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Abstract

The advent of decentralized trading markets introduces a number of
new challenges for consensus protocols. In addition to the ‘usual’ attacks
– a subset of the validators trying to prevent disagreement – there is now
the possibility of financial fraud, which can abuse properties not normally
considered critical in consensus protocols. We investigate the issues of
attackers manipulating or exploiting the order in which transactions are
scheduled in the blockchain. More concretely, we look into relative order
fairness, i.e., ways we can assure that the relative order of transactions
is fair. We show that one of the more intuitive definitions of fairness is
impossible to achieve. We then present Wendy, a group of low overhead
protocols that can implement different concepts of fairness. Wendy acts
as an aditional widget for an existing blockchain, and is largely agnostic
to the underlying blockchain and its security assumptions. Furthermore,
it is possible to apply a the protocol only for a subset of the transactions,
and thus run several independent fair markets on the same chain.

1 Introduction

The advent of decentralized trading markets introduces a number of new chal-
lenges for consensus protocols [10, 11]. Classically, consensus layer protocols
only are required to maintain consistency of the blockchain. While additional
requirements have been investigated in the past – for example causal order or
censorship resilience – very little attention has been given to the fairness of the
order of events, making it possible to execute frontrunning or rushing attacks.
While some blockchains attempt to make such attacks harder, for example by
using a randomized leader election protocol, others can be easily manipulated
by a single corrupt validator or a well targeted denial of service attack. In ad-
dition to allowing questionable behavior, this can also be a potential regulatory
issue, if exchange are required to prevent some levels of fraud.

In this paper, we investigate the issues of attackers manipulating or ex-
ploiting the order in which transactions are scheduled in the blockchain. More
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concretely, we look int relative order fairness, i.e., ways we can assure that the
relative order of transactions is fair. We show that one of the more intuitive
definitions of fairness is impossible to achieve, and present several alternatives.

Our approach integrates with existing blockchains without any change or
non-standard assumption on the blockchain implementation – the only require-
ment is that there is some known set of parties (resp. validators) through which
fairness is defined. This allows us to combine several variations of fairness with
different blockchains, have different degrees of fairness for sets of transactions
running on the same blockchain, and even change the configuration on the fly
without needing to break the chain. This setup can also come especially handy
if one wants to formally verify the protocols – it is vital here to have the small,
independently verifiable components and to not need to formally verify dozens of
variations of the same protocol (a glimpse at the difficulty of formally verifying
consensus protocols can be found in [18]).

2 Model and Architecture

We assume a two-fold model. For one, there is an underlying blockchain that
takes blocks as an input and produces a distributed ledger of blocks. For the pur-
pose of the fairness widget, we do not require any assumptions on the blockchain
regarding participants, timing, or finality. What we do require is that the
blockchain has some form of validity function that evaluates if a block is valid,
and that can include the validity conditiond for the fairness widget. We also
assume that all validators that can propose new blocks for the blockchain that
include fairness-relevant transactions are known and can receive a broadcast
from the validators participating in the pre-protocol.

There is no requirement that all blocks in the blockchain are subjected to
realtive fairness. If, for example, Ethereum was the underlying blockchain, the
fairness protocol could be required for all transactions touching some specific
smart contract, without putting any requirements onto other transactions. To
this end, all transactions that reuqire fairness contain a fairness-label, and only
transactions with the same label need to be fair with respect to each other.
Similarily, not all validators need to participate - it is possible that only a
subset of the validators propose fairness relevant blocks, though this would slow
down the fair transactions.

The fairness preprotocol itselfs requires a more strict model. Our model
extends the system model and definitions of Cachin, Kursawe, Petzold, and
Shoup [7]. Thus, we assume that the number of byzantine corrupted parties is
just less than a third of all parties (i.e., n = 3t+1), though we will also show how
to expand the approach to a more flexible model [16]. These could be a subset
of the validators of the underlying blockchain, or a completely independent set
of parties. We work in the fully asynchronous model, i.e., we assume that an
attacker has complete control over the time and order of message delivery, but
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is not allowed to completely drop a message. Furthermore, we assume that
messages are authenticated, and that all participants can sign messages as well
as verify each other’s signatures. In addition to the classical byzantine nodes,
we also assume rogue traders might try to game the system to get an unfair
advantage, especially to get ahead on performing a transaction. These traders
can collaborate with any amount of other traders as well up to a third of the
validators; in fact, formally we assume that all traders are under control by the
adversary.

The validators receive external requests from the traders. We make no as-
sumption on the timing or the order, which is under complete control from
the adversary. The blockchain protocol then delivers the requests, i.e., puts
them into a block while satisfying the basic properties of atomic broadcast. In
practice, to optimize bandwidth, the protocol would likely not use the requests
themselves, but hashes thereof. For the sake of presentation, we will use the
term request even when a hash would be sufficient. Messages are send by a
simple multicast with no requirements on consistency or safety. While there
might be some room for optimization if intelligent gossiping protocols are used,
our only requirement for the communication layer is that messages between
honest parties eventually arrive. An alternative model in the literature is the
GST model going back to Dwork, Lynch, and Stockmeier [13], which in some
interpretations does allow for some message loss. In this model, the adversary
is allowed to arbitrarily delay or drop messages until a time called the global
stabilization time, after which she needs to deliver all messages within a known
timeout. In this model, protocols essentially try to not violate safety before
GST, and then assure liveness after. While we don’t model our protocols in this
setting, they work in it just as well as long as lost messages are resend.

As mentioned above, the goal of our design is not to build a new blockchain
that includes fairness, but to build a module that can be added to existing
blockchain designs. To this end, we provide a pre-protocol that is run by the
validators in parallel to the actual blockchain. The pre-protocol outputs valid
blocks that assure relative order fairness. While these blocks can be generated
by every validator, in most consensus implementations, blocks are proposed by
only one or very few parties. To this end, we define a set of designated leader(s)
which execute the part of the protocol that generates blocks. The leader part
does not involve any communication though, and thus could be executed by ev-
ery participant without additional communication effort. In addition, we need
to modify the block-validity function – proposed blocks are not valid unless it
is also verified that the fairness conditions have been satisfied. To be able to
use more established formal definitions, we assume that our protocol communi-
cates with an atomic broadcast subprotocol; for all practical purposes, this is
equivalent to a blockchain in our context. We make no assumptions on how the
underlying atomic broadcast protocol is implemented, and what – if any – timing
assumptions it uses. In fact, our preprotocol can work in a completely different
model than the underlying blockchain – while our model has a voting/quorum
based approach in mind, the blocks generated by the fairness pre-protocol can
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es well be processed by a Nakamoto style implementation such as Ethereum or
Ouroboros, not unlike the approach that Casper is taking to add finality [6].
We do, however, assume that the participants in the fairness protocol know and
recognize each other. While it thus would be logical to assume the same for
the blockchain protocol, this is not strictly necessary – it is possible to use the
fairness protocols presented here to add relative order fairness to (some) bitcoin
transactions, as long as it is possible to enforce our new validity condition for
that chain and assure the the underlying blockchain only accepts the blocks we
generate in the order we generated them.

As we envision a blockchain that handles a diversity of transactions, rela-
tive order fairness only needs to be assured for subsets - it is not necessarily
required that a request related to technology a stock market is treated fairly
with respect to a request related to crop prices in Australia. Thus, every trans-
action has a market-identifier mid, and only transactions that have the same
market-identifier need to be fair with respect to each other. As we provide dif-
ferent fairness models, it is also possible to use different fairness pre-protocols
for different markets. There is even a possibility that a single request has several
market identifiers and thus is delivered in a relatively fair way with respect to
several, otherwise independent markets. The main issue with this model is that
it adds quite some complexity if we want to have different fairness protocols
for different markets. While there is no fundamental issue with this, we do not
include this property for our protocols in this paper for the sake of (relative)
simplicity.

2.1 Related Work

The only work we are aware of that looks at relative fairness is parallel work from
Kelkhar, Zhang, Goldfeder, and Jules [15]. They also identify the impossibility
of strict fairness and resolve to address block fairness. While our approach
is to weaken the fairness condition to circumvent the impossibility of block
fairness, they define a concept of weak liveness wile maintaining the stronger
fairness condition to this end, and define a set of protocols (both synchronous
and asynchronous) to provide relative- or order block fairness. The price for the
stronger fairness is that there is no limit on when requests are delivered or how
big a block becomes, though the protocols could easily be adapted to one of our
models. Their approach also differs in the architecture - while we aim to have
a module to be combined with existing atomic broadcast protocols, their work
presents a full protocol for n > 4t.

The concept of causality in state machine replication was first introduced by
Birman and Reiter [21], with the example of preventing stock trading fraud. The
definition was later refined by Cachin, Kursawe, Petzold, and Shoup [7], and
again by Duan, Reiter, and Zhang [12]. While the details in the definitions do
matter for meaningful proofs and avoiding less straightforward attacks, the basic
idea of these definitions is the same; a message is processed by the protocols in
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a way that its position in the ordering is fixed before any participant learns of
its content. While this is sufficient to prevent some financial fraud – especially if
we also allow the sender of a request to remain anonymous until the transaction
is scheduled – the protection offered by commit and reveal is not sufficient.
Especially in cases of high volatility, traders can still get an advantage if they
can schedule transactions faster than their peers.

The notion of fairness has been used in different contexts in the literature. In
the context of block delivery, the concept was formally introduced in [7], though
some extend of fairness is already provided by earlier protocols such as Castro
and Liskovs BFT protocol [9]. In this definition, fairness essentially requires
that a blockchain is fair if the time between t+1 honest parties being aware of a
request and that request being delivered is bounded. This concept is somewhat
similar (and sometimes used as a synonym) to censorship resilience [20], though
that term as well has now taken on a multitude of meanings in the literature,
and usually does not rule out an unfair delay in delivering a request. In terms
of relative order fairness, fair protocols at least give an upper bound on the
level of unfairness – while it is possible that requests are processed in a different
order than they arrived, the number of requests that can rush ahead of a par-
ticular request is limited. In [19], a different fairness definition is defined – here,
fairness requires that all validators get an equal opportunity to get their trans-
actions into the blockchain. This is a different model than we assume, as we
want to achieve fairness for transactrions comming from external participants,
while this protocol assures fairness between the validators. There is some rela-
tion though, as fairness between validators assures that the dishonest validators
cannot dominate the blockchain, and thus requests seen by all honest validators
are processed somewhat fast.

The proof-of-work model has a different approach to fairness. Essentially,
if the majority of miners are honest, and the number of transactions is smaller
than the maximum the network can handle, the probability that some winning
miner will process a given transaction soon is relatively high (though there is no
strict upper bound). This effect is diluted by an economic argument though – if
(as the case in Ethereum and Bitcoin) it is possible to pay miners for preferred
treatment, the delay until a particular request is delivered can become fairly
high. In terms of relative fairness, this feature makes the blockchains unfair by
design – it is explicitly build in that clients who pay more can get preferred
treatment.

Some of the more recent protocols [5, 1] frequently exchange the leader even
in the absence of observable misbehavior. This makes it harder for an attacker
to impose controlled unfairness, as it is harder to assure a corrupted validator
is in charge of scheduling when the adversary needs it, though it might be
possible to remove the honest leader with a limited denial of service attack.
An additional countermeasure is to choose the next leader randomly, decreasing
another level of control of the adversary. Fully randomized protocols [7, 20] also
make it harder for an attacker to control the level of unfairness. Nevertheless, an
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attacker can still cause unfairness to a large extent, and – while the unfairness is
harder to control – the protocols are not necessarily relative fair, i.e., preserving
the order in which requests come when delivering them.

3 Relative Fairness

The term fairness has found numerous definitions in the atomic broadcast and
blockchain literature. The most relevant definition of (absolute) fairness for our
context requires one of the following:

• every request eventually gets scheduled

• every request gets scheduled within a bounded time or number of imple-
mentation related messages

Additional constraints depend on the model used, e.g., requests only need to be
scheduled within a bounded time after GST (Global Stabilisation Time) [13].

For many consensus protocols, satisfying this definition of fairness does
not come naturally. Especially for leader-based protocols, a leader can eas-
ily suppress a message. There are a number of countermeasures against this.
In [9, 17], replicas watch a leader and dispose of them if they are dishonest; other
protocols[1, 2] change the leader frequently, in the hope that an honest leader
will eventually handle all outstanding requests. With the exception of [17], no
protocol can give strong bounds on when a message is actually scheduled – the
time until a message gets scheduled depends on the accuracy of the timing as-
sumptions (or the arrival of GST) and is thus dependent on an out-of-protocol
factor. Leaderless protocols [7, 20] tend to have better implicit fairness pro-
tection; while they tend be a little slower than leader based ones (at least in
a well-behaved network), the decreased effort to assure fairness can give those
protocols an edge in a trading blockchain.

As we are anyhow sorting transactions into blocks (this comes rather natural
for a blockchain), though it is possible to use logical blocks that encompass
several blockchain blocks. In addition to relative fairness, this also assures
fairness as defined above. The pre-protocol each party would follow looks as
follows (unoptimized version, basing on a leader based atomic broadcast protocol
for simplicity):

Definition 1 (Block Fairness). After a request has been seen by n − t honest
parties, it will be scheduled in the next block; if it hasn’t been seen by at least
one honest party, it will not be scheduled in the next block.

This is relatively easy to implement – before the ordering protocol starts,
every validator sends around a list of all requests they have seen; a valid proposal
for a block then consists of the transactions out of n − t of these sets that got
t+ 1 votes.
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In the setting we envision for our blockchain, even the stronger definition of
fairness is insufficient. In addition to the requirements of absolute fainress, we
also want relative fairness, which more captures the intuitive meaning of the
word – if one request is send before another request, it would be fair if it is also
scheduled first.

Definition 2 (Relative Fairness). A byzantine fault tolerant total ordering
protocol is called relatively fair if the following holds: If all honest parties receive
request r1 before request r2, then r1 is delivered before r2.

Unfortunately, we can show that this definition of fairness is not only im-
possible, but inherently contradictory even if only one party is corrupt.

Proof (sketch). Suppose we have n parties P1, ..., Pn, and n requests r1, ...,
rn. Then let Pi get the requests in the order ri, ri+1, ri+2 , ..., rn, r1, r2, ..., ri−1.
Now for every j, the only party that sees rj before rj−1 is party Pj ; all other
parties see Prj−1 before rj ; also, P1 is the only party that sees r1 before rn.

If all parties are honest, then there is no dedicated message order – no two
requests will have been seen in the same order by all honest parties. However,
if any party j is dishonest, then rj must be scheduled after rj−1, as Pj is the
only party to see rj before rj−1 (if P1 is dishonest, rn must be scheduled before
r1).

As the honest parties following the protocol do not know who is dishonest,
the outcome of the ordering protocol must be correct independently of which
party is dishonest. Thus, for all i,ri must be scheduled before ri+1 as well as rn
before r1, which is a contradiction. 2

One way out would be to only require r2 and r1 to be in the same block.
However, even that might not be possible, and there is another weakness in this
definition: The corrupt parties might see r2 long before any honest party would
see r1, thus our protocol essentially can’t schedule anything seen by t parties
only; it seems hardly fair if t validators cannot get a message scheduled that
every client can schedule. We leave it to further work to find further definitions
for relative fairness that are efficiently achievable and might serve some usecases
better.

Definition 3 (Relative Fairness, 2. attempt). A byzantine fault tolerant total
ordering protocol is called relatively fair if the following holds: If all honest
parties receive request r1 before request r2, then r1 is delivered in the same
block as r2 or earlier.

Unfortunately, we can show that this is also impossible:

Proof (sketch). In above proof, we have shown that there exists a schedule
in which the required order of messages depends on which party is faulty, thus
requiring to take into account a parameter that is not known to an honest party.
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In this proof, we build on that construct to design a schedule that would create
a block of unlimited size.

For this outline, we assume n = 4 and t = 1. Consider two schedules as used
above, i.e.,
P1: m1, m2, m3,m4

P2: m2, m3, m4,m1

P3: m3, m4, m1,m2

P4: m4, m1, m2,m3

and

P4: m5, m6, m7,m8

P3: m6, m7, m8,m5

P2: m7, m8, m5,m6

P1: m8, m5, m6,m7

Both schedules area split into three segments as shown below:

A1 A2 A3

P1 m1 m2 m3 m4

P2 m2 m3 m4 m1

P3 m3 m4 m1 m2

P4 m4 m1 m2 m3

B1 B2 B3

P1 m8 m5 m6 m7

P2 m7 m8 m5 m6

P3 m6 m7 m8 m5

P4 m5 m6 m7 m8

We now link those two schedules to one combined schedule with the segment
order A1, B1, A2, B2, A3, B3.

By the design of schedules A and B, to achieve fairness, m1, m2, m3, and
m4 must be in the same block. The same holds for m5, m6, m7, and m8. The
argument for this is equivalent to the previous proof; as it is not known to the
honest parties who is honest and who not, the requirement could imply that
m1 has been seen by all honest parties before m2 (if P4 is corrupt), m2 before
m3, m3 before m4, and m4 before m1. Thus, all those messages need to be
scheduled in the same block.

In the combined schedule, we also have all honest parties see m7 before m4.
Thus, m7 must be scheduled in the same or an earlier block than m4. Similarly,
m3 needs to be in the same or an earlier block than m8. As m7 and m8 and
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respectively m3 and m4 must be in the same block, this means all messages
have to be scheduled in the same block.

If we combine the segments the other way around, i.e., B1, A1, B2, A2, B3,
A3, we get the same result: m7 is seen by all parties before m4, and m3 is seen
by all parties before m8, meaning that still both segments need to be in the
same block.

We can now repeat this construction. Suppose we have segment C in the
same structure as segment A, and segment D in the same structure as segment
B. Then consider the schedule

A1, B1, A2 ,C1, B2, A3, C2, B3, C3

By above argument, all messages in A and B need to be in the same block;
the addition of the messages from segment C does not affect the argument. Sim-
ilarily, all messages in B and C need to be in the same block; this is unaffected
by A. In the same way, we can add D in a way that it needs to be in the same
segment as C:

A1, B1, A2 ,C1, B2, A3, D1, C2, B3, D2,C3,D3

This construction can be arbitrarily repeated, leading to an infinite sequence
of messages that all need to be in the same block. 2

A notable property of our result is that we do not need a corrupted party
to actually act in any bad way – it is enough that there is some party that
has the label ’corrupt’, and noone knows which one it is. While we haven’t
worked out the proof, it is likely even impossible if we only require fairness if
noone actually is corrupt. To assure liveness in an asynchronous system, the
protocol still needs to progress on n − t inputs, which means it misses some
information that might be relevant to define a valid order. We did at this point
not investigate further, as we prefer to have a protocol that offers somewhat
weaker fairness, but maintains robustness in the face of a byzantine adversary.

There are subtle differences in the underlying model that impact what the
construction actually means. In some models – essentially the cryptographically
sound ones that assume a polynomial time bound adversary [7, 15]- one assumes
that the number of incoming (and adversary generated) requests is somehow
bounded, i.e., at some point the protocol terminates for good. In this model,
our construction does not strictly violate liveness – what happens is that, to
satisfy fairness, all requests will be delivered in the one and only block the
protocol ever schedules just prior to termination. For those models, we do not
prove impossibility of relative block fairness, but impossibility of any meaningful
efficiency guarantees – in the worst case, relative fairness is reached by treating
all parties equally bad. If we assume a model that allows for infinite protocol
runs, the last point in time does not exist, and a protocol cannot guarantee to
deliver anything.

The other interesting modeling aspect is the amount of asynchrony required.
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In the schedule above, once we start interleaving the D-blocks, all messages in
the A-block have been seen by all honest parties. This implies that we do not
need a fully asynchronous system. For a consensus between n parties, if δtr is the
time interval between the first honest party becoming aware of a request r and
the last honest party doing so, then the adversary needs to show honest parties
less than 3n other requests during δtr. Thus, our construction is also possible
in most synchronous systems, as long as the adversary can generate/access
sufficient requests in the given time-span and has the power to freely determine
a schedule in which an honest party sees any set of 3n consecutive requests.

Thus, if we bound the number of requests the adversary is allowed to show to
honest parties in between the times when the first honest party saw a particular
request and the last honest party saw it, the impossibility result still holds.

Theorem 1. There exists a schedule such that, to achieve relative block fairness,
all requests any honest party ever seen need to be scheduled in the same block.
Consequently, no block can be delivered with this schedule while new requests can
be generated.

Furthermore, once an honest party has seen a request r, the schedule requires
less than 3n other requests to be operated on until the last honest party sees r.
Thus, an infinite schedule can also be generated in a partialy synchronous model.

4 Circumventing the impossibility

We first show a protocol that can guarantee fairness, but does not overcome
the liveness issues mentioned above, i.e., it is possible for an adversary to pre-
vent termination. For the ease of description, we describe a somewhat wasteful
version of the protocol which resends all requests that did not make it into a
block for the next block; in a real implementation, this would be handled in a
more efficient way. Also, the protocol as described is sending a lot of signatures
repeatedly; that, too, can be optimized in an implementation version.

We describe our protocol as a pre-protocol to the atomic broadcast. The
pre-protocol generates a proposal for a block that can then be proposed as the
next block for the atomic broadcast protocol, alongside validation information
that allow verifying that the block was properly generated. To this end, we
assume an atomic broadcast protocol following the definition of [7]. In addition
to needing an external validity property, i.e., there is a validation function such
that an honest party only accepts an output r with added validation information
if the verification function holds. be one party, or every party intending to
construct a valid proposal. For simplicity, we also assume that the protocol is
re-invoked upon termination by the atomic broadcast protocol, and that the
framework assures that messages linked to undelivered requests are replayed to
the next incarnation of the pre-protocol in the same order, and messages linked
to delivered requests are ignored. The reason to structure the protocol this way
(rather than having an infinite loop that invokes the atomic broadcast protocol
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and taking care of messages itself) lies in the modular architecture we want to
allow - the fairness pre-protocol is an optional add-on to the atomic broadcast,
and thus should be a pre-protocol invoked by the atomic broadcast rather than
the other way around, and it must be possible for one atomic broadcast protocol
to use different pre-protocols for different markets.

One issue with this approach is that fairness in the traditional sense – if
every instance of the pre-protocol terminates, then every request that is seen by
all honest party also is delivered (preferably in a bounded time) in some block
– is no longer a property of the pre-protocol, but of the combination. This can
however easily be derived from relative fairness if we show that every terminated
instance of the pre-protocol delivers a non-empty block:

• By assumption, messages that have not been delivered are treated by the
next incarnation of the pre-protocol as if they arrived at the same time in
the same order

• The protocol guarantees progress, i.e., at least one request is delivered
into a block on each terminating incarnation

• By the relative fairness requirement, for every request that has been seen
by all honest parties, there is a finite number of requests that can be
scheduled in an earlier block.

.

We say that a request r blocks another request r′ given the current informa-
tion, it cannot be excluded that r needs to be in the same or an earlier block
to achieve relative block fairness. More precisely, r blocks r′ if r and r′ share a
market-identifier, and it is not the case that t+ 1 parties

• have reported to have seen r before r′, i.e., assigned it a lower sequence
number, or

• have reported to have seen r and all requests with a lower sequence num-
ber, but not r′.

Lemma 2. If r′ does not block r, then r′ is not required to be in the same or
an earlier block than r by the requirements of relative block fairness.

Proof. To be required to be in the same or an earlier block, all honest parties
need to have seen r′ before r. If t+ 1 parties report to have seen r′ after r, at
least one of them is honest, and thus not all honest parties have seen r′ before
r. 2

The following defines how a valid vote and block look like:

Definition 4 (Vote-Validity). A vote is valid if it has the proper format, and
once all requests with a lower sequence number from that voter have been re-
ceived.
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Widget Neverending Wendy for block b and protocol instance ID
All parties:

let i be the counter of incoming requests, starting at 0.

while no valid proposal has been seen as the proposal for atomic broadcast for block
b do

for all known and unscheduled request r, in the order of the receiving the
requests, send the signed message (ID,b,i,r) to all parties, where i is the
sequence number of that request.

end while
Additional protocol for the leader(s):
B = ∅
wait until the first request r is contained in the signed and valid votes from n− t

parties; add r to B
while any request r′ 6∈ B blocks any other request r ∈ B,

if request r′ has at least n− t votes, add r′ to B
end while

The proposal for the next block of the atomic broadcast is B, validated by all signed
votes for requests in B.

Definition 5 (Block-Validity). A block B is valid if it contains a nonempty
set of requests with n − t valid votes each; a vote for r is valid if it contains
the signed votes for all requests for that block with a lower sequence number.
Furthermore, for every r in B, if there is a request r′ in the vote validation that
had at least t+ 1 votes with a lower sequence number than r, then r′ needs to
be in B accompanied by n− t validation votes.

Theorem 3. The protocol Neverending Fairness guarantees safety, i.e., if a
block is sent to the atomic broadcast protocol, and there are requests r and r′

such that all honest parties have seen r′ before r, then r′ is in the same or an
earlier block than r.

Proof. If the leader is honest, it will place at least one request in B. By the
protocol logic, B will be delivered once no request not in B blocks any request
in B.

As the validity proof contains all the history that lead to the definition
of the block, every valid block has to satisfy the conditions for relative block
fairness. If the leader is dishonest, the only misbehavior (apart from deliberately
not terminating the pre-protocol) is to suggest different valid blocks to different
parties. This, however, is easily caught by the atomic broadcast protocol. Other
dishonest parties can report different orders to different leaders (if those exist).
This also is caught by the atomic broadcast protocol (which in this case should
select one of those blocks as the next one), as well as requiring contradictory
signatures that are then provable exposing the corrupt party.

2
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Theorem 4. If some honest party submits a request r, the protocol Neverending
Fairness terminates.

Proof. Void, because the theorem is wrong. 2

As we have shown in the previous section, it is possible for an adversary
to construct a schedule in which an arbitrary amount of messages needs to be
put into the same block; thus, an adversary with sufficient influence on message
ordering can keep the protocol process one block forever.

Consequently, we also cannot quantify the absolute fairness – once a request
is seen by all honest parties, there is no upper bound on when it is delivered.
The only statement we can make is about the block it will be contained in
(which depends on the number of undelivered earlier requests), but not on the
time or communication effort until that block is delivered.

Lemma 5. If r′ does not block r, then r′ is not required to be in the same or
an earlier block than r by the requirements of relative block fairness.

Proof. To be required to be in the same or an earlier block, all honest parties
need to have seen r′ before r. If t+ 1 parties report to have seen r′ after r, at
least one of them is honest, and thus not all honest parties have seen r′ before
r. 2

4.1 Armageddon

If the protocol terminates due to lack of usage (i.e., there are no more requests
to be scheduled), then the impossibility result no longer holds – in the worst
case scenario, the protocol only schedules one block after the genesis block which
then contains all transactions (one could argue that such a behavior may hasten
the end-of-time scenario as users abandon the system). What is left to show
is that all requests that an honest party has seen actually are delivered. This
model also assumes that the adversary cannot keep the protocol running forever
by generating its own transactions. This would usually be the case as (a) forever
is a very long time and a concept that doesn’t exit in a cryptographically strict
model, (b) usually transactions cost money to incentivise the validators, so such
an adversary would spent an unlimited amount of money to prevent protocol
termination.

If the protocol terminates while still in operation due to validators opting
out, a weaker form of liveness is required – while the protocol should have
created all the blocks it could before, it cannot be expected to deliver every
single request in that setting. While we do not quantify which messages can get
lost under these conditions, [15] provides the formalism to cleanly define such
end-time scenarios.
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4.2 Relative Synchrony Assumption

One reason why the impossibility result works is that we allow the adversary
to completely control the schedule, i.e., the order in which all parties see all
requests. This is an unrealistically strong adversary; it is usually defined that
way as it is rather hard to model a realistic worst case network attack. In the
following, we define an adversary who is almost that strong, but has a (small)
failure probability. For this definition, we assume that there is some form of
global time, which is unknown to the individual parties.

Definition 6 (Probabilistic Adversary Failures). After every time the adversary
delivers a message, all undelivered messages between honest parties, in a random
order, are each delivered with a probability p. If as a result of such a message
an honest party generated another message, that message is added to the pool
of messages to be delivered with probability p at a random position.

While this definition invalidates the impossibility result and allows for an
algorithm to achieve relative fairness, we still run into practical issues. If p is
unknown (analogous to the failure detectors, where it is unknown when a party
is rightfully suspected), then we have no known upper bound for the block size
and, relatedly, latency. Even if p is known, the maximum possible blocksize
can be prohibitively large for any practical implementation. In addition, the
adversary can improve the schedule shown in the previous section to add more
resilience. For example, the adversary could (using twice as many transactions)
interweave two such schedules in parallel, and thus tolerate a delivery error in
one schedule; to force termination, dilvery errors need to affect both schedules
within a short time, which would then happen only with probability p2. If
the adversary has enough messages to operate with, the resilience can thus be
arbitrarily high.

While this model is probably pretty close to reality in that a realistic adversry
will not have complete control over message delivery for a very long time, it is
also unsatisfying in that p is extremely hard to determine (and probably not
the same for all messages and not independent for each message).Furthermore,
a more detailed analysis would have to be made on how an attacker can create
even more error- resilient schedules with fewer messages, i.e., how many delivery
failures need to co-incide to terminate the protocol. Thus, while we can show
termination within this model, more work is required to refine the model to the
point that we can also make qualitative statements on expected block sizes and
latency.

Note that this definition also adds enough synchrony to allow for deter-
ministic byzantine agreement, as the adversary will (eventually) fail to prevent
termination.

It remains an open question how much synchrony (in terms of limited mes-
sage delay) would be needed to circumvent our impossibility result. While we
expect that simply having known timeouts is not sufficient – our construction
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only requires requests to be seen in a bad order relative to each other, and also
works if all parties see a given request within a limited time interval – the exact
benefit of various synchrony assumptions are still open work (for some further
work on this, see Kelkar,Zhang, Goldfeder, and Juels [15]).

4.3 Probabilistic Relative Block Fairness

Definition 7 (Probabilistic Relative Block Fairness). A byzantine fault toler-
ant total ordering protocol is called probabilistically relatively block fair if the
following holds: There is a fixed probability p such that, if all honest parties
receive request r1 before request r2, then r1 is delivered in the same block as r2
or earlier for with at least probability p.

This definition allows a protocol to at some point stop assuring fairness and
put the already processed messages into the next block, even if that means that
some messages are scheduled unfairly. To achieve termination at sacrificing
some level of fairness, we can set a threshold rmax and artificially terminate
the protocol once the number of requests in R exceeds rmax. This means that
an adversary with sufficient network control can cause a limited amount of
unfairness (i.e. scheduling some requests out of a fair order), however, the
majority of all requests will be scheduled fairly, and causing an unfair order
does require a very high level of network control for the adversary. Of course,
the cut-off point can also be defined using other factors, e.g., a timeout, the
number of requests in the queue, etc.

We can strengthen this approach by adding a random factor. In that set-
ting, once rmax is exceeded, we use a common coin [8] to determine when the
protocol stops. This could be done in a way that the result is unpredictable
even for the leader - after each request added to B beyond rmax, the leader
can request a coin from all other parties defining whether or not she should
stop at that point. Thus while an adversary with extensive network control
can cause an unfair scheduling, she has no influence on who is treated unfairly.
Communication overhead can be managed by piggybacking the coin shares to
the voting messages; furthermore, as the attacker gains little apart from a small
slowdown of the protocol, one could hope that most economic attackers would
not attempt such an attack, and thus in most cases the protocol terminates
before reaching rmax. While this allows the timing model to remain unchanged,
the required maximum blocksize is linked to p; if p is to be very small (e.g., one
in a million), the number of messages per block that the protocol needs to be
capable of handling is correspondingly high.

4.4 Fairness using Local Clocks

We now present a different definition of fairness that is slightly weaker, but that
allows for much stronger liveness guarantees.
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Definition 8 (Timed Relative Fairness). Suppose that all parties have access
to a local clock. If there is a time τ such that all honest parties saw (according
to their local clock) request r before τ and request r′ after τ , then r must be
scheduled before r′.

Note that there is no need for the local clocks to be synchronized at all; the
only formal requirement is that the clock always counts forward and that no two
timestamps are the same. Obviously, the definition does make more practical
sense if the clocks are roughly in sync. Using GPS as a time source with a
hardening layer to prevent GPS spoofing (e.g., [4]) and robust syncronisation
protocols [3] should be more than sufficient to make this approach practical.

For our protocol, it is sufficient to assure that if r needs to be scheduled
before r′, r is in an earlier or the same block. As the timestamps are included
in the block, the ordering of requests inside a block can be performed locally
after the block is delivered.

Widget Clocked-Wendy for block b and protocol instance ID
All parties:

let i be a counter for incoming requests, starting at 0

while no valid proposal has been seen as the proposal for atomic broadcast for block
b do

for all known and unscheduled requests r̂, in the order of the timestamps on
the requests, send the message (ID,b,i, timestamp(r̂),r̂) to all parties,
where i is the sequence number of that request.

end while
Additional protocol for the leader(s):
B = ∅
wait until the first requests r is contained in the signed list of n − t validators;

add r to B
let R be the set of requests for which a vote for with a smaller timestamp than r

was received

wait until there is a set of n−t parties from which valid votes for all requests
in R are received

for all r′ ∈ R, if timestamps of t + 1 votes are smaller for r′ than the median
of the timestamp of the votes for r, add r′ to B

The proposal for the next block of the atomic broadcast is B, validated be the
corresponding signed votes in B

Since the fairness condition changed, the validity of a vote and of a block
also look different.

Definition 9 (Timestamped Vote-Validity). A vote is valid if it has the proper
format, and if the sequence number matches the sequence on timestamps on
requests from that party. Once a party mismatches the timestamps and the
sequence numbers, i.e., there are two requests r1 and r2 such that r1 has a lower
sequence number and a higher timestamp than r2, this and all following votes
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from that party are considered invalid. Furthermore, a vote is only considered
valid once all requests with a lower sequence number from that voter have been
received.

Definition 10 (Timestamped Block-Validity). A block B is valid if it contains
a nonempty set of requests with n− t valid votes each; a vote for r is valid if it
contains the signed votes for all requests for that block with a lower sequence
number. Furthermore, for every r in B, if there is a request r′ in the vote
validation that obtained t+ 1 votes with a lower sequence number than r, then
r′ needs to be in B accompanied by n− t validation votes.

Theorem 6. (Safety) If a request r is scheduled in a block B, and there is a
request r′such that there is a time τ in a way that all honest parties saw r′ before
τ and r after τ , then r′ is in B or an earlier block.

Proof.

Assume without loss of generality that every timestamp has a unique time.
This can easily be assured locally by a high enough time resolution, and by
ordering votes by party identifier if two votes have the exact same timestamp.

Suppose at the end of the pre-protocol, we have request r′ ∈ B and l 6∈ B,
and that l has not been scheduled in an earlier block. Let τ1 be the median of
the timestamps of r.

1. As r′ ∈ B, at least t+ 1 parties timestamped r′ before or during τ1

2. As l 6∈ B, at most t parties timestamped l before τ1.

Suppose by the requirements of timed relative fairness, we have to schedule l
before r′. As t+ 1 of the parties that issued votes are honest, this implies that

3. there exists τ2 such that t + 1 votes contain timestamps for l before τ2,
and at most t votes contain timestamps for r′ before τ2.

By (2), at most t timestamps for l are smaller than τ1, and by (3) at least
t+ 1 are smaller than τ2; thus, τ1 is smaller than τ2. Similarly, for r′, by (3) at
most t timestamps are smaller than τ2, by (1) and at least t+ 1 are smaller or
equal to τ1. Thus, τ2 is smaller than τ1. This is a contradiction, and therefore
it is not possible that l needs to be scheduled before r′. 2

Theorem 7. If some honest party sees some request, any honest leader will
terminate the protocol with a proposal.

Proof. As every party sends every request it sees for the first time to all other
parties, every request that is seen by some honest party is seen – and send to
the leader(s) – by all honest parties. Thus, there is some r that is in the signed
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list of n − t parties. Once a leader gets n − t votes for some r for the first
time, there is a finite number of requests r′ for which the leader received a vote
before. As the leader has seen this vote and is honest, it also forwarded the r′

to all other parties, and thus will receive n− t votes eventually. Therefore, the
waiting statement always terminates for all requests r′. 2

Note: We only need successful termination if an honest leader exists. All
atomic broadcast protocols we are aware of either have a single leader which is
replaced if a liveness problem occurs, or use more than t parties in a leader-like
function simultaneously and thus guarantee that there is some honest leader.

4.5 Optimizations

The two protocols described above can also be combined. The joint proto-
col would act like the neverending protocol up until rmax; however, instead
of aborting the protocol and allowing for plain unfairness, it switches to the
weaker timed definition of fairness once rmax is exceeded. That approach allows
for much more aggressive thresholds, as the fallback protocol is no longer unfair,
but still fair with a slightly weaker definition.

4.5.1 Latency and performance impact

Introducing any kind of relative fairness always has a latency impact. If no
fairness is required, every incoming request can be processed as soon as it arrives.
Relative fairness, no matter how it is defined, requires leaders to wait until they
can decide if there are other requests with a higher priority. While the mostly fair
protocol allows parameterisation of the trade-off between latency and unfairness
– the lower the cutoff parameter, the faster the worst case protocol and the easier
for an adversary to cause an unfair transaction. However, in the benign case,
the latency overhead should be reasonably small.

One (small) speed increase can be reached by parallelizing the leader part
of the protocols. Instead of waiting for the first request to add to B and then
sticking to it, the protocol can be run in parallel for all requests that have been
reported by enough parties. In that case, the first instance that terminates
its while condition wins and defines the next block. It is also possible to cut
the threshold in the neverending fairness protocol to t + 1 by using a more
sophisticated blocking function.

Another parallelization approach would be that the first part of the protocol
where all parties broadcast their orders is permanently performed, indepen-
dently of the state of the second phase or the atomic broadcast. Thus, in most
cases, once the atomic broadcast starts processing the next block, enough votes
should have arrived to terminate the pre-protocol quite rapidly. This approach
also has an interesting impact on the overall architecture – rather than having
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a simple API to call the pre-protocol, some part of it now needs to perma-
nently run in the background. Alternatively, to save overhead, this could also
be included as a piggyback in the gossiping protocol.

An additional approach to optimize the Neverending protocol is to allow
requests to be removed from B again. Recall that a request is added to B if it
has received n− t votes and still blocks a request already in B. This is necessary
as we can no longer rely on getting more votes concerning this request, and to
guarantee progress, this request now needs to be treated as if we know that it
has to be in the same block as the one it blocks. However, as additional votes
come in, it is possible that it unblocks again. In this case, r and all requests
that had been added to B due to blocking r can be removed from B again,
potentially releasing the block earlier.

For the timed protocol, a similar approach can be taken. For this protocol,
we have the advantage that for each request r, there is a finite number of requests
that are blocking it. This blockage is released either once the corresponding
request has t+1 timestamps smaller than the median timestamp on r (in which
case we know if any other request needs to be scheduled before r′, it also needs
to be scheduled before r), or if it got n − t timestamps of which at most t are
smaller than the median of r (in which case it can and will be scheduled after
r). To fully optimize latency, we also need to constantly verify if new incoming
votes increase the median of a subset of n − t votes for r, as a higher median
increases the possibility that another request can be decided before it obtained
n− t votes.

With this modification, we believe that the protocols have optimal latency
within our modular architecture, i.e., it is not possible to hand a block over to
the atomic broadcast protocol earlier. The (informal) argument for the block
fairness protocol goes as follows (from the point of view of a leader):

• Every request that r got t+ 1 votes gets its own Br, i.e., a potential block
containing r and all other requests that have to be in the same block as
r .By our fairness condition, we cannot deliver any request that has seen
less than t+1 votes, as it is possible that another request that is unknown
at this point has n − t votes that prioritize it over r and thus has to be
in the same block. Therefore, for every request that can be in the next
block, the protocol maintains has a Br

• At any point in time, Br is minimal; the only requests in Br are requests
that either have to be in the same block as r, or might have to according
to the information available.

• Br cannot be finalized while it contains a request r1 that is blocked by
another request r2 with less than t+ 1 votes, as r2 might still be blocked
by a yet unseen request. Thus, the protocol finalizes Br at the earliest
possible occasion.

A similar argument holds for the timed protocol; again, the protocol main-
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tains a separate B′r for all eligible processes, and decides about all other requests
at the earliest opportunity – either once it is clear that they can to be in the
same block, or once enough votes are seen to conclude they don’t need to.

If we further want to optimize latency, we could open up the modularity
of our approach. Most voting based atomic broadcast protocols start with the
leader(s) broadcasting the content of the next block (or a hash thereof). Due
to the pre-protocol, we already know that n− t parties have seen the content of
the requests in that block. Optimizing the interplay between the fairness pre-
protocol, the atomic broadcast, and the underlying gossip/multicast protocol is
thus certainly promising, but out of the scope of this paper. It also is possible
to integrate our protocol deeper with the blockchain implementation. With
some modifications it could, for example, replace the first phase of the ABC
protocol from Cachin, Kursawe, Petzold and Shoup [7]. As our goal is a modular
approach though, we will not follow that path at this point.

4.5.2 The combined protocol

There is a set D of transactions that are ready for the atomic broadcast layer
to use. For the ease of presentation, we assume that the communication layer
is aware of D, and omits any voting messages associated with any transaction
in D. Furthermore, there is a queue Q with which the protocol communicates
with the atomic broadcast. The atomic broadcast protocol takes the requests in
Q from one or several leaders, adds a block to the blockchain, and then deletes
the scheduled requests from the queues from all leaders.

This version of the protocol is defined as a permanent service that takes in
requests, and outputs blocks for the atomic broadcast protocol.

4.6 Fairness and Advanced Staking

While the protocol described above is relatively model-independent, it is de-
scribed in the classical committee model, i.e., we have n parties with one vote
each, up to t, n ≥ 3t + 1 can suffer from byzantine corruptions. This model
translates easily into a stake-based model, where voting power is related to
the stake parties have. To allow our results to be applicable for more differ-
ent staking models, we consider the hybrid-adversary-structure model [16]. In
short, this model generalizes the model by replacing the thresholds by the cor-
responding properties that are required to perform the proof; for example, the
threshold t + 1 is replaced by sets of parties of which at least one is honest,
while n − t corresponds to the largest sets of parties we can afford to wait for
without having to rely on potentially corrupt parties. This allows to not only
model weighted votes, but also take into account properties, e.g., requiring more
2/3 of the stake in more than 2/3 of a set of defined geographic regions to be
honest. In addition, the hybrid model allows a trade-off between crash- and
byzantine corruptions, allowing a higher number of overall failures if some of
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Widget Hybrid-Wendy for protocol instance ID
All parties:

let i be the counter of incoming requests, starting at 0.

while true do

for all first seen and unscheduled requests r̂, in the order of the timestamps
on the requests, send the message (ID,b,i, timestamp(r̂),r̂) to all parties,
where i is the sequence number of that request.

end while
Additional protocol for the leader(s):

while true do

once a request r is contained in the signed and valid votes from t+1 parties,
set Br to {r}

while for any Br 6= ∅ any request r′ 6∈ Br blocks a request r ∈ Br and there
is no Bx of order > rmax

if request r′ has at least t + 1 votes, add r′ to Br

if a request r′ ∈ Br, r
′ 6= r, no longer blocks any other request in Br,

remove r′ from Br

end while

for all r for which no request in Br is blocked by a request r′ 6∈ Br,

add Br to the Q, validated by all signed votes for requests in Br.
add all r′ ∈ Br to D, and remove them from all sets Bx

if there is a Bx of order > rmax

set all Bx = ∅
while all B′

x = ∅
for all requests r contained in the signed list of n−t validators,

set B′
r = {r}

for all r relating to a nonempty B′
r,

let Rr be the set of requests for which a vote with a smaller
timestamp than r was received

let mr be the largest median of any set of n− t votes received
for r

once for all requests in Rr n− t valid votes or t+ 1 votes with
timestamps smaller than mr are received,

for all r′ ∈ Rr, if timestamps of t + 1 votes are smaller
for r′ than mr, add r′ to Br

add B′
r to Q, validated by all signed votes for requests in B′

r.
add all r′ ∈ B′

r to D, and remove them from all B′
x

end if

end while

21



them are crash-only (which is a more likely scenario in reality). In the proofs
for our protocols, the two aforementioned properties are the only properties we
need, and – while working out the details remains future work – we expect that
the proofs can be generalized in a (relatively) straightforward way. Thus, any
staking model that can be formulated within the hybrid adversary structures is
compatible with the relative-fairness protocols.

Another model of interest is the choice of a random subset of validators,
as done for example in Algorand [14]. While we do not expect this to cause
a fundamental issue for our protocols, some care needs to be taken on the
interfaces, as the subsets should be somewhat synchronised between the fairness
pre-protocol and the atomic broadcast. This, too, will be a subject of future
work.

5 Conclusion

We have shown that relative fairness is one of the many desirable properties that
is impossible to achieve in a byzantine fault tolerant setting. We have mitigated
this by providing slightly weaker definitions of what fair is. We have a presented
several protocols to achieve relative order fairness with these definitions, as well
as a hybrid version that can switch between two levels of fairness to avoid the
impossibility result. Our protocols are (largely) blockchain agnostic, and can be
added to any protocol that provides a known set of validators. Furthermore, our
protocols have optimal resiliency in the asynchronous model (i.e., n ≥ 3t + 1)
and optimal latency in terms of message passing rounds within our architectural
model.
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