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Abstract

We put forward a new abstraction for achieving forward-secure signatures that are (1) short,
(2) have fast update and signing and (3) have small private key size. Prior work that achieved
these parameters was pioneered by the pebbling techniques of Itkis and Reyzin (CRYPTO
2001) which showed a process for generating a sequence of roots h1/e1 , h1/e2 , . . . , h1/eT for a
group element h in Z∗

N . However, the current state of the art has limitations.
First, while many works claim that Itkis-Reyzin pebbling can be applied, it is seldom shown

how this non-trivial step is concretely done. Second, setting up the pebbling data structure
takes T time which makes key generation using this approach expensive. Third, many past
works require either random oracles and/or the Strong RSA assumption; we will work in the
standard model under the RSA assumption.

We introduce a new abstraction that we call an RSA sequencer. Informally, the job of an
RSA sequencer is to store roots of a public key U , so that at time period t, it can provide U1/et ,
where the value et is an RSA exponent computed from a certain function. This separation allows
us to focus on building a sequencer that efficiently stores such values, in a forward-secure manner
and with better setup times than other comparable solutions. Our sequencer abstraction also
has certain re-randomization properties that allow for constructing forward-secure signatures
with a single trusted setup that takes T time and individual key generation takes lg(T ) time.

We demonstrate the utility of our abstraction by using it to provide concrete forward-secure
signature schemes. We first give a random-oracle construction that closely matches the perfor-
mance and structure of the Itkis-Reyzin scheme with the important exception that key genera-
tion is much faster (after the one-time setup). We then move on to designing a standard model
scheme. This abstraction and illustration of how to use it may be useful for other future works.

We include a detailed performance evaluation of our constructions, with an emphasis on the
time and space costs for large caps on the maximum number of time periods T supported. Our
philosophy is that frequently updating forward secure keys should be part of “best practices”
in key maintenance. To make this practical, even for bounds as high as T = 232, we show that
after an initial global setup, it takes only seconds to generate a key pair, and only milliseconds
to update keys, sign messages and verify signatures. The space requirements for the public
parameters and private keys are also a modest number of kilobytes, with signatures being a
single element in ZN and one smaller value.
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Packard Foundation Subaward via UT Austin.
†Supported by NSF CNS-1414082, NSF CNS-1908611, Simons Investigator Award and Packard Foundation Fel-
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1 Introduction

Compromise of cryptographic key material can be extremely costly for an organization to weather.
In March of 2011 an attack on EMC allowed attackers to gain the master seeds for EMC’s SecureID
product. The compromise eventually led the company to offer replacements for the 40 million tokens
at an estimated cost of $66 million USD [22]. Also in 2011, the certificate authority DigiNotar was
compromised and found that several rogue certificates for companies such as Google were issued
in Iran [19]. The attack led to DigiNotar’s root certificate being removed from all major web
browers. Eventually the firm filed for bankruptcy and cost its parent company, VASCO, millions
of dollars [19].

One bulwark to mitigate the impact of private key compromise is the concept of forward security,
which abstractly is meant to protect past uses of the private key material before a compromise by
periodically updating or evolving the private key. In this work, we focus on the concrete case of
forward secure signatures [6, 8]. In forward secure signatures, public keys are fixed but signatures
that verify under this key can be generated by a private key associated with a period t. At any
point, the private key holder can choose to evolve or update the private key to the next period
t + 1.1 After an update, the signing key is capable of creating signatures associated with period
t + 1, but not for any earlier period. Importantly, if an attacker compromises a private key at
period t′, it will be unable to forge signatures on any earlier period. Returning to the example
of DigiNotar, if forward signatures were deployed (and assuming one could make a conservative
estimate on the time of attack) the browsers could have revoked the root certificate starting at the
time of compromise, but at least temporarily accepted earlier signatures, which would have allowed
the organizations certified by DigiNotar more time to migrate to a new authority.

Since the introduction of forward secure signatures by Anderson [6] and Bellare and Miner [8],
there have been several forward secure signature systems put forth in the literature. One can
bifurcate solutions into two types. Those that are built from general signatures that follow a “tree-
based” structure in which the depth of the tree and signature size grows logarithmically with the
number of time periods T . And a second category of “hash-and-sign” signatures built in specific
number theoretic contexts such as the RSA setting or in bilinear groups. The main appeal of the
latter category is efficiency and that will be our focus.

In this second category the work of Itkis and Reyzin [22] (pebbling variant) is notable for giving
the first “hash-and-sign” scheme (using the random oracle model) with fast signing and key update
and small (lg(T ) sized) private keys. They do this by introducing a novel “pebbling” technique that
allows the signer to compute successive roots h1/e1 , h1/e2 , . . . , h1/eT of a group element h (mod N).
This technique was used in many other works including Camenisch and Koprowski [14] which use it
to achieve standard-model forward-secure signatures with similar parameters to Itkis-Reyzin under
the Strong RSA Assumption.

There are three limitations, however, with the current state of the art in pebbling solutions.
First, most subsequent works (e.g., [42, 14, 3]) that claim to apply Itkis-Reyzin pebbling simply
state that Itkis-Reyzin pebbling applies, but do not concretely show how to do this. This creates
a critical technical gap where there is an intuitive understanding of what the pebbling version of
the forward-secure scheme is, but no precise description of that scheme (and in our experience
working out these details is non-trivial). The issue appears to arise from the fact that the original
Itkis-Reyzin pebbling techniques are not abstracted and defined out as a primitive that can be

1Key updates could correspond to actual time intervals or be done in some other arbitrary manner.
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immediately reused in other works. The second limitation is that these pebbling techniques require
the setup time for each scheme to be linear in T which can be prohibitive. The third limitation is
that some solutions require the Strong RSA Assumption.

We address all of these issues with an abstraction called an RSA-sequencer. Intuitively, this
sequencer performs a function commensurate with earlier pebbling work, but abstracted in a way
that allows it to be readily applied for proving schemes in a formal manner. In addition, our
sequencer allows for a single global setup that will run in time T to produce a data structure of
size lg(T ) group elements. Subsequently, the output of the global setup can be re-randomized in
a way that allows for forward secure signatures with fast (lg(T ) operations) key generation. Using
our abstraction we are able to obtain concretely defined hash-and-sign forward secure signatures in
both the standard and random oracle model. We then give concrete performance evaluations.

RSA Sequencers. The conceptual starting point of our work is a methodology for separating
out the tasks of storing and updating RSA-based private key material from the design of the
core signature scheme, which we believe will be useful in other settings as well. We capture this
separation formally with the introduction of an abstraction we call an RSA sequencer. Informally,
the job of an RSA sequencer is to store roots of a public key U , such that at time period t, it
can provide U1/et , where the value et is an RSA exponent computed from a certain function. This
separation allows us to first focus on building a sequencer that efficiently stores such values, in
a forward secure manner and with a desire to achieve better setup times than other comparable
solutions. Next, we can focus on the design and mechanics of different signature schemes without
worrying about how such a sequencer is implemented. A more detailed technical overview follows.

We introduce an RSA Sequencer concept comprised of five deterministic algorithms (SeqSetup,
SeqUpdate,SeqCurrent, SeqShift,SeqProgram). We begin with an informal overview here. Section 4
contains a formal description.

Let N be an RSA modulus and H be a function from [1, T ] to positive integers where we’ll
use the notation ei = H(i). In addition, consider a tuple (v1, . . . , vlen) ∈ Zlen

N . For each j, let

Vj = v

∏
i∈[1,T ] ei

j . Intuitively, the purpose of the sequencer is when it is at period t to be able to

output V
1/et

1 , . . . , V
1/et
len .2

A call to SeqSetup(N, 1T , H, 1len, (v1, . . . , vlen)) will produce a “state” output that we denote
state1. Next, if we call SeqUpdate(state1) we get another state state2. The update algorithm can
be repeated iteratively to compute statet for any t ∈ [1, T ]. Finally, a call to SeqCurrent(statet)

will give as output V
1/et

1 , . . . , V
1/et
len . These three algorithms together form the core functionality.

We now turn to the last two.
Consider a set of integers (i.e., exponents) z1, . . . , zlen along with group elements g1, . . . , glen ∈

Z∗N where we let v1 = gz11 , . . . , vlen = gzlenlen . Then it is the case that a call to SeqSetup(N, 1T , H, 1len,
(g1, . . . , glen)) that produces state′ followed by a call to SeqShift(state′, (z1, . . . , zlen)) produces
the same output as a call to SeqSetup(N, 1T , H, 1len, (v1, . . . , vlen)).

Why would one want such a functionality? At first it seems superfluous as one can reach
the same endpoint without bothering with the SeqShift algorithm. Looking forward in our RSA
Sequencer construction the SeqShift will be a significantly cheaper function to call as its computation
time will scale proportionally to lg(T ), while the SeqSetup algorithm will run in time proportional

2For the purposes of this overview, we will implicitly assume that all ei values are relatively prime to φ(N) and

thus V
1/ei
j is uniquely defined. However, this is not required in our formal specification.
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to T . In the schemes we build, we can save computation costs by letting a trusted party pay a one
time cost of running SeqSetup to generate a set of global parameters. Then with these parameters,
each individual party will be able to generate their public/private keys much more cheaply using
the SeqShift algorithm.

Finally, we arrive at the SeqProgram algorithm. This algorithm will actually not be used in our
constructions proper, but instead be used by the reduction algorithm to generate a compromised
key in the proof of forward security. Thus the performance of this algorithm is less important,
other than it must run in polynomial time. For any value start ∈ [1, T ], consider a tuple v′1 =

v

∏
i∈[1,start−1] ei

1 , . . ., v′len = v

∏
i∈[1,start−1] ei

len . Then SeqProgram(N, 1T , H, 1len, (v′1, . . . , v
′
len), start)

produces the same output as SeqSetup(N, 1T , H, 1len, (v1, . . . , vlen)) followed by start−1 iterative
calls to SeqUpdate. Intuitively, the semantics of SeqProgram provide an interface to generate the
start-th private key without knowing any of the first start− 1 roots of V1, . . . , Vlen.

An important point we wish to emphasize is that the RSA Sequencer definitions we give only
have correctness properties and do not contain any security definitions. Issues like choosing a
proper RSA modulus N and a hash function H are actually outside the RSA Sequencer definition
proper and belong as part of the cryptosystems building on top of them.

In Section 5, we provide an efficient RSA Sequencer. The construction itself is closely adapted
from a key storage mechanism by Hohenberger and Waters [27] used for synchronized aggregate
signatures that could support T synchronization periods with lg(T ) private key storage. This stor-
age mechanism in turn had conceptual roots in the pebbling optimization by Itkis and Reyzin [28]
for forward secure signatures. The RSA Sequencer bears some history and resemblance to accumu-
lators [10], but has different goals, algorithms and constructions.

In our construction the (optimized version of the) SeqSetup algorithm makes T calls to H and
performs T · len exponentiations. If we break the abstraction slightly and let a trusted party
running it know φ(N) the exponentiations can be replaced with T multiplications mod φ(N) and
2 · len exponentiations. The space overhead of the states (which will translate to private key size)
will be at most 2 lg(T ) elements of Z∗N . The SeqUpdate algorithm will invoke at most lg(T ) calls
to H and lg(T ) · len exponentiations. The SeqShift algorithm will invoke at most 2 · lg(T ) · len
exponentiations and no calls to H. Finally, the call to SeqCurrent is simply a lookup and thus
essentially of no cost.

Building Forward-Secure Signatures with the RSA Sequencer We now turn to the task
of designing forward secure signature systems using the RSA Sequencer interface. We actually
begin with providing a random oracle construction. We do this for two reasons. First, we use this
first construction to establish a baseline of comparison for our standard model schemes. Second,
this first construction gives a basic example of how to apply the RSA sequencer abstraction that
will be instructive for the later scheme. The system we present will have an underlying signature
technique similar to the Guillou-Quisquater (GQ) [21] signature scheme. When instantiated with
our logarithmic-update sequencer construction of Section 5, it will result in a forward secure sig-
nature scheme with underlying mechanics and performance close to the efficient Itkis-Reyzin [28]
scheme under the pebbling optimization. However, one important difference is our use of a SeqShift
algorithm that allows us to generate user key pairs quickly from a given set of global public param-
eters, while public key creation is expensive in their scheme. For a large number of time periods
such as T = 232 this can mean the difference between key generation taking tens of milliseconds
versus over twenty days!
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In our Section 6 signature scheme, the (global) Setup algorithm will take as input a security
parameter and number of time periods T . Next, it will choose an RSA modulus N with a generator
g of QRN and a key K to a hash function H where HK maps periods t ∈ [1, T ] to RSA exponents.
(See Section 9.1 for a discussion of how to reduce the trust needed in the party (or parties) running
Setup.) We use a construction of H from [26] that allows us to program in as output a given RSA
exponent e∗ for a chosen input t∗. Next, let E =

∏T
j=1 ej mod φ(N) and Y = gE mod N . Finally,

the setup algorithm computes statepp = SeqSetup(N, 1T ,K, 1len=1, g). The public parameters are
pp = (T,N, Y,K, statepp). Using an optimization (see Section 5), the dominant cost of this
operation is T calls to H which amount to T prime searches for security parameter length primes.

The KeyGen(pp) algorithm is relatively straightforward and inexpensive. The algorithm simply
chooses an exponent u ∈ [1, N ] and sets U = Y u as the public key and computes the secret key as
SeqShift(statepp, u). Since the original sequencer statepp allowed for computing (arbitrary ej 6= et)
roots of the value Y 1/et at period t, the new state will allow for computing roots of Y u = U . If statet
is the secret key state at period t, one computes the next state as statet+1 = SeqUpdate(statet).

If a signature scheme is at period t with statet, to sign a message simply call SeqCurrent(statet)
to get s = U1/et . The signature is then computed using the GQ scheme [21] with a random oracle G.
The algorithm chooses a random r ∈ Z∗N , computes σ2 = G(ret mod N,M, t) and then computes
σ1 = r · sσ2 . The signature is (σ1, σ2). The verification algorithm simply checks that the signature
matches the correct form.

The proof of security leverages the RSA Sequencer model to abstract away many details. Our
proof is organized around a sequence of games. At a high level, it first uses SeqShift correctness to
switch from using the shift operation to directly creating the sequencer state from a group element.
Next, it changes from giving the corrupted key by updates to using the SeqProgram algorithm to
directly create it at some time period b (corresponding to the “break in” by the forward secure
adversary) which is greater than the forgery period t∗. This alleviates the reduction from needing
to compute the et∗-th root of the public key U . We defer other details of the proof to the main
body. These include embedding an RSA challenge and an application of a “forking” lemma that
are similar to prior works.

Streamlined Signatures in the Standard Model. We now show how we can move to the
standard model by changing the design of the signature scheme, but keeping the key storage mech-
anism very close. In this construction, we will be limited to giving out one signature per key
update. Or put another way the signer must execute a key update operation after every signature.
Arguably, this should actually be considered to be the “best possible” key hygiene in the sense that
we get forward security on a per signature granularity basis. In the event that the user accidentally
issues more than one signature during time period t, the forward security property guarantees that
all signatures issued before t remain secure. Moreover, as we discuss in Section 7, for our particular
construction, all signatures issued after t appear to remain secure as well.

We show how to develop a signature structure that is provably secure in the standard model.
Consider the hash function U0 ·

∏k
j=1 U

mj
j for public parameters U0, U1, . . . , Uk and input M =

m1|m2| . . . |mk. A signature on message M = m1|m2| . . . |mk for time period t is simply the et-
th root of this group element. While signature structures of similar form have been seen in the
literature, they have only be proven weakly secure — that is against a model where the attacker
must a priori declare which messages it will sign query. The reason for weak security is that the
reduction algorithm will guess a cancellation of the RSA challenge h such that if (and only if) the
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j∗-th message segment is mj∗ all “h terms” will cancel out in the hash evaluation.
The remedy for moving to full security, of course, is to instead use the scheme to sign a chameleon

hash [31] of the message so that the reduction to the RSA assumption will know a priori what
message is being signed. However, an RSA-based chameleon hash [7, 9] will encumber another
element of Z∗N and double the signature size. In our scheme we choose an additional random value
r and multiply in Ũ r into the hash function computation. The goal is to dynamically fit r to cancel
the h terms in the hash evaluation for the queried message, but so that it is hard for the attacker
to find randomness r′ that will achieve cancellation for a different message segment value. The
analysis is complicated by the fact that the group order is unknown in an RSA reduction, which
precludes a basic pairwise independence analysis.

Fischlin [18] has a signature scheme that incorporates randomness in a similar manner. This
scheme is further analyzed by Hofheinz and Kiltz [24] through the lens of what they call randomized
programmable hash functions.

We describe our scheme and analysis in more detail below. We consider messages of length L and
break them into k “chunks”, each of length `. The global setup algorithm will choose the RSA modu-
lusN and hashing keyK as before. This time it will run statepp = SeqSetup(N, 1T ,K, 1len=k+2, (v1 =
g, v2 = g, . . . , vlen = g)). Nominally, this will take a factor of (k + 2) longer than the SeqSetup for
len = 1 relative to the random oracle scheme; however since vi is set to be the same generator g
for all i, we can avoid the redundant work and the k + 2 factor if we break abstraction slightly. It
also computes E =

∏T
j=1 ej mod φ(N) and Y = gE mod N .

To generate a key pair, the KeyGen algorithm first chooses integers (u0, u1, . . . , uk, ũ) in [1, N ]k+2.
Then it computes state1 = SeqShift(statepp, (u0, u1, . . . , uk, ũ)). Next, for i ∈ [0, k], it computes
Ui = Y ui mod N and Ũ = Y ũ mod N . Roughly, this is close to a factor of (k+ 2) times the com-
putational and key storage cost of the random oracle scheme. For the case of k = 1, the difference
is a factor of 3. However, the RSA exponents need to be significantly bigger than the chunk sizes
so there can be reasons to push toward slightly larger k and smaller chunk sizes. (We’ll explore
some tradeoffs in our performance analysis in Section 9.)

The signing algorithm first parses the L = (`k)-bit message M as M = m1|m2| . . . |mk. It
retrieves (s0, s1, . . . , sk, s̃) = SeqCurrent(statet). Next, it chooses random integer r. The signature
is generated as σ = (σ1, σ2) = (s0 · s̃r ·

∏k
j=1 s

mj
j , r). The value r must be chosen from a range

such that the largest possible chunk size is statistically insignificant compared to r. For example,
if k = 1 and we had messages of L = 256 bits (say from the output of SHA-256), then we might
choose r to be a random 256 + 80 = 336 bit integer. Finally, the verification equation tests the
well-formedness of the signatures using the Ui values from the public key.

The proof of security follows the random oracle counterpart closely in terms of how private key
corruption is simulated using the SeqProgram algorithm as well as how signatures are generated
on time periods other than t∗. The proof departs in how signatures are generated for the time
period t∗. Our main reduction will first guess an index α ∈ [1, k] where the forgery message differs
from the queried message in the message segment α at time period t∗. (If the guess is wrong the
reduction aborts.) It also choose a random value β ∈ {0, 1}. Intuitively, for an RSA challenge h
we will choose a random value d ∈ [0, 2λ] and set the parameters as U0 = (hE

′
)−d, Uα = (hE

′
)−β

and Ũ = hE
′

where E′ = E/et∗ . (We omit some additional terms that ensure that the public
parameters in the reduction have the same distribution as in the real scheme.) When the attacker
queries on a message at time period t∗ with the segment mα, we set r = d+βmα which will ensure
that all of the h terms cancel out and we can sign the message. Observe that since r is chosen from
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a much bigger range than the message chunk size, choosing from this distribution is statistically
indistinguishable from choosing r from the original range. Now suppose we receive a forgery for
m∗α 6= mα. The question is whether the σ∗2 we get from the attacker is such that σ∗2 6= d + βm∗α;
only in this case will we be able to extract an RSA solution. We argue that this will be the case at
least 1/2 the time since the random bit β is statistically hidden from the attacker.

Removing the Single Sign Restriction and Other Variants. In Section 8, we point out a
generic method to remove the single sign per update restriction. The transformation follows a path
common in literature where the base forward-secure scheme signs as its message another verification
key. During each update, the signer generates a temporary public/private key pair for a standard
(not forward-secure) signature scheme. She then uses the forward-secure signing algorithm to sign
a certificate for this new (temporary) public key. Now all signatures in this period are first signed
with the temporary private key and the final signature consists of this signature along with the
attached temporary public key and its certificate. In this manner, the forward-secure signature
algorithm is invoked once per update, but the regular scheme can generate many signatures. A
tradeoff is that the signature size increases relative to the single sign approach.

The separation between our RSA sequencer abstraction for key storage and the core signature
design leaves the door open for building other constructions. For example, one might apply the
more general signature structures from Hofheniz, Jager and Kiltz [23] to explore different tradeoffs.

Performance Analysis. In Section 9, we include a detailed performance evaluation of our con-
structions, with an emphasis on the time and space costs for large caps on the maximum number of
time periods T supported. Our philosophy is that frequently updating forward secure keys should
be part of “best practices” in key maintenance. To make this practical, even for bounds as high as
T = 232, we show that after an initial global setup, it takes only seconds to generate a key pair,
and only milliseconds to update keys, sign messages and verify signatures even for our standard
model construction. The space requirements for the public parameters and private keys are also a
modest number of kilobytes, with signatures being a single element in ZN and one smaller value.

1.1 Related Work Discussion

The concept of forward-secure signatures was first put forward in a talk by Anderson [6] in 1997 to
address a serious security weakness he saw in regular digital signatures: namely, that once a key
is compromised, every signature generated by that key must be treated as invalid. The solution,
forward-secure signatures, was given a formal treatment in 1999 by Bellare and Miner [8]. They
also provided tree and Fiat-Shamir [17] based constructions satisfying this new definition. The
tree-based construction builds a binary tree of certificates from any signature scheme where the
leaves correspond to time periods. When T is the maximum number of time periods allowed by
the scheme, this construction takes roughly a multiplicative factor of O(lg T ) over the underlying
signature scheme in terms of private key size, and signing and verification time. In their “hash-
and-sign” construction in the random oracle model, they achieve short signatures with fast key
update, but the verification is linear in T and the public and secret keys require many elements in
ZN . Many new constructions followed. Malkin-Micciancio-Miner [34] explored new constructions
and trade-offs for tree-based constructions, including achieving signing and verification times that
require a logarithmic number of hash function evaluations (rather than signing and verification
operations) at the cost of longer setup and key generation times. Some of these tree-based schemes
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are in the standard model. In Section 9.2, we compare our results to [34] and argue that our
solution provides significantly shorter signatures and much faster key generation times.

Krawczyk [30] provided a generic construction from any signature scheme where the the public
key and signatures have size independent of T , but the signer’s storage grows linearly with T .
Abdalla and Reyzin [5] showed how to shorten the private keys in the “hash-and-sign” Bellare-
Miner [8] construction in the random oracle model. Itkis and Reyzin [28] presented GQ-based
signatures with “optimal” signing and verification in the random oracle model using a very elegant
pebbling approach. Camenisch and Koprowski [14] use it to achieve standard-model forward-secure
signatures with similar parameters under the Strong RSA Assumption. Our later constructions will
have mechanics and performance close to these schemes, with the exceptions that we offer much
faster key generation times and require only the (regular) RSA Assumption.

Kozlow and Reyzin [29] presented the KREUS construction that allows for very fast key update
at the cost of longer signing and verification times. We observe that one can derive a weakly
secure one-time signature secure from the RSA assumption by combining the RSA Chameleon
Hash function of Bellare and Ristov [9] with a transformation due to Mohassel [36]. If we consider
our Section 7 scheme with a single message chunk (i.e. k = 1) and the randomness terms for
full security stripped away, then the signatures produced at each time period correspond to this
signature scheme.

Other interesting related works include a performance study of forward-secure signatures [16], an
efficient bilinear maps based construction in the standard model [13], and tighter reductions [1, 2].
There have been many interesting extensions of forward security to threshold signatures [4], group
signatures [42, 33], and signatures with untrusted update [13, 32].

2 Definitions

Following prior works [8, 28], we begin with a formal specification for a key-evolving signature and
then capture the security guarantees we want from such a scheme in a forward-security definition.
Informally, in a key-evolving signature, the key pair is created to consist of a (fixed) public key
and an initial secret key for time period 1. This secret key can then be locally updated by the key
holder up to a maximum of T times. Crucial to security, the signer must delete the old secret key
skt after the new one skt+1 is generated. Any signature produced with the initial or any one of
the updated secret keys will verify with respect to the fixed public key pk. Our specification below
follows Bellare and Miner [8] with the exception that we introduce a global setup algorithm. Our
specification can be reduced to theirs by having each signer run its own setup as part of the key
generation algorithm. However, as we will later see in our constructions, some significant efficiency
improvements can be realized by separating out and “re-using” a set of public parameters.

Definition 2.1 (Key-Evolving Signatures [8, 28]). A key-evolving signature scheme for a max num-
ber of periods T and message spaceM(·) is a tuple of algorithms (Setup,KeyGen,Update, Sign,Verify)
such that

Setup(1λ, 1T ) : On input the security parameter λ and the period bound T , the setup algorithm
outputs public parameters pp.

KeyGen(pp) : On input the public parameters pp, the key generation algorithm outputs a keypair
(pk, sk1). Notationally, we will assume that the time period of the key can be easily extracted
from the secret key.
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Update(pp, skt) : On input the public parameters pp, the update algorithm takes in a secret key
skt for the current period t ≤ T and returns the secret key skt+1 for the next period t+ 1. By
convention, we set that skT+1 is the empty string and that Update(pp, skT , T ) returns skT+1.

Sign(pp, skt,m) : On input the public parameters pp, the signing algorithm takes in a secret key
skt for the current period t ≤ T , a message m ∈M(λ) and produces a signature σ.

Verify(pp, pk,m, t, σ) : On input the public parameters pp, the verification algorithm takes in a
public key pk, a message m ∈M(λ), a period t ≤ T and a purported signature σ, and returns
1 if and only if the signature is valid and 0 otherwise.

Correctness. Let poly(x) denote the set of polynomials in x. For a key-evolving scheme, the
correctness requirement stipulates that for all λ ∈ N, T ∈ poly(λ), pp ∈ Setup(1λ, 1T ), (pk, sk1) ∈
KeyGen(pp), 1 ≤ t ≤ T , m ∈ M(λ), ski+1 ∈ Update(pp, ski) for i = 1 to T , σ ∈ Sign(pp, skt,m), it
holds that

Verify(pp, pk,m, t, σ) = 1.

We now turn to capturing the forward-security guarantee desired, which was first formalized by
Bellare and Miner [8] and in turn built on the Goldwasser, Micali and Rivest [20] security definition
for digital signatures of unforgeability with respect to adaptive chosen-message attacks. Intuitively,
in the foward-security game, the adversary will additionally be given the power to “break in” to
the signer’s computer and capture her signing key skb at any period 1 < b ≤ T . The adversary’s
challenge is to produce a valid forgery for any time period j < b ≤ T .

Forward-Security. The definition uses the following game between a challenger and an adversary
A for a given scheme Π = (Setup,KeyGen,Update, Sign,Verify), security parameter λ, and message
space M(λ):

Setup: The adversary sends 1T to the challenger, who runs Setup(1λ, 1T ) to obtain the public
parameters pp.3 Then the challenger runs KeyGen(pp) to obtain the key pair (pk, sk1).
The adversary is sent (pp, pk).

Queries: From t = 1 to T , the challenger computes skt+1 via Update(pp, skt). If the adversary
issues a signing query for message m ∈M for time period 1 ≤ t ≤ T , then the challenger
responds with Sign(pp, skt,m) and puts (m, t) in a set C. When the adversary issues her
break-in query for period 1 < b ≤ T , the challenger responds with skb.

4 If the adversary
does not choose to make a break-in query, then set b = T + 1.

Output: Eventually, the adversary outputs a tuple (m, t, σ) and wins the game if:

1. 1 ≤ t < b (i.e., before the break-in); and

2. m ∈M; and

3. (m, t) 6∈ C; and

4. Verify(pp, pk,m, t, σ) = 1.

3Any adversary A that runs in time polynomial in λ will be restricted (by its own running time) to responding
with a T value that is polynomial in λ.

4Technically, it is non-limiting to allow the adversary only one break-in period, because from this secret key she
can run the update algorithm to produce valid signing keys for all future periods. Her forgery must, in any event,
come from a period prior to her earliest break-in.
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We define SigAdvA,Π,M(λ) to be the probability that the adversary A wins in the above game
with scheme Π for message space M and security parameter λ taken over the coin tosses made by
A and the challenger.

Definition 2.2 (Forward Security). A key-evolving signature scheme Π for message space M is
forward secure if for all probabilistic polynomial-time in λ adversaries A, there exists a negligible
function negl, such that SigAdvA,Π,M(λ) ≤ negl(λ).

Single Sign. In the above definition, the adversary can request multiple signatures for each time
period. We will also be considering schemes where an honest signer is required to update his secret
key after each signature, and thus the adversary will be restricted to requesting at most one message
signed per period. Formally, during Queries, the challenger will only respond to a signing request
on (m, t) if m ∈ M, 1 ≤ t ≤ T , and there is no pair of the form (x, t) ∈ C. We will call schemes
with this restriction single sign key-evolving schemes and the corresponding unforgeability notion
will be called single sign forward security.

Weakly Secure. For any signature scheme, one can also consider a variant of the security game
called existential unforgeability with respect to weak chosen-message attacks (or weakly secure) (e.g.,
see Boneh and Boyen [11]) where, at the beginning of the security game, the adversary must send
to the challenger a set Q of the messages that she will request signatures on. In the case of
forward security, Q must contain the message-period pairs (mi, ti). Instead of making any adaptive
signing queries, the challenger will simply produce signatures on all of these messages for their
corresponding period. Then the adversary must produce a forgery for some (m∗, t∗) 6∈ Q.

3 Number Theoretic Assumptions

We use the variant of the RSA assumption [39] involving safe primes. A safe prime is a prime
number of the form 2p+ 1, where p is also a prime.

Assumption 3.1 (RSA). Let λ be the security parameter. Let integer N be the product of two
λ-bit, distinct safe primes primes p, q where p = 2p′ + 1 and q = 2q′ + 1. Let e be a randomly
chosen prime between 2λ and 2λ+1− 1. Let QRN be the group of quadratic residues in Z∗N of order
p′q′. Choose x ∈ QRN and compute h = xe mod N . Given (N, e, h), it is hard to compute x such
that h = xe mod N .

A randomly chosen element in Z∗N would be a quadratic residue 1/4-th of the time, so the
restriction to focus on QRN is for convenience and could be relaxed.

In our schemes, we will refer to and require a primality test, such as the efficient Miller-Rabin
test [35, 38]. We will also make use of the following lemmas:

Lemma 3.2 (Shamir’s Trick [40, 15]). Given x, y ∈ Zn together with a, b ∈ Z such that xa = yb

and gcd(a, b) = 1, there is an efficient algorithm for computing z ∈ Zn such that za = y.

Theorem 3.3 (Prime Number Theorem). Define π(x) as the number of primes ≤ x. For x > 1,

7

8
· x

ln x
< π(x) <

9

8
· x

ln x
.
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4 RSA Sequencers

Shortly, we will present forward-secure signature constructions in the RSA setting. All of these con-
structions and their proofs make use of an abstraction we call an RSA Sequencer. We now provide
a specification for this abstraction, as well as minimum efficiency and correctness requirements. In
Section 5, we provide an efficient construction.

Definition 4.1 (RSA Sequencer). An RSA Sequencer consists of a tuple of deterministic algo-
rithms (SeqSetup, SeqUpdate, SeqCurrent, SeqShift,SeqProgram) such that:

SeqSetup(N ∈ Z, 1T , H : {1, . . . , T} → Z, 1len, (v1, . . . , vlen) ∈ Zlen
N ) : On input of a positive integer

N , the number of time periods T , a function H from [1, T ] to positive integers, a positive
integer len and a len-tuple of elements in ZN , the SeqSetup algorithm outputs a state value
state.

SeqUpdate(state) : On input of a state value state, the SeqUpdate algorithm produces another
value state′.

SeqCurrent(state) : On input of a state value state, the SeqCurrent algorithm produces a tuple
(s1, . . . , slen) ∈ Zlen

N .

SeqShift(state, (z1, . . . , zlen) ∈ Zlen) : On input of a state value state and a len-tuple of integers,
the SeqShift algorithm produces another value state′.

SeqProgram (N ∈ Z, 1T , H : {1 . . . , T} → Z, 1len, (v′1, . . . , v′len) ∈ Zlen
N , start ∈ {1, . . . , T}): On

input of a positive integerN , the number of time periods T , a functionH from [1, T ] to positive
integers, a positive integer len, a len-tuple of elements in ZN and an integer start ∈ [1, T ],
the SeqProgram algorithm outputs a state value state.

We note that the SeqProgram algorithm will not appear in our signature constructions, but
instead be employed solely in the proof of forward security.

(Minimum) Efficiency We require that the SeqSetup and SeqProgram algorithms run in time
polynomial in their respective inputs and all other algorithms run in time polynomial in lg(N), T
and len and the time to evaluate H.

Correctness We specify three correctness properties of an RSA Sequencer. Our specification
implicitly relies on the fact that all of the algorithms (including SeqSetup) are deterministic. We
also use the shorthand that et = H(t) for t ∈ [1, T ]. The correctness properties are:

Update/Output Correctness For anyN ∈ Z, T ∈ Z, H : {1 . . . , T} → Z, len ∈ Z, (v1, . . . , vlen) ∈
Zlen
N , the following must hold: Let state1 = SeqSetup(N, 1T , H, 1len, (v1, . . . , vlen)). For t = 2

to T , let statet =
SeqUpdate(statet−1). Then for all t ∈ [1, T ], it must be that

SeqCurrent(statet) = (v

∏
i∈[1,T ]\{t} ei

1 , . . . , v

∏
i∈[1,T ]\{t} ei

len )

where the arithmetic is done in ZN .
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Shift Correctness For any N ∈ Z, T ∈ Z, H : {1 . . . , T} → Z, len ∈ Z, (v1, . . ., vlen) ∈ Zlen
N and

(z1, . . . , zlen) ∈ Zlen, the following must hold: Let state = SeqSetup(N, 1T , H, 1len, (v1, . . .,
vlen)). Let v′1 = vz11 , . . . , v

′
len = vzlenlen (all in ZN ) and state′ = SeqSetup(N, 1T , H, 1len, (v′1, . . .,

v′len)), then it must hold that

state′ = SeqShift(state, (z1, . . . , zlen)).

One could define a stronger form of shift correctness that holds after any number of updates;
however, we will only need this to hold for when SeqShift is operated immediately on the
initial state output of SeqSetup.

Program Correctness For any N ∈ Z, T ∈ Z, H : {1 . . . , T} → Z, len ∈ Z, (v1, . . . , vlen) ∈
Zlen
N , start ∈ [1, T+1], the following must hold: Let state1 = SeqSetup(N, 1T , H, 1len, (v1, . . .,

vlen)). For t = 2 to start, let statet = SeqUpdate(statet−1). Let v′1 = v

∏
i∈[1,start−1] ei

1 , . . . v′len =

v

∏
i∈[1,start−1] ei

len (all in ZN ). Finally let state′ = SeqProgram(N, 1T , H, 1len, (v′1, . . . , v′len),
start). It must hold that statestart = state′.

5 Our Sequencer Construction

We now give an RSA sequencer construction where the number of hashes and exponentiations for
update is logarithmic in T . Furthermore, the storage will consist of a logarithmic in T number
of elements of ZN . Our sequencer construction will follow closely in description to the key stor-
age technique from Hohenberger and Waters [27] and is also conceptually similar to the pebbling
optimization from Itkis and Reyzin [28].

Let’s recall the purpose of an RSA sequencer from the introduction. Again, let N be an integer
that we’ll think of as an RSA modulus and H be a function from [1, T ] to positive integers where
we’ll use the notation ei = H(i). Focusing on the length len = 1 case, a sequencer will be given as

input a value v ∈ ZN and we let V = v
∏
i∈[1,T ] ei .

The goal of a sequencer is two fold. First, after k calls to SeqUpdate, the SeqCurrent call should
output V 1/ek+1 . Second, it should be the case that it has a forward security property where one
cannot compute V 1/ek′+1 for k′ < k+1 from the data structure. One easy way to achieve these goals
is that after k calls to SeqUpdate the data structure can simply store v

∏
i∈[1,k] ei . In this manner

the SeqUpdate algorithm only needs a single exponentiation to update the data structure, but the
SeqCurrent algorithm will need T − k − 1 exponentiations to compute V 1/ek+1 from v

∏
i∈[1,k] ei .

Instead we use a more complex data structure that stores logarithmic in T “partial computa-
tions”. After k calls to SeqUpdate, the data structure will already have V 1/ek+1 ready for retrieval.
Moreover, the next SeqUpdate call will do a logarithmic amount of work that has the next one
ready as well. Intuitively, each call to SeqUpdate will perform work that both applies to computing
“nearby” roots as well as progress towards further out time periods. The description below gives
these in detail and for the slightly more general case of a tuple of length len.

For ease of exposition, we will assume that the setup algorithm only accepts values of T for
which there is an integer levels where T = 2levels+1 − 2. The storage will consist of an integer
index that determines the current period and a sequence of sets S1, . . . , Slevels storing “partial
computations” where elements of set Si are of the form

(w1, . . . , wlen) ∈ Z∗lenN , open ∈ [1, T ], closing ∈ [1, T ], count ∈ [1, T ].
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Here if R is the set of integers [open, open+ 2i−1 − 1]∪ [closing+ count, closing+ 2i−1 − 1],

then wi = v

∏
j∈[1,T ]\R ej

i . Here and throughout this work, we use as shorthand ej = H(j). We
begin with giving the descriptions of and proving correctness of all of the algorithms except the
SeqProgram algorithm which we will circle back to at the end of the section.

SeqSetup(N, 1T , H, 1len, (v1, . . . , vlen)) Initialize, sets S1, . . . , Slevels to be empty. Then for i = 2
to levels perform the following:

• Let R = [2i − 1, 2i+1 − 2].

• Compute w1 = v

∏
j∈[1,T ]\R ej

1 , . . . , wlen = v

∏
j∈[1,T ]\R ej

len .

• Put in Si ((w
e(2i−1)+2i−1

1 , . . . , w
e(2i−1)+2i−1

len ), 2i − 1, (2i − 1) + 2i−1, 1).

• Put in Si ((w1, . . . , wlen), (2
i − 1) + 2i−1, 2i − 1, 0).

Finally, let R = [1, 2] and compute w1 = v

∏
j∈[1,T ]\R ej

1 , . . . , wlen = v

∏
j∈[1,T ]\R ej

len . Put in S1

((w1, . . . , wlen), 2, 1, 0). And set the tuple current as current = (we21 , . . . , w
e2
len).

The output is
state =

(
index = 1, current, (S1, . . . , Slevels)

)
.

SeqUpdate(state) For i = 1 to levels, perform the following:

• Find a tuple (if any exist) in Si of ((w1, . . . , wlen), open, closing, count) with the smallest
open value.5

• Replace it with a new tuple ((w′1 = w
eclosing+count

1 , . . . , w′len = w
eclosing+count

len ), open′ = open,
closing′ = closing, count′ = count + 1) where ((w′1, . . . , w

′
len), open

′, closing′, count′) is
the newly added tuple.

Then for i = levels down to 2,

• Find a tuple (if any) of the form ((w1, . . . , wlen), open, closing, count = 2i−1) in Si.

• Remove this tuple from the set Si.

• To the set Si−1, add the tuple ((w′1 = w1, . . . , w
′
len = wlen), open

′ = open, closing′ =
open + 2i−2, count′ = 0) where ((w′1, . . . , w

′
len), open

′, closing′, count′) is the newly added
tuple.

• Also add to the set Si−1, the tuple ((w′1 = w1, . . . , w
′
len = wlen), open

′ = open+2i−2, closing′ =
open, count′ = 0).

Finally, from S1 find the tuple ((w1, . . . , wlen), open = index + 1, closing, 1). Remove this
from S1. Set index′ = index + 1 and current′ = (w1, . . . , wlen). The output is state′ =(
index′, current′, (S1, . . . , Slevels)

)
.

5In a particular Si there might be zero, one or two tuples. If there are two, the one with the larger open value is
ignored. Ties will not occur, as our analysis will show.
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SeqCurrent(state) On input state =
(
index, current, (S1, . . . , Slevels)

)
, the algorithm simply

outputs current = (w1, . . . , wlen).

SeqShift(state, (z1, . . . , zlen)) For i = 1 to levels, find each tuple (if any exist) in Si of the form
((w1, . . . , wlen), open, closing, count). Then replace it with a new tuple ((w′1 = wz11 , . . . , w

′
len =

wzlenlen ), open′ = open, closing′ = closing, count′ = count). Finally, set current′ = (wz11 , . . . , w
zlen
len ).

The output is state′ =
(
index, current′, (S1, . . . , Slevels)

)
.

5.1 Efficiency

We remark on the efficiency of the above algorithms. Recall that T = 2levels+1 − 2. If we ignore
the minus 2 component, this means that levels = lg(T ) − 1. A call to the SeqUpdate algorithm
will invoke at most levels calls to H in the first phase of the algorithm. In addition, the first pass
will invoke at most levels · len exponentiations in ZN . The size of the exponents will depend
on the output length of H, which may vary with different choices of H. The second pass of the
algorithm only involves shuffling around data and its computational costs will be dominated by the
first. Likewise, the computational component of SeqCurrent is tiny since it simply returns a stored
value.

In the SeqSetup algorithm we bound the computational costs. For each level there will be
at most T calls to H and T · len exponentiations in ZN where again the size of the exponents
is determined by the output length of H. Thus, there are at most levels · T calls to H and
levels · T · len exponentiations.

Optimizations We mention two alternative optimizations. In the prior description the algorithm
moved in sequential fashion by forming each Si in turn. Instead one could loose the levels =
lg(T )− 1 factor from the number of calls to H by forming these sets in parallel.

First let Ri be the range used to create the i-th set and define Xi = [1, T ]\Ri. For each set, the
algorithm would initialize it with the group element tuple (v1, . . . , vlen) (along with the appropriate
open, closing and count values). Then for n = 1 to T , compute en = H(n). For each n, raise the
group elements in Si to en if and only if n ∈ Xi. In this way, each en value is computed only once.

The second optimization requires us to break our abstraction slightly. Suppose that the party
running SeqSetup has chosen N to be an RSA modulus and knows φ(N). This will actually be the
case for our forward-secure signature schemes of Sections 6 and 7. In this case for each i ∈ levels,
the algorithm first computes

∏
j∈Xi ej mod φ(N) and only exponentiates at the end. This will

reduce the cost to be bounded by T · levels · len multiplications in φ(N) and 2 · levels · len
exponentiations in ZN .

5.2 Correctness Analysis

For our analysis, we establish a core lemma that describes the sequencer’s state after a given number
of update steps. With this is in place, we can prove the correctness conditions of our scheme.

Lemma 5.1. For any N ∈ Z, T ∈ Z, H : {1 . . . , T} → Z, len ∈ Z, (v1, . . . , vlen) ∈ Zlen
N , the

following must hold: Let state1 = SeqSetup(N, 1T , H, 1len, (v1, . . . , vlen)). For t = 2 to T , let
statet = SeqUpdate(statet−1). Then statet has the following form:

The value index = t. For i = 1 to levels, the set Si is of the following form.
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Case 1: T − index ≤ 2i − 2. In this case, the set Si will be empty.

Case 2: Not Case 1 and index = k · 2i + r for 0 ≤ r < 2i−1. Si will contain two elements. The
first is a tuple

((w1 = v

∏
j∈[1,T ]\R ej

1 , . . . , wlen = v

∏
j∈[1,T ]\R ej

len ), open = (k + 1) · 2i − 1,

closing = (k + 1) · 2i − 1 + 2i−1, count = r).

where we let R = [open, open + 2i−1 − 1] ∪ [closing + count, closing + 2i−1 − 1].

The second is a tuple

((w1 = v

∏
j∈[1,T ]\R ej

1 , . . . , wlen = v

∏
j∈[1,T ]\R ej

len ), open = (k + 1) · 2i − 1 + 2i−1,

closing = (k + 1) · 2i − 1, count = 0).

where R = [open, open + 2i−1 − 1] ∪ [closing + count, closing + 2i−1 − 1].

Case 3: Not Case 1 and index = k · 2i + r for 2i−1 ≤ r < 2i. Si has a single element. A tuple

((w1 = v

∏
j∈[1,T ]\R ej

1 , . . . , wlen = v

∏
j∈[1,T ]\R ej

len )open = (k + 1) · 2i − 1 + 2i−1,

closing = (k + 1) · 2i − 1, count = r − 2i−1).

where R = [open, open + 2i−1] ∪ [closing + count, closing + 2i−1].

Finally, current = (v

∏
i∈[1,T ]\{t} ei

1 , . . . , v

∏
i∈[1,T ]\{t} ei

len ).

We defer the proof of this lemma to Appendix A since it is rather involved, but follows mostly
along the lines established in [27].

Claim 5.2. The Update/Output Correctness condition of Definition 4.1 holds for our construction.

Proof. This follows immediately from the statement of Lemma 5.1 regarding the form of current
at statet.

Claim 5.3. The Shift Correctness condition of Definition 4.1 holds for our construction.

Proof. Consider any N ∈ Z, T ∈ Z, H : {1 . . . , T} → Z, len ∈ Z, (v1, . . . , vlen) ∈ Zlen
N and

(z1, . . . , zlen) ∈ Zlen. Let state = SeqSetup(N, 1T , H, 1len, (v1, . . . , vlen)), let v′1 = vz11 , . . . , v
′
len =

vzlenlen and then let state′ = SeqSetup(N, 1T , H, 1len, (v′1, . . . , v
′
len)). Finally, let s̃tate = SeqShift(

state, (z1, . . . , zlen)). We must verify that state′ = s̃tate.
We will check this for the case of index = 1 by going through each of the possible cases from

Lemma 5.1 for each i ∈ [1, levels]. For i ∈ [1, levels], let Si denote the sets for state, S′i be the

sets for state′ and S̃i be the sets for s̃tate.

Case 1: T − index ≤ 2i − 2. By Lemma 5.1, neither state nor state′ has any elements in Si
or S′i. The SeqShift algorithm does not add any new elements to a level i, so S̃i is an empty
set just like S′i.
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Case 2: Not Case 1 and index = k · 2i + r for 0 ≤ r < 2i−1. Here Si will contain two elements.
The first is a tuple

((w1 = v

∏
j∈[1,T ]\R ej

1 , . . . , wlen = v

∏
j∈[1,T ]\R ej

len ), open = (k + 1) · 2i − 1,

closing = (k + 1) · 2i − 1 + 2i−1, count = r)

here we let R = [open, open + 2i−1 − 1] ∪ [closing + count, closing + 2i−1 − 1]. Applying
the SeqShift operation produces

(wz11 = (v

∏
j∈[1,T ]\R ej

1 )z1 = (v′1)
∏
j∈[1,T ]\R ej , . . . , wzlenlen = (v

∏
j∈[1,T ]\R ej

len )zlen = (v′len)
∏
j∈[1,T ]\R ej )

with the same open, closing and count values matching the corresponding element in S′i.

The second is a tuple

((w1 = v

∏
j∈[1,T ]\R ej

1 , . . . , wlen = v

∏
j∈[1,T ]\R ej

len ), open = (k + 1) · 2i − 1 + 2i−1,

closing = (k + 1) · 2i − 1, count = 0).

where R = [open, open + 2i−1 − 1] ∪ [closing + count, closing + 2i−1 − 1]. Applying the
SeqShift operation produces

wz11 = (v

∏
j∈[1,T ]\R ej

1 )z1 = (v′1)
∏
j∈[1,T ]\R ej , . . . , wzlen1 = (v

∏
j∈[1,T ]\R ej

1 )zlen = (v′len)
∏
j∈[1,T ]\R ej )

with the same open, closing and count values matching the corresponding element in S′i.

Case 3: Not Case 1 and index = k · 2i + r for 2i−1 ≤ r < 2i. Si has a single element. A tuple

((w1 = v

∏
j∈[1,T ]\R ej

1 , . . . , wlen = v

∏
j∈[1,T ]\R ej

len ), open = (k + 1) · 2i − 1 + 2i−1,

closing = (k + 1) · 2i − 1, count = r − 2i−1).

where R = [open, open + 2i−1] ∪ [closing + count, closing + 2i−1]. Applying the SeqShift
operation gives

(wz11 = (v

∏
j∈[1,T ]\R ej

1 )z1 = (v′1)
∏
j∈[1,T ]\R ej , . . . , wzlenlen = (v

∏
j∈[1,T ]\R ej

1 )zlen = (v′len)
∏
j∈[1,T ]\R ej )

with the same open, closing and count values matching the corresponding element in S′i.

Finally, current = (v

∏
i∈[1,T ]\{t} ei

1 , . . . , v

∏
i∈[1,T ]\{t} ei

len ) and after the SeqShift operation we have

˜current = ((v

∏
i∈[1,T ]\{t} ei

1 )z1 = (v′1)
∏
i∈[1,T ]\{t} ei , . . . , (v

∏
i∈[1,T ]\{t} ei

len )zlen = (v′len)
∏
i∈[1,T ]\{t} ei

which again matches the state′.
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5.3 The SeqProgram Algorithm

We conclude with describing the SeqProgram algorithm. We organize its description around Lemma
5.1 where for each Si we determine what to add to it based on the three cases above. We then
subsequently argue correctness in tandem.

Intuitively, at many places we are required to compute v
∏
j∈[1,T ]\R ej for some set of values R.

That is we need to raise v to all ej values except those in the set R. However, instead of being

given v the algorithm is given v′ = v
∏
i∈[1,start−1] ei . Therefore we must check (in the correctness

argument) that in every case R∩ [1, start−1] = ∅. If so, we can let X = [1, T ]\ (R∪ [1, start−1])

and compute (v′)
∏
j∈X ej = v

∏
j∈[1,T ]\R ej .

SeqProgram(N, 1T , H, 1len, (v′1, . . . , v
′
len), start) The algorithm first sets the value index = start.

Next for each i ∈ [1, levels] the algorithm inserts tuples according to the following description.

Case 1: T − index ≤ 2i − 2. In this case, the set Si will be empty.

Case 2: Not Case 1 and index = k · 2i + r for 0 ≤ r < 2i−1. The algorithm will place two
elements in Si. First, let open = (k + 1) · 2i − 1, closing = (k + 1) · 2i − 1 + 2i−1 and
count = r. Then let R = [open, open+ 2i−1− 1]∪ [closing+ count, closing+ 2i−1− 1] and
let X = [1, T ] \ (R ∪ [1, index− 1]). The first one it places is

((w1 = (v′1)
∏
j∈X ej , . . . , wlen = (v′len)

∏
j∈X ej ), open, closing, count).

To create the second tuple, let open = (k + 1) · 2i − 1 + 2i−1, closing = (k + 1) · 2i − 1 and
count = 0. Next let R = [open, open+ 2i−1− 1]∪ [closing+ count, closing+ 2i−1− 1] and
let X = [1, T ] \ (R ∪ [1, index− 1]).

((w1 = (v′1)
∏
j∈X ej , . . . , wlen = (v′len)

∏
j∈X ej ), open, closing, count).

Case 3: Not Case 1 and index = k · 2i + r for 2i−1 ≤ r < 2i. The algorithm inserts a single
element. First, let open = (k + 1) · 2i − 1 + 2i−1, closing = (k + 1) · 2i − 1 and count =
r − 2i−1. Then let R = [open, open + 2i−1] ∪ [closing + count, closing + 2i−1] and let
X = [1, T ] \ (R ∪ [1, index− 1]).

((w1 = (v′1)
∏
j∈X ej , . . . , wlen = (v′len)

∏
j∈X ej ), open, closing, count).

Finally, let X = [1, T ] \ [1, start] and set current = ((v′1)
∏
i∈X ei , . . . , (v′len)

∏
i∈X ei).

Claim 5.4. The Program correctness condition of Definition 4.1 holds for our construction.

Proof. Our algorithm follows Lemma 5.1 exactly in terms of the number of tuples added in each
case and their respective opening, closing and count values. Thus verifying correctness is a matter
of verifying the formation of the len group elements in each tuple added.

Suppose that v′1 = v

∏
j∈[1,start−1] ej

1 , . . ., v′len = v

∏
i∈[1,start−1] ej

len . It follows that for any R ⊆ [1, T ]
if R ∩ [1, start− 1] = ∅ and we let X = [1, T ] \ (R ∪ [1, start− 1]), then

(v′1)
∏
j∈X ej = v

∏
j∈[1,T ]\R ej

1 , . . . , (v′len)
∏
j∈X ej = v

∏
j∈[1,T ]\R ej

len .
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It then follows that all we must do is verify that R∩ [1, start− 1] = ∅ in every place the algorithm
adds a tuple. Case 1 is trivial since no tuples are added so we focus on Cases 2 and 3.

Recall that index = start so we will be able to use these terms interchangeably. In Case 2
we have index = k · 2i + r for 0 ≤ r < 2i−1 which means that start ≤ (k + 1) · 2i − 1 and that
(start− 1) < (k+ 1) · 2i − 1. For the first tuple added R consists of a union of two integer ranges
both of which begin with a value of at least (k + 1) · 2i − 1 therefore the set [1, start− 1] cannot
intersect with this R. For the second tuple there is another R set, but again it consists of a union
of two integer ranges both of which have starting values at least (k+ 1) · 2i− 1. So again it cannot
intersect with [1, start− 1].

For Case 3 the argument is very similar. Again we have that (start − 1) < (k + 1) · 2i − 1.
There is a single R to consider which is a union of two ranges both of which have a start value at
least (k + 1) · 2i − 1 and therefore cannot intersect with [1, start− 1].

The correctness of setting current follows from the fact that X∪[1, start−1] = [1, T ]\{start}.

We briefly remark that all algorithms are polynomial time in the input. The concrete efficiency
of the SeqProgram algorithm will not be as relevant to the performance of our forward secure
signature schemes it will only be used in the proof of security and not in the actual construction.

6 An Efficient Scheme in the Random Oracle Model

We now describe our a random oracle scheme using RSA sequencers. While our eventual goal is to
put forth a standard model scheme, exploring the system below is useful as it shows how to build
a signature from the RSA sequencer abstraction as well as leverage the SeqShift algorithm to push
the expensive cost of setting up the sequencer to a one time global setup process. The latter allows
us to perform key generation very efficiently. Our resulting scheme has key generation and update
times that scale logarithmically in T . It is close in form and performance to the Itkis-Reyzin scheme
with the “pebbling” optimization applied. The important exception though is that the Itkis-Reyzin
scheme has expensive key generation that grows linearly in T .

We describe the scheme below.
The global setup of our scheme will take as input a security parameter λ and the maximum

number of periods T . The message spaceM will be {0, 1}L where L is some polynomial function of
λ. (One can handle messages of arbitrary length by first applying a collision-resistant hash.) Our
scheme will be parameterized by an RSA Sequencer as defined in Section 4 consisting of algorithms
(SeqSetup, SeqUpdate, SeqCurrent, SeqShift, SeqProgram).

Our initial scheme utilizes a random oracle G that we assume all algorithms have access to. For
ease of exposition, we’ll model the random oracle as a random function G : ZN ×{0, 1}L× [1, T ]→
[0, 2λ− 1] where N is an RSA modulus output from the global setup. We will often omit explicitly
writing “mod N” and assume it implicitly when operations are performed on elements of Z∗N .

Hash Function to Prime Exponents. We make use of the hash function introduced in [26]
and slightly refined in [27] to map integers to primes of an appropriate size. This hash function will
not require the random oracle heuristic. The hash function H : [1, T ] → {0, 1}λ+1 takes as input
a period t ∈ [1, T ] and output a prime between 2λ and 2λ+1 − 1. One samples the hash function
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by randomly choosing a K ′ for the PRF function F : [1, T ]× [1, λ · (λ2 + λ)] → {0, 1}λ, a random
c ∈ {0, 1}λ as well as an arbitrary prime edefault between 2λ and 2λ+1−1. We let K = (K ′, c, edefault).

We describe how to compute HK(t). For i = 1 to λ · (λ2 + λ), let yi = c⊕ FK′(t, i). If 2λ + yi
is prime, return it. Else increment i and repeat. If no such i ≤ λ · (λ2 + λ) exists, return edefault.

6

We note that this computation returns the smallest i such that 2λ + yi is a prime. Notationally,
for t ∈ [1, T ] we will let et = HK(t).

We will use this hash function in this section and Section 7. For notational convenience, we will
sometimes have algorithms pass a sampled key K instead of the description of the entire function
HK . We are now ready to describe the algorithms comprising our scheme.

6.1 Construction

Setup(1λ, 1T ) First, the setup algorithm chooses an integer N = pq as the product of two safe
primes where p − 1 = 2p′ and q − 1 = 2q′, such that 2λ < φ(N) < 2λ+1. Let QRN denote the
group of quadratic residues of order p′q′ with generator g. Next, the setup algorithm samples a
hash function key K according to the description above. It follows by computing

statepp = SeqSetup(N, 1T ,K, 1len=1, g).7

The algorithm concludes by computing E =
∏T
j=1 ej mod φ(N) and Y = gE mod N . It publishes

the public parameters as pp = (T,N, Y,K, statepp).

KeyGen(pp) The algorithm parses pp = (T,N, Y,K, statepp). It chooses a random integer u
in [1, N ]. It computes state1 = SeqShift(statepp, u). Next it computes U = Y u mod N and
e1 = HK(1). It sets sk1 = (state1, e1, 1) and pk = U .

Update(pp, skt = (statet, et, t)) The update algorithm computes statet+1 = SeqUpdate(statet)
and computes the prime et+1 = HK(t + 1) using pp. It outputs the new secret key as skt+1 =
(statet+1, et+1, t+ 1).

Sign(pp, skt = (statet, et, t),M) The signing algorithm first computes s = SeqCurrent(statet).
8

It next chooses a random r ∈ Z∗N and computes σ2 = G(ret mod N,M, t). It then computes
σ1 = r · sσ2 . The signature for period t is output as σ = (σ1, σ2).

Verify(pp, pk = U,M, t, σ = (σ1, σ2)) The verification algorithm rejects if σ1 = 0 mod N ; other-
wise it first computes the prime et = HK(t) using pp. It then computes a = σet1 /(U

σ2) and outputs
1 to accept if and only if

G(a,M, t)
?
= σ2.

6The edefault value is included to guarantee that HK() returns some value for each input, but we have chosen the
search space so that edefault is only returned with negligible probability.

7For convenience, we pass the key K to SeqSetup with the assumption that it implicitly describes HK .
8Technically, SeqCurrent returns a tuple of length len, since len = 1 in this case, we allow SeqCurrent to return s

instead of (s).

19



6.2 Correctness

Consider a public/private key pair that was created with random exponent u and let statet denote
the secret key state on time period t (i.e., after t−1 updates). In addition, assume the global setup
was created with modulus N and generator g.

By shift correctness of the sequencer, we have that state1 = SeqSetup(N, 1T ,K, 1len=1, gu). I.e.
Even though state1 was computed from SeqShift(statepp, u) it will have the same distribution as
if it were initially setup with the element gu.

Now consider a signature generated for time period t where statet is the state after the key was
updated t− 1 times. When the signing algorithm calls s = SeqCurrent(statet), the update/output

correctness of the sequencer guarantees that s = (gu)
∏
i∈[1,T ]\{t} ei = U1/et . The first equality follows

from the definition of update/output correctness. The second comes from the definition of U = gu

and the fact that et must be relatively prime to φ(N) by the way they are chosen.
Let r ∈ Z∗N be the random element chosen for generating the signature and σ2 = G(ret ,M, t),

then
σ1 = r · sσ2 = r · (gu/et)σ2 .

The verification algorithm will compute:

a = σet1 /(U
σ2) = (r · (gu/et)σ2)et/(Uσ2) = ret · (gu)σ2/(Uσ2) = ret .

The verification will then accept since G(a,M, t) = G(ret ,M, t) = σ2.

6.3 Efficiency

We will analyze the efficiency of our construction with regard to a general sequencer, but also make
specific remarks regarding the efficiency when instantiated with the sequencer of Section 5. In
Section 9, we will give a more detailed evaluation with concrete choices of security parameters.

The global Setup algorithm is dominated by one call to SeqSetup which involves approximately
T · lg(T ) exponentiations and prime searches for our implementation. It also requires T modular
multiplications in φ(N) and T prime searches when computing Y . The KeyGen operation requires
approximately 2 lg(T ) exponentiations. The Update algorithm is simply a call to SeqUpdate which
will take lg(T ) exponentiations and prime searches using the construction of Section 5. The signing
algorithm makes a single call to SeqCurrent, which in our construction is just a fetch of an element
of Z∗N . The dominant signing costs are two exponentiations as well as the prime search for et.
Finally verification is dominated by the cost of two exponentiations and a prime search.

We conclude with a few remarks on how efficiency can be improved.

• The global setup performs several prime searches in computing statepp and Y . One could
amortize the costs by sharing the prime search across both implementations. This involves
slightly breaking the modularity of the abstractions.

• As we described, the signature verification involves an inversion mod N . Alternatively, one
could compute Y = (gE)−1 mod N and save the inversion per signature. We kept our original
description since we found it slightly more favorable pedagogically.

• When setting parameters in an implementation, the output length of G will depend on the
maximum number of oracle queries (hash function evaluations) the adversary can make. On
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the other hand the length of prime exponents will need to be sufficiently long to avoid a
collision which will be impacted by the number of total time periods T . We generally expect
the former to be larger than the latter, however; our proof relies on the exponent et values to
be bigger than the outputs of G. One way to possibly avoid this inflation is to first search for
smaller value primes and then use a small power of these primes as the et value. For example,
search for a smaller e′t prime, but use et = (e′t)

c such that et is still guaranteed to be larger
than the maximum value output by G. Doing this would require adjusting our security proof
to handle powers of primes. This nice idea of using powers of smaller primes appeared in
Itkis-Reyzin [28].

• The KeyGen,Update,Sign and Verify algorithms all received the public parameters pp; however,
not all parts of the parameters are needed by each algorithm. For example, only KeyGen
requires statepp which is the largest component of the parameters. A party that only verifies
might want to just store N and K along with the individual public keys.

6.4 Proof of Security

Theorem 6.1. If the RSA assumption (Assumption 3.1) holds, F is a secure pseudorandom func-
tion and G is modeled as a random oracle, then the Section 6.1 key-evolving signature construction
is forward secure according to Definition 2.2.

Proof. The reduction algorithm receives an RSA challenge (N, e∗, h) and needs to use the attacker
to compute h1/e∗ mod N . In this proof, the function G : ZN ×{0, 1}L× [1, T ]→ [0, 2λ− 1], where
N is an RSA modulus output from the global setup, is modeled as a random oracle. We establish
some syntax regarding this for future use. We parse the queries of the form made to the random
oracle into two types. The first we call “Type A” queries ones where the attacker makes the query
to G itself. For “Type B” queries, these are made by the challenger during a call to a Signing query.
Let QA,t be the maximum number of Type A queries made for time period t; that is, inputs of the
form (·, ·, t). Each input of the form (a,m, t) will only be counted once and be labeled by how it
was first called. Also, the forgery verification will induce a random oracle query; if this input has
not already been queried, then count this as the last Type A query for the forgery period.9

We now define a sequence of games.

Game 1: (Security Game) This game is defined to be the same as the forward security game.

Game 2: (Guessing the forgery period) The same as Game 1, except at the start the game ran-
domly guesses a time period t∗ ∈ [1, T ] that the attacker forges on. The adversary only wins
if he would have won Game 1 and the guess of t∗ was correct.

Game 3: (Guessing the critical RO query) The same as Game 2, except at the start the game
randomly guesses an index q∗ ∈ [1, QA,t∗ ] that corresponds to the q∗th query to the random
oracle by the attacker for time period t∗. Let that query be of the form (aq∗ ,mq∗ , t

∗
q∗ = t∗).

The adversary only wins if he would have won Game 2 and mq∗ is the message that the
attacker forges on.

9Without loss of generality, we can assume that the attacker makes a random oracle query on the input used in
the forgery, if it was not already queried. If it does not, we can trivially create an adversary that is a pass through
between the challenger and the attacker, except that on forgery output (m, t, (σ1, σ2)) by the attacker, it first queries
the random oracle on input (σet1 /U

σ2 ,m, t) before passing the forgery output to the challenger.

21



Game 4: (Forking at the critical RO query) The same as Game 3, except the challenger proceeds
in the following way:

• The challenger simulates Game 2 for the attacker up until the q∗th Type A query to the
random oracle for time period t∗. Let this input be (a∗,m∗, t∗). At this point, it saves
the state of the game including the state of the attacker.

• The challenger then returns a random value in [0, 2λ−1] as the random oracle’s response
to this query and then runs the rest of the game with the attacker. At the end of the
game, it records the attacker’s output.

• The challenger then reloads the saved information about the state of the game and the
attacker’s state at the time it issued the query (a∗,m∗, t∗) to the random oracle. The
challenger chooses a second random response in [0, 2λ−1] and then finishes Game 2 with
the attacker, recording this output as well.

• The attacker wins in this game only if the attacker won in both forks of the game. (We
note that the condition of forging on the same message m∗ and period t∗ in both forks
is already inherited from Games 3 and 2, respectively, above.)

Game 5: (HK does not default) The attacker wins only if it meets all the conditions to win in
Game 4 and HK(t∗) 6= edefault (that is, the default condition of the hash is not triggered on
the forgery period or otherwise equal to the default prime.)

Game 6: (HK does not collide) The attacker wins only if it meets all the conditions to win in
Game 5 and HK(t∗) 6= HK(t) for all t ∈ [1, T ] where t 6= t∗.

Game 7: (Guess resolving i∗ for HK) The game chooses a random i∗ ∈ [1, λ3 +λ2]. Attacker wins
only if it meets all the conditions of Game 6 and i∗ was the “resolving” index in HK(t∗); that
is, i∗ was the smallest i such that yi = FK′(t

∗, i)⊕ c and (2λ + yi) was a prime.

Game 8: (Programming HK with random value) The same as Game 7, except that it chooses a
random y′ ∈ {0, 1}λ and sets c = y′ ⊕ FK′(t∗, i∗).

Game 9: (Programming HK with e∗) The same as Game 8, except choose e∗ as a random prime
in the range [2λ, 2λ+1 − 1] and let y′ be the λ least significant bits of e∗; that is, drop the
leading 1. As before, set c = y′ ⊕ FK′(t∗, i∗).

Game 10: (Key Generation with SeqSetup) The same as Game 9, except when generating state1

as part of sk1, the challenger computes this as state1 = SeqSetup(N, 1T ,K, 1len=1, gu) (in-
stead of state1 = SeqShift(statepp, u)).

Game 11: (Key Generation with Random Quadratic Residue) The same as Game 10, except
during key generation, the challenger chooses a random w ∈ QRN and then sets state1 =

SeqSetup(N, 1T ,K, 1len=1, w) and U = w
∏
i∈[1,T ] ei .

Game 12: (Handling the Break-In) The same as Game 11, except that when the attacker issues
a break-in query for time period b, if b ≤ t∗, then the challenger immediately aborts and the
attacker does not win. Otherwise, if b > t∗, then the challenger returns skb = (stateb, eb, b),

where stateb is computed as stateb = SeqProgram(N, 1T ,K, 1len=1, w
∏
i∈[1,b−1] ei , b).
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Game 13: (Signing for Periods t 6= t∗) The same as Game 12, except when the attacker asks for
a signature query on (m, t), where t 6= t∗, instead of computing s as s = SeqCurrent(statet),

compute it as s = w
∏
i∈[1,T ]\{t} ei . The signature algorithm then proceeds in the same way as

before.

Game 14: (Preparing to embed the RSA Challenge h) The same as Game 13, except as fol-
lows. The challenger lets h = we

∗
= wet∗ for some w. It then sets the public key infor-

mation U = h
∏
i∈[1,T ]\{t∗} ei = w

∏
i∈[1,T ] ei . When the attacker asks for a signature query on

(m, t), where t 6= t∗, the challenger computes s = h
∏
i∈[1,T ]\{t,t∗} ei = w

∏
i∈[1,T ]\{t} ei . The

secret key for a break-in at time b is computed as skb = (stateb, eb, b), where stateb =

SeqProgram(N, 1T ,K, 1len=1, h
∏
i∈[1,b−1]\{t∗} ei , b). Looking ahead to our main reduction, we

will use h as the RSA challenge and w as its solution.

Game 15: (Programming the Random Oracle) The same as Game 14, except we change how
the challenger responds to signature queries for time period t∗. On signature query (m, t∗),
the challenger chooses a random σ2 ∈ [0, 2λ − 1] and a random r′ ∈ Z∗N . It computes a =
r′et∗ ·U−σ2 , sets σ1 = r′ and programs the random oracle to respond so that σ2 = G(a,m, t∗).
If the challenger has already given out a different response for G on this input (a,m, t∗), then
the challenger aborts immediately and the attacker does not win. Otherwise, the challenger
responds with σ = (σ1, σ2).

Next, we establish a series of claims that show that if an adversary is successful in the real
forward security game (Game 1) then it will be successful in Game 15 as well. We then describe a
simulator that can use any adversary successful in Game 15 to solve the RSA challenge.

Define AdvA[Game x] as the advantage of an adversary A in Game x.

Claim 6.2.

AdvA[Game 2] ≥ AdvA[Game 1]

T
.

Proof. The adversary’s view in Games 1 and 2 is identical. The only difference is whether or not
the guess of the forgery period t∗ ∈ [1, T ] is correct. This occurs with probability 1/T .

Claim 6.3.

AdvA[Game 3] ≥ AdvA[Game 2]

QA,t∗
.

Proof. The adversary’s view in Games 2 and 3 is identical. The only difference is whether or not
the guess of q∗ ∈ [1, QA,t∗ ] is correct. This occurs with probability 1/QA,t∗ .

Claim 6.4.
AdvA[Game 4] = (AdvA[Game 3])2.

Proof. The adversary’s view in Games 3 and 4 is identical, except that the simulation forks at the
random oracle query (aq∗ ,mq∗ , tq∗), records the results of the two simulations, and the attacker only
wins in Game 4 if she wins in both simulations. We note that in the (forked) second simulation,
the challenger simply chooses a fresh random value in [0, 2λ − 1] (possibly equal to the response
of the first simulation), so the adversary’s view and the distribution of the challenger’s response is
the same. Thus, due to the Forking Lemma [37], the probability of the attacker winning in both
forks is the square of the probability of her winning in a single run.
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Claim 6.5. If F is a secure pseudorandom function and λ ≥ 4, then

AdvA[Game 5] = AdvA[Game 4]− negl(λ).

Claim 6.6. If F is a secure pseudorandom function and T ∈ poly(λ), then

AdvA[Game 6] = AdvA[Game 5]− negl(λ).

Claim 6.7.

AdvA[Game 7] =
AdvA[Game 6]

λ3 + λ2
.

Claim 6.8.
AdvA[Game 8] = AdvA[Game 7].

Claim 6.9.
AdvA[Game 9] = AdvA[Game 8].

The proofs of Claims 6.5-6.9 appear in Appendix B and are similar to those used in [27] to
program the hash function HK with a desired RSA exponent. We make only minor modifications
to address the fork that occurred in Game 3.

Claim 6.10.
AdvA[Game 10] = AdvA[Game 9].

Proof. The attacker’s view in these games is identical. The only difference is how the state1 value
is computed, but both computations result in the same output and this follows from the correctness
of SeqShift.

Claim 6.11.
AdvA[Game 11] = AdvA[Game 10]− negl(λ).

Proof. The only difference between the attacker’s view in these games is the distribution of the
public and secret key, which we argue are statistically close. In Game 10, the base for SeqSetup
(which generates sk1) and the base for U which forms the pk are both gu, where g is a generator
of QRN and u is chosen randomly from [1, N ]. In Game 11, gu is replaced by a random w ∈ QRN ,
which is equivalent to having w = gu

′
with u′ ∈ [1, φ(N)]. Since N = φ(N) + p + q + 1, where

the difference between these two ranges of (p+ q + 1) is negligible, the attacker will not be able to
distinguish.

Claim 6.12.
AdvA[Game 12] = AdvA[Game 11].

Proof. We argue in two cases that an attacker’s advantage in these games is identical. First, in
Game 12, when the break-in period b ≤ t∗, then the challenger aborts and the attacker automatically
loses. However, the same thing happens in Game 11. Due to Game 2, we know that the attacker
only wins if the forgery period is t∗. Due to Game 1 (forward security game), we know that the
attacker only wins if she forges for a period prior to the break-in. Thus, in this case, there is no way
for the attacker to win, so aborting immediately and declaring the loss will not change anything.

Second, in Game 12, when b > t∗, the only change is how the secret key skb = (stateb, eb, b) that
the challenger must respond with is computed. In Game 12, stateb = SeqProgram(N, 1T ,K, 1len=1,
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w
∏
i∈[1,b−1] ei , b) whereas in Game 11, state1 = SeqSetup(N, 1T ,K, 1len=1, w) and then statet+1 =

SeqUpdate(statet) for t = 1 to b − 1. By the correctness of SeqProgram, these two methods of
computing stateb will result in the same output. Thus, there is nothing for the adversary to
distinguish in this case.

Claim 6.13.
AdvA[Game 13] = AdvA[Game 12].

Proof. An attacker’s advantage in these two games is the same. The value s is the same value in
both games, the challenger just computes the same thing in two different ways. This follows from
the correctness of SeqSetup and SeqUpdate.

Claim 6.14.
AdvA[Game 14] = AdvA[Game 13].

Proof. An attacker’s advantage in these two games is the same. Per Assumption 3.1, h = we∗ = wet∗

mod N for a random w ∈ QRN , so the distribution for U and s is identical. At the time of the
break in, both games inherit from Game 12 that b > t∗ (otherwise, the challenger immediately
aborts), so it is possible to compute those identical inputs to SeqProgram using h; namely that,

h
∏
i∈[1,b−1]\{t∗} ei = w

∏
i∈[1,b] ei .

Claim 6.15.
AdvA[Game 15] = AdvA[Game 14]− negl(λ).

Proof. Our argument will proceed as follows. We first observe that the challenger’s signature
response in Game 15 will verify. We then argue that the distribution of these signatures in Game
15 is the same as the distribution of the corresponding signatures of Game 14. We conclude by
arguing that the probability that the challenger is forced to abort in Game 15 due to a collision
with a prior response of G is negligible.

First, we show that the challenger’s signature responses are correct. On input (m, t∗), the
challenger responds with σ = (σ1, σ2). The verification algorithm computes a = σ

et∗
1 · U−σ2 and

queries G(a,m, t∗), which the challenger programmed to return σ2 on this query. The verification
algorithm then outputs 1 because G(a,m, t∗) = σ2.

Second, we look at the distribution of the signature σ = (σ1, σ2). In Game 15, σ2 was chosen
by the challenger to be a random value in the range [0, 2λ− 1], which is identical to how this value
is chosen by the challenger in Game 14. In Game 15, σ1 is chosen as a random value in Z∗N , where
in Game 14 it is computed as σ1 = r · sσ2 , where r is a random value in Z∗N ; thus, they have the
same distribution.

Finally, in Game 15, the challenger computes a = r′et∗ · U−σ2 and aborts if it has already
issued a random oracle G response on input (a,m, t∗) that does not equal σ2. The probability of
the challenger aborting in this scenario is the probability that it previously selected an r ∈ Z∗N
randomly such that a = ret∗ mod N , which is negligible.
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6.4.1 Main Reduction

We now show that if there exists a polynomial-time (in λ) attacker that has advantage ε = ε(λ) in
Game 15, then there exists a polynomial-time (in λ) attacker for the RSA problem in Assumption 3.1
with advantage ε− negl(λ).

On input an RSA challenge (N, e∗, h), the reduction algorithm proceeds as follows:

Setup.

1. Obtain 1T from the signature adversary A.
2. Make random guesses of t∗ ∈ [1, T ], q∗ ∈ [1, QA,t∗ ], i

∗ ∈ [1, λ3 + λ2].
3. Following [27] to program HK , choose a random PRF key K ′. Let y′ be the λ least significant

bits of the RSA input e∗ (note that this is a prime randomly chosen from the appropriate
range by the RSA challenger) and set c = y′ ⊕ FK′(t∗, i∗). Choose a random prime edefault ∈
[2λ, 2λ+1− 1]. Set K = (K ′, c, edefault). By construction, when i∗ is the resolving index for t∗,

et∗ = HK(t∗) = 2λ + (c⊕ FK′(t∗, i∗)) = 2λ + y′ = e∗.

4. Set len = 1. Choose a random g ∈ QRN and obtain statepp = SeqSetup(N, 1T ,K, 1len=1, g).

5. Compute Y = g
∏T
i=1 ei mod N .

6. Compute U = h
∏
i∈[1,T ]\{t∗} ei mod N .

7. Set the pp = (T,N, Y,K, statepp) and pk = U . Send (pp, pk) to A.

Queries. The adversary can make three different types of queries.

1. Random Oracle G: The function G : ZN × {0, 1}L × [1, T ] → [0, 2λ − 1] will be under the
challenger’s control. On input (a,m, t), check to see if this input was previously queried to G
(by the adversary or the challenger) or set by the challenger during a Signing query and if so,
return that response. If not, chose a random value in [0, 2λ − 1], record this, and return it.

2. Signing: On input (t,m) from the adversary, if t 6= t∗, compute s = h
∏
i∈[1,T ]\{t,t∗} = w

∏
i∈[1,T ]\{t}

and then follow the rest of the signing algorithm from the construction and return that
signature. This step may invoke calling G, which the challenger can simulate per the above.
If t = t∗, ,then the challenger chooses a random σ2 ∈ [0, 2λ − 1] and a random r′ ∈ Z∗N . It
computes a = r′et∗ · U−σ2 , sets σ1 = r′ and programs the random oracle to respond so that
σ2 = G(a,m, t∗). If the challenger has already given out a different response for G on this
input (a,m, t∗), then the challenger aborts immediately. Otherwise, the challenger responds
with σ = (σ1, σ2).

3. Break-In: On input a break-in key request for period b from the adversary, if b ≤ t∗, then the
challenger aborts. If b > t∗, then the challenger returns skb = (stateb, eb, b), where stateb is

computed as stateb = SeqProgram(N, 1T ,K, 1len=1, h
∏
i∈[1,b−1]\{t∗} ei , b).

Output. Eventually, due to the fork in Game 3, we obtain from the adversary two tuples (m, t, σ)
and (m, t, σ′). If either signature tuple does not verify, if any of the challenger’s guesses of t∗, q∗, i∗

were incorrect, if t is at or after the break-in or the message-period pair of (m, t) was previously
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queried to the signing oracle, then abort. These abort conditions are all consistent with the adver-
sary not winning Game 15. Otherwise, let E′ =

∏
i∈[1,T ]\{t∗} ei. Then, due to the fork in Game 3

at G on input (a,m, t∗), we have that σ = (σ1, σ2) and σ′ = (σ′1, σ
′
2) such that

a = σe
∗

1 · U−σ2 = σ′e
∗

1 · U−σ2

If σ2 = σ′2, the challenger aborts. This happens with at most 1/2λ probability, since these values
are both chosen randomly from [0, 2λ − 1] in Game 3. Without loss of generality let σ′2 > σ2, we
have that (σ1

σ′1

)e∗
= U−σ2+σ′2 = h

∏
i∈[1,T ]\{t∗} ei·(−σ2+σ2).

Next, we want to apply Lemma 3.2 to the above, where we have x = σ1
σ′1

, y = h, a′ = e∗ and

b′ =
∏
i∈[1,T ]\{t∗} ei · (−σ2 + σ2), so we have an equation of the form xa

′
= yb

′
. Since we will argue

that gcd(a′, b′) = 1, we can apply the efficient algorithm of Cramer and Shoup for computing z
such that ze

∗
= h, which we then output as the solution to the RSA challenge.

Analysis. The attacker’s view in the main reduction is the same as Game 15, except that the
challenger will abort if σ2 = σ′2. As stated above this happens with 1/2λ probability, since these
values are both chosen randomly from [0, 2λ−1] by the challenger in Game 3. Thus, the challenger
will abort due to this reason with at most negligible probability. Also, in this reduction, the
challenger uses the RSA challenge value h to compute the public key and related values, and that
this challenge h has the same distribution as the h of Game 15 (both are derived via raising a
random element of QRN to e∗).

It remains to argue that gcd(a′, b′) = 1, so that the challenger will be able to compute an RSA
solution. Recall that a′ = e∗ and b′ =

∏
i∈[1,T ]\{t∗} ei · (−σ2 + σ2). From Games 5 and 6, we

know that the RSA challenge exponent e∗ is a distinct prime from all other ei = HK(i) for inputs
i ∈ [1, T ]. So e∗ is relatively prime to

∏
i∈[1,T ]\{t∗} ei. Since σ′2−σ2 is in the range [0, 2λ− 1] and e∗

is a prime chosen from the range 2λ to 2λ+1 − 1, then we can conclude that e∗ is relatively prime
to (−σ2 + σ2). Thus, gcd(a′, b′) = 1 as needed.

7 Streamlined Signatures in the Standard Model

We describe a scheme that is provably secure in the standard model with the restriction that the
key must be updated after each signing (the scheme of the previous section does not share this
restriction). This represents the best forward security practice assuming the underlying sign and
update operations are efficient enough to support it. Our systems will be designed to provide
practically efficient key generation, signing and update. Moreover we choose a signature structure
that is optimized to provide as short a signature as possible. We achieve this by avoiding an
RSA-based Chameleon hash as discussed in the introduction.

If more than one signature is issued during a time period t, the forward security property guar-
antees that all signatures issued before t remain secure. Moreover, for our particular construction,
we claim that all signatures issued after t would remain secure as well. Informally, to see this,
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observe that each period t′ is associated with a unique prime et′ . Obtaining two signatures associ-
ated with the et-root could allow the adversary to produce additional signatures for time period t;
however, it should not give the adversary any advantage in taking e′t-roots for any t′ 6= t. Indeed,
we rely on this property to prove forward security. Thus, while single sign, our construction appears
rather optimal in terms of mitigating the damage done if a user accidentally violates this restraint:
she compromises signatures only for the time period for which she over-signed.

7.1 Construction

As before, the global setup of our scheme will take as input a security parameter λ and the maximum
number of periods T . The message spaceM will be {0, 1}L where L is some polynomial function of
λ. (One can handle messages of arbitrary length by first applying a collision-resistant hash.) Our
scheme will be parameterized by an RSA Sequencer as defined in Section 4 consisting of algorithms
(SeqSetup, SeqUpdate, SeqCurrent, SeqShift, SeqProgram. In addition, it will use the same hashing
function H to prime exponents as in Section 6.

Let f : Z→ Z be a function such that f(λ)/2λ is negligible in λ. In this construction, associated
with the scheme will be a “message chunking alphabet” where we break each L-bit message into k
chunks each of ` bits where k · ` = L. Here, we will require that 2` ≤ f(λ). In our evaluation in
Section 9, we will explore the performance impact of a various choices for the system parameters.

Setup(1λ, 1T ) First, setup algorithm chooses an integer N = pq as the product of two safe primes
where p − 1 = 2p′ and q − 1 = 2q′, such that 2λ < φ(N) < 2λ+1. Let QRN denote the group of
quadratic residues of order p′q′ with generator g. Next, the setup samples a hash function key K
according of the description at the start of Section 6. It follows by computing

statepp = SeqSetup(N, 1T ,K, 1len=k+2, (v1 = g, v2 = g, . . . , vlen = g)).

The algorithm concludes by computing E =
∏T
j=1 ej mod φ(N) and Y = gE mod N . It publishes

the public parameters as pp = (T,N, Y,K, statepp).

KeyGen(pp) The algorithm retrieves Y from the pp. It chooses random integers (u0, u1, . . . , uk, ũ)
in [1, N ]k+2. It computes state1 = SeqShift(statepp, (u0, u1, . . . , uk, ũ)). Next, for i ∈ [0, k], it
computes Ui = Y ui mod N and Ũ = Y ũ mod N . It computes e1 = HK(1). It sets sk1 =
(state1, e1, 1) and pk = (U0, U1, . . . , Uk, Ũ).

Update(pp, skt = (statet, et, t)) The update algorithm computes statet+1 = SeqUpdate(statet)
and computes the prime et+1 = HK(t + 1) using pp. It outputs the new secret key as skt+1 =
(statet+1, et+1, t+ 1).

Sign(pp, skt = (statet, et, t),M) The signing algorithm first parses the L = (`k)-bit message
M as M = m1|m2| . . . |mk, where each mi contains `-bits. Then it retrieves (s0, s1, . . . , sk, s̃) =
SeqCurrent(statet). Next, it chooses random integer r ∈ [0, 2λ − f(λ)].

The signature is generated as

σ = (σ1, σ2) = (s0 · s̃r ·
k∏
j=1

s
mj
j , r)
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Verify(pp, pk,M, t, σ = (σ1, σ2)) Let pk = (U0, . . . , Uk, Ũ) and M = m1| . . . |mk. The verification
first computes the prime et = HK(t) using pp. It accepts if and only if 0 ≤ σ2 ≤ 2λ − f(λ) and

σet1
?
= U0 · Ũσ2 ·

k∏
j=1

U
mj
j .

7.2 Correctness

Consider public parameters created via SeqSetup with generator g and modulus N , and from this
a key pair (pk, sk1) created via SeqShift with random exponents (u0, u1, . . . , uk, ũ). At time period
t ∈ [1, T ] (i.e., after t− 1 updates), by the correctness of SeqUpdate and SeqCurrent, we have that

sj = (guj )
∏
i∈[1,T ]\{t} ei = U

1/et
j for j ∈ [0, k] and s̃ = (gũ)

∏
i∈[1,T ]\{t} ei = Ũ1/et .

Let r ∈ [0, 2λ − f(λ)] be the random integer chosen in generating the signature, then

σ1 = s0 · s̃r ·
k∏
j=1

s
mj
j = gu0E/et · (gũE/et)r ·

k∏
j=1

(gujE/et)mj .

When the verification algorithm raises σ1 to the et, it will get the needed equivalence of

gu0E · (gũE)r ·
k∏
j=1

(gujE)mj = U0 · Ũσ2 ·
k∏
j=1

U
mj
j .

7.3 Efficiency

The efficiency of this construction will follow somewhat similarly to the analysis of Section 6.3.
One notable difference is that the sequencer will need to keep track of k + 2 values instead of 1.
For that reason it is generally preferable to use smaller k values and choosing k = 1 is a natural
choice. However, one advantage of using slightly large k values is that it allows for smaller sized
message chunks which in turn enable smaller prime et exponents which must be larger than the
message chunk size. We will explore different concrete options in our Section 9 evaluation.

The global Setup algorithm is dominated by one call to SeqSetup which involves approximately
T prime searches for our implementation (via the optimization in Section 5.1). The canonical
implementation calls for (k + 2)T · lg(T ) exponentiations; however, one can observe that since
(v1 = g, v2 = g, . . . , vlen = g) the sequencer is basically computing the exact same thing k + 2
times. And by breaking the abstraction slightly one can compute this with approximately T · lg(T )
exponentiations. The KeyGen operation requires approximately 2(k+2) lg(T ) exponentiations. The
Update algorithm is simply a call to SeqUpdate which will take (k + 2) lg(T ) exponentiations and
lg(T ) prime searches using the construction of Section 5. The signing algorithm makes a single call
to SeqCurrent, which in our construction is just a fetch of a tuple of elements in Z∗N . The dominant
costs are the exponentiation to r of approximately λ bits and k exponentiations to ` bit values as
well as the prime search for et. Finally verification will be dominated by the exponentiation to r
of approximately λ bits and k exponentiations to ` bit values and a prime search.

7.4 Proof of Security

Theorem 7.1. If the RSA assumption (Assumption 3.1) holds and F is a secure pseudorandom
function, then the Section 7.1 key-evolving signature construction is single-sign forward secure.
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Proof. The reduction algorithm receives an RSA challenge (N, e∗, h) and needs to use the attacker
to compute h1/e∗ mod N . We utilize a sequence of games which are similar in structure, but with
a number of critical technical differences, to those of Section 6.4. We will assume that the attacker
asks for a signing query (on any message of its choice) during time period t∗, which is the forgery
period used by the attacker. This is without loss of generality, because given an attacker that does
not (always) make a query during this period, we can simulate an attacker that does by issuing a
signing query during t∗ on a random message if the adversary fails to do so, before outputting the
final forgery.

We now define a sequence of games.

Game 1: (Security Game) This game is defined to be the same as the single sign forward security
game.

Game 2: (Guessing the forgery period and message chunk) The same as Game 1, except the game
randomly guesses a time period t∗ ∈ [1, T ] that the attacker forges on and a message chunk
α ∈ [1, k] that will differ between the attacker’s signing query at t∗ and the forgery message.
Let M = m1|m2| . . . |mk and M∗ = m∗1|m∗2| . . . |m∗k be the messages of the signing query at t∗

and the forgery output, respectively. The adversary only wins if he would have won Game 1
and the guess of t∗ was correct and mα 6= m∗α.

Game 3: (Signing on t∗ with special r) The same as Game 2, except that the challenger chooses
random values d ∈ [0, 2λ − f(λ)] and β ∈ {0, 1}. When the attacker makes a signing query
of the form (M = m1| . . . |mk, t), if t 6= t∗, then the challenger signs the message following
the regular signing algorithm. If t = t∗, then the adversary sets r = d + β ·mα (instead of
choosing it randomly) and then from this point follows the regular signing algorithm.

Game 4: (Aborting on collision with attacker) The same as Game 3, except the attacker only wins
with forgery output (M = m1| . . . |mk, t, σ = (σ1, σ2)) if he would have won in Game 3 and
σ2 6= d+ β ·mα (otherwise the challenger aborts).

Game 5: (HK does not default) The attacker wins only if it meets all the conditions to win in
Game 4 and HK(t∗) 6= edefault (that is, the default condition of the hash is not triggered on
the forgery period or otherwise equal to the default prime.)

Game 6: (HK does not collide) The attacker wins only if it meets all the conditions to win in
Game 5 and HK(t∗) 6= HK(t) for all t ∈ [1, T ] where t 6= t∗.

Game 7: (Guess resolving i∗ for HK) The game chooses a random i∗ ∈ [1, λ3 +λ2]. Attacker wins
only if it meets all the conditions of Game 6 and i∗ was the “resolving” index in HK(t∗); that
is, i∗ was the smallest i such that yi = FK′(t

∗, i)⊕ c and (2λ + yi) was a prime.

Game 8: (Programming HK with random value) The same as Game 7, except that it chooses a
random y′ ∈ {0, 1}λ and sets c = y′ ⊕ FK′(t∗, i∗).

Game 9: (Programming HK with e∗) The same as Game 8, except choose e∗ as a random prime
in the range [2λ, 2λ+1 − 1] and let y′ be the λ least significant bits of e∗; that is, drop the
leading 1. As before, set c = y′ ⊕ FK′(t∗, i∗).
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Game 10: (Key Generation with SeqSetup) The same as Game 9, except when generating state1

as part of sk1, the challenger computes this as state1 = SeqSetup(N, 1T ,K, 1len=k+2, (gu0 , gu1 ,
. . . , guk , gũ)) (instead of state1 = SeqShift(statepp, (u0, u1, . . . , uk, ũ))).

Game 11: (Key Generation with Random Quadratic Residue) The same as Game 10, except
during key generation, the challenger chooses a random w ∈ QRN . It computes v0 = gu0 ·wd,
vα = guα · wβ, ṽ = gũ · w−1 and for i = 1 to k, where i 6= α, vi = gui . It then computes
for i = 0 to k, Ui = vEi and Ũ = ṽE , where E =

∏
i∈[1,T ] ei. It then sets state1 =

SeqSetup(N, 1T ,K, 1len=k+2, (v0, . . . , vk, ṽ)) when computing sk1 = (state1, e1, 1) and then
sets the public key as pk = (U0, . . . , Uk, Ũ).

Game 12: (Handling the Break-In) The same as Game 11, except that when the attacker issues
a break-in query for time period b, if b ≤ t∗, then the challenger immediately aborts and the
attacker does not win. Otherwise, if b > t∗, then the challenger computes γ =

∏
i∈[1,b−1] ei

and as in Game 11, v0 = gu0 · wd, vα = guα · wβ, ṽ = gũ · w−1 and for i = 1 to k, where
i 6= α, vi = gui . It returns skb = (stateb, eb, b), where stateb is computed as stateb =
SeqProgram(N, 1T ,K, 1len=k+2, (vγ0 , . . . , v

γ
k , ṽ

γ), b).

Game 13: (Signing for Periods t 6= t∗) The same as Game 12, except when the attacker issues
a signature query on (M = m1| . . . |mk, t), where t 6= t∗, instead of computing (s0, . . . , sk, s̃)
as SeqCurrent(statet), the challenger computes this tuple as follows. Let γ =

∏
i∈[1,T ]\{t} ei.

The challenger computes s0 = gγu0 · wγd, sα = gγuα · wγβ, s̃ = gγũ · w−γ and for i = 1 to k,
where i 6= α, si = gγui . The signature algorithm then proceeds in the same way as before.

Game 14: (Preparing to embed the RSA Challenge h) The same as Game 13, except as follows.
The challenger lets h = we

∗
= wet∗ for some w. Looking ahead to our main reduction, we will

use h as the RSA challenge and w as its solution. Let E =
∏
i∈[1,T ] ei and E′ =

∏
i∈[1,T ]\{t∗} ei.

It computes U0 = gEu0 · hE′d, Uα = gEuα · hE′β, Ũ = gEũ · h−E′ and for i = 1 to k, where
i 6= α, Ui = gEui . It then sets the public key information pk = (U0, . . . , Uk, Ũ).

When the attacker asks for a signature query on (m, t), where t 6= t∗, let γ′ =
∏
i∈[1,T ]\{t,t∗} ei

and γ = γ′ · e∗. The challenger computes s0 = gγu0 · hγ′d, sα = gγuα · hγ′β, s̃ = gγũ · h−γ′ and
for i = 1 to k, where i 6= α, si = gγui . The signature algorithm then proceeds in the same
way as before.

The secret key for a break-in at time b is computed as skb = (stateb, eb, b), where stateb
is computed as follows. The challenger computes π′ =

∏
i∈[1,b−1]\{t∗} ei and π = π′ · e∗

and then v0 = gπu0 · hπ′d, vα = gπuα · hπ′β, ṽ = gπũ · h−π′ and for i = 1 to k, where
i 6= α, vi = gπui . It returns skb = (stateb, eb, b), where stateb is computed as stateb =
SeqProgram(N, 1T ,K, 1len=k+2, (v0, . . . , vk, ṽ), b).

Game 15: (Signing for Period t∗) The same as Game 14, except we change how the challenger
responds to the signature query for time period t∗. Recall that there will only be one. On
signature query (M = m1| . . . |mk, t

∗), the challenger sets r = d + β ·mα (per Game 3) and
then computes the signature σ = (σ1, σ2) as σ2 = r and

σ1 = (gE
′u0) · (gE′ũ)r ·

k∏
i=1

(gE
′uimi).
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Next, we establish a series of claims that show that if an adversary is successful in the real
single sign forward security game (Game 1) then it will be successful in Game 15 as well. We then
describe a simulator that can use any adversary successful in Game 15 to solve the RSA challenge.

Define AdvA[Game x] as the advantage of an adversary A in Game x.

Claim 7.2.

AdvA[Game 2] ≥ AdvA[Game 1]

T · k
.

Proof. The adversary’s view in Games 1 and 2 is identical. The only difference is whether or not
the challenger’s guess of the forgery period t∗ ∈ [1, T ] and the message chuck α ∈ [1, k] are correct.
This occurs with probability 1/(Tk).

Claim 7.3.
AdvA[Game 3] ≥ AdvA[Game 2]− negl(λ).

Proof. The adversary’s view in Games 2 and 3 differ in the distribution of the responses to the
signature query to sign M = m1| . . . |mk at period t∗. In Game 2, the challenger chooses a random
r ∈ [0, 2λ − f(λ)] and uses that to compute the signature. In Game 3, the challenger chooses a
random d ∈ [0, 2λ − f(λ)], a random β ∈ {0, 1} and sets r = d + β · mα, which it then uses to
compute the signature. (Recall that α is chosen in Game 2.) When β = 0, the two distributions
for r are the same. When β = 1, then in Game 3, r is now set as the adversary choosing a value in
[0, 2f(λ) − 1] (recall that message chunks are ` bits and 2` ≤ f(λ))) and then the challenger adds
a random value in [0, 2λ − f(λ)]. So for any choice of mα, since f(λ)/2λ is negligible, these two
distributions for r will be statistically close. Thus, the attacker distinguishes these games with at
most negligible advantage.

Claim 7.4.

AdvA[Game 4] =
AdvA[Game 3]

2
− negl(λ).

Proof. The adversary’s view in Games 3 and 4 is the same, except if the adversary outputs a
forgery tuple (M∗ = m∗1| . . . |m∗k, t∗, σ∗ = (σ∗1, σ

∗
2)) where σ∗2 = d + β · m∗α. In this event, the

challenger in Game 3 proceeds, but the challenger in Game 4 aborts and the adversary loses. Let
M = m1| . . . |mk be the message that the attacker requested a signature on for period t∗ and let
σ = (σ1, σ2) be the challenger’s response to that query. (Recall that we assumed w.l..o.g. that all
attackers would query at period t∗ and, by single sign, there will be only one query.) Then we
know that in both games σ2 = d + β · mα. For all mα, define goodmα to be the set of integers
r ∈ [0, 2λ − f(λ)] such that there exist integers x, x′ ∈ [0, 2λ − f(λ)] such that r = x + 0 ·mα = x
and r = x′ + 1 · mα. Now, for a given mα, if the challenger’s response to the signing query at
period t∗ has σ2 ∈ goodmα , then the adversary cannot distinguish whether β = 0 or 1 information
theoretically. In this case, the best the adversary can do (to cause the challenger to abort) is guess
β′ ∈ {0, 1}, compute d′ = σ2−β′ ·mα and then output a signature with σ∗2 = d+β′ ·m∗α. If its guess
of this bit was correct, then this will force the challenger to abort. This occurs with 1/2 probability
in this case. In the other case, if the challenger issues a signature for period t∗ with σ2 6∈ goodmα ,
then we also assume the challenger must abort. However, this corresponds to the event that σ2

falls in the range [2λ − f(λ) + 1, 2λ], which happens with at most negligible probability due to the
challenger’s selection of d ∈ [0, 2λ − f(λ)] (which adds only β ·mα, which can be at most f(λ).)
.
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Claim 7.5. If F is a secure pseudorandom function and λ ≥ 4, then

AdvA[Game 5] = AdvA[Game 4]− negl(λ).

Claim 7.6. If F is a secure pseudorandom function and T ∈ poly(λ), then

AdvA[Game 6] = AdvA[Game 5]− negl(λ).

Claim 7.7.

AdvA[Game 7] =
AdvA[Game 6]

λ3 + λ2
.

Claim 7.8.
AdvA[Game 8] = AdvA[Game 7].

Claim 7.9.
AdvA[Game 9] = AdvA[Game 8].

The proofs of Claims 7.5-7.9 are for programming the hash HK . They are the same as those of
Claims 6.5-6.9 in Appendix B (removing any mention of forking).

Claim 7.10.
AdvA[Game 10] = AdvA[Game 9].

Proof. The attacker’s view in these games is identical. The only difference is how the state1 value
is computed, but both computations result in the same output and this follows from the correctness
of SeqShift.

Claim 7.11.
AdvA[Game 11] = AdvA[Game 10].

Proof. The only difference in these games is how the public and secret key are computed, which
we argue admits the same distribution. In Game 10, the bases for SeqSetup (which generates sk1)
and the bases for the pk are of the form gui , where g is a generator of QRN and each ui is chosen
randomly from [1, N ]. In Game 11, a random w ∈ QRN is chosen by the challenger and three of
these gui bases have the values wd, wβ, w−1, respectively, multiplied into them. Since these are all
quadratic residues and the ui values are chosen independently, the resulting distribution of this key
pair will be the same in both games.

Claim 7.12.
AdvA[Game 12] = AdvA[Game 11].

Proof. We argue in two cases that an attacker’s advantage in these games is identical. First, in
Game 12, when the break-in period b ≤ t∗, then the challenger aborts and the attacker automatically
loses. However, the same thing happens in Game 11. Due to Game 2, we know that the attacker
only wins if the forgery period is t∗. Due to Game 1 (forward security game), we know that the
attacker only wins if she forges for a period prior to the break-in. Thus, in this case, there is no way
for the attacker to win, so aborting immediately and declaring the loss will not change anything.

Second, in Game 12, when b > t∗, the only change is how the secret key skb = (stateb, eb, b) that
the challenger must respond with is computed. In both games, the challenger computes v0 = gu0 ·wd,
vα = guα ·wβ, ṽ = gũ ·w−1 and for i = 1 to k, where i 6= α, vi = gui . It returns skb = (stateb, eb, b).
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In Game 12, stateb is computed as stateb = SeqProgram(N, 1T ,K, 1len=k+2, (vγ0 , . . . , v
γ
k , ṽ

γ), b),
where γ =

∏
i∈[1,b−1] ei. Whereas in Game 11, state1 = SeqSetup(N, 1T ,K, 1len=k+2, (v0, . . . , vk, ṽ))

and then statet+1 = SeqUpdate(statet) for t = 1 to b − 1. By the correctness of SeqProgram,
these two methods of computing stateb will result in the same output. Thus, there is nothing for
the adversary to distinguish in this case either.

Claim 7.13.
AdvA[Game 13] = AdvA[Game 12].

Proof. The adversary’s view in Games 12 and 13 is identical. The tuple (s0, . . . , sk, s̃) used to sign
is the same in both games, the challenger just computes the same thing in two different ways. This
follows from the correctness of SeqSetup and SeqUpdate.

Claim 7.14.
AdvA[Game 14] = AdvA[Game 13].

Proof. The adversary’s view in Games 13 and 14 is identical. Per Assumption 3.1, h = we∗ = wet∗

mod N for a random w ∈ QRN , so the distribution for the tuples pk = (U0, . . . , Uk, Ũ) and
(s0, . . . , sk, s̃) are identical. At the time of the break in, both games inherit from Game 12 that
b > t∗ (otherwise, the challenger immediately aborts), so it is possible to compute those identical
inputs to SeqProgram using h.

Claim 7.15.
AdvA[Game 15] = AdvA[Game 14].

Proof. The adversary’s view in Games 14 and 15 is identical. The only change is how the signature
query (M = m1| . . . |mk, t

∗) is computed, which we now show to be the same in both games. In both
games (per Game 3), the challenger sets σ2 = d+β·mα. Let E =

∏
i∈[1,T ] ei and E′ =

∏
i∈[1,T ]\{t∗} ei.

In both games, U0 = gEu0 · hE′d, Uα = gEuα · hE′β, Ũ = gEũ · h−E′ and for i = 1 to k, where i 6= α,
Ui = gEui . It then sets the public key information pk = (U0, . . . , Uk, Ũ).

In Game 14, σ1 is computed according to the normal signing algorithm. And observe from
the construction that for fixed pp, pk,M, t∗ and σ2, there is a single σ1 value that will pass the
verification equation (since σ1 is the unique e∗th root modulo N of a deterministic function of
these other values). Thus, it remains to show that the σ1 of Game 15 will also pass the verification
algorithm. In Game 15, σ1 is computed as follows. Recall that σ2 = r = d+ β ·mα.

σ1 = (gE
′u0) · (gE′ũ)r ·

k∏
i=1

(gE
′uimi)

= (hE
′/e∗)d+βmα−r · (gE′u0) · (gE′ũ)r ·

k∏
i=1

(gE
′uimi)

= (gE
′u0 · hdE′/e∗) · (gE′ũ · h−E′/e∗)r · (gE′uαmα · hβmαE′/e∗) ·

k∏
i=1,i 6=α

(gE
′uimi)
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So we have that:

σe
∗

1 = (gE
′u0 · hdE′/e∗)e∗ · (gE′ũ · h−E′/e∗)re∗ · (gE′uαmα · hβmαE′/e∗)e∗ ·

k∏
j=1,j 6=α

(gE
′ujmj )e

∗

= (gEu0 · hE′d) · (gEũ · h−E′)r · (gEuα · hE′β)mα ·
k∏

j=1,j 6=α
(gEuj )mj

= U0 · Ũ r · Umαα ·
k∏

j=1,j 6=α
U
mj
j

= U0 · Ũσ2 ·
k∏
j=1

U
mj
j

Thus, in Game 15, this method for computing σ1 results in the same value as Game 14.

7.4.1 Main Reduction

We now show that if there exists a polynomial-time (in λ) attacker that has advantage ε = ε(λ) in
Game 15, then there exists a polynomial-time (in λ) attacker for the RSA problem in Assumption 3.1
with advantage ε− negl(λ).

On input an RSA challenge (N, e∗, h), the reduction algorithm proceeds as follows:

Setup.

1. Obtain 1T from the signature adversary A.
2. Make random guesses of t∗ ∈ [1, T ], α ∈ [1, k], i∗ ∈ [1, λ3 + λ2].
3. Make random choices of d ∈ [0, 2λ − f(λ)] and β ∈ {0, 1}.
4. Following [27] to program HK , choose a random PRF key K ′. Let y′ be the λ least significant

bits of the RSA input e∗ (note that this is a prime randomly chosen from the appropriate
range by the RSA challenger) and set c = y′ ⊕ FK′(t∗, i∗). Choose a random prime edefault ∈
[2λ, 2λ+1− 1]. Set K = (K ′, c, edefault). By construction, when i∗ is the resolving index for t∗,

et∗ = HK(t∗) = 2λ + (c⊕ FK′(t∗, i∗)) = 2λ + y′ = e∗.

5. Set len = k+2. Choose a random g ∈ QRN and obtain statepp = SeqSetup(N, 1T ,K, 1len=k+2,
(g, g, . . . , g)).

6. Let E =
∏
i∈[1,T ] ei and E′ =

∏
i∈[1,T ]\{t∗} ei. Compute Y = gE mod N .

7. Select random u0, . . . , uk, ũ ∈ [1, N ].
8. Compute U0 = gEu0 · hE′d, Uα = gEuα · hE′β, Ũ = gEũ · h−E′ and for i = 1 to k, where i 6= α,
Ui = gEui . It then sets the public key information pk = (U0, . . . , Uk, Ũ).

9. Set the pp = (T,N, Y,K, statepp). Send (pp, pk) to A.

Queries. The adversary can make two different types of queries.

1. Signing: On input (M = m1| . . . |mk, t) from the adversary, if t 6= t∗, let γ′ =
∏
i∈[1,T ]\{t,t∗} ei

and γ = γ′ · e∗. The challenger computes s0 = gγu0 · hγ′d, sα = gγuα · hγ′β, s̃ = gγũ · h−γ′
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and for i = 1 to k, where i 6= α, si = gγui . The signature algorithm then proceeds according
to the regular algorithm by choosing a random r ∈ [0, 2λ − f(λ)], setting σ2 = r and σ1 =
s0 · s̃r ·

∏k
j=1 s

mj
j .

If t = t∗, the challenger sets r = d+ β ·mα (per Game 3) and then sets σ2 = r and computes

σ1 = (gE
′u0) · (gE′ũ)r ·

k∏
i=1

(gE
′uimi).

The challenger responds with σ = (σ1, σ2).

2. Break-In: On input a break-in key request for period b from the adversary, if b ≤ t∗, then
the challenger aborts. If b > t∗, then the challenger computes π′ =

∏
i∈[1,b−1]\{t∗} ei and

π = π′ · e∗ and then v0 = gπu0 · hπ′d, vα = gπuα · hπ′β, ṽ = gπũ · h−π′ and for i = 1 to
k, where i 6= α, vi = gπui . It returns skb = (stateb, eb, b), where stateb is computed as
stateb = SeqProgram(N, 1T ,K, 1len=k+2, (v0, . . . , vk, ṽ), b).

Output. Eventually, the adversary outputs a tuple (M∗ = m∗1| . . . |m∗k, t, σ∗ = (σ∗1, σ
∗
2)). If the

signature tuple does not verify, if any of the challenger’s guesses of t∗, α, i∗ were incorrect, if t is
at or after the break-in b, the message-period pair of (M∗, t) was previously queried to the signing
oracle or σ∗2 = d + βm∗α, then abort. Let M = m1| . . . |mk and σ = (σ1, σ2) be the message and
signature associated with the adversary’s signing query on period t∗. If σ2 6∈ goodmα , then abort.
These abort conditions are all consistent with the adversary not winning Game 15.

Otherwise, we have an equation of the form:

(
σ∗1
)e∗

= U0 · Ũσ
∗
2 ·

k∏
j=1

U
m∗j
j = U0 · Ũσ

∗
2 · Um∗αα ·

k∏
j=1,j 6=α

U
m∗j
j

= (gEu0 · hE′d) · (gEũ · h−E′)σ∗2 · (gEuα · hE′β)m
∗
α

k∏
j=1,j 6=α

(gEui)m
∗
j

= hE
′(d+βm∗α−σ∗2) · gE·(u0+ũσ∗2+

∑k
i=1 uim

∗
i )

= hE
′(d+βm∗α−σ∗2) · ge∗·E′·(u0+ũσ∗2+

∑k
i=1 uim

∗
i )

Thus, we can divide both sides by the same amount to obtain the equation:(
σ∗1 · g−E

′·(u0+ũσ∗2+
∑k
i=1 uim

∗
i )
)e∗

= hE
′(d+βm∗α−σ∗2)

View this equation as xe
∗

= hb
′

for x = σ∗1 · g−E
′·(u0+ũσ∗2+

∑k
i=1 uim

∗
i ) and b′ = E′(d+βm∗α−σ∗2). We

know from Game 4 that b′ 6= 0. Assume b′ is non-negative (if not, raise both sides of the equation
to −1.) Now, the challenger can apply Lemma 3.2 to the above to efficiently obtain a z ∈ ZN such
that ze

∗
= h. The challenger outputs z as the solution to the RSA challenge.

Analysis. The attacker’s view in the main reduction is the same as Game 15. It remains to argue
that gcd(e∗, b′) = 1, so that the challenger will be able to apply Lemma 3.2 in the final step of the
main reduction. From Games 5 and 6, we have that e∗ is relatively prime to E′. We have that
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b′ = d + βm∗α − σ∗2 > 1. Since d, σ∗2 ∈ [0, 2λ − f(λ)], β ∈ {0, 1} and m∗α ≤ f(λ), we know that the
value d+βm∗α−σ∗2 cannot exceed 2λ. Given that e∗ was chosen from the range [2λ, 2λ+1−1], there
is no possibility that e∗ = d + βm∗α − σ∗2, since 2λ is not prime. Therefore, we can conclude that
gcd(e∗, b′) = 1 and the challenger will be able to compute the RSA solution.

8 Multiple Signatures per Update

We move to showing how to transform our scheme to allow for multiple signatures per time period.
We use an idea, which is common in literature, to add a level of indirection by having the forward
secure scheme sign a verification key as its message. Then the standard signature scheme can be
used to sign as many signatures in the time period as needed, with the understanding that if the
secret key becomes compromised by an attacker during period t, then all signatures from that period
(and later) are suspect. As discussed before arguably the best forward secure key hygiene is to do a
key update on every single sign which enables forward security at the finest granularity possible on
key compromise. However, we include this transformation to give options when deploying a system.
The cost of this transformation is an increase in signature size. The exact increase will depend on
the public key size of the underlying signature scheme and for our regime at least double it.

The transformation is described below.
Given a weakly secure, single sign forward secure signature scheme Πweak = (Setupweak,KeyGenweak,

Updateweak, Signweak,Verifyweak) and a regular signature scheme scheme Πreg = (KeyGenreg,Signreg,
Verifyreg) that is existentially unforgeable with respect to adaptive chosen message attacks [20],
there is a generic method for obtaining an adaptively secure, multi-sign forward secure signature
scheme Πfull = Setupfull,KeyGenfull,Updatefull, Signfull,Verifyfull). This method works as follows. Let
the message space for Πweak be the public key space of Πreg. Let the message spaces of Πfull and
Πreg be the same. In practice, one could always first apply a collision-resistant hash function to
map inputs to the proper message space.

Setupfull(1
λ, 1T ) Run Setupweak(1

λ, 1T ) to obtain pp.

KeyGenfull(pp) On input pp, run KeyGenweak(pp) to obtain (pk, sk′1) and KeyGenreg(1λ) to obtain
(pk′, sk′). Compute σ′ = Signweak(pp, sk

′
1, pk

′). The public key is pk and the secret key is sk1 =
(sk′1, pk

′, sk′, σ′).

Updatefull(pp, skt) Parse skt = (sk′t, pk
′, sk′, σ′). Run Updateweak(pp, sk

′
t) to obtain sk′t+1. Run

KeyGenreg(1λ) to obtain (pk′′, sk′′). Compute σ′′ = Signweak(pp, sk
′
t+1, pk

′′). Output skt+1 =
(sk′t+1, pk

′′, sk′′, σ′′).

Signfull(pp, skt,m) Parse skt = (sk′t, pk
′, sk′, σ′). Compute s = Signreg(sk′,m). Output the signature

σ = (pk′, σ′, s).

Verifyfull(pp, pk,m, t, σ = (pk′, σ′, s)) Accept iff Verifyreg(pk′,m, s) = Verifyweak(pp, pk, pk
′, t, σ′) =

1.
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Theorem 8.1. If Πweak is a weakly secure single sign forward secure signature scheme and Πreg is
a regular signature scheme that is existentially unforgeable with respect to adaptive chosen message
attacks, then the above key-evolving signature construction Πfull is forward secure.

Proof of the above theorem is rather straightforward and we omit it here. Roughly, any adver-
sary that can win in the forward security game with Πfull with non negligible probability can be
used to break either the weakly secure single sign forward security of Πweak or the regular security
of Πreg with non negligible probability. We can split such an attacker into new types. In the first
type the attacker with some non-negligible probability successfully forges on period t∗ by producing
a valid forward secure certificate/signature that was different than the one issued by the legitimate
signer. In this case the attacker can be utilized as an attacker on the weak forward secure signature
scheme. Here the weakness is not problem since the standard public key for the legitimate tempo-
rary signature at t∗ can be chosen by the reduction algorithm in advance of receiving the challenge
key for the forward secure scheme. Next, if the attacker is not of the type above then when it is
successful with all but negligible probability it forges using the same temporary public key at t∗.
This can be readily transformed into an attack on the standard signature scheme.

Instantiating the Scheme In choosing the standard scheme one would like to remain consistent
and choose a hash-and-sign scheme that is provably secure from an RSA-based assumption in the
standard model. There exist multiple choices (e.g [25, 26, 23]). One obvious optimization is that
the weakly secure scheme should sign the output of the collision resistant hash of the temporary
verification key. Still the new signature will have to include the description of the temporary
verification key which will include a description of a new (temporary) RSA modulus N ′ as well as a
few group elements of Z∗N ′ and other keying material depending on the scheme. Cumulatively, these
could significantly increase the signature size in practice. One mitigating strategy is to push as
much of that public key material into some additional common parameters. Ideally, one could push
almost all material except the new temporary modulus N ′. For instance, group elements could be
derived from large integers from setup and moding them by N ′. The details of such modifications
will vary on a scheme by scheme basis and are outside the scope of this paper.

9 Performance Evaluation

We now analyze the performance of the two main forward-secure schemes presented. In partic-
ular, we look at the random oracle based construction from Section 6 and the standard model
construction from Section 7. The latter construction has the single sign restriction, meaning that
the Update algorithm must be run after each signature generated; however, as our numbers will
support key update operations will be cheap enough to still support a high rate of signing. And if
more frequent signing is required one could move to the hybrid model of Section 8. We provide this
analysis to give the reader some intuitive idea of the concrete costs of our cryptosystems, however,
we emphasize that this does not represent an exhaustive search of reasonable configurations of our
system.

For both constructions, we consider a 2048-bit RSA modulus N . To perform the timing eval-
uations in Figures 2 and 3, we utilized the high-performance NTL number theory library in C++
v10.5.0 by Victor Shoup [41]. Averaged over 10,000 iterations, we measured the cost of a prime
search of the relevant size as well as the time to compute modular multiplications and modular
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Operation P1024 P337 P113 P82 P81 E2048 E337 E336 E256

Time (ms) 28.533 1.759 0.365 0.317 0.302 4.700 0.815 0.808 0.638

Operation E113 E112 E82 E81 E80 E32 M
Time (ms) 0.305 0.299 0.226 0.217 0.211 0.098 0.001

Figure 1: Time recorded in milliseconds for the above operations are averaged over 10,000 iterations
for a 2048-bit modulus using NTL v10.5.0 on a modern laptop. Let Px denote an x-bit prime search,
Ex be an x-bit modular exponentiation, and M be a modular multiplication.

Sec. 6 Time when T =
Alg. Operation Count 212 216 220 224 228 232

Setup T · P|e| + 2 lg T · E|N | +
(2T lg T ) ·M

1.45s 22.03s 5.98m 1.63h 1.11d 18.16d

KeyGen 1 ·P|e|+(2 lg T +1) ·E|N | 0.12s 0.16s 0.19s 0.23s 0.27s 0.31s

Update lg T · P|e| + lg T · E|e| 6.24ms 8.32ms 10.40ms 12.48ms 14.56ms 16.64ms

Sign 1 · E|e| + 1 · E|σ2| + 1 ·M 0.43ms 0.43ms 0.43ms 0.43ms 0.43ms 0.43ms

Verify 1·P|e|+1·E|e|+1·E|σ2|+
1 ·M

0.73ms 0.73ms 0.73ms 0.73ms 0.73ms 0.73ms

Figure 2: Running Time Estimate for the Section 6 (Random Oracle) Scheme with a 2048-bit N .
Let P|e| be the time for function HK to output a prime of |e| bits, Ej be the time to perform a
j-bit modular exponentiation, and M be the time to perform a modular multiplication. T is the
maximum number of time periods supported by the forward-secure scheme. We set |e| = 81 bits
to be the size of the prime exponents and |σ2| = 80 bits to be the maximum size of the output
of G. We set the message space length L to be an arbitrary polynomial function of λ. Times are
calculated by taking the average time for an operation (see Figure 1) and summing up the total
times of each operation. Let ms denote milliseconds, s denote seconds, m denote minutes, h denote
hours, and d denote days.

exponentiations for the relevant exponent sizes. We took all time measurements on an early 2015
MacBook Air with a 1.6 GHz Intel Core i5 processor and 8 GB 1600 MHz DDR3 memory. These
timing results are recorded in Figure 1.

For the Section 6 (Random Oracle) timing estimates in Figure 2, the message space is arbitrary,
since the message is hashed as an input to the random oracle G. We set the maximum output length
of G to be 80 bits. (Recall from our proof of security that an additive loss factor of 2−80 comes
from the probability that the attacker receives the same challenge value from two forks of the
security game at q∗.) Since the prime exponent must be larger than this output of G, we set
it to be 81 bits.10 These evaluations will be considered for a maximum number of periods of

10The parameters given for this and the standard model scheme evaluation do not have a total correspondence to
the scheme description, e.g., using 81-bit e values technically requires a variant of the RSA assumption with smaller
exponents. We also do not attempt to set the modulus size to match the security loss of our reductions. It is unknown
if this loss can be utilized by an attacker and we leave it as future work to deduce an optimally tight reduction. Our
focus here is to give the reader a sense of the relative performance of the schemes for reasonable parameters.
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Sec.7 Operation Parameters Time when T =
Alg. Count k |e| |σ2| 212 216 220 224 228 232

Setup
T · P|e|+ 1 337 336 7.41s 1.96m 31.42m 8.42h 5.63d 90.54d

2 lg T · E|N |+ 8 113 112 1.70s 26.11s 7.06m 1.92h 1.30d 21.25d

(2T lg T ) ·M 256 82 81 1.51s 23.0s 6.23m 1.70h 1.16d 18.89d

KeyGen
1 ·P|e|+(k+2)· 1 337 336 0.35s 0.47s 0.58s 0.69s 0.81s 0.92s

(2 lg T + 1)· 8 113 112 1.17s 1.55s 1.93s 2.30s 2.68s 3.06s
E|N | 256 82 81 30.32s 40.02s 49.72s 59.42s 1.15m 1.31m

Update
lg T · P|e|+ 1 337 336 50.46ms 67.28ms 84.10ms 0.10s 0.12s 0.13s

(k+2) lg T ·E|e| 8 113 112 41.01ms 54.67ms 68.34ms 82.01ms 95.68ms 0.11s

256 82 81 0.70s 0.94s 1.17s 1.41s 1.64s 1.87s

Sign
k ·E`+1·E|σ2|+ 1 337 336 1.45ms 1.45ms 1.45ms 1.45ms 1.45ms 1.45ms

(k + 1) ·M 8 113 112 1.09ms 1.09ms 1.09ms 1.09ms 1.09ms 1.09ms
256 82 81 0.47ms 0.47ms 0.47ms 0.47ms 0.47ms 0.47ms

Verify
1 ·P|e|+k ·E`+ 1 337 336 4.02ms 4.02ms 4.02ms 4.02ms 4.02ms 4.02ms

1 ·E|σ2|+1 ·E|e| 8 113 112 1.76ms 1.76ms 1.76ms 1.76ms 1.76ms 1.76ms

+(k + 1) ·M 256 82 81 1.01ms 1.01ms 1.01ms 1.01ms 1.01ms 1.01ms

Figure 3: Running Time Estimate for the Section 7 Scheme with a 2048-bit N . Let P|e| be the
time for function HK to output a prime of |e| bits, Ej be the time to perform a j-bit modular
exponentiation, and M be the time to perform a modular multiplication. T is the maximum
number of time periods supported by the forward-secure scheme. We set the message space length
L = k ·` = 256 bits. Times are calculated by taking the average time for an operation (see Figure 1)
and summing up the total times of each operation. Let ms denote milliseconds, s denote seconds,
m denote minutes, h denote hours, and d denote days.

T ∈ {212, 216, 220, 224, 228, 232}.11 The Setup algorithm computes the modular multiplications with
respect to φ(N) while the other algorithms due so with respect to N . However, since φ(N) is very
close to N , we treat both of these the same (i.e., at 2048 bits); we do this in the timing of both
schemes. In Sign and Verify, we do not consider the time to compute the random oracle G.

For the Section 7 (Standard Model) timing estimates in Figure 3, the messages space is L =
k · ` = 256, where messages are broken into k chunks each of ` bits. We consider three different
settings of k and `, keeping the prime exponent associated with that setting to be at least one bit
larger than the size of the message chunks. Here we do not recommend allowing the size of the
prime exponents to fall below 80 bits to avoid collisions.

9.1 Some Comparisons and Conclusions

We make a few brief remarks and observations. First, if one wants to support a high number of key
updates, then it is desirable to offload much of the cost of the key generation algorithm to a one
time global setup. Having a one time global setup that takes a few days might be reasonable 12,
while incurring such a cost on a per user key setup basis could be prohibitive. With one exception
(k = 256 in Figure 3) all individual key generation times are at most a few seconds. One question
is how much trust needs to be placed into one party for a global setup. Fortunately, for our

11Technically, T = 2levels+1 − 2 (see Section 5), we ignore the small constants.
12This could be further reduced by using a faster computer and/or parallelizing.
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Sec. 6 Space when T =
Item Element Count 212 216 220 224 228 232

pp ((2 lg T ) + 1)ZN 6.25K 8.25K 10.25K 12.25K 14.25K 16.25K

pk 1ZN 0.25K 0.25K 0.25K 0.25K 0.25K 0.25K

sk (2 lg T )ZN + 1|e| 6.0K 8.0K 10.0K 12.0K 14.0K 16.0K

σ 1ZN + 1|σ2| 0.26K 0.26K 0.26K 0.26K 0.26K 0.26K

Figure 4: Space Evaluation for Section 6 (Random Oracle) Scheme. Let the modulus be a 2048-bit
N . Let K denote a kilobyte (210 bytes). T is the maximum number of time periods supported
by the forward-secure scheme. We consider |e| = 81 bits to be the size of the exponents and
|σ2| = 80 bits to be the maximum size of the output of G. The public parameters and keys omit
the descriptions of T,N and the hash function HK . For the public parameters, all len = k + 2
generators are the same, so we use the optimization from Section 5.1.

constructions, the answer is favorable. First, there are efficient algorithms for generating RSA
moduli that distribute trust across multiple parties [12], so the shared N could be computed this
way. Second, once the RSA modulus plus generator g and RSA exponent hashing key are chosen,
the rest of the RSA sequencer computation can be done deterministically and without knowledge
of any secrets. Thus, a few additional parties could audit the rest of the global setup assuming
they were willing to absorb the cost.

We now move to discussing the viability of our standard model construction. We focus on the
setting of k = 8 as a representative that seems to provide the best tradeoffs of the three settings
explored. Here the global setup time will take around 7 minutes if we want to support up to a
million key updates and will take on the order of a few days if we want to push this to around
a billion updates. The global setup cost here is close to that of the random oracle counterpart.
Individual key generation takes between 1 and 3 seconds depending of the number of time periods
supported. The time cost of signing and verifying does not scale with T , the max number of time
periods, and these incur respective costs of 1.09ms and 1.76ms. Signatures are 0.26KB regardless
of T .

The important measurement to zoom in on is key update. This algorithm however, is more
expensive and ranges in cost from 50ms to around 110ms depending on T . Since (in the basic
mode) one is allowed a single signature per key update, it will serve as the bottleneck for how
many signatures one can produce. In this case the number is between 10 to 20 per second. In
many applications this is likely sufficient. However, if one needs to generate signatures at a faster
rate, then she will need to move to the certificate approach of Section 8 where the tradeoff will be
that the signature size increases to accommodate the additional signature (e.g., certificate) plus
temporary public key description.

Finally, we observe that for most of our standard model algorithms parallelization can be used
for speedup in fairly obvious ways. In particular in key update and key generation there are lg(T )
levels as well as k + 2 message segments and one can partition the computation along these lines.
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Sec.7 Element Parameters Space when T =
Item Count k |e| |σ2| 212 216 220 224 228 232

pp ((2 lg T ) + 1)ZN any any any 6.25K 8.25K 10.25K 12.25K 14.25K 16.25K

pk
1 337 336 0.75K 0.75K 0.75K 0.75K 0.75K 0.75K

(k + 2)ZN 8 113 112 2.5K 2.5K 2.5K 2.5K 2.5K 2.5K
256 82 81 64.5K 64.5K 64.5K 64.5K 64.5K 64.5K

sk
1 337 336 18.0K 24.0K 30.0K 36.0K 42.0K 48.0K

(k + 2)(2 lg T )ZN 8 113 112 60.0K 80.0K 100.0K 120.0K 140.0K 160.0K
+1|e| 256 82 81 1.51M 2.01M 2.52M 3.02M 3.53M 4.03M

σ
1 337 336 0.29K 0.29K 0.29K 0.29K 0.29K 0.29K

1ZN + 1|σ2| 8 113 112 0.26K 0.26K 0.26K 0.26K 0.26K 0.26K
256 82 81 0.26K 0.26K 0.26K 0.26K 0.26K 0.26K

Figure 5: Space Evaluation for Section 7 Scheme. Let the modulus be a 2048-bit N . Let K
denote a kilobyte (210 bytes) and M denote a megabyte (220 bytes). T is the maximum number
of time periods supported by the forward-secure scheme. The public parameters and keys omit
the descriptions of T,N and the hash function HK . For the public parameters, all len = k + 2
generators are the same, so we use the optimization from Section 5.1.

9.2 A Quick Look at an MMM Variant

We conclude with a brief examination and comparison to a variant of the MMM [34] forward secure
scheme which also supports standard model instantiations. For such a purpose, it is important to
consider MMM in a fair context for comparison: (1) While a nice feature of MMM is that it allows
for forward secure signatures with no apriori bound on T , for comparison it is useful to consider a
slimmed down version of MMM that knows such a bound ahead of time. To that end, we consider
using MMM with just a single tree of size T built from the “sum” composition. (2) Since our
scheme allows for a global setup algorithm, we should consider if such a setup could help improve
the signature sizes in the MMM variant. (3) The base signature scheme in the variant should be
provably secure from the RSA assumption in the standard model.

With this in mind we consider an MMM variant which is built from a single tree of depth lg(T )
and has T leaves. The public key for the base signature scheme will be an RSA modulus and
use the a similar signature structure as we described in Section 7. While this scheme requires an
additional k + 1 group elements, we assume that these can be derived from a common reference
string. We briefly examine the signature size and key generation time of such a scheme.

First, any signature in their scheme will consist of 2 public keys, 2 signatures and lg T hash
values. If public keys be are RSA moduli of 2048 bits and the hash is 256 bit SHA, then signatures
would be approximately of size 2 × 2048 + 2(2048 + 80) + lg(T ) × 256 bits. If we aim for high
frequency signing/updates and set T = 232, then we get 16544 bits or 2068 bytes. This is almost
a factor of 10 more than the approximately 260 bytes we report in Figure 5. Even if we go to the
other end of the spectrum and plug in T = 212, the above version of [34] gives us signatures of 1428
bytes which is a factor of 5.5 more than 260.

For key generation, the MMM scheme must build a Merkle tree which requires generating the
public keys for all leaves in the system. This will be dominated by the cost of two 1024 bit prime
searches for each leaf or 2 × T 1024 bit prime searches total. For a value of T = 232, this scheme
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becomes impractical with a key generation time of roughly 7.8 years (see Figure 1). Compare this
with our scheme (see Figure 3), where after a one-time global setup that takes days (but not years),
each key generation takes only seconds.

We remark that there could be other options for the core signature scheme that tradeoff sig-
nature size versus key generation time. In addition, we note that the Bellare-Miner [8] tree based
scheme would save significantly on key generation relative to the MMM variant since it does not
need to start by building a Merkle tree, but would require lg(T ) RSA-based signatures in each
signature (versus lg(T ) hash outputs).

Thus, we conclude that our construction offers significant efficiency savings over these prior
RSA standard model constructions.
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A Proof of Lemma 5.1

We here prove Lemma 5.1 which was the anchor in proving correctness of our RSA sequencer of
Section 5. The proof of this lemma follows very closely to the proof of correctness of the log storage
scheme from [27] and we mainly need to update it to account for storing tuples of group elements
for len > 1.
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Proof. We begin by establishing two claims about when the “pass down” operation can and cannot
happen which will be used later on in the proof.

Claim A.1. Suppose that our state description, as stated in the statement of Lemma 5.1, is accurate
for period index. Consider an update operation where the period moves from index to index + 1.
This will result in a tuple being “passed down” from Si to Si−1 only if index + 1 is a multiple of
2i−1, if anything is passed down at all.

Proof. If (index, i) were in Case 1, then Si is empty and there is nothing that could be passed
down. If in Case 2, then one tuple has a count = r which is the remainder of index mod 2i. It will
trigger a pass down operation only when count increments to count = 2i−1. Similarly, in Case 3
there is a tuple with count = r− 2i−1. A pass down operation is only triggered when it increments
to 2i which means index + 1 is a multiple of 2i−1.

Claim A.2. Suppose that our state description, as stated in the statement of Lemma 5.1, is accurate
for period index and all smaller values. Further suppose that index + 1 = 0 mod 2i for some i
and that set Si+1 is in Case 1 at index. (I.e. T − index ≤ 2i+1− 2.) Then it will be that at period
index + 1, we have T − index ≤ 2i − 2 and set Si is designated as Case 1 by our description.

Proof. Let z be the value where T − z = 2i+1− 2 since T = 2levels+1− 2 it follows that z = y · 2i+1

for some y. Also note that z must be the smallest value of index where T − index ≤ 2i+1 − 2. It
then follows that z + 2i − 1 is the smallest value of index where T − index ≤ 2i+1 − 2 and index

mod 2i. Now let’s consider the next value of index+ 1 which is equal to z + 2i and use it to prove
that at index + 1 the set Si is assigned to be in Case 1. Then

T − (index + 1) = T − (z + 2i) = (T − z)− 2i = 2i+1 − 2− 2i = 2i − 2.

Then we have that at index+ 1 the set Si is categorized at Case 1 (and empty) by our description.

We now show that for each index if the state description was valid at index, then it is valid at
index + 1. We break this into three separate claims showing that if a set Si is in Case 1, 2 and 3
respectively at index then in index + 1 it will match the state description.

Claim A.3. Suppose at period index the state description is accurate, as stated in the statement
of Lemma 5.1, and for a set Si we are in Case 1 where T − index ≤ 2i− 2 and the set Si is empty.
Then at period index + 1 the state description is accurate for set Si.

Proof. For period index + 1 we have that T − (index + 1) is also ≤ 2i − 2 and therefore it should
also be Case 1 and Si should remain empty. The only way for it not to remain empty would be if
the StorageUpdate algorithm “passed down” a new tuple from Si+1. However, if Si was in Case
1 for period index then Si+1 must also be empty. Since Si+1 is empty, there is nothing to pass
down.

Claim A.4. Suppose at period index the state description is accurate, as stated in the statement
of Lemma 5.1, and for a set Si we are in Case 2 where index = k · 2i + r for 0 ≤ r < 2i−1. Then
at period index + 1, the state description is accurate for set Si.
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Proof. First consider the subcase where r 6= 2i−1 − 1 which should keep Si in Case 2 on period
index+1. We will verify this. Since at period index we are in Case 2 there are two tuples in Si where

the one with the smaller open value is of the form ((w1 = v

∏
j∈T\R ej

1 , . . . , wlen = v

∏
j∈T\R ej

len ), open =
(k+ 1) · 2i − 1, closing = (k+ 1) · 2i − 1 + 2i−1, count = r). The update algorithm will increment
count to r + 1 and update w1, . . . , wlen to w1 = w

eclosing+count

1 , . . . , wlen = w
eclosing+count

len which gives

the needed form to remain in Case 2. The second tuple is of the form ((w1 = v

∏
j∈T\R ej

1 , . . . , wlen =

v

∏
j∈T\R ej

len ), open = (k+1)·2i−1+2i−1, closing = (k+1)·2i−1, count = 0). The update algorithm
will not modify it as the other tuple had the smaller open value. Thus it remains the same which
matches the behavior for Si remaining in Case 2. Finally, we need to check that no new tuples are
passed down from Si+1. This follows from the fact (Claim A.1) that index mod 2i = r 6= 2i − 1
and that a pushdown would only happen as index transfers to being a multiple of 2i.

We now consider the subcase where r = 2i−1 − 1 at index and thus at index + 1 we should
be moving into Case 3. In this subcase the set Si begins with two tuples with one of the form

((w1 = v

∏
j∈T\R ej

1 , . . ., wlen = v

∏
j∈T\R ej

len ), open = (k + 1) · 2i − 1, closing = (k + 1) · 2i − 1 +
2i−1, count = r = 2i−1− 1). The update operation will first modify the tuple to a new count value
of count = 2i−1. This will trigger the pushdown operation to move the tuple out of Si. It then
leaves it with one tuple of the needed form which transitions Si to Case 3 as needed. Again no new
elements are pushed onto Si from Si+1 due to Claim A.1.

Claim A.5. Suppose at period index the state description is accurate, as stated in the statement
of Lemma 5.1, and for a set Si we are in Case 3 where index = k · 2i + r for 2i−1 ≤ r < 2i for
some k. Then at period index + 1, the state description is accurate for set Si.

Proof. We first focus on the subcase where r 6= 2i − 1 and thus at index + 1 we want to verify

that we stay in Case 3. Initially there is one tuple of the form ((w1 = v

∏
j∈T\R ej

1 , . . . , wlen =

v

∏
j∈T\R ej

len ), open = (k + 1) · 2i − 1 + 2i−1, closing = (k + 1) · 2i − 1, count = r − 2i−1). The
update algorithm will increment count to r+ 1 and update w1, . . . , wlen as w1 = w

eclosing+count

1 , . . . ,
wlen = w

eclosing+count

len which gives the needed form to remain in Case 3. As before no new tuples will
be added since index + 1 mod 2i 6= 0.

We end by considering the subcase where r = 2i − 1. In this subcase there is initially a single
tuple with a count value of count = 2i−1 − 1. The update algorithm will increment this count

which triggers its removal from the set. What remains to be seen is whether a new element is added
or if it becomes empty.

We now consider two possibilities. If T − (index+ 1) ≤ 2i− 2, then our description states that
set Si should enter Case 1 on index + 1. It is easy to see that if this is true that the set Si+1

was already Case 1 and empty on index and nothing new will be added so the set Si is empty as
needed.

The somewhat trickier case is when T −(index+1) > 2i−2. Here we need to verify that the set
Si ends up in Case 2 with the appropriate tuple at index + 1. First, since index + 1 mod 2i = 0
we can apply Claim A.2. It states that if set Si+1 were in Case 1 (empty) at index then set Si
would be in Case 1 for index+ 1. Since this is not the case, we have that Si+1 must be non empty
and in Case 2 or 3.
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If Si+1 started in Case 2 at index, it initially has a tuple of the form:

((w1 = v

∏
j∈T\R ej

1 , . . . , wlen = v

∏
j∈T\R ej

len ), open = (k̃ + 1) · 2i+1 − 1,

closing = (k̃ + 1) · 2i+1 − 1 + 2i, count = 2i − 1).

where we let R = [open, open+2i−1]∪ [closing+count, closing+2i−1]. Note by the description
index = 2i+1k̃+2i−1. After the update algorithm has its first pass, count is incremented to 2i and
an exponentiation is done that updates w1, . . . , wlen where it is now for R = [open, open + 2i − 1]
as the second half of the range falls off with the new count value. The update algorithm then
removes this tuple from Si+1 and creates two new tuples from it. One with an open′ = open and
closing′ = open + 2i; the second with open′ = open + 2i and closing′ = open.

To verify correctness recall that index = 2ik + 2i − 1 and index = 2i+1k̃ + 2i − 1. It follows
that k = 2 · k̃. Second, index + 1 = 2i ·k′ where k′ = k+1. To match the description for index + 1

we must have that the first tuple created has an open′ value of open′ = (k′ + 1)2i − 1. Plugging in
terms:

(k′ + 1)2i − 1 = (k + 1 + 1)2i − 1 = (2k̃ + 2)2i − 1 = (k̃ + 1)2i+1 − 1.

However, this is exactly the value it inherited from open as needed.
The argument that the right tuple is inherited when set Si+1 is in Case 3 proceeds in almost

the same way as above.

The proof of our theorem now comes via induction. The accuracy of the state description for
index = 0 can be verified by inspection. We can prove the rest by induction on index. For any
index the accuracy of the description at index + 1 follows from its accuracy on period index. In
particular, our previous three claims show that for any i, if the state Si is accurate in period index

then after the update algorithm executes, Si will be accurate in period index + 1 as well.

B Proof of Hash Programming Claims 6.5, 6.6, 6.7, 6.8 and 6.9

The proof techniques that we use to program the (non-random oracle) hash function HK in the
proof of Theorem 6.1 for our forward-secure signatures come from those used by [27] in the aggregate
signature context. We include the proofs of these claims from [27] here for completeness, making
only minor modifications to address the fork in Game 4.

B.1 Proof of Claim 6.5

Proof. Recall that in Game 4 the attacker will only win if both forks have the same forgery period
t∗. We here need to understand the probability that HK(t∗) = edefault. Using the Prime Number
Theorem, we can bound the number of primes in the range [2λ, 2λ+1 − 1] as follows. Plugging into

the formula in Lemma 3.3, we have that the number of primes less than 2λ+1−1 is at least 7
8 ·

2λ+1

(λ+1)

(the value 2λ+1 is not prime, since it is a power of two, for any λ ≥ 1) and the number of primes
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less than 2λ is at most 9
8 ·

2λ

λ . Thus, the total number of primes in our range of interest is at least

7

8
· 2λ+1

(λ+ 1)
− 9

8
· 2λ

λ
=

7 · λ · 2λ+1 − 9 · (λ+ 1) · 2λ

8(λ+ 1)λ
=

14 · λ · 2λ − 9 · (λ+ 1) · 2λ

8(λ+ 1)λ
(1)

=
5 · λ · 2λ − 9 · 2λ

8(λ+ 1)λ
=

(5λ− 9) · 2λ

8(λ2 + λ)
(2)

>
2λ

λ2 + λ
, for all λ ≥ 4. (3)

Let R be a random function that outputs a value in the range [2λ, 2λ+1]. Then the probability
that R outputs a prime is at least:

2λ/(λ2 + λ)

2λ+1 − 2λ
=

2λ

2λ(λ2 + 1)
=

1

λ2 + λ
(4)

The probability that R fails to output a prime after λ(λ2 + λ) tries is as follows. We again
use the fact that 2λ+1 is not a prime. Recall Chernoff’s bound for any ε ≥ 0, we have Pr[X ≤
(1 − ε)µ] ≤ e−

ε2µ
2 . Here when X is the number of primes output by R in λ(λ2 + λ) trials, ε = 1

and µ =
∑λ(λ2+λ) Pr[R fails to output a prime in one trial], we have that

Pr[R fails to output a prime in λ3 + λ2) trials] = Pr[X ≤ 0] ≤ e−
µ
2 ≤ e−

λ(λ2+λ)· 1
λ2+λ

2 = e−λ/2 (5)

The PRF we employ to sample from this range cannot non-negligibly differ from R in its probability
of selecting primes or this provides for a distinguishing attack on the PRF. Thus, the probability
that HK(t∗) = edefault is the probability that the PRF chose the same prime as the setup algorithm,
which is negligible at 1 in the number of primes in that range (> 2λ/(λ2 +λ)), plus the probability
that HK triggers the default condition by failing to output a prime, which we also argued was
negligibly close to the negligible probability of R doing the same.

B.2 Proof of Claim 6.6

Proof. Recall that both forks will share the same forgery period t∗. Games 5 and 6 differ only in
the event that HK(t∗) = HK(t) for some t ∈ [1, T ] where t 6= t∗. Let R be a random function
that outputs a value in the range [2λ, 2λ+1]. Suppose HK uses R instead of the PRF. Then the
probability of a collision for a single t is one in the number of primes in [2λ, 2λ+1] or at most

1/ 2λ

λ2+λ
= λ2+λ

2λ
, which is negligible. So the probability of a collision for any t ∈ [1, T ] (recall that

T is polynomial in λ) is T · λ2+λ
2λ

= poly(λ)(λ2+λ)
2λ

= poly(λ)
2λ

= negl(λ). When we replace R with the
PRF, the probability of a collision cannot non-negligibly differ or this provides a distinguishing
attack on the PRF.

B.3 Proof of Claim 6.7

Proof. The attacker’s view in these games is identical. The only difference is whether the game
correctly guesses the resolving index i∗ for HK(t∗). Since i∗ ∈ [1, λ3+λ2], the game has a 1/(λ3+λ2)
chance of guessing this correctly.
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B.4 Proof of Claim 6.8

Proof. In Game 7, c is chosen randomly in {0, 1}λ. In Game 8, c is set by randomly selecting
y′ ∈ {0, 1}λ and setting c = y′ ⊕ FK′(t

∗, i∗), where t∗ is the period on which the attacker will
attack and i∗ is the resolving index for this value. Since y′ is chosen randomly and independently
of FK′(t

∗, i∗), the resulting c will be from the same distribution as Game 6.

B.5 Proof of Claim 6.9

Proof. An adversary’s advantage in these games is the same. In Game 8, the attacker could only
win if 2λ + y′ was a prime, and thus the distributions are the same.
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