wang’s work (for M2 and M4) on the differential attack on PRESENT. For every key-plaintext
pair, the plaintext, and its corresponding difference pair, calculated for each input difference class,
is encrypted for r-round reduced PRESENT. The obtained ciphertext pairs are operated over a
XOR operation to get the output difference. This output difference, along with the input difference
class, is stored in a training-dataset. The training and validation processes are based on Baksi’s
study. We have changed some hyper-parameters for the training and testing of the model. The
details of the hyper-parameters used are given in Table-II.

5. RESULTS
The results of the study are presented in Table-III in a very concise format. It is indicated by the
table that the proposed improvement in Baksi’s model is giving better validation accuracies for all

Algorithm 1 ML based differential distinguisher

1: procedure TRAINING PHASE (OFFLINE)
2: δt ←Wang’s differentials
3: P,K ← Random
4: C ← CIPHER(P,K)
5: loop:
6: Ci ← CIPHER(P

⊕
δi,K)

7: dataset(i)← (C
⊕
Ci,i)

8: goto loop.
9: model :

10: α← train(dataset)
11: if α > 1

t then
12: goto ONLINE PHASE.
13: else
14: Repeat from Step 3

1: procedure TESTING PHASE (ONLINE)
2: δt ←Wang’s differentials
3: P,K ← Random
4: C ← ORACLE(P,K)
5: loop:
6: Ci ← ORACLE(P

⊕
δi,K)

7: dataset(i)← (C
⊕
Ci,i)

8: goto loop.
9: model :

10: α′ ← test(dataset)
11: if α′ = α then
12: ORACLE = CIPHER
13: else
14: ORACLE = RANDOM
15: Repeat from Step 3 if required
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TABLE III: Comparison of different distinguishers based on the accuracy

Rounds Model 1 (M1) Model 2 (M2) Model 3 (M3) Model 4 (M4)

Training Validation Training Validation Training Validation Training Validation

3 0.94 0.44 0.91 0.85 0.82 0.42 0.91 0.93
4 0.94 0.3 0.95 0.68 0.69 0.28 0.95 0.75
5 0.89 0.27 0.94 0.39 0.67 0.24 0.80 0.40
6 0.94 0.26 0.94 0.2 0.76 0.21 0.77 0.26

(a) 3 Rounds (b) 4 Rounds

(c) 5 Rounds (d) 6 Rounds

Fig. 2: Comparative study of validation accuracy between M1 and M2

the round-reduced encryptions that were in the domain. M1 and M3 didn’t show any significant
validation accuracies as expected. Both the models, when provided with Wang’s differentials
(M2 and M4) performed significantly better than their random differentials counterparts. This
study is better illustrated in Fig-2. It shows the comparison of accuracies obtained for random
input differences and Wang’s differences while using Baksi’s deep learning model for 3-6 rounds
of PRESENT encryption. While Fig-2a, Fig-2b, and Fig-2c clearly shows the better accuracies
for Wang’s differentials, Fig-2d shows little difference between the two. This indicates that our
proposed differential distinguisher model was only successful until the 5th-round encryption of
PRESENT.

In addition to Baksi’s suggested model, we developed our own MLP with one less hidden layer
and parameters as mentioned in the Deep Learning Model section. M4 gives better validation
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(a) 3 Rounds (b) 4 Rounds

(c) 5 Rounds (d) 6 Rounds

Fig. 3: Training and Validation accuracies of M4 for 3-6 rounds of PRESENT encryption.

accuracies than M1 and M2, and its training and validation accuracy graphs for 3-6 rounds of
PRESENT encryption are shown in Fig-3.

6. CONCLUSION
In this paper, we used Baksi et al’s differential distinguisher algorithm as the base of our research.
We used Wang’s differentials instead of random differences and obtained significantly better
results. We also used a simpler deep learning model with a lower number of hidden layers to
obtain better results on round reduced PRESENT with lower training time. This differential attack
works well up to 5-rounds of the PRESENT cipher. However, the complete round PRESENT cipher
is immune to our proposed attack. Using regularisation techniques in the deep learning model can
help overcome the observed overfitting of the deep neural networks on training data. In addition
to this, our attack does not include a key retrieval method which can be developed in the future.
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