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Abstract

Minrank problem is investigated as a problem related to a rank at-

tack in multivariate cryptography and decoding of a rank code in coding

theory. Recently, the Kipnis-Shamir method for solving this problem has

been made significant progress due to Verbel et al. As this method re-

duces the problem to the MQ problem that asks for a solution of a system

of quadratic equations, its complexity depends on the solving degree of

a quadratic system deduced from the method. A theoretical value intro-

duced by Verbel et al. approximates the minimal solving degree of the

quadratic systems in the method although their value is defined under a

certain limit for a considering system. A quadratic system outside their

limitation often has the larger solving degree, but its solving complex-

ity is not necessary larger since it has a smaller number of variables and

equations. Thus, in order to discuss the best complexity of the Kipnis-

Shamir method, we need a theoretical value approximating the solving

degree of each deduced quadratic system. A quadratic system deduced

from the Kipnis-Shamir method has a multi-degree always, and its solv-

ing complexity is influenced by this property. In this paper, we introduce

a theoretical value defined by such a multi-degree and show it approx-

imates the solving degree of each quadratic system. Thus we are able

to compare the systems in the method and to discuss the best complex-

ity. As its application, in the Minrank problem from the rank attack

using the Kipnis-Shamir method against Rainbow, we show a case that

a quadratic system outside Verbel et al.’s limitation is the best. Conse-

quently, by using our estimation, the complexities of the attack against

Rainbow parameter sets Ia, IIIc and Vc are improved as 2160.6, 2327.9 and

2437.0, respectively.
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1 Introduction

Minrank problem that asks for a linear combination of given matrices such that

has a target rank at most, is firstly introduced by Shallit et al. [1] and is an NP

complete problem. A rank attack [17, 14, 4] in multivariate cryptography and

decoding of a rank code [14, 8] in coding theory are related to this problem. In

NIST post-quantum cryptography (PQC) standardization project [19] toward

building cryptosystem resistant to attacks using quantum computers, not only

multivariate cryptography but also code-based cryptography is investigated and

an analysis for this problem is important.

The minors method [4], the Kipnis-Shamir (KS) method [17] and the linear

algebra search [16] are well-known as non-trivial methods solving a Minrank

problem. In this paper, we investigate the KS method for the Minrank problem

arisen from a rank attack in multivariate cryptography, i.e. the MinRank attack

using the KS method. The KS method reduces a Minrank problem to the MQ

problem that asks for a solution of a system of quadratic polynomial equations,

and a certain parameter in the method decides the number of the variables

and the equations of a deduced quadratic system called a KS system. Since

the complexity of solving a KS system dominates the overall complexity of the

method, this parameter is important to the complexity estimation of the KS

method.

The complexity of a Gröbner basis algorithm [6] for solving a polynomial

system depends on the solving degree that is the maximal degree required to

compute its Gröbner basis. For example, the complexity of the Gröbner basis

algorithm F4 [12] is estimated by(
n+ dslv
dslv

)ω

where 2 < ω ≤ 3 is a linear algebra constant, n is the number of the variables
of the given polynomial system and dslv is the solving degree. Since the solving

degree is an experimental value, we need to consider a theoretical value approx-

imating the solving degree. When a given polynomial system is semi-regular

[2, 3], the degree of regularity [2] is well-known as a proxy for the solving degree

and is given by the degree of the first term whose coefficient is non-positive in

a certain power series. On the other hand, for a non-semi-regular system, the

first fall degree [11] as such a proxy is defined by using its syzygies and captures

the first degree at which occurs a non-trivial degree fall during a Gröbner basis

algorithm.

Since a KS system is often non-semi-regular, Verbel et al. [20] discuss its

concrete syzygies and introduce a theoretical value for approximating the solving

degree of a KS system through its first fall degree. Their theoretical value has

a limit for the range of the parameter in the method, but it approximates the

minimal solving degree of the KS systems. Consequently, they give a complexity
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estimation using the theoretical value for the KS method. However, since a KS

system outside their limitation has a smaller number of variables and equations,

the complexity does not necessary larger and not enough to discuss which KS

system to solve. Thus we have to consider a theoretical value approximating

the solving degree of each KS system.

1.1 Our contribution

Each KS system has a multi-degree always [14] although its bi-degree has been

investigated, and its solving complexity is influenced by this property. In this

paper, in order to approximate the solving degree of each KS system, we intro-

duce a theoretical value by employing a multi-degree. This theoretical value is

also available for the hybrid approach that, after fixing some variables, solves

a given system, e.g. an underdetemined system. Thus it is widely applied to a

polynomial system having a multi-degree.

Our theoretical value approximates the solving degree of each KS system and

that deduced through the hybrid approach. Hence we are able to compare the

systems in the method and to discuss the best complexity. As its application,

in the MinRank attack using the KS method against Rainbow [9], we show a

case that a certain KS system outside the limit of Verbel et al.’s estimation is

the best. Then, by using our estimation, the complexities of the attack against

Rainbow parameter sets Ia, IIIc and Vc are improved as 2160.6, 2327.9 and 2437.0,

respectively, and are better than the previous estimation [10] in the 2nd round

of NIST PQC standardization project.

1.2 Organization

This paper is organized as follows. In Section 2, we recall the KS method

solving Minrank problem and the MinRank attack using the KS method against

Rainbow. In Section 3, we explain Verbel et al.’s estimation for the KS method

and consider a certain parameter in the method. In Section 4, we introduce

a theoretical value which is available for each KS system and show that this

approximates the solving degree. In Section 5, by using the observation in

Section 4, we gives a complexity estimation for the MinRank attack using the

KS method against Rainbow parameter sets Ia, IIIc and Vc proposed in NIST

PQC standardization project. In Section 6, we conclude our results.

2 Preliminaries

In this section, we explain the MinRank attack using Kipnis-Shamir (KS) method

against Rainbow. We recall the Rainbow scheme in Subsection 2.1 and the KS

method for Minrank problem in Subsection 2.2, and then explain the MinRank
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attack using the KS method against Rainbow. In Subsection 2.3, we explain

the complexity estimation for a Gröbner basis algorithm.

2.1 Rainbow

Let n and m be positive integers. We denote by F the finite field of order q. An

element (f1, . . . , fm) of F[x1, . . . , xn]
m is called a polynomial system and gives a

map Fn → Fm by a 7→ (f1(a), . . . , fm(a)) which is called a polynomial map.

A multivariate public key signature scheme consists of the following three

algorithms:

Key generation: We construct two invertible linear maps S : Fn → Fn

and T : Fm → Fm randomly and an easily invertible quadratic map F :

Fn → Fm which is called a central map, and then compute the composition

P := T ◦F ◦S. The public key is given as P . The tuple (T, F, S) is a secret

key.

Signature generation: For a message b ∈ Fm, we compute b′ = T−1(b).

Next, we can compute an element a′ of F−1({b′}) since F is easily invert-

ible. Consequently, we obtain a signature a = S−1(a′) ∈ Fn.

Verification: We verify whether P (a) = b holds.

Since an attacker can forge a signature a by solving the system P (x) = b of

quadratic polynomial equations, the security of this scheme depends on the

so-called MQ problem that asks for a solution of a quadratic system.

Rainbow is a multivariable signature scheme proposed by J. Ding and D.

Schmidt in 2005 [9]. For positive integers v, o1 and o2, let x = {x1, . . . , xv},y =

{y1, . . . , yo1} and z = {z1, . . . , zo2} be three variable sets and put n = v+o1+o2
and m = o1 + o2. The central map F = (f1, . . . , fm) ∈ F[x,y, z]m of Rainbow

is defined by

f1 = g(1)(x) +
∑o1

i=1 l
(1)
i (x)yi,

...

fo1 = g(o1)(x) +
∑o1

i=1 l
(o1)
i (x)yi,

fo1+1 = g(o1+1)(x,y) +
∑o2

i=1 l
(o1+1)
i (x,y)zi,

...

fo1+o2 = g(o1+o2)(x,y) +
∑o2

i=1 l
(o1+o2)
i (x,y)zi,

(1)

where g(j) and l
(j)
i are randomly chosen quadratic polynomials and linear poly-

nomials, respectively. Rainbow parameter Ia, IIIc and Vc proposed in NIST

PQC 2nd round are (q, v, o1, o2) = (16, 32, 32, 32), (256, 68, 36, 36) and (256, 92, 48, 48),

respectively. In particular, we see that o1 = o2 and v = oi or 2oi − 4.
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2.2 The KS method for the Minrank problem

Let q, n,m and r be positive integers. For givenm+1 square matricesA0, A1, . . . , Am

of size n, the Minrank problem asks x1, . . . , xm ∈ Fq giving a linear combination

such that

Rank

(
A0 +

m∑
i=1

xiAi

)
≤ r.

We denote by MR(q, n,m, r) this problem. For correct x1, . . . , xm, the dimen-

sion of the kernel space Ker (A0 +
∑

i xiAi) is at least n− r. Hence, when there

are n−r bases of the form ŷi = (0, . . . , 0,
i
1, 0, . . . , 0, y1i, . . . , yri), 1 ≤ i ≤ n−r for

correct x1, . . . , xm, the KS method [17] reduces the Minrank problem to the MQ

problem as follows. Regarding {xi}1≤i≤m and {yij}1≤i≤r,1≤j≤n−r as variables,

obtain a quadratic polynomial system called a KS system from a relation(
A0 +

m∑
i=1

xiAi

)
tŷj = 0, 1 ≤ j ≤ c, (2)

where c ≤ n − r. Then the part x1, . . . , xm of its solution gives an answer of

the Minrank problem. Here the KS system consists of cn equations in m + cr

variables.

For Rainbow parameters v, o1 and o2, the matrices Af1 , . . . , Afo1+o2
corre-

sponding the central quadratic polynomials (1) are of the form

Afi =



 ∗v×v ∗v×o1 0v×o2

∗o1×v 0o1×o1 0o1×o2

0o2×v 0o2×o1 0o2×o2

 if 1 ≤ i ≤ o1,

 ∗v×v ∗v×o1 ∗v×o2

∗o1×v ∗o1×o1 ∗o1×o2

∗o2×v ∗o2×o1 0o2×o2

 if o1 + 1 ≤ i ≤ o1 + o2,

(3)

where ∗i×j are i-by-j matrices over F. Since Af1 , . . . , Afo1
has at most rank

v + o1, the matrices Ap1 , . . . , Apo1+o2
corresponding the public key has a linear

combination such that

Rank

(
Ap1 +

o1+o2∑
i=2

xiApi

)
≤ v + o1,

where x2, . . . , xo1+o2 ∈ F, i.e. an instance of MR(q, v+o1+o2, o1+o2−1, v+o1).

Since t(1, x2, . . . , xo1+o2) correspond to a column of a secret key T , the MinRank

attack recovers a secret key by repeating this. In the Rainbow case, for o2 + 1

matrices from the public key, we also can obtain these linear combination having

rank v+o1. Namely, it suffices to solve an instance ofMR(q, v+o1+o2, o2, v+o1).
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2.3 Gröbner basis algorithm

AGröbner basis algorithm that computes a Gröbner basis for the ideal generated

by a given polynomial system was discovered by B. Buchberger [6], and improved

as faster algorithms, for example, XL [21], F4 [12] and F5 [13]. It is also used

as an algorithm for solving a polynomial system and its complexity depends on

the solving degree that is the maximal degree in steps which add a new non-zero

polynomial during the Gröbner basis algorithm. For example, the complexity

of the F4 algorithm solving a polynomial system in n variables is given by(
n+ dslv
dslv

)ω

,

where 2 < ω ≤ 3 is a linear algebra constant and dslv is the solving degree.

Moreover, by using the hybrid approach [3] of brute-force search and Gröbner

basis algorithm which solves a polynomial system in n− k variables after fixing

k variables, the complexity is improved as

min
k

qk ·
(
n− k + dslv

dslv

)ω

. (4)

The solving degree is important for obtaining the complexity, but is an

experimental value. In order to estimate the complexity of solving a large scale

polynomial system, we need to find a theoretical value approximating the solving

degree. For a semi-regular quadratic system [2, 3], the degree of regularity [2]

is well-known as a proxy for the solving degree and is given by the degree Dreg

of the first term whose coefficient is non-positive in

(1− t2)m

(1− t)n
, (5)

where m and n are the number of the equations and the variables of the system,

respectively. On the other hand, for a non-semi-regular quadratic system, the

first fall degree dff [11] as a proxy for the solving degree has been investigated.

For a given polynomial system, the first fall degree is defined by using its syzygies

and captures the first degree at which occurs a non-trivial degree fall during a

Gröbner basis algorithm. Since a KS system is non-semi-regular, Verbel et al.

[20] discuss its concrete syzygies and give a certain theoretical value as an upper

bound for its dff . In the next section, we explain their complexity estimation

for the KS method using this theoretical value.

3 Previous Estimation on the MinRank attack

using the KS method

In this section, we explain Verbel et al.’s estimation for the KS method solving

Minrank problem and consider a certain parameter in the method. We recall
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their complexity estimation in Subsection 3.1 and compare the complexities of

F4 and their y-XL in Subsection 3.2. Then we investigate the hybrid approach

on a KS system in Subsection 3.3.

3.1 Previous estimation for the KS method

In [20], Verbel et al. show that there is a certain non-trivial syzygy of a KS

system under their assumption and give an upper bound for the first fall degree

dff . Moreover, they show that the KS system is solved by an XL algorithm

called y-XL algorithm which multiplies only variables {yij}i,j to the equation

(2).

For MR(q, n,m, r) such that m < nr, i.e. superdetermined case, the paper

[20] concludes that the complexity of the KS method using y-XL algorithm is

given by

Cy-XL(DKS) =

(
m

(
cr +DKS

DKS

))ω

(6)

where DKS = dKS + 2, max{dm/(n− r)e, dKS + 1} ≤ c ≤ n− r and

dKS = min
1≤d≤r

{
d :

(
r

d

)
n >

(
r

d+ 1

)
m

}
. (7)

Here
(
a
b

)
= 0 for a < b. In their limitation on the parameter c of (6), the

condition dm/(n− r)e ≤ c implies that a KS system is overdetermined, and the

condition dKS + 1 ≤ c guarantees that a non-trivial degree fall at DKS occurs

in a KS system, i.e. dff ≤ DKS .

For MR(q, n,m, r), the best complexity from the formula (6) must take the

minimum c in their limitation since the definition DKS is independent of c.

Namely, c = max{dm/(n− r)e, dKS + 1}. However, by experiments, the paper

[20] mentions that the minimum c is not always the best. Moreover, when

dKS + 1 > c, the solving degree may increase, but the complexity with such a

small c not necessary. Furthermore, when dm/(n − r)e > c, i.e. a KS system

is underdetermined, we can solve the system after fixing some variables by the

hybrid approach (see Subsection 2.3).

3.2 F4 vs y-XL

In this subsection, we explain that our research uses the F4 algorithm rather

than the y-XL algorithm to investigate a KS system with a widely chosen c.

The complexity of the KS method for MR(q, n,m, r) is given either as the

y-XL algorithm case from (6), i.e.

Cy-XL(dslv ) =

(
m

(
cr + dslv

dslv

))ω

, or (8)

7



the F4 algorithm case

CF4(dslv ) =

(
cr +m+ dslv

dslv

)ω

. (9)

where 2 < ω ≤ 3 is a linear algebra constant. Solving degrees dslv of these

algorithms are the same in [20], but the complexity of the F4 algorithm is

asymptotically better than one of the y-XL algorithm for cr � m. Indeed, for

cr � m, we have

CF4(dslv ) ≈ (cr +m)dslvω ≈ (cr)dslvω < mω(cr)dslvω ≈ Cy-XL(dslv ).

In an instance from Rainbow, for small c outside Verbel’s limitation, there

exists a case that the complexity of the y-XL algorithm is better than that

of the F4 algorithm. Moreover, the termination of the y-XL algorithm on an

inhomogeneous system is not clear, and its complexity depends on the existence

of a non-trivial syzygy on each system and its discussion is delicate except

for their superdetermined case. For these reasons, our research uses the F4

algorithm that can be uniformly applied to a KS system with widely chosen c.

Thus the purpose of this paper is to find a theoretical value approximating the

solving degree of the F4 algorithm and dslv denotes it from here.

3.3 Rainbow parameter set Ia and a certain parameter in

the KS method

The assertions in this paper were verified by using the Gröbner basis algorithm

F4 with respect to the graded reverse lexicographic monomial order in Magma

V2.24-4 [5] on CPU: 3.2 GHz Intel Core i7.

In this subsection, in order to discuss the parameter c, we take the concrete

parameter set (q, v, o1, o2) = (16, 5, 5, 5) as a scaled-down Rainbow Ia, and then

MinRank attack against it derives MR(16, 15, 5, 10). For the solving degree dslv
of the F4 algorithm, Table 1 shows running time and complexities using the

formulas (8) and (9). In this case, the KS system satisfies m = 5 < 15 ·10 = nr,

i.e. superdetermined case which is a target of Verbel et al.’s research. The

formula (8) suggests c = max{dm/(n − r)e, dKS + 1} = 3 as the best case

since dm/(n − r)e = 1 and dKS = 2. Indeed, Table 1 shows the case c = 3 is

actually the best. Note that c = 1 and 2 derive ovedetermined KS systems since

dm/(n− r)e = 1 (see Subsection 3.1).

According to Table 2, we see that the case c = 1 in Table 1 is different from

that for a random instance in MR(16, 15, 5, 10). Then a KS system with c = 1

for a random instance is solved faster than for Rainbow, and its complexity is

CF4(dslv ) = 238 and Cy-XL(dslv ) = 237 with dslv = 6 which becomes the best in

Table 1. Note that, for c 6= 1 or the odd characteristic case, such a phenomenon
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Table 1: Experiments on a KS system for an instance from Rainbow in

MR(16, 15, 5, 10). The complexities CF4(dslv ) and Cy-XL(dslv ) are from the

equations (8) and (9), respectively, for the solving degree dslv of the F4 algo-

rithm.

c
CF4(dslv ) Cy-XL(dslv ) F4

(bits) (bits) Time (s) dslv
5 46 50 386.7 4

4 43 47 78.4 4

3 40 43 29.7 4

2 42 44 506.5 5

1 58 52 136.0 12

Table 2: Comparison between KS systems with c = 1 for an instance from

Rainbow and a random instance in MR(16, 15, 5, 10). Two positive integers k0
and k1 are the number of variables fixed in x and y1, respectively. The positive

integers dslv and dff are the solving degree and the first fall degree in the F4

algorithm.

# fixed variables Rainbow Random∑
i ki (k0, k1) dslv dff dslv dff
0 (0,0) 12 6 6 6

1 (0,1) 6 6 6 6

(1,0) 5 5 5 5

2 (0,2) 5 5 5 5

(1,1) 5 4 5 4

(2,0) 4 4 4 4

3 (0,3) 5 5 5 5

(1,2) 4 4 4 4

(2,1) 4 4 4 4

(3,0) 3 3 3 3

does not occur in our experiments. Table 2 further shows that a KS system

with some variables fixed has the same solving degree in both of an instance

from Rainbow and a random instance. Hence we expect that the complexity

of the KS method is improved by the hybrid approach. In the next section,

we introduce a theoretical value for approximating the solving degree and it is

available for widely chosen c and the hybrid approach.
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4 Theoretical value using a multivariate power

series

In this section, we introduce a theoretical value which is available for each KS

system and that deduced through the hybrid approach, and show that this

value approximates the solving degree. We introduce the theoretical value in

Subsection 4.1 and compare with the solving degree of a random instance in

Minrank problem with n = m in Subsection 4.2. Moreover, in Subsection 4.3,

we show that the theoretical value tightly approximates the solving degree of

the best MinRank attack using the KS method against Rainbow.

4.1 Multivariate power series

In this subsection, we show that the top homogeneous component of the KS sys-

tem has multi-degrees and introduce a theoretical value using its multi-degrees.

Definition 4.1. A commutative ring R is Zs
≥0-graded if it satisfies the following

two conditions:

1. R =
⊕

d∈Zs
≥0

Rd

2. Rd1Rd2 ⊆ Rd1+d2

An element h ∈ Rd is called Zs
≥0-homogeneous, and denote d by degZs

≥0
h which

is called the Zs
≥0-degree of h.

The variables of a KS system consists of variable sets x = {x1, . . . , xm} and

yi = {yi1, . . . , yir} for i = 1, . . . , c. Then the polynomial ring F[x,y1, . . . ,yc] is

Zc+1
≥0 -graded by

degZc+1
≥0

xi = e1 and degZc+1
≥0

yij = ei+1,

where ei = (0, . . . , 0,
i
1, 0, . . . , 0). A KS system consists of each quadratic poly-

nomials (hi1, . . . , hin) given as a multiplication of (A0 +
∑

i xiAi) by i-th ker-

nel vector ŷi = (0, . . . , 0, 1, 0, . . . , 0, yi1, . . . , yir). Then hi1, . . . , hin are bilinear

polynomials in two variable sets x and yi, and we have

degZc+1
≥0

htop
i1 = · · · = degZc+1

≥0
htop
in = e1 + ei+1,

where htop
ij are the top homogeneous component of hij with respect to the total

degree. Thus, the top homogeneous component of the KS system is included in⊕c
j=1 F[x,y1, . . . ,yc]

n
e1+ej+1

and is Zc+1
≥0 -homogeneous. This fact is also men-

tioned in [14], but [15] defines a theoretical value using two variable sets x and

y := ∪iyi, as of a Z2
≥0-graded system (see Table 3 and Remark 4.3).

For Zs
≥0-homogeneous system, we give the following definition:
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Definition 4.2. Let h1, . . . , hm ∈ F[x1, . . . ,xs] with degZs
≥0

xi = ei be Zs
≥0-

homogeneous. Then, putting

∑
d∈Zs

≥0

adt
d =

∏m
i=1(1− t

degZs≥0
hi
)

(1− t1)n1 · · · (1− ts)ns
∈ Z[[t1, . . . , ts]], (10)

we define Dmdg = inf{|d| | ad < 0} ∪ {∞} where d = (d1, . . . , ds) and td =

td1
1 · · · tds

s . Moreover, when the top homogeneous component of f1, . . . , fm are

Zs
≥0-homogeneous, we define Dmdg(f1, . . . , fm) = Dmdg(f

top
1 , . . . , f top

m ).

Let n,m and r be parameters in Minrank problem. A KS system consists of

nr quadratic equations in rc+m variables and its top homogeneous component

is included in
⊕c

j=1 F[x,y1, . . . ,yc]
n
e1+ej+1

where x = {x1, . . . , xm} and yi =

{yi1, . . . , yir}. Then, the multivariable series (10) in Definition 4.2 is∏c
i=1(1− t0ti)

n

(1− t0)m(1− t1)r · · · (1− tc)r
. (11)

When the KS system is underdetermined, i.e. nr < rc+m, we fixe rc+m−nr

variables and solve the resulting system. Furthermore, the hybrid approach

fixes more variables in the system and solves it. When denote by k0 and ki the

number of fixed variables in x and yi by the hybrid approach, respectively, we

modify the multivariable series (11) to∏c
i=1(1− t0ti)

n

(1− t0)m−k0(1− t1)r−k1 · · · (1− tc)r−kc
, (12)

where k0 < m and ki < r.

4.2 Experiments on random instances

For i ≥ 1, let k0 and ki be the number of fixed variables in x and yi by the hybrid

approach on a KS system, respectively, and denote this case by (k0, k1, . . . , kc).

Table 3 shows that the state ofDmgd introduced in Subsection 4.1 for overde-

termined KS systems of random instances of Minrank problem with n = m as

a case mentioned in [20]. In this case, Dmgd is an upper bound for the solv-

ing degree dslv . The value Dbi (see Remark 4.3) and Dreg (see Subsection 2.3)

are available for each c, but Table 3 shows that they more overestimate the

solving degree. Note that dff ≤ DKS(= dKS + 2) is actually guaranteed on

max{d8/(8− r)e, dKS + 1} ≤ c ≤ 8− r (see Subsection 3.1). Moreover, Table 4

is for underdetermined KS systems from MR(31, 8, 8, 5) in Table 3, i.e. c = 1, 2.

Then note that Verbel et al.’s DKS does not depend on c and is five always.

By growing the number of fixed variables, our Dmgd tightly approximates the

solving degree dslv .
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Table 3: Experiments on overdetermined KS systems not fixing variables from

random instances of MR(13, 8, 8, r). The experimental values dslv and dff are

the solving degree and the first fall degree in the F4 algorithm. The theoretical

values Dmgd and DDK are decided by the power series (11) and the formula

(7), respectively. The value Dbi is min{8, rc}+1 in [15] (see Remark 4.3). The

value Dreg is decided by the power series (5) if a KS system is semi-regular.

r c Dmgd dslv dff DKS Dbi Dreg

5 3 7 6 5 5 9 13

4 4 6 4 4 4 9 8

3 6 4 4 4 9 8

2 6 6 4 4 9 17

3 5 5 4 4 4 9 6

4 5 4 4 4 9 6

3 5 4 4 4 9 6

2 5 4 4 4 7 7

r c Dmgd dslv dff DKS Dbi Dreg

2 6 4 3 3 3 9 4

5 4 3 3 3 9 4

4 4 3 3 3 9 5

3 4 3 3 3 7 5

2 4 3 3 3 5 5

Table 4: The hybrid approach on underdetermined KS systems with c = 1, 2

from random instances of MR(13, 8, 8, 5). Two positive integers k0 and ki are

the number of variables fixed in x and yi, respectively. The experimental values

dslv and dff are the solving degree and the first fall degree in the F4 algorithm.

The theoretical value Dmgd is deduced by the power series (12). The value

Dreg is decided by the power series (5) at n = 21 −
∑

i ki if a KS system is

semi-regular after fixing
∑

i ki variables.

c (k0, k1, k2) Dmgd dslv dff Dreg

2 (0,2,0) 6 6 5 17

(0,1,1) 6 6 4 17

(1,1,0) 6 6 5 17

(2,0,0) 6 5 5 17

(0,3,0) 4 5 4 9

(0,2,1) 5 5 4 9

(1,2,0) 5 5 5 9

(1,1,1) 6 5 4 9

(2,1,0) 5 5 5 9

(3,0,0) 5 5 4 9

c (k0, k1) Dmgd dslv dff Dreg

1 (1,4) 2 3 2 9

(2,3) 3 4 3 9

(3,2) 4 4 4 9

(4,1) 5 5 5 9

(5,0) 4 4 4 9

(2,4) 2 2 2 5

(3,3) 3 3 3 5

(4,2) 3 3 3 5

(5,1) 3 3 3 5

(6,0) 3 3 3 5

Remark 4.3. The paper [14] mentions that a KS system has a multi-degree,

but this property uses as a bi-degree in [15]. Then the solving degree is bounded

by the minimum number of each variable set plus one, i.e. min{m, rc} + 1 for

parameters n,m and r of Minrank problem. Although this bound is far from the

solving degree in Table 4, not for an instance from the MinRank attack against

Rainbow. In fact, in Table 6 for a scaled-down Rainbow parameter set III/V,

we have min{m, rc}+ 1 = min{o, (3o− 4)c}+ 1 = o+ 1 > o = dslv at the best

c = 2.
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4.3 Experiments on instances from Rainbow

By using Dmgd introduced in Subsection 4.1, the complexity of the MinRank

attack using the KS method against Rainbow with parameter set (q, v, o1, o2) is

given by

CHybF4(Dmgd) = min
(k0,k1,...,kc)

qk · o1 ·
(
c(v + o1) + o2 − k +Dmdg

Dmdg

)ω

, (13)

where k =
∑c

i=0 ki, 2 < ω ≤ 3 is a linear algebra constant and Dmdg is

the minimum total degree of the terms whose coefficient is negative in the

multivariable series (12) at n = v + o1 + o2 and r = v + o1. Then, since

dm/(n − r)e = doi/(v + 2oi − (v + oi))e = 1, a KS system is always overdeter-

mined (see Subsection 3.1).

For scaled-down Rainbow Ia instances, our experiments show that the case

(k0, k1) = (oi−1, 0) gives the best complexity and CHybF4(dslv ) = CHybF4(Dmdg).

In particular, the case avoids the complicated case (k0, k1) = (0, 0) at c = 1 men-

tioned in Subsection 3.3 (see Table 2). For any (k0, 0) with k0 � 0, Table 5

shows that dslv = Dmgd holds always.

Table 5: The hybrid approach with (k0, 0) on a KS system for an instance from

Rainbow in MR(16, 3o, o, 2o) where bo/2c ≤ k0 ≤ o − 1. The theoretical value

Dmgd is deduced by the power series (12). The experimental value dslv is the

solving degree in the F4 algorithm. The positive integer k0 is the number of

variables fixed in x.

o 7 8 9 10

k0 3 4 5 6 4 5 6 7 4 5 6 7 8 5 6 7 8 9

Dmgd 5 4 3 2 5 4 3 2 5 4 4 3 2 5 4 4 3 2

dslv 5 4 3 2 5 4 3 2 5 4 4 3 2 5 4 4 3 2

For scaled-down Rainbow IIIc/Vc instances, our experiments show that the

best complexity CHybF4(dslv ) is given by (k0, k1, k2) = (0, 0, 0) at c = 2, and

namely does not fix a variable in the KS system. In this case, our experiments

always show that dslv = Dmgd holds (see Table 6). However, by the same reason

as Subsection 3.3, note that CHybF4(dslv ) > CHybF4(Dmdg) if we consider the

complicated case (k0, k1) = (0, 0). Thus, in this case, we need to use the formula

(13) with (k1, . . . , kc) 6= (0, 0) and then have CHybF4(dslv ) = CHybF4(Dmdg).

Since dm/(n − r)e = 1, Verbel et al.’s limitation on c is c ≥ dKS + 1 (see

Subsection 3.1). The cases o = 4 and 5 in Table 6 show that the complexity at

c = 2 is better than that at c = dKS+1 = 3 as the minimum in their limitation.

Since the best complexity for Rainbow takes c = 1, 2, it is worth introducing

our Dmgd being available for a smaller c than dKS + 1.
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Table 6: Experiments on a KS system with (k0, k1, . . . , kc) = (0, 0, . . . , 0) for

an instance from Rainbow in MR(256, 4o− 4, o, 3o− 4). The theoretical values

Dmgd and DKS are deduced by the power series (12) and the formula (7). The

experimental value dslv is the solving degree in the F4 algorithm, and the value

CF4 = CHybF4(dslv ) is deduced by the formula (13). The case c = 1, i.e.

(k0, k1) = (0, 0), is a complicated mentioned in Subsection 3.3.

o = 3 CF4

c Dmgd DKS dslv (bits)

1 4 3 6 28

2 3 3 3 22

3 3 3 3 25

o = 4 CF4

c Dmgd DKS dslv (bits)

1 5 4 9 44

2 4 4 4 33

3 4 4 4 37

4 4 4 4 40

o = 5 CF4

c Dmgd DKS dslv (bits)

1 6 4 13 63

2 5 4 5 43

3 5 4 5 48

4 5 4 4 44

5 5 4 4 47

5 Complexity estimation

In this section, by using the observation in Subsection 4.3, we gives the complex-

ity estimation for the MinRank attack using the KS method against Rainbow

parameter set Ia, IIIc and Vc proposed in NIST PQC standardization project.

Table 7 shows the known security analysis of the proposed Rainbow param-

eter set where, due to the NIST specification, the number of gates satisfies

γ := ♯ gates/♯ field multiplications = (2 · log2(q)2 + log2(q)).

Table 7: Complexities (log2(♯classical gates)) of known attacks against Rainbow

(from tables of Section 7.2 in [10])

parameter set (q, v, o1, o2) direct Minrank HighRank UOV RBS

Ia (16, 32, 32, 32) 164.5 161.3 150.3 149.2 145.0

IIIc (256, 68, 36, 36) 215.2 585.1 313.9 563.8 217.4

Vc (256, 92, 48, 48) 275.4 778.8 411.2 747.4 278.6

Assume that Dmgd introduced in Section 4 bounds the solving degree dslv
except for the complicated case (k0, k1) = (0, 0) (see Subsection 3.1). Then

the complexity of the KS modeling of MinRank attack against Rainbow with

parameters q, v, o1 and o2 is given by

min
(k0,k1,...,kc) ̸=(0,0)

qk · o1 ·
(
c(v + o1) + o2 − k +Dmdg

Dmdg

)ω

,
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where k =
∑c

i=1 ki, 2 < ω ≤ 3 is a linear algebra constant and Dmdg is the min-

imum total degree of the terms whose coefficient is negative in the multivariable

series (12), i.e. ∏c
i=1(1− t0ti)

v+o1

(1− t0)o2−k0(1− t1)v+o1−k1 · · · (1− tc)v+o1−kc
.

The complexity at (k0, k1) = (31, 0) for Rainbow parameter set Ia has Dmdg = 2

and γ = 36 and is

1631 · 32 ·
(
64 + 32− 31 + 2

2

)2.376

· 36 ≲ 2160.6.

Here we took ω = 2.376 as a linear algebra constant. Moreover, the complexity

at (k0, k1, k2) = (0, 0, 0) for Rainbow parameter set IIIc has Dmdg = 30 and

γ = 136 and is

36 ·
(
2 · 72 + 36 + 30

30

)2.376

· 136 ≲ 2327.9.

The complexity for Rainbow parameter set Vc has Dmgd = 40 and is

48 ·
(
2 · 96 + 48 + 40

40

)2.376

· 136 ≲ 2437.0.

Hence our Dmgd shows that the MinRank attack using the KS method is the

best among MinRank attacks investigated in Table 7. Furthermore, we confirm

that, for (k0, k1) = (oi − 1, 0) at c = 1 and (k0, k1, k2) = (0, 0, 0) at c = 2, the

y-XL algorithm terminates within the solving degree dslv of the F4 algorithm.

Then, due to the smallness of the parameter c, the complexities of the attack

using the y-XL algorithm for Rainbow parameter sets Ia, IIIc and Vc above are

slightly improved as 2160.5, 2324.8 and 2430.0, respectively, where

min
(k0,k1,...,kc )̸=(0,0)

qk · o1 ·
(
(o2 − k) ·

(
c(v + o1) +Dmdg

Dmdg

))ω

.

By Verbel et al.’s estimation using DKS , the complexities of the attack at c =

max{dm/(n− r)e, dKS + 1} and (k0, . . . , kc) = (0, . . . , 0) for the parameter sets

Ia, IIIc and Vc are 2329.2, 2457.9 and 2624.9, respectively.

In the third round for NIST PQC standardization project, the Rainbow pa-

rameter sets I, III and V are planed as (q, v, o1, o2) = (16, 36, 32, 32), (256, 68, 32, 48)

and (256, 96, 36, 64). For scaled-down models for I, the best case is given by

(k0, k1) = (oi − 1, 0). For scaled-down models for III/V, the best case is given

by (k0, k1, k2) = (0, 0, 0) or (k0, k1) = (1, 0). Our experiments show Dmgd = dslv
in each cases and, for larger instances of parameter sets III/V, the value Dmgd

at (k0, k1, k2) = (0, 0, 0) is better than at (k0, k1) = (1, 0). Then these complex-

ities of the MinRank attack using the KS method against the parameter sets

I, III and V are 2161.0, 2373.1 and 2469.7, respectively. Namely, we can confirm

that Rainbow in this case is also secure from the attack.
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6 Conclusion

In this paper, we investigated a KS systems that is a quadratic system solved

in the Kipnis-Shamir (KS) method for Minrank problem and, in particular, it

from the MinRank attack using the KS method against Rainbow. The previous

estimation by Verbel et al. gave a precise analysis for non-trivial syzygies on

some KS systems, but is not an analysis for each KS system. Actually, our

experiments on a Minrank instance from Rainbow showed a case that a certain

KS system which has not been not estimated by them is better.

In order to estimate the complexity of solving each KS system, we intro-

duced theoretical value Dmgd using such a multi-degree as a KS system has,

and saw that this is available for each KS system and that deduced through

the hybrid approach. We showed that Dmgd approximates the solving degree

of a KS system and, in particular, coincides with the solving degree deducing

the best complexity of the MinRank attack using the KS method against Rain-

bow. Consequently, by using our estimation, the complexities of the MinRank

attack using the KS method against Rainbow parameter sets Ia, IIIc and Vc are

improved as 2160.6, 2327.9 and 2437.0, respectively which are the best among Min-

Rank attacks investigated in NIST PQC 1st round. Moreover, for the planed

parameter sets I, III and V in NIST PQC 3rd round, the complexities of the

attack are 2161.0, 2373.1 and 2469.7, respectively, and we was able to confirm that

Rainbow is secure from the attack.

In this paper, in order to estimate the complexity of several KS systems,

we used the F4 algorithm and showed that solving very small KS systems are

better for Rainbow. Then, we can expect that the y-XL algorithm is better

than the F4 algorithm and that using the known complexity estimation of the

Wiedemann XL algorithm improves the complexity of the method. However,

since a Macaulay matrix from a KS system has a large kernel space, we need to

decide the complexity of the Wiedemann algorithm up to obtaining a solution

of a KS system as future work.
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