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Abstract. Differential cryptanalysis is an important technique to eval-
uate the security of block ciphers. There exists several generalisations of
differential cryptanalysis and it is also used in combination with other
cryptanalysis techniques to improve the attack complexity. In 2019, use-
fulness of machine learning in differential cryptanalysis is introduced by
Gohr to attack the lightweight block cipher SPECK. In this paper, we
present a framework to extend the classical differential distinguisher us-
ing machine learning (ML) based differential distinguisher. We propose
a novel technique to construct differential-ML distinguisher for Feistel,
SPN and ARX structure based block ciphers. We demonstrate our tech-
nique on lightweight block ciphers SPECK, SIMON & GIFT64 and con-
struct differential-ML distinguishers for these ciphers. Data complexity
for 9-round SPECK, 12-round SIMON & 8-round GIFT64 is reduced
from 231 to 221, 234 to 222 and 228 to 222 respectively. The 12-round
differential-ML distinguisher for SIMON is first distinguisher with data
complexity less than 232.
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1 Introduction

Cryptanalysis of block ciphers witnessed remarkable progress after the proposal
of differential attack on DES by Biham and Shamir [7] in 1990. Differential attack
is the most basic and widely used cryptanalysis approach against block ciphers.
This attack is generalised and combined with other cryptanalysis techniques to
reduce the attack complexity. High probability differential characteristics are the
first and foremost requirement for differential cryptanalysis to succeed. Matsui
proposed a method to search the high probability differential characteristics
based on branch-and-bound technique [14] in 1994. For large block sizes, classical
approaches are not sufficient to provide the useful differential characteristics.
In 2011, Mouha et al. proposed a new technique using mixed integer linear
programming (MILP) to search the differential characteristics [15]. MILP based
search method constructs the differential characteristics with better efficiency
than branch-and-bound based methods.
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Since, block ciphers are designed to thwart differential attack using wide trail
design strategy [9] and Shannon’s principles [12]. Therefore, existing trail search
methods encounter a bottleneck for required data quickly and fail to provide the
trails covering the required number of rounds. In practice, we need a differential
characteristic with probability greater than 2−n to distinguish r rounds of an
n-bit block cipher from random permutations. Whenever, the probability of an
r-round characteristic becomes less than 2−n, this is not useful for differential
attack on r or more rounds of a block cipher. A differential characteristic is useful
until it requires less data than available limit i.e. 2n pairs. Therefore, the aim of
this paper is to find a technique which can be used to extend the classical differ-
ential characteristics without increasing the data complexity. Machine learning
based differential cryptanalysis approach works as a pretty good solution to this
problem.

In this paper, we combine the classical and machine learning techniques to
design a ML based generic extension for any classical differential distinguisher.
This provides the better results with a greater number of rounds and much
lesser data complexity. We extend r-round high probability classical differential
distinguisher (DCD

1···r) with s-round high accuracy ML based differential distin-
guisher (DML

r+1···r+s) and combined distinguisher (DCD→ML
1..r+s ) is used to distin-

guish (r + s) rounds of a block cipher with much lesser data complexity. With
this extension, the hybrid distinguisher outperforms both classical and ML based
distinguisher. We call this hybrid distinguisher a differential-ML distinguisher.
We experiment with three different types of lightweight block ciphers SPECK,
SIMON & GIFT64 and acquire the results with very high accuracy.

The remaining paper is organised as follows. Section 2 discusses previous work
related to ML based distinguisher. In Section 3, we provide the short description
of lightweight block ciphers SIMON, SPECK and GIFT64. We discuss classical
differential distinguisher and machine learning based differential distinguisher
in section 4 and describe the existing work on differential distinguisher using
machine learning in this section. In section 5, we propose our novel technique
which combines the classical differential and ML based differential approaches.
We demonstrate our technique on SPECK, SIMON and GIFT64 block ciphers
with high success rate and present the results of differential-ML distinguisher
in section 6. Key recovery mechanism using differential-ML distinguisher is de-
scribed in section 7 and paper is concluded in section 8.

Conventions: Throughout this paper, we refer differential distinguisher with
single input and output difference as a classical differential distinguisher DCD.

2 Previous Work

Machine learning techniques are very helpful for big data analytics and it is
used to determine minute relations in the data. In cryptology, identification of
minute relations in the data plays an important role because these relations
define the security strength of the cipher. In cryptanalysis domain, machine



Differential-ML Distinguisher 3

learning techniques for differential cryptanalysis are explored very recently and
results are very promising.

Gohr[10] proposed the idea of learning differences for key recovery using ma-
chine learning. He presented a framework to construct the ML based differential
distinguisher and used it for key recovery attack on SPECK32. Gohr compared
this technique with classical differential attack and shown that data complex-
ity for key recovery attack using ML distinguisher is less. Baksi et al.[2] used
the same approach to design ML distinguisher for GIMLI cipher and GIMLI
hash[5]. Different ML architectures are compared in this work and claimed that
ML distinguisher outperforms classical differential distinguisher. In comparison
to Gohr’s work[10], key recovery attacks are not demonstrated on GIMLI. In
these previous work, ML based distinguishers have limitations on computation
power, memory and data complexity. Due to these constraints, distinguisher
cannot be extended beyond certain number of rounds and it becomes a major
hindrance especially for cipher with block size greater than 32.

3 Block Ciphers: SPECK, SIMON and GIFT64

SPECK and SIMON are two families of block ciphers published by NSA[4] in
2013. These block ciphers are designed to provide high performance across a
range of devices. There are 10 versions of each cipher based on the block and
key size combinations which makes them suitable for wide range of applications.
We discuss the encryption algorithm for 32-bit block size and 64-bit key variants
of each block cipher. We omit the key expansion algorithm and NSA paper [4]
can be refereed for more details.

GIFT is designed by improving the bit permutation of lightweight block
cipher PRESENT to reach the limit of lightweight encryption in hardware en-
vironments. Based on the input plaintext block size, there are two versions of
GIFT namely GIFT64 and GIFT128. In each version, 128-bit key is used for en-
crypting the input plaintext. A brief description of SPECK, SIMON and GIFT64
block ciphers is provided in the following subsection.

3.1 Description of SPECK

SPECK32/64 is a block cipher with 32-bit block size and 64-bit key size. There
are 22 rounds in SPECK32/64 block cipher. It is based on Feistel network and
can be represented by composition of two Feistel maps. Encryption algorithm
divides 32-bit input into two 16-bit words (X2i+1, X2i) and key expansion al-
gorithm extract 16-bit round subkeys (RKi) for each round. Round function
comprises of addition modulo 216, bitwise XOR, left and right circular shift op-
erations as described in Algorithm 1.
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Algorithm 1: Encryption Algorithm of SPECK

1 Input: P = (X1||X0) and RKi

2 Output: C = (X45||X44)
3 for i=1 to 22 do
4 X2i = (X2i−1 ≫ 7 +X2i−2)⊕RKi−1
5 X2i+1 = (X2i−2 ≪ 2⊕X2i)

6 end

3.2 Description of SIMON

SIMON32/64 is a block cipher with 32-bit plaintext block and 64-bit secret mas-
ter key. There are 32 rounds in SIMON32/64 block cipher and it is also based on
Feistel network. Encryption algorithm divides the 32-bit input into two 16-bit
words (Xi+1, Xi). Key expansion algorithm expands the 64-bit master key to
provide 16-bit round subkeys (RKi) for each round. It applies a round function
consisting bitwise XOR, bitwise AND, and left circular shift operations on left
16-bit words in each round as described in Algorithm 2.

Algorithm 2: Encryption Algorithm of SIMON

1 Input: P = (X1||X0) and RKi

2 Output: C = (X33||X32)
3 for i=1 to 32 do
4 Xi+1 = (Xi ≪ 1&Xi ≪ 8)⊕ (Xi ≪ 2)⊕Xi−1 ⊕RKi−1
5 end

3.3 Description of GIFT64

GIFT64 encrypts 64-bit plaintext block using 128-bit key and generates 64-bit
ciphertext block [3]. There are total 28 rounds in GIFT64. In each round, S-
box, bit permutation, round subkeys and constant additions are applied using
a round function. Key expansion algorithm extracts 32-bit subkeys(rki) from
128-bit key. Encryption algorithm is described using 4-bit S-box S (table 1), bit
permutation P64 (table 2), 6-bit round constants rC (table 3)and 32-bit round
subkeys rki (Algorithm 3).
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Algorithm 3: Encryption Algorithm of GIFT64

1 Input: X0 = (x63, x62, · · · , x0) and rki = (ui, vi)
2 Output: X28

3 for i=1 to 28 do
4 for j=0 to 15 do
5 S(x3+4∗j , x2+4∗j , x1+4∗j , x0+4∗j) = (y3+4∗j , y2+4∗j , y1+4∗j , y0+4∗j)
6 end
7 (y63, y62, · · · , y0) = P64(y63, y62, · · · , y0)
8 for k=0 to 5 do
9 y3∗(k+1)+k = ci ⊕ y3∗(k+1)+k

10 end
11 for l=0 to 15 do
12 y4i+1 = y4i+1 ⊕ ui
13 y4i = y4i ⊕ vi
14 end
15 Xi+1 = (y63, y62, · · · , y0)⊕ (1 << 63)

16 end

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) 1 a 4 c 6 f 3 9 2 d b 7 5 0 8 e

Table 1: S-Box

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P64(i) 0 17 34 51 48 1 18 35 32 49 2 19 16 33 50 3
i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P64(i) 4 21 38 55 52 5 22 39 36 53 6 23 20 37 54 7
i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P64(i) 8 25 42 59 56 9 26 43 40 57 10 27 24 41 58 11
i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P64(i) 12 29 46 63 60 13 30 47 44 61 14 31 28 45 62 15

Table 2: Bit Permutation

Round Constants: In each round, 6-bit round constant c given in table 3 is
used, where c0 refers to the least significant bit . For subsequent rounds, it is
updated as follows:

(c5, c4, c3, c2, c1, c0)← (c4, c3, c2, c1, c0, c5 ⊕ c4 ⊕ 1)
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Rounds Constants (c)

1 - 14 01 03 07 0F 1F 3E 3D 3B 37 2F 1E 3C 39 33
15 - 28 1D 3A 35 2B 16 2C 18 30 21 02 05 0B 27 0E

Table 3: Round Constants

4 Differential Cryptanalysis

Differential attack is one of the most important analysis tool for cryptanaly-
sis of block ciphers. This is the first attack of its own kind which reduced the
complexity of DES better than exhaustive search [16]. Differential cryptanalysis
created a path for several new cryptanalysis techniques like linear, impossible,
algebraic etc [8]. While designing an ideal block cipher, its output is tested for
indistinguishability form random permutations. Although, there do not exists
relationship between the single input and output occurrence of a block cipher,
there may exist non-random relations in the input and output differences. The
basic approach of differential attack is to study the propagation of input dif-
ferences and exploitation of non-random relations between input and output
differences. The classical differential attack works with a single differential char-
acteristic providing the high probability relation between an input and output
difference.

4.1 Classical Differential Distinguisher

A high probability differential characteristic is used for key recovery attack by
adding some rounds on top/bottom of the trail. There exists several automated
techniques to search the optimal differential characteristics for block ciphers[11].
We extend the existing differential characteristics for 6-round SPECK, 7-round
SIMON by ML based differential distinguisher. In this paper, we do not search
for new differential characteristics for SIMON & SPECK but we use some part
of existing differential characteristics published in [1] and [6]. For GIFT64, we
construct high probability differential characteristics for 4 rounds using branch-
and-bound search algorithm [13].

4.1.1 Differential Characteristics for SPECK Abed et al. [1] presented
the 9-round differential characteristics for Speck32/64 variant with probability
of 2−31. From the 9-round characteristic presented in table 4, we use 6-round
differential characteristic(∆1 → ∆7) with probability of 2−13 for our experiment.
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Round Input Difference Prob.(2−pi)
Index (4Xi+1,4Xi) (pi)

∆0 0A60 4205 0
∆1 0211 0A04 5
∆2 2800 0010 9
∆3 0040 0001 11
∆4 8000 8000 11
∆5 8100 8102 12
∆6 8000 840A 14
∆7 850A 9520 18
∆8 802A D4A8 24
∆9 81A8 D30B 31

Table 4: Differential Characteristic of SPECK [1]

4.1.2 Differential Characteristics for SIMON Biryukov et al. [6] pre-
sented the 12-round differential characteristics for Simon32/64 variant with prob-
ability of 2−34. From the 12-round characteristic presented in table 5, we use
7-round differential characteristic(∆0 → ∆7) with probability of 2−16 for our
experiment .

Round Input Difference Prob.(2−pi)
Index (4X2i+1,4X2i) (pi)

∆0 0400 1900 0
∆1 0100 0400 2
∆2 0000 0100 4
∆3 0100 0000 4
∆4 0400 0100 6
∆5 1100 0400 8
∆6 4200 1100 12
∆7 1D01 4200 16
∆8 0500 1D01 24
∆9 0100 0500 27
∆10 0100 0100 29
∆11 0500 0100 31
∆12 1500 0500 34

Table 5: Differential Characteristic of SIMON [6]

4.1.3 Differential Characteristics for GIFT64 We construct the 4-round
optimal differential characteristic with high probability using branch-and-bound
search algorithm [13]. We use 4-round differential characteristic with probability
of 2−12 to construct the differential-ML distinguisher for GIFT64 (Table 6).
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Round Input Difference Prob.(2−pi)
Index (4Xi) (pi)

∆0 0000 0000 0000 000A 0
∆1 0000 0000 0000 0001 2
∆2 0008 0000 0000 0000 5
∆3 0000 0000 2000 1000 7
∆4 0044 0000 0011 0000 12

Table 6: Differential Characteristic of GIFT64

4.2 ML Based Differential Distinguisher

For a chosen input difference, we use neural distinguisher design proposed by
Gohr [10]. We also consider the improvements in this design suggested by Baksi
et al. [2]. We use dense layers of MLPs (Multi Layers Perceptrons) instead of
convolution networks and train the ML distinguisher on ciphertext differences
rather than ciphertext pairs. These improvements make learning faster and effi-
cient than Gohr’s approach. Further, we use the same encryption key to generate
the required training data because differential distinguisher is key independent.
Therefore, we do not need to change the key for every encryption.

ML

Based

Distinguisher

Training Data: 225 pairs

(∆r+s, b)

Trained for input difference ∆r

if ∆r 6→ ∆r+s : b = 0

if ∆r → ∆r+s : b = 1

Fig. 1: Training Phase for ML Based Distinguisher

We train this ML distinguisher using the real and random differences ap-
proach proposed by Gohr. In this approach, half of the cipher text data belongs
to the chosen plaintext difference and the other half belongs to the random plain-
text differences. We label each ciphertext difference either with 1 if it belongs to
the chosen input difference and label it with 0 if it does not belong to the chosen
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ML
Based

Distinguisher

Input Data

(∆r+s)

Output: (p, b)
(b = 0 if p ≤ .51 )
(b = 1 if p > .51 )

b = 0⇒ ∆r 6→ ∆r+s

b = 1⇒ ∆r → ∆r+s

Fig. 2: Prediction using ML Based Distinguisher

input difference. We provide this data to the MLP based model and train the
model with 2 hidden layers having 1024 neurons each.

We assume that targeted system is accessible and there is no constraint on the
training data required for learning the system. Therefore, we use 225 ciphertext
pairs for training phase. Out of these 225 pairs, 224 belongs to chosen plaintext
difference and 224 belongs to random plaintext differences as shown in Fig. 1. As
described by Gohr, this approach works pretty well because not only specificity
but also sensitivity is learned. Specificity and sensitivity are the learning of
relations whether a ciphertext belongs to the chosen input difference or not
respectively. We train the model till the accuracy is saturated. This accuracy is
the combination of accuracy of specificity and sensitivity. A model with accuracy
greater than 0.51 (on the scale of 0 to 1) is considered as a distinguisher. After
training phase, ML distinguisher will be able to distinguish any given ciphertext
with a probability (p) of belonging to given plaintext difference. We will label
the ciphertext as 0 if p is less than 0.51 and as 1 if p is greater than 0.51 as shown
in Fig. 2. A distinguisher with higher accuracy will result in better predictions.

5 Differential-ML Distinguisher: an Extension for
Classical Differential Distinguisher

Gohr’s distinguisher lacks extendability because ML based distinguisher can only
be designed if data requirement is computationally feasible. We propose a new
approach to work with ML based distinguishers to overcome this constraint to a
large extent. In our approach, we use ML based distinguisher in combination with
classical differential distinguisher. ML distinguisher works as an extension to a
classical distinguisher. We use an r-round classical differential characteristic and
its output difference ∆r is considered as an input difference for ML distinguisher.
ML distinguisher is trained on this input difference (∆r) instead of plaintext
difference (∆0). This new distinguisher reduces data complexity to a large extent
with high accuracy.

To extend the r-round classical differential distinguisher, we consider the
output difference ∆r of the r-round classical differential characteristic and use
∆r to train s-round distinguisher DML

r+1···r+s. For training, half of the input data
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belongs to input difference ∆r and half of the data belongs to random input
differences. The ML based distinguisher is modelled with an accuracy αi and we
denote accuracy of s-round ML distinguisher as αs. The accuracy α defines the
strength of the distinguisher and better accuracy gives better predictions. Now,
this distinguisher DML

r+1···r+s can distinguish any (r + s)-round ciphertext with
high probability.

Classcial

Distinguisher 1

Plaintext Difference: ∆0

Round 1
Round 2

Round r − 1
Round r

(∆1, 2
−p1)

(∆2, 2
−p2)

(∆r−1, 2
−pr−1)

(∆r, 2
−pr )

ML Based

Distinguisher2

Round r + 1
Round r + 2

Round r + s− 1
Round r + s

(Trained for ∆r)

Differential-ML

Distinguisher3

Accuracy: αs

Round 1
Round 2

Round r + s− 1
Round r + s

(Trained for ∆r)

Data Requirement:

2pr+δ

Accuracy: αr+s

Fig. 3: Differential-ML Distinguisher: A Generic Extension

For r-round classical differential characteristic, output difference ∆r with
probability of 2−pr requires 2pr data to get at least one occurrence of differ-
ence ∆r. If we provide 2pr ciphertext pairs after (r + s) rounds of encryption
to DML

r+1···r+s then we expect DML
r+1···r+s to predict at least one occurrence of

difference ∆r. Although ML distinguisher works on multiple output differences,
we expect it to learn the pattern of differences which are more frequent and
suggested by the classical differential characteristic. Therefore, 2pr or more data
is required for s-round distinguisher (DML

r+1···r+s) to work as an (r + s)-round

1 Classical Distinguisher: DCD
1···r

2 ML Based Distinguisher: DML
r+1···r+s

3 Differential-ML Distinguisher: DCD→ML
1..r+s
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distinguisher (DCD→ML
1..r+s ). Differential-ML distinguisher (DCD→ML

1..r+s ) is a proba-
bilistic distinguisher and we need to provide more data based on accuracy αs for
better prediction. Therefore, data complexity of DCD→ML

1..r+s will be 2pr+δ, where
δ defines the additional data required to make predictions with higher accuracy
(Fig. 3).

In our experiments, we observe that DCD→ML
1..r+s predicts ciphertexts belonging

to the chosen plaintext difference ∆0 with very high probability than random
plaintext differences using 2pr+δ data. We use this observation to increase the
accuracy αr+s by filtering higher probability predictions. We can always find
a high probability threshold T and a cutoff CT on the number of predictions
with probability greater than T . With threshold T and cutoff CT , we are able
to achieve a very high success rate to distinguish (r + s) rounds cipertexts.
Experimental results in the next section show that data complexity for (r + s)
rounds using differential-ML distinguisher is far less than the classical differential
distinguisher.

6 Experimental Results

We construct differential-ML distinguisher for 32-bit variants of two light weight
block ciphers SPECK and SIMON and 64-bit variant of GIFT. We extend the
classical differential distinguisher discussed in section 4 using ML distinguisher
in each case. Using this novel technique, we have constructed the Differential-ML
distinguisher for 9-round SPECK, 12-round SIMON and 8-round GIFT64 with
very less data complexity than classical distinguisher.

6.1 Differential-ML distinguisher for SPECK

For SPECK32/64, we use the classical differential characteristic for initial 6
rounds (∆1 → ∆7) as described in the table 4. We have an output difference
0x850A9520 (∆7) after 6 rounds with probability of 2−13. We train ML distin-
guisher using ∆7 as input difference for next 3 rounds.

6.1.1 Data Requirement

1. Training: Training data can be as large as possible because it does not
contribute to the data complexity of the distinguisher. We have used 225 ci-
phertext pairs for the training phase. Batch accuracy and loss during training
phase are depicted in Fig. 4.

2. Prediction: Data used in predictions contributes to the data complexity of
the distinguisher and it must be as small as possible. Differential probability
for 6-round classical differential characteristic is 2−13, therefore we require at
least 213 data to get predictions for entire 9 rounds. To get higher accuracy,
we require additional 29(δ) data which increases the data complexity to 221

for distinguishing 9-round SPECK.



12 Tarun Yadav and Manoj Kumar

(a) Batch Accuracy vs Steps

(b) Batch Loss vs Steps

Fig. 4: SPECK Training Phase

6.1.2 Accuracy of Differential-ML Distinguisher (αr+s): The 3-round
ML distinguisher is trained with validation accuracy (αs) of 0.79. As described
in section 5, it is used to extend 6-round classical distinguisher. The accuracy
(αr+s) of differential-ML distinguisher for different experiments is mentioned in
the table 7.

In the experiments, 50 samples belong to the plaintext difference∆0(=0x0A60
4205) of classical distinguisher and 50 samples belongs to random input differ-
ences. We use 221 data and get 98% or more accuracy for each experiment.
Therefore, data complexity of 9-round differential-ML distinguisher for SPECK
is 221. However, data complexity of 9-round classical differential distinguisher
is 231 as mentioned in table 4. The best known differential characteristics for
speck exists for 9-rounds with data complexity 230[6]. This shows that using
differential-ML distinguisher we have a better 9-round distinguisher with data
complexity far less than existing classical differential distinguisher.
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Experiment Sample Size Correctly Distinguished
No. (True Positive, True Negative)

1 100 98(49,49)
2 100 100(50,50)
3 100 98(50,48)
4 100 99(50,49)
5 100 99(50,49)

*Each sample consists of 221 pairs which are divided into 4 batches of 219 pairs.We
label a sample correctly distinguished if more than 2 batches have prediction either
greater than CT (= 33900) for correct input difference or less than CT for incorrect
input difference.

Table 7: Accuracy for SPECK with T = 0.80 & CT = 33900

6.2 Differential-ML distinguisher for SIMON

For SIMON32/64, we use the classical differential characteristic for initial 7
rounds as described in the table 5. We have an output difference 0x1D014200
(∆7) after 7 rounds with probability of 2−16. We use ∆7 as input difference for
training phase of 5-round ML distinguisher.

6.2.1 Data Requirement

1. Training: Training data requirements are similar to the case of SPECK. We
use 225 plaintext pairs for training the 5-round ML distinguisher. Saturation
of batch accuracy and loss during training phase is shown in Fig. 5.

2. Prediction: Similar to SPECK, we must reduce the data requirement for
predictions. Differential probability for 7-round classical differential charac-
teristic is 2−16, therefore we require at least 216 data to distinguish 12-round
SIMON. To increase the accuracy, 26 additional data (δ) is required. Due
to this additional data, data complexity to distinguish 12-round SIMON is
increased to 222.

6.2.2 Accuracy of Differential-ML Distinguisher (αr+s) : The 5-round
ML distinguisher is trained with validation accuracy of 0.57. It is used to extend
7-round classical differential distinguisher. The accuracy of 12-round differential-
ML distinguisher for different experiments is mentioned in the table 8.

Similar to SPECK, 50 samples belong to the initial input difference ∆0

(=0x04001900) of classical distinguisher and 50 samples belongs to random input
differences. We use 222 data to achieve accuracy greater than 95% for each ex-
periment. Therefore, data complexity of 12-round differential-ML distinguisher
is 222, while data complexity for 12-round classical differential distinguisher is
234 (Table 5). In this case, we present 12-round distinguisher for the first time
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(a) Batch Accuracy vs Steps

(b) Batch Loss vs Steps

Fig. 5: SIMON Training Phase

Experiment Sample Size Correctly Distinguished
No. (True Positive, True Negative)

1 100 97(48,49)
2 100 98(50,48)
3 100 97(48,49)
4 100 95(46,49)
5 100 96(46,50)

*Each sample consists of 222 pairs which are divided into 4 batches of 220 pairs.We
label a sample correctly distinguished if more than 2 batches have prediction either
greater than CT (= 99300) for correct input difference or less than CT for incorrect
input difference.

Table 8: Accuracy for SIMON with T = 0.60 & CT = 99300

with data complexity less than 232. This shows that differential-ML distinguisher



Differential-ML Distinguisher 15

provides much better results than classical differential distinguisher in case of
SIMON also.

6.3 Differential-ML distinguisher for GIFT64

For GIFT64, we searched an optimal differential characteristic for initial 4 rounds
as described in the table 6. We have an output difference 0x0044000000110000
(∆4) after 4 rounds with probability of 2−12 and use ∆4 as input difference to
train 4-round ML distinguisher.

6.3.1 Data Requirement

1. Training: Training data requirements are similar to previous cases. We use
225 plaintext pairs for training the 4-round ML distinguisher. Batch accu-
racy and loss graphs for training phase are shown in Fig. 6.

2. Prediction: For GIFT64 also, we must reduce the data requirement for
prediction phase. Differential probability for 4-round classical differential
characteristic is 2−12, therefore we require at least 212 data to distinguish
8-round GIFT64. To increase the accuracy, we add 210 additional data (δ).
Due to this additional data, data complexity of 8-round differential-ML dis-
tinguisher is increased to 222.

6.3.2 Accuracy of Differential-ML Distinguisher (αr+s) : The 4-round
ML distinguisher is trained with validation accuracy of 0.65. It is used to extend
4-round classical differential distinguisher. The accuracy of 8-round differential-
ML distinguisher for different experiments is mentioned in the table 9.

Experiment Sample Size Correctly Distinguished
No. (True Positive, True Negative)

1 100 99(50,49)
2 100 100(50,50)
3 100 99(49,50)
4 100 100(50,50)
5 100 100(50,50)

*Each sample consists of 222 pairs which are divided into 4 batches of 220 pairs.We
label a sample correctly distinguished if more than 2 batches have prediction either
greater than CT (= 235) for correct input difference or less than CT for incorrect input
difference.

Table 9: Accuracy for GIFT with T = 0.977 & CT = 235

Similar to SPECK and SIMON cases, 50 samples belong to the initial input
difference ∆0 (=0x000000000000000A) of classical distinguisher and 50 samples
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(a) Batch Accuracy vs Steps

(b) Batch Loss vs Steps

Fig. 6: GIFT Training Phase

belongs to random input differences. We use 222 data to achieve accuracy greater
than 99% for each experiment. Therefore, data complexity of 8-round differential-
ML distinguisher is 222, while data complexity for 8-round classical differential
distinguisher is 228[15].

6.4 Comparison with Classical Distinguishers

We have constructed differential-ML distinguishers for three different types of
block ciphers(Feistel, SPN & ARX) using our technique. We are able to reduce
the data complexity of distinguishing the ciphertexts for same number of rounds
using very less amount of data in comparison to classical differential technique.
These results indicate that our technique provides better results for block ciphers
based on different types of structure. Source code for mentioned experiments is
available on GitHub 4. We present a summary of our results and comparison
with classical differential distinguisher in table 10.

4 https://github.com/tarunyadav/Differential-ML-Distinguisher



Differential-ML Distinguisher 17

Cipher Type Round Data Source

SPECK32 Differential 9 231 [1]
SPECK32 Differential-ML 9 221 Ours
SIMON32 Differential 12 234 [7]
SIMON32 Differential-ML 12 222 Ours
GIFT64 Differential 8 228 [17]
GIFT64 Differential-ML 8 222 Ours

Table 10: Summary of Cryptography Analysis

7 Key Recovery Mechanism for Differential-ML Attack

Gohr [10] has proposed a key recovery attack using ML distinguisher for SPECK.
We propose a similar key recovery attack using differential-ML distinguihers for
block ciphers. We can use differential-ML distinguishers for (r+s−1) rounds and
(r+ s) rounds to mount a key recovery attack on (r+ s+ 1) rounds. It is a two
stage approach where good ciphertext pairs (Ci, C

′

i) are extracted from given

ciphertext pairs in the first stage. These ciphertext pairs (Ci, C
′

i) are filtered by
(r+s) rounds distinguisher using a prediction cutoff (c1). These filtered pairs are
used to rank round keys (Kr+s+1,Kr+s) using (r + s− 1) rounds distinguisher
in the second stage. A different prediction cutoff (c2) is used to rank (r+ s+ 1)
and (r + s) round keys in second stage. Gohr has described various refinements
to increase accuracy while searching the correct keys. This approach can be used
to mount key recovery attack using differential-ML distinguisher with reduced
data complexity.

8 Conclusion

In this paper, we have proposed a novel technique to extend the classical differ-
ential distinguisher using machine learning based distinguisher. This technique
is demonstrated on lightweight block ciphers SPECK & SIMON and 98% & 95%
(or more) success rate is achieved for distinguishing the 9-round SPECK and 12-
round SIMON respectively. We have also presented the 8-round differential-ML
distinguisher of GIFT64 with 99% accuracy with reduced data complexity. Ex-
perimental results have shown very high success rate with a significant reduction
in data complexity for each case. We have also shown that we can extend any
available classical differential distinguisher with machine learning based differ-
ential distinguisher. The new technique provides the better results in terms of
number of rounds and data complexity. This approach will open a new dimen-
sion for practical key recovery attacks using differential cryptanalysis where data
complexity is a major roadblock.
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